1d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#!/usr/bin/env perl
2d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
3d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ====================================================================
4d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# project. The module is, however, dual licensed under OpenSSL and
6d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# CRYPTOGAMS licenses depending on where you obtain it. For further
7d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# details see http://www.openssl.org/~appro/cryptogams/.
8d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ====================================================================
9d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
10d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# March, May, June 2010
11d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
12d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The module implements "4-bit" GCM GHASH function and underlying
13d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# single multiplication operation in GF(2^128). "4-bit" means that it
14d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# code paths: vanilla x86 and vanilla SSE. Former will be executed on
16d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 486 and Pentium, latter on all others. SSE GHASH features so called
17d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
18d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# of per-key storage [+512 bytes shared table]. Performance results
19d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# are for streamed GHASH subroutine and are expressed in cycles per
20d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# processed byte, less is better:
21d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
22d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#		gcc 2.95.3(*)	SSE assembler	x86 assembler
23d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
24d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Pentium	105/111(**)	-		50
25d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# PIII		68 /75		12.2		24
26d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# P4		125/125		17.8		84(***)
27d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Opteron	66 /70		10.1		30
28d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Core2		54 /67		8.4		18
29d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Atom		105/105		16.8		53
30d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# VIA Nano	69 /71		13.0		27
31d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
32d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (*)	gcc 3.4.x was observed to generate few percent slower code,
33d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	which is one of reasons why 2.95.3 results were chosen,
34d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	another reason is lack of 3.4.x results for older CPUs;
35d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	comparison with SSE results is not completely fair, because C
36d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	results are for vanilla "256B" implementation, while
37d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	assembler results are for "528B";-)
38d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (**)	second number is result for code compiled with -fPIC flag,
39d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	which is actually more relevant, because assembler code is
40d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	position-independent;
41d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (***)	see comment in non-MMX routine for further details;
42d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
43d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# To summarize, it's >2-5 times faster than gcc-generated code. To
44d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# anchor it to something else SHA1 assembler processes one byte in
45d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
46d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# in particular, see comment at the end of the file...
47d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
48d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# May 2010
49d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
50d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
51d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The question is how close is it to theoretical limit? The pclmulqdq
52d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# instruction latency appears to be 14 cycles and there can't be more
53d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# than 2 of them executing at any given time. This means that single
54d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Karatsuba multiplication would take 28 cycles *plus* few cycles for
55d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# pre- and post-processing. Then multiplication has to be followed by
56d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# modulo-reduction. Given that aggregated reduction method [see
57d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
58d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# white paper by Intel] allows you to perform reduction only once in
59d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# a while we can assume that asymptotic performance can be estimated
60d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
61d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# and Naggr is the aggregation factor.
62d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
63d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Before we proceed to this implementation let's have closer look at
64d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# the best-performing code suggested by Intel in their white paper.
65d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# By tracing inter-register dependencies Tmod is estimated as ~19
66d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
67d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# processed byte. As implied, this is quite optimistic estimate,
68d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# because it does not account for Karatsuba pre- and post-processing,
69d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# which for a single multiplication is ~5 cycles. Unfortunately Intel
70d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# does not provide performance data for GHASH alone. But benchmarking
71d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
72d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
73d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# the result accounts even for pre-computing of degrees of the hash
74d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# key H, but its portion is negligible at 16KB buffer size.
75d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
76d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Moving on to the implementation in question. Tmod is estimated as
77d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
78d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 2.16. How is it possible that measured performance is better than
79d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic theoretical estimate? There is one thing Intel failed
80d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# to recognize. By serializing GHASH with CTR in same subroutine
81d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# former's performance is really limited to above (Tmul + Tmod/Naggr)
82d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# equation. But if GHASH procedure is detached, the modulo-reduction
83d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# can be interleaved with Naggr-1 multiplications at instruction level
84d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# and under ideal conditions even disappear from the equation. So that
85d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic theoretical estimate for this implementation is ...
86d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
87d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
88d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# where Tproc is time required for Karatsuba pre- and post-processing,
89d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# is more realistic estimate. In this case it gives ... 1.91 cycles.
90d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Or in other words, depending on how well we can interleave reduction
91d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# and one of the two multiplications the performance should be betwen
92d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 1.91 and 2.16. As already mentioned, this implementation processes
93d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
94d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# - in 2.02. x86_64 performance is better, because larger register
95d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# bank allows to interleave reduction and multiplication better.
96d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
97d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Does it make sense to increase Naggr? To start with it's virtually
98d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# impossible in 32-bit mode, because of limited register bank
99d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# capacity. Otherwise improvement has to be weighed agiainst slower
100d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# setup, as well as code size and complexity increase. As even
101d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic estimate doesn't promise 30% performance improvement,
102d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# there are currently no plans to increase Naggr.
103d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
104d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Special thanks to David Woodhouse <dwmw2@infradead.org> for
105d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# providing access to a Westmere-based system on behalf of Intel
106d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Open Source Technology Centre.
107d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
108d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# January 2010
109d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
110d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Tweaked to optimize transitions between integer and FP operations
111d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on same XMM register, PCLMULQDQ subroutine was measured to process
112d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
113d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The minor regression on Westmere is outweighed by ~15% improvement
114d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
115d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# similar manner resulted in almost 20% degradation on Sandy Bridge,
116d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# where original 64-bit code processes one byte in 1.95 cycles.
117d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
118d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#####################################################################
119d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
120d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 32-bit mode and 1.89 in 64-bit.
121d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
122d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# February 2013
123d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
124d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Overhaul: aggregate Karatsuba post-processing, improve ILP in
125d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# reduction_alg9. Resulting performance is 1.96 cycles per byte on
126d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
127d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
128d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
129d9e397b599b13d642138480a28c14db7a136bf0Adam Langleypush(@INC,"${dir}","${dir}../../perlasm");
130d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyrequire "x86asm.pl";
131d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
132d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
133d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
134e9ada863a7b3e81f5d2b1e3bdd2305da902a87f5Adam Langley$sse2=0;
135e9ada863a7b3e81f5d2b1e3bdd2305da902a87f5Adam Langleyfor (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
136d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
137d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
138d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$inp  = "edi";
139d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Htbl = "esi";
140d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
141d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
142d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# than unrolled, which has to be weighted against
143d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# 2.5x x86-specific code size reduction.
144d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
145d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub x86_loop {
146d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $off = shift;
147d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem = "eax";
148d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
149d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
150d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
151d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
152d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&DWP(8,$Htbl,$Zll));
153d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($rem,$rem);	# avoid partial register stalls on PIII
154d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
155d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# shrd practically kills P4, 2.5x deterioration, but P4 has
156d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# MMX code-path to execute. shrd runs tad faster [than twice
157d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# the shifts, move's and or's] on pre-MMX Pentium (as well as
158d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# PIII and Core2), *but* minimizes code size, spares register
159d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# and thus allows to fold the loop...
160d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if (!$unroll) {
161d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	my $cnt = $inp;
162d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($cnt,15);
163d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("x86_loop"));
164d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("x86_loop",16);
165d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    for($i=1;$i<=2;$i++) {
166d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&LB($Zll));
167d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zll,$Zlh,4);
168d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	(&LB($rem),0xf);
169d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zlh,$Zhl,4);
170d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zhl,$Zhh,4);
171d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shr	($Zhh,4);
172d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
173d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
174d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&BP($off,"esp",$cnt));
175d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
176d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&and	(&LB($rem),0xf0);
177d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
178d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&shl	(&LB($rem),4);
179d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
180d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
181d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zll,&DWP(8,$Htbl,$rem));
182d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zlh,&DWP(12,$Htbl,$rem));
183d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhl,&DWP(0,$Htbl,$rem));
184d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP(4,$Htbl,$rem));
185d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
186d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
187d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&dec	($cnt);
188d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&js	(&label("x86_break"));
189d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
190d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&jmp	(&label("x86_loop"));
191d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
192d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    }
193d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("x86_break",16);
194d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
195d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    for($i=1;$i<32;$i++) {
196d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&comment($i);
197d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&LB($Zll));
198d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zll,$Zlh,4);
199d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	(&LB($rem),0xf);
200d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zlh,$Zhl,4);
201d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zhl,$Zhh,4);
202d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shr	($Zhh,4);
203d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
204d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
205d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
206d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
207d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&and	(&LB($rem),0xf0);
208d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
209d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
210d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&shl	(&LB($rem),4);
211d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
212d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
213d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zll,&DWP(8,$Htbl,$rem));
214d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zlh,&DWP(12,$Htbl,$rem));
215d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhl,&DWP(0,$Htbl,$rem));
216d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP(4,$Htbl,$rem));
217d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    }
218d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
219d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zll);
220d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zlh);
221d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhl);
222d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if (!$x86only) {
223d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&bswap	($Zhh);
224d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
225d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	("eax",$Zhh);
226d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&bswap	("eax");
227d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	($Zhh,"eax");
228d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
229d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
230d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
231d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif ($unroll) {
232d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &function_begin_B("_x86_gmult_4bit_inner");
233d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&x86_loop(4);
234d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
235d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &function_end_B("_x86_gmult_4bit_inner");
236d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
237d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
238d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub deposit_rem_4bit {
239d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $bias = shift;
240d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
241d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
242d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
243d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
244d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
245d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
246d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
247d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
248d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
249d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
250d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
251d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
252d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
253d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
254d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
255d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
256d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
257d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
258d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
259d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$suffix = $x86only ? "" : "_x86";
260d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
261d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_gmult_4bit".$suffix);
262d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_push(16+4+1);			# +1 for stack alignment
263d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));		# load Xi
264d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));		# load Htable
265d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
266d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
267d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhl,&DWP(4,$inp));
268d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&DWP(8,$inp));
269d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&DWP(12,$inp));
270d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
271d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&deposit_rem_4bit(16);
272d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
273d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
274d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,"esp"),$Zhl);
275d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,"esp"),$Zlh);
276d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,"esp"),$Zll);
277d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shr	($Zll,20);
278d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($Zll,0xf0);
279d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
280d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if ($unroll) {
281d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&call	("_x86_gmult_4bit_inner");
282d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
283d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&x86_loop(0);
284d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	($inp,&wparam(0));
285d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
286d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
287d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
288d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
289d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
290d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
291d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_pop(16+4+1);
292d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_gmult_4bit".$suffix);
293d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
294d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_4bit".$suffix);
295d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_push(16+4+1);			# +1 for 64-bit alignment
296d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&wparam(0));		# load Xi
297d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));		# load Htable
298d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(2));		# load in
299d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	("ecx",&wparam(3));		# load len
300d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&add	("ecx",$inp);
301d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&wparam(3),"ecx");
302d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
303d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
304d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhl,&DWP(4,$Zll));
305d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&DWP(8,$Zll));
306d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&DWP(12,$Zll));
307d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
308d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&deposit_rem_4bit(16);
309d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
310d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("x86_outer_loop",16);
311d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zll,&DWP(12,$inp));		# xor with input
312d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zlh,&DWP(8,$inp));
313d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zhl,&DWP(4,$inp));
314d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zhh,&DWP(0,$inp));
315d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
316d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,"esp"),$Zlh);
317d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,"esp"),$Zhl);
318d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,"esp"),$Zhh);
319d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
320d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shr	($Zll,20);
321d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($Zll,0xf0);
322d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
323d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if ($unroll) {
324d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&call	("_x86_gmult_4bit_inner");
325d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
326d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&x86_loop(0);
327d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	($inp,&wparam(2));
328d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
329d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	($inp,&DWP(16,$inp));
330d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&cmp	($inp,&wparam(3));
331d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&wparam(2),$inp)	if (!$unroll);
332d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jb	(&label("x86_outer_loop"));
333d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
334d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
335d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
336d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
337d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
338d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
339d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_pop(16+4+1);
340d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_4bit".$suffix);
341d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
342d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (!$x86only) {{{
343d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
344d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("rem_4bit");
345d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
346d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (!$sse2) {{	# pure-MMX "May" version...
347d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
348d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$S=12;		# shift factor for rem_4bit
349d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
350d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("_mmx_gmult_4bit_inner");
351d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# MMX version performs 3.5 times better on P4 (see comment in non-MMX
352d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# routine for further details), 100% better on Opteron, ~70% better
353d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on Core2 and PIII... In other words effort is considered to be well
354d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# spent... Since initial release the loop was unrolled in order to
355d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "liberate" register previously used as loop counter. Instead it's
356d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
357d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The path involves move of Z.lo from MMX to integer register,
358d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# effective address calculation and finally merge of value to Z.hi.
359d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Reference to rem_4bit is scheduled so late that I had to >>4
360d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# rem_4bit elements. This resulted in 20-45% procent improvement
361d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on contemporary �-archs.
362d9e397b599b13d642138480a28c14db7a136bf0Adam Langley{
363d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $cnt;
364d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem_4bit = "eax";
365d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @rem = ($Zhh,$Zll);
366d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nhi = $Zhl;
367d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nlo = $Zlh;
368d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
369d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my ($Zlo,$Zhi) = ("mm0","mm1");
370d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $tmp = "mm2";
371d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
372d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
373d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi,$Zll);
374d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&LB($nhi));
375d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
376d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
377d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
378d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
379d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem[0],$Zlo);
380d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
381d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	for ($cnt=28;$cnt>=-2;$cnt--) {
382d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    my $odd = $cnt&1;
383d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    my $nix = $odd ? $nlo : $nhi;
384d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
385d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shl	(&LB($nlo),4)			if ($odd);
386d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&psrlq	($Zlo,4);
387d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&movq	($tmp,$Zhi);
388d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&psrlq	($Zhi,4);
389d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
390d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
391d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&psllq	($tmp,60);
392d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	($nhi,0xf0)			if ($odd);
393d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
394d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	($rem[0],0xf);
395d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
396d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
397d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&movd	($rem[1],$Zlo);
398d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&pxor	($Zlo,$tmp);
399d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
400d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		push	(@rem,shift(@rem));		# "rotate" registers
401d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
402d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
403d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]
404d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
405d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,32);	# lower part of Zlo is already there
406d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhl,$Zhi);
407d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,32);
408d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zlh,$Zlo);
409d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhh,$Zhi);
410d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4
411d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
412d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zll);
413d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhl);
414d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zlh);
415d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zhh,$inp);
416d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhh);
417d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
418d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
419d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
420d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("_mmx_gmult_4bit_inner");
421d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
422d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_gmult_4bit_mmx");
423d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
424d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));	# load Htable
425d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
426d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	(&label("pic_point"));
427d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("pic_point");
428d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop("eax");
429d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
430d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
431d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movz	($Zll,&BP(15,$inp));
432d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
433d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	("_mmx_gmult_4bit_inner");
434d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
435d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
436d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&emms	();
437d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
438d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
439d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
440d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
441d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_gmult_4bit_mmx");
442d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
443d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Streamed version performs 20% better on P4, 7% on Opteron,
444d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 10% on Core2 and PIII...
445d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_4bit_mmx");
446d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&wparam(0));	# load Xi
447d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));	# load Htable
448d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(2));	# load in
449d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&wparam(3));	# load len
450d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
451d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	(&label("pic_point"));
452d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("pic_point");
453d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop("eax");
454d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
455d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
456d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&add	($Zlh,$inp);
457d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
458d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_push(4+1);		# +1 for stack alignment
459d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
460d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
461d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhl,&DWP(4,$Zhh));
462d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&DWP(8,$Zhh));
463d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&DWP(0,$Zhh));
464d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("mmx_outer_loop"));
465d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
466d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("mmx_outer_loop",16);
467d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zll,&DWP(12,$inp));
468d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zhl,&DWP(4,$inp));
469d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zlh,&DWP(8,$inp));
470d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($Zhh,&DWP(0,$inp));
471d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&wparam(2),$inp);
472d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,"esp"),$Zll);
473d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,"esp"),$Zhl);
474d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,"esp"),$Zlh);
475d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,"esp"),$Zhh);
476d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
477d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,"esp");
478d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shr	($Zll,24);
479d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
480d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	("_mmx_gmult_4bit_inner");
481d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
482d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(2));
483d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	($inp,&DWP(16,$inp));
484d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&cmp	($inp,&wparam(3));
485d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jb	(&label("mmx_outer_loop"));
486d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
487d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
488d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&emms	();
489d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
490d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
491d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
492d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
493d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
494d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&stack_pop(4+1);
495d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_4bit_mmx");
496d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
497d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}} else {{	# "June" MMX version...
498d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# ... has slower "April" gcm_gmult_4bit_mmx with folded
499d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# loop. This is done to conserve code size...
500d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$S=16;		# shift factor for rem_4bit
501d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
502d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub mmx_loop() {
503d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# MMX version performs 2.8 times better on P4 (see comment in non-MMX
504d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# routine for further details), 40% better on Opteron and Core2, 50%
505d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# better on PIII... In other words effort is considered to be well
506d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# spent...
507d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $inp = shift;
508d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem_4bit = shift;
509d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $cnt = $Zhh;
510d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nhi = $Zhl;
511d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nlo = $Zlh;
512d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem = $Zll;
513d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
514d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my ($Zlo,$Zhi) = ("mm0","mm1");
515d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $tmp = "mm2";
516d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
517d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
518d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi,$Zll);
519d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&LB($nhi));
520d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($cnt,14);
521d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
522d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
523d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
524d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
525d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
526d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("mmx_loop"));
527d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
528d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("mmx_loop",16);
529d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
530d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
531d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
532d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
533d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
534d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
535d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
536d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
537d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&dec	($cnt);
538d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
539d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
540d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi,$nlo);
541d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
542d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&js	(&label("mmx_break"));
543d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
544d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
545d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
546d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
547d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
548d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
549d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
550d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
551d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
552d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
553d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
554d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
555d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
556d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("mmx_loop"));
557d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
558d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("mmx_break",16);
559d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
560d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
561d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
562d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
563d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
564d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
565d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
566d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
567d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
568d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
569d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
570d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
571d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
572d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
573d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
574d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
575d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
576d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
577d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
578d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
579d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
580d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
581d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
582d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
583d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,32);	# lower part of Zlo is already there
584d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhl,$Zhi);
585d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,32);
586d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zlh,$Zlo);
587d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhh,$Zhi);
588d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
589d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zll);
590d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhl);
591d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zlh);
592d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhh);
593d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
594d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
595d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_gmult_4bit_mmx");
596d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
597d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));	# load Htable
598d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
599d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	(&label("pic_point"));
600d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("pic_point");
601d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop("eax");
602d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
603d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
604d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movz	($Zll,&BP(15,$inp));
605d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
606d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mmx_loop($inp,"eax");
607d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
608d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&emms	();
609d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
610d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
611d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
612d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
613d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_gmult_4bit_mmx");
614d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
615d9e397b599b13d642138480a28c14db7a136bf0Adam Langley######################################################################
616d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
617d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (see gcm128.c for details). It provides further 20-40% performance
618d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# improvement over above mentioned "May" version.
619d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
620d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("rem_8bit");
621d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
622d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_4bit_mmx");
623d9e397b599b13d642138480a28c14db7a136bf0Adam Langley{ my ($Zlo,$Zhi) = ("mm7","mm6");
624d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  my $rem_8bit = "esi";
625d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  my $Htbl = "ebx";
626d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
627d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # parameter block
628d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("eax",&wparam(0));		# Xi
629d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebx",&wparam(1));		# Htable
630d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ecx",&wparam(2));		# inp
631d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("edx",&wparam(3));		# len
632d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebp","esp");			# original %esp
633d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &call	(&label("pic_point"));
634d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label	("pic_point");
635d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &blindpop	($rem_8bit);
636d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
637d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
638d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &sub	("esp",512+16+16);		# allocate stack frame...
639d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &and	("esp",-64);			# ...and align it
640d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &sub	("esp",16);			# place for (u8)(H[]<<4)
641d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
642d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &add	("edx","ecx");			# pointer to the end of input
643d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
644d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
645d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
646d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
647d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    { my @lo  = ("mm0","mm1","mm2");
648d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my @hi  = ("mm3","mm4","mm5");
649d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my @tmp = ("mm6","mm7");
650d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my ($off1,$off2,$i) = (0,0,);
651d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
652d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &add	($Htbl,128);			# optimize for size
653d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &lea	("edi",&DWP(16+128,"esp"));
654d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &lea	("ebp",&DWP(16+256+128,"esp"));
655d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
656d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      # decompose Htable (low and high parts are kept separately),
657d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
658d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      for ($i=0;$i<18;$i++) {
659d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
660d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
661d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
662d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp[1],60)				if ($i>1);
663d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
664d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por	($lo[2],$tmp[1])			if ($i>1);
665d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
666d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
667d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
668d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
669d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
670d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
671d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
672d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	("edx",4)				if ($i<16);
673d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
674d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
675d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@lo,pop(@lo));			# "rotate" registers
676d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@hi,pop(@hi));
677d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@tmp,pop(@tmp));
678d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	$off1 += 8	if ($i>0);
679d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	$off2 += 8	if ($i>1);
680d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      }
681d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    }
682d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
683d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($Zhi,&QWP(0,"eax"));
684d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebx",&DWP(8,"eax"));
685d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("edx",&DWP(12,"eax"));		# load Xi
686d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
687d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("outer",16);
688d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  { my $nlo = "eax";
689d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $dat = "edx";
690d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @nhi = ("edi","ebp");
691d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @rem = ("ebx","ecx");
692d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @red = ("mm0","mm1","mm2");
693d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $tmp = "mm3";
694d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
695d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	($dat,&DWP(12,"ecx"));		# merge input data
696d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	("ebx",&DWP(8,"ecx"));
697d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(0,"ecx"));
698d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
699d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
700d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+8,"esp"),"ebx");
701d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	(&QWP(528+0,"esp"),$Zhi);
702d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
703d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
704d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	($nlo,$nlo);
705d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &rol	($dat,8);
706d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&LB($nlo),&LB($dat));
707d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	($nhi[1],$nlo);
708d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &and	(&LB($nlo),0x0f);
709d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &shr	($nhi[1],4);
710d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[0],$red[0]);
711d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &rol	($dat,8);			# next byte
712d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[1],$red[1]);
713d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[2],$red[2]);
714d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
715d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # Just like in "May" verson modulo-schedule for critical path in
716d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
717d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # is scheduled so late that rem_8bit[] has to be shifted *right*
718d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # by 16, which is why last argument to pinsrw is 2, which
719d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # corresponds to <<32=<<48>>16...
720d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    for ($j=11,$i=0;$i<15;$i++) {
721d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
722d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      if ($i>0) {
723d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
724d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&rol	($dat,8);				# next byte
725d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
726d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
727d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
728d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
729d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
730d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      } else {
731d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
732d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
733d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      }
734d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
735d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&LB($dat));
736d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
737d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
738d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem[0],$Zlo);
739d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
740d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,8);				# Z>>=8
741d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
742d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
743d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi[0],$nlo);
744d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,8);
745d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
746d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
747d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	(&LB($nlo),0x0f);
748d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,56);
749d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
750d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,$red[1])				if ($i>1);
751d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shr	($nhi[0],4);
752d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
753d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
754d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@red,pop(@red));			# "rotate" registers
755d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@rem,pop(@rem));
756d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@nhi,pop(@nhi));
757d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    }
758d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
759d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
760d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
761d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
762d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
763d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,$tmp);
764d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
765d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movz	($rem[1],&LB($rem[1]));
766d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
767d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[2],$red[2]);			# clear 2nd word
768d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($red[1],4);
769d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
770d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	($rem[0],$Zlo);
771d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zlo,4);				# Z>>=4
772d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
773d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($tmp,$Zhi);
774d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zhi,4);
775d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &shl	($rem[0],4);				# rem<<4
776d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
777d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
778d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($tmp,60);
779d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movz	($rem[0],&LB($rem[0]));
780d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
781d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,$tmp);
782d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
783d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
784d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
785d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[1]);
786d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
787d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	($dat,$Zlo);
788d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
789d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
790d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($red[0],12);				# correct by <<16>>4
791d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[0]);
792d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zlo,32);
793d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[2]);
794d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
795d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
796d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	("ebx",$Zlo);
797d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($tmp,$Zhi);			# 01234567
798d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllw	($Zhi,8);			# 1.3.5.7.
799d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlw	($tmp,8);			# .0.2.4.6
800d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &por	($Zhi,$tmp);			# 10325476
801d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &bswap	($dat);
802d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
803d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &bswap	("ebx");
804d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
805d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
806d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &jne	(&label("outer"));
807d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  }
808d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
809d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
810d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(12,"eax"),"edx");
811d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(8,"eax"),"ebx");
812d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	(&QWP(0,"eax"),$Zhi);
813d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
814d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
815d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &emms	();
816d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
817d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_4bit_mmx");
818d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}
819d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
820d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif ($sse2) {{
821d9e397b599b13d642138480a28c14db7a136bf0Adam Langley######################################################################
822d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# PCLMULQDQ version.
823d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
824d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Xip="eax";
825d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Htbl="edx";
826d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$const="ecx";
827d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$inp="esi";
828d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$len="ebx";
829d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
830d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
831d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
832d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Xn,$Xhn)=("xmm6","xmm7");
833d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
834d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("bswap");
835d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
836d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub clmul64x64_T2 {	# minimal "register" pressure
837d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi,$Hkey,$HK)=@_;
838d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
839d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);		#
840d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xi,0b01001110);
841d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
842d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
843d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Hkey)		if (!defined($HK));
844d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			$HK=$T2			if (!defined($HK));
845d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
846d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
847d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
848d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$HK,0x00);		#######
849d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($T1,$Xi);		#
850d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($T1,$Xhi);		#
851d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
852d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$T1);		#
853d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T1,8);
854d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T2,8);		#
855d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T1);
856d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);		#
857d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
858d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
859d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub clmul64x64_T3 {
860d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Even though this subroutine offers visually better ILP, it
861d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# was empirically found to be a tad slower than above version.
862d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# At least in gcm_ghash_clmul context. But it's just as well,
863d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# because loop modulo-scheduling is possible only thanks to
864d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# minimized "register" pressure...
865d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi,$Hkey)=@_;
866d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
867d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
868d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
869d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
870d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
871d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$T1,0b01001110);	#
872d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T3,$Hkey,0b01001110);
873d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
874d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$Hkey);
875d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x00);		#######
876d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
877d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xhi);		#
878d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
879d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$T2);		#
880d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
881d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T3,8);		#
882d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
883d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T3);		#
884d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
885d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
886d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (1) {		# Algorithm 9 with <<1 twist.
887d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# Reduction is shorter and uses only two
888d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# temporary registers, which makes it better
889d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# candidate for interleaving with 64x64
890d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# multiplication. Pre-modulo-scheduled loop
891d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# was found to be ~20% faster than Algorithm 5
892d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# below. Algorithm 9 was therefore chosen for
893d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# further optimization...
894d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
895d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub reduction_alg9 {	# 17/11 times faster than Intel version
896d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi) = @_;
897d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
898d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 1st phase
899d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);		#
900d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);
901d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,5);
902d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
903d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,1);
904d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
905d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,57);		#
906d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
907d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($Xi,8);
908d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T1,8);		#
909d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);
910d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T1);		#
911d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
912d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 2nd phase
913d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);
914d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,1);
915d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);		#
916d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);
917d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,5);
918d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);		#
919d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,1);		#
920d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xhi)		#
921d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
922d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
923d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_init_clmul");
924d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(0));
925d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(1));
926d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
927d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
928d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
929d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
930d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
931d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
932d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Xip));
933d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
934d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
935d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# <<1 twist
936d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
937d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Hkey);
938d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Hkey,1);
939d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$T3);		#
940d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($T1,63);
941d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pcmpgtd	($T3,$T2);		# broadcast carry bit
942d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);
943d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Hkey,$T1);		# H<<=1
944d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
945d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# magic reduction
946d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
947d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
948d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
949d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# calculate H^2
950d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$Hkey);
951d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
952d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
953d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
954d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Hkey,0b01001110);
955d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);
956d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
957d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
958d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		# Karatsuba pre-processing
959d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
960d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
961d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
962d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
963d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret		();
964d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_init_clmul");
965d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
966d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_gmult_clmul");
967d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
968d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
969d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
970d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
971d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
972d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
973d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
974d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
975d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
976d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
977d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));
978d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
979d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($T2,&QWP(32,$Htbl));
980d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
981d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
982d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
983d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
984d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
985d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
986d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
987d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
988d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_gmult_clmul");
989d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
990d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_clmul");
991d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
992d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
993d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($inp,&wparam(2));
994d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($len,&wparam(3));
995d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
996d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
997d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
998d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
999d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1000d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1001d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
1002d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1003d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
1004d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1005d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1006d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x10);
1007d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jz		(&label("odd_tail"));
1008d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1009d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
1010d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1011d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1012d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1013d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#
1014d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1015d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1016d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1017d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
1018d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T3,&QWP(32,$Htbl));
1019d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1020d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1021d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
1022d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhn,$Xn);
1023d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xn);		#
1024d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));	# i+=2
1025d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1026d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1027d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1028d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$T3,0x00);		#######
1029d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1030d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&nop		();
1031d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1032d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1033d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jbe		(&label("even_tail"));
1034d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp		(&label("mod_loop"));
1035d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1036d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("mod_loop",32);
1037d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1038d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
1039d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
1040d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&nop		();
1041d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1042d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1043d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1044d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x10);		#######
1045d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1046d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1047d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1048d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1049d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xhi,$Xhn);
1050d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
1051d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1052d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
1053d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhi);		#
1054d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1055d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pshufb	($Xhn,$T3);
1056d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
1057d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1058d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T2);		#
1059d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
1060d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);		#
1061d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
1062d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
1063d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pshufb	($Xn,$T3);
1064d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
1065d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1066d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
1067d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
1068d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T1,$Xi);
1069d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,5);
1070d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($T1,$Xi);		#
1071d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,1);
1072d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T1);		#
1073d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1074d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($T3,&QWP(32,$Htbl));
1075d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,57);		#
1076d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T1,$Xi);		#
1077d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pslldq	($Xi,8);
1078d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrldq	($T1,8);		#
1079d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T2);
1080d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xhi,$T1);		#
1081d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xhn,0b01001110);
1082d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T2,$Xi);		# 2nd phase
1083d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,1);
1084d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhn);
1085d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xhi,$T2);		#
1086d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1087d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1088d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($T2,$Xi);
1089d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,5);
1090d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T2);		#
1091d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,1);		#
1092d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$Xhi)		#
1093d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$T3,0x00);		#######
1094d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1095d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));
1096d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1097d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ja		(&label("mod_loop"));
1098d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1099d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("even_tail");
1100d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1101d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
1102d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
1103d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1104d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1105d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1106d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x10);		#######
1107d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1108d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1109d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1110d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xhi,$Xhn);
1111d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1112d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhi);		#
1113d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1114d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
1115d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1116d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T2);		#
1117d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
1118d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);		#
1119d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
1120d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
1121d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1122d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
1123d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1124d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&test		($len,$len);
1125d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jnz		(&label("done"));
1126d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1127d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1128d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("odd_tail");
1129d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1130d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1131d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1132d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1133d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1134d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
1135d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1136d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("done");
1137d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1138d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
1139d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_clmul");
1140d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1141d9e397b599b13d642138480a28c14db7a136bf0Adam Langley} else {		# Algorith 5. Kept for reference purposes.
1142d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1143d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub reduction_alg5 {	# 19/16 times faster than Intel version
1144d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi)=@_;
1145d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1146d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# <<1
1147d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
1148d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xhi);
1149d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xi,1);
1150d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xhi,1);		#
1151d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T1,31);
1152d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T2,31);		#
1153d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$T1);
1154d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,4);
1155d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T3,12);		#
1156d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T2,4);
1157d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xhi,$T3);		#
1158d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xi,$T1);
1159d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xhi,$T2);		#
1160d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1161d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 1st phase
1162d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);
1163d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);
1164d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$Xi);		#
1165d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($T1,31);
1166d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($T2,30);
1167d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xi,25);		#
1168d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$T2);
1169d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
1170d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$T1);		#
1171d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,12);
1172d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,4);		#
1173d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$T1);
1174d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1175d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 2nd phase
1176d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T3);		#
1177d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$T3);
1178d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T3);
1179d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($Xi,1);		#
1180d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T1,2);
1181d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T3,7);		#
1182d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);
1183d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
1184d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T3);		#
1185d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xhi);		#
1186d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
1187d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1188d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_init_clmul");
1189d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(0));
1190d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(1));
1191d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1192d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
1193d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
1194d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
1195d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1196d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1197d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Xip));
1198d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
1199d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1200d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# calculate H^2
1201d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$Hkey);
1202d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1203d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1204d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1205d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
1206d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
1207d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1208d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret		();
1209d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_init_clmul");
1210d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1211d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_gmult_clmul");
1212d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
1213d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
1214d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1215d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
1216d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
1217d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
1218d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1219d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1220d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
1221d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xn,&QWP(0,$const));
1222d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
1223d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$Xn);
1224d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1225d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1226d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1227d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1228d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$Xn);
1229d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
1230d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1231d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
1232d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_gmult_clmul");
1233d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1234d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_clmul");
1235d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
1236d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
1237d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($inp,&wparam(2));
1238d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($len,&wparam(3));
1239d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1240d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
1241d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
1242d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
1243d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1244d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1245d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
1246d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1247d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
1248d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1249d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1250d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x10);
1251d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jz		(&label("odd_tail"));
1252d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1253d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
1254d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1255d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1256d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1257d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#
1258d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1259d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1260d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1261d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
1262d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1263d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1264d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1265d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1266d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1267d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1268d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));	# i+=2
1269d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jbe		(&label("even_tail"));
1270d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1271d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("mod_loop");
1272d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1273d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1274d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1275d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1276d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$Xhn);
1277d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1278d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1279d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1280d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
1281d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1282d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1283d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1284d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1285d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
1286d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1287d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1288d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1289d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1290d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1291d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1292d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));
1293d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ja		(&label("mod_loop"));
1294d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1295d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("even_tail");
1296d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1297d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1298d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1299d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$Xhn);
1300d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1301d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1302d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1303d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1304d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&test		($len,$len);
1305d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jnz		(&label("done"));
1306d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1307d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1308d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("odd_tail");
1309d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1310d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1311d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1312d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1313d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1314d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1315d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1316d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1317d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("done");
1318d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1319d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
1320d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_clmul");
1321d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1322d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
1323d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1324d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("bswap",64);
1325d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1326d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
1327d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("rem_8bit",64);
1328d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1329d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1330d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1331d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1332d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1333d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1334d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1335d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1336d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1337d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1338d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1339d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1340d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1341d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1342d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1343d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1344d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1345d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1346d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1347d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1348d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1349d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1350d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1351d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1352d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1353d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1354d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1355d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1356d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1357d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1358d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1359d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1360d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}	# $sse2
1361d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1362d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("rem_4bit",64);
1363d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1364d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1365d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1366d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1367d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}}	# !$x86only
1368d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1369d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1370d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&asm_finish();
1371d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1372d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# A question was risen about choice of vanilla MMX. Or rather why wasn't
1373d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1374d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1375d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# performance than *corresponding* SSE2 one even on contemporary CPUs.
1376d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1377d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# implementation featuring full range of lookup-table sizes, but with
1378d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# per-invocation lookup table setup. Latter means that table size is
1379d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# chosen depending on how much data is to be hashed in every given call,
1380d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# more data - larger table. Best reported result for Core2 is ~4 cycles
1381d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# per processed byte out of 64KB block. This number accounts even for
1382d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1383d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# more conservative in respect to lookup table sizes, but how do the
1384d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1385d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on same platform. As also discussed in gcm128.c, next in line "8-bit
1386d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Shoup's" or "4KB" method should deliver twice the performance of
1387d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "256B" one, in other words not worse than ~6 cycles per byte. It
1388d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# should be also be noted that in SSE2 case improvement can be "super-
1389d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# linear," i.e. more than twice, mostly because >>8 maps to single
1390d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1391d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# maps to same amount of instructions in both MMX and SSE2 cases.
1392d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Bottom line is that switch to SSE2 is considered to be justifiable
1393d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# only in case we choose to implement "8-bit" method...
1394