10ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Ceres Solver - A fast non-linear least squares minimizer
20ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
30ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://code.google.com/p/ceres-solver/
40ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
50ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Redistribution and use in source and binary forms, with or without
60ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// modification, are permitted provided that the following conditions are met:
70ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
80ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions of source code must retain the above copyright notice,
90ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer.
100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions in binary form must reproduce the above copyright notice,
110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer in the documentation
120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   and/or other materials provided with the distribution.
130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Neither the name of Google Inc. nor the names of its contributors may be
140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   used to endorse or promote products derived from this software without
150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   specific prior written permission.
160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// POSSIBILITY OF SUCH DAMAGE.
280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Author: keir@google.com (Keir Mierle)
300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//         sameeragarwal@google.com (Sameer Agarwal)
310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Templated functions for manipulating rotations. The templated
330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// functions are useful when implementing functors for automatic
340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// differentiation.
350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// In the following, the Quaternions are laid out as 4-vectors, thus:
370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   q[0]  scalar part.
390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   q[1]  coefficient of i.
400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   q[2]  coefficient of j.
410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   q[3]  coefficient of k.
420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#ifndef CERES_PUBLIC_ROTATION_H_
460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#define CERES_PUBLIC_ROTATION_H_
470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <algorithm>
490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <cmath>
500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "glog/logging.h"
510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace ceres {
530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Trivial wrapper to index linear arrays as matrices, given a fixed
551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// column and row stride. When an array "T* array" is wrapped by a
561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   (const) MatrixAdapter<T, row_stride, col_stride> M"
581d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// the expression  M(i, j) is equivalent to
601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   arrary[i * row_stride + j * col_stride]
621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Conversion functions to and from rotation matrices accept
641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// MatrixAdapters to permit using row-major and column-major layouts,
651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// and rotation matrices embedded in larger matrices (such as a 3x4
661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// projection matrix).
671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingstruct MatrixAdapter;
691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
701d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Convenience functions to create a MatrixAdapter that treats the
711d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// array pointed to by "pointer" as a 3x3 (contiguous) column-major or
721d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// row-major matrix.
731d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T>
741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha HaeberlingMatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T>
771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha HaeberlingMatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
781d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Convert a value in combined axis-angle representation to a quaternion.
800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The value angle_axis is a triple whose norm is an angle in radians,
810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// and whose direction is aligned with the axis of rotation,
820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// and quaternion is a 4-tuple that will contain the resulting quaternion.
830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The implementation may be used with auto-differentiation up to the first
840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// derivative, higher derivatives may have unexpected results near the origin.
850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T>
861d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Convert a quaternion to the equivalent combined axis-angle representation.
890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The value quaternion must be a unit quaternion - it is not normalized first,
900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// and angle_axis will be filled with a value whose norm is the angle of
910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// rotation in radians, and whose direction is the axis of rotation.
920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The implemention may be used with auto-differentiation up to the first
930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// derivative, higher derivatives may have unexpected results near the origin.
940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T>
951d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Conversions between 3x3 rotation matrix (in column major order) and
980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// axis-angle rotation representations.  Templated for use with
990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// autodifferentiation.
1000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
1011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid RotationMatrixToAngleAxis(const T* R, T* angle_axis);
1021d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
1041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid RotationMatrixToAngleAxis(
1051d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<const T, row_stride, col_stride>& R,
1061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    T* angle_axis);
1071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
1091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid AngleAxisToRotationMatrix(const T* angle_axis, T* R);
1101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
1121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid AngleAxisToRotationMatrix(
1131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T* angle_axis,
1141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R);
1150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Conversions between 3x3 rotation matrix (in row major order) and
1170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Euler angle (in degrees) rotation representations.
1180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
1200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// axes, respectively.  They are applied in that same order, so the
1210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// total rotation R is Rz * Ry * Rx.
1220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
1230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
1240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
1261d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid EulerAnglesToRotationMatrix(
1271d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T* euler,
1281d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R);
1291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Convert a 4-vector to a 3x3 scaled rotation matrix.
1310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
1330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
1340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// the matrix
1350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//         [  0 -c  b ]
1370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   I + 2 [  c  0 -a ] + higher order terms
1380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//         [ -b  a  0 ]
1390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// which corresponds to a Rodrigues approximation, the last matrix being
1410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// the cross-product matrix of [a b c]. Together with the property that
1420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
1430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The rotation matrix is row-major.
1450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// No normalization of the quaternion is performed, i.e.
1470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// R = ||q||^2 * Q, where Q is an orthonormal matrix
1480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// such that det(Q) = 1 and Q*Q' = I
1490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
1500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
1510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1521d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride> inline
1531d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid QuaternionToScaledRotation(
1541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T q[4],
1551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R);
1561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Same as above except that the rotation matrix is normalized by the
1580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Frobenius norm, so that R * R' = I (and det(R) = 1).
1590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
1600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionToRotation(const T q[4], T R[3 * 3]);
1610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride> inline
1631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid QuaternionToRotation(
1641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T q[4],
1651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R);
1661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
1670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Rotates a point pt by a quaternion q:
1680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   result = R(q) * pt
1700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Assumes the quaternion is unit norm. This assumption allows us to
1720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// write the transform as (something)*pt + pt, as is clear from the
1730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// formula below. If you pass in a quaternion with |q|^2 = 2 then you
1740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// WILL NOT get back 2 times the result you get for a unit quaternion.
1750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
1760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
1770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// With this function you do not need to assume that q has unit norm.
1790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// It does assume that the norm is non-zero.
1800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
1810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
1820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// zw = z * w, where * is the Quaternion product between 4 vectors.
1840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
1850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionProduct(const T z[4], const T w[4], T zw[4]);
1860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// xy = x cross y;
1880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
1890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
1900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
1920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus KongT DotProduct(const T x[3], const T y[3]);
1930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// y = R(angle_axis) * x;
1950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
1960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
1970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// --- IMPLEMENTATION
1990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2001d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate<typename T, int row_stride, int col_stride>
2011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingstruct MatrixAdapter {
2021d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  T* pointer_;
2031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  explicit MatrixAdapter(T* pointer)
2041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    : pointer_(pointer)
2051d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  {}
2061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  T& operator()(int r, int c) const {
2081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    return pointer_[r * row_stride + c * col_stride];
2091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  }
2101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling};
2111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T>
2131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha HaeberlingMatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
2141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  return MatrixAdapter<T, 1, 3>(pointer);
2151d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
2161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T>
2181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha HaeberlingMatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
2191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  return MatrixAdapter<T, 3, 1>(pointer);
2201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
2211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T>
2230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Konginline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
2240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& a0 = angle_axis[0];
2250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& a1 = angle_axis[1];
2260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& a2 = angle_axis[2];
2270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
2280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // For points not at the origin, the full conversion is numerically stable.
2300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (theta_squared > T(0.0)) {
2310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T theta = sqrt(theta_squared);
2320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T half_theta = theta * T(0.5);
2330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T k = sin(half_theta) / theta;
2340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[0] = cos(half_theta);
2350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[1] = a0 * k;
2360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[2] = a1 * k;
2370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[3] = a2 * k;
2380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
2390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // At the origin, sqrt() will produce NaN in the derivative since
2400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the argument is zero.  By approximating with a Taylor series,
2410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // and truncating at one term, the value and first derivatives will be
2420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // computed correctly when Jets are used.
2430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T k(0.5);
2440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[0] = T(1.0);
2450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[1] = a0 * k;
2460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[2] = a1 * k;
2470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    quaternion[3] = a2 * k;
2480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
2490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
2500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T>
2520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Konginline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
2530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& q1 = quaternion[1];
2540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& q2 = quaternion[2];
2550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T& q3 = quaternion[3];
2560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
2570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // For quaternions representing non-zero rotation, the conversion
2590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // is numerically stable.
2600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (sin_squared_theta > T(0.0)) {
2610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T sin_theta = sqrt(sin_squared_theta);
2620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T& cos_theta = quaternion[0];
2630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // If cos_theta is negative, theta is greater than pi/2, which
2650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // means that angle for the angle_axis vector which is 2 * theta
2660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // would be greater than pi.
2670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // While this will result in the correct rotation, it does not
2690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // result in a normalized angle-axis vector.
2700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
2720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // which is equivalent saying
2730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
2750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //              = atan(-sin(theta), -cos(theta))
2760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
2770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T two_theta =
2780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        T(2.0) * ((cos_theta < 0.0)
2790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                  ? atan2(-sin_theta, -cos_theta)
2800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                  : atan2(sin_theta, cos_theta));
2810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T k = two_theta / sin_theta;
2820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[0] = q1 * k;
2830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[1] = q2 * k;
2840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[2] = q3 * k;
2850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
2860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // For zero rotation, sqrt() will produce NaN in the derivative since
2870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // the argument is zero.  By approximating with a Taylor series,
2880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // and truncating at one term, the value and first derivatives will be
2890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // computed correctly when Jets are used.
2900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T k(2.0);
2910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[0] = q1 * k;
2920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[1] = q2 * k;
2930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    angle_axis[2] = q3 * k;
2940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
2950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
2960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
2970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// The conversion of a rotation matrix to the angle-axis form is
2980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// numerically problematic when then rotation angle is close to zero
2990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// or to Pi. The following implementation detects when these two cases
3000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// occurs and deals with them by taking code paths that are guaranteed
3010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// to not perform division by a small number.
3020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
3031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlinginline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
3041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
3051d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
3061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
3081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid RotationMatrixToAngleAxis(
3091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<const T, row_stride, col_stride>& R,
3101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    T* angle_axis) {
3110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // x = k * 2 * sin(theta), where k is the axis of rotation.
3121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  angle_axis[0] = R(2, 1) - R(1, 2);
3131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  angle_axis[1] = R(0, 2) - R(2, 0);
3141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  angle_axis[2] = R(1, 0) - R(0, 1);
3150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  static const T kOne = T(1.0);
3170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  static const T kTwo = T(2.0);
3180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Since the right hand side may give numbers just above 1.0 or
3200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // below -1.0 leading to atan misbehaving, we threshold.
3211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  T costheta = std::min(std::max((R(0, 0) + R(1, 1) + R(2, 2) - kOne) / kTwo,
3220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                 T(-1.0)),
3230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                        kOne);
3240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // sqrt is guaranteed to give non-negative results, so we only
3260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // threshold above.
3270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
3280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                             angle_axis[1] * angle_axis[1] +
3290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                             angle_axis[2] * angle_axis[2]) / kTwo,
3300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                        kOne);
3310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Use the arctan2 to get the right sign on theta
3330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T theta = atan2(sintheta, costheta);
3340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Case 1: sin(theta) is large enough, so dividing by it is not a
3360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // problem. We do not use abs here, because while jets.h imports
3370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // std::abs into the namespace, here in this file, abs resolves to
3380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // the int version of the function, which returns zero always.
3390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  //
3400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // We use a threshold much larger then the machine epsilon, because
3410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // if sin(theta) is small, not only do we risk overflow but even if
3420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // that does not occur, just dividing by a small number will result
3430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // in numerical garbage. So we play it safe.
3440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  static const double kThreshold = 1e-12;
3450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
3460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T r = theta / (kTwo * sintheta);
3470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    for (int i = 0; i < 3; ++i) {
3480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      angle_axis[i] *= r;
3490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
3500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    return;
3510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
3520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
3540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // approximation.
3550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  if (costheta > 0.0) {
3560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T kHalf = T(0.5);
3570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    for (int i = 0; i < 3; ++i) {
3580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      angle_axis[i] *= kHalf;
3590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
3600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    return;
3610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
3620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Case 3: theta ~ pi, this is the hard case. Since theta is large,
3640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // and sin(theta) is small. Dividing by theta by sin(theta) will
3650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // either give an overflow or worse still numerically meaningless
3660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // results. Thus we use an alternate more complicated formula
3670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // here.
3680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Since cos(theta) is negative, division by (1-cos(theta)) cannot
3700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // overflow.
3710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T inv_one_minus_costheta = kOne / (kOne - costheta);
3720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // We now compute the absolute value of coordinates of the axis
3740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // vector using the diagonal entries of R. To resolve the sign of
3750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // these entries, we compare the sign of angle_axis[i]*sin(theta)
3760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // with the sign of sin(theta). If they are the same, then
3770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // angle_axis[i] should be positive, otherwise negative.
3780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  for (int i = 0; i < 3; ++i) {
3791d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    angle_axis[i] = theta * sqrt((R(i, i) - costheta) * inv_one_minus_costheta);
3800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
3810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
3820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      angle_axis[i] = -angle_axis[i];
3830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
3840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
3850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
3860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
3870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
3881d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlinginline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
3891d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
3901d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
3911d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3921d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
3931d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid AngleAxisToRotationMatrix(
3941d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T* angle_axis,
3951d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R) {
3960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  static const T kOne = T(1.0);
3970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T theta2 = DotProduct(angle_axis, angle_axis);
39879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez  if (theta2 > T(std::numeric_limits<double>::epsilon())) {
3990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // We want to be careful to only evaluate the square root if the
4000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // norm of the angle_axis vector is greater than zero. Otherwise
4010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // we get a division by zero.
4020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T theta = sqrt(theta2);
4030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T wx = angle_axis[0] / theta;
4040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T wy = angle_axis[1] / theta;
4050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T wz = angle_axis[2] / theta;
4060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T costheta = cos(theta);
4080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T sintheta = sin(theta);
4090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(0, 0) =     costheta   + wx*wx*(kOne -    costheta);
4111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(1, 0) =  wz*sintheta   + wx*wy*(kOne -    costheta);
4121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(2, 0) = -wy*sintheta   + wx*wz*(kOne -    costheta);
4131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(0, 1) =  wx*wy*(kOne - costheta)     - wz*sintheta;
4141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(1, 1) =     costheta   + wy*wy*(kOne -    costheta);
4151d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(2, 1) =  wx*sintheta   + wy*wz*(kOne -    costheta);
4161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(0, 2) =  wy*sintheta   + wx*wz*(kOne -    costheta);
4171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(1, 2) = -wx*sintheta   + wy*wz*(kOne -    costheta);
4181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(2, 2) =     costheta   + wz*wz*(kOne -    costheta);
4190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
42079397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // Near zero, we switch to using the first order Taylor expansion.
4211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(0, 0) =  kOne;
42279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(1, 0) =  angle_axis[2];
42379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(2, 0) = -angle_axis[1];
42479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(0, 1) = -angle_axis[2];
4251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(1, 1) =  kOne;
42679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(2, 1) =  angle_axis[0];
42779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(0, 2) =  angle_axis[1];
42879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    R(1, 2) = -angle_axis[0];
4291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    R(2, 2) = kOne;
4300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
4310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
4320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T>
4340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Konginline void EulerAnglesToRotationMatrix(const T* euler,
4351d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling                                        const int row_stride_parameter,
4360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                        T* R) {
4371d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  CHECK_EQ(row_stride_parameter, 3);
4381d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
4391d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
4401d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
4411d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride>
4421d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid EulerAnglesToRotationMatrix(
4431d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T* euler,
4441d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R) {
4450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const double kPi = 3.14159265358979323846;
4460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T degrees_to_radians(kPi / 180.0);
4470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T pitch(euler[0] * degrees_to_radians);
4490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T roll(euler[1] * degrees_to_radians);
4500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T yaw(euler[2] * degrees_to_radians);
4510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T c1 = cos(yaw);
4530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T s1 = sin(yaw);
4540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T c2 = cos(roll);
4550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T s2 = sin(roll);
4560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T c3 = cos(pitch);
4570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T s3 = sin(pitch);
4580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(0, 0) = c1*c2;
4601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(0, 1) = -s1*c3 + c1*s2*s3;
4611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(0, 2) = s1*s3 + c1*s2*c3;
4620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(1, 0) = s1*c2;
4641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(1, 1) = c1*c3 + s1*s2*s3;
4651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(1, 2) = -c1*s3 + s1*s2*c3;
4660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(2, 0) = -s2;
4681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(2, 1) = c2*s3;
4691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(2, 2) = c2*c3;
4700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
4710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
4730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
4741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
4751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
4761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
4771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride> inline
4781d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid QuaternionToScaledRotation(
4791d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const T q[4],
4801d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    const MatrixAdapter<T, row_stride, col_stride>& R) {
4810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Make convenient names for elements of q.
4820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T a = q[0];
4830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T b = q[1];
4840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T c = q[2];
4850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T d = q[3];
4860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // This is not to eliminate common sub-expression, but to
4870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // make the lines shorter so that they fit in 80 columns!
4880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T aa = a * a;
4890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T ab = a * b;
4900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T ac = a * c;
4910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T ad = a * d;
4920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T bb = b * b;
4930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T bc = b * c;
4940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T bd = b * d;
4950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T cc = c * c;
4960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T cd = c * d;
4970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T dd = d * d;
4980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
4991d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad);  R(0, 2) = T(2) * (ac + bd);  // NOLINT
5001d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(1, 0) = T(2) * (ad + bc);  R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab);  // NOLINT
5011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  R(2, 0) = T(2) * (bd - ac);  R(2, 1) = T(2) * (ab + cd);  R(2, 2) = aa - bb - cc + dd; // NOLINT
5020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
5050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionToRotation(const T q[4], T R[3 * 3]) {
5061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  QuaternionToRotation(q, RowMajorAdapter3x3(R));
5071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}
5081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
5091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingtemplate <typename T, int row_stride, int col_stride> inline
5101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingvoid QuaternionToRotation(const T q[4],
5111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling                          const MatrixAdapter<T, row_stride, col_stride>& R) {
5120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  QuaternionToScaledRotation(q, R);
5130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
5150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  CHECK_NE(normalizer, T(0));
5160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  normalizer = T(1) / normalizer;
5170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  for (int i = 0; i < 3; ++i) {
5191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    for (int j = 0; j < 3; ++j) {
5201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      R(i, j) *= normalizer;
5211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    }
5220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
5230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
5260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
5270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t2 =  q[0] * q[1];
5280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t3 =  q[0] * q[2];
5290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t4 =  q[0] * q[3];
5300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t5 = -q[1] * q[1];
5310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t6 =  q[1] * q[2];
5320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t7 =  q[1] * q[3];
5330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t8 = -q[2] * q[2];
5340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t9 =  q[2] * q[3];
5350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T t1 = -q[3] * q[3];
5360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
5370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
5380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
5390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate <typename T> inline
5420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
5430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // 'scale' is 1 / norm(q).
5440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T scale = T(1) / sqrt(q[0] * q[0] +
5450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              q[1] * q[1] +
5460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              q[2] * q[2] +
5470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                              q[3] * q[3]);
5480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  // Make unit-norm version of q.
5500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T unit[4] = {
5510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scale * q[0],
5520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scale * q[1],
5530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scale * q[2],
5540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scale * q[3],
5550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  };
5560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  UnitQuaternionRotatePoint(unit, pt, result);
5580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
5610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
5620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
5630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
5640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
5650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
5660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// xy = x cross y;
5690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
5700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
5710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
5720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
5730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
5740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
5770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus KongT DotProduct(const T x[3], const T y[3]) {
5780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
5790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
5800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
5810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongtemplate<typename T> inline
5820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongvoid AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
5830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  const T theta2 = DotProduct(angle_axis, angle_axis);
58479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez  if (theta2 > T(std::numeric_limits<double>::epsilon())) {
5850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Away from zero, use the rodriguez formula
5860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   result = pt costheta +
5880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //            (w x pt) * sintheta +
5890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //            w (w . pt) (1 - costheta)
5900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // We want to be careful to only evaluate the square root if the
5920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // norm of the angle_axis vector is greater than zero. Otherwise
5930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // we get a division by zero.
5940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
5950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const T theta = sqrt(theta2);
59679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T costheta = cos(theta);
59779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T sintheta = sin(theta);
59879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T theta_inverse = 1.0 / theta;
59979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez
60079397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T w[3] = { angle_axis[0] * theta_inverse,
60179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                     angle_axis[1] * theta_inverse,
60279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                     angle_axis[2] * theta_inverse };
60379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez
60479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // Explicitly inlined evaluation of the cross product for
60579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // performance reasons.
60679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
60779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                              w[2] * pt[0] - w[0] * pt[2],
60879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                              w[0] * pt[1] - w[1] * pt[0] };
60979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T tmp =
61079397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez        (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
61179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez
61279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
61379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
61479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
6150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  } else {
6160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Near zero, the first order Taylor approximation of the rotation
6170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // matrix R corresponding to a vector w and angle w is
6180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
6190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //   R = I + hat(w) * sin(theta)
6200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
6210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // But sintheta ~ theta and theta * w = angle_axis, which gives us
6220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
6230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //  R = I + hat(w)
6240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
6250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // and actually performing multiplication with the point pt, gives us
6260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // R * pt = pt + w x pt.
6270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    //
62879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // Switching to the Taylor expansion near zero provides meaningful
62979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // derivatives when evaluated using Jets.
63079397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //
63179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // Explicitly inlined evaluation of the cross product for
63279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // performance reasons.
63379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
63479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                              angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
63579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez                              angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
63679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez
63779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[0] = pt[0] + w_cross_pt[0];
63879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[1] = pt[1] + w_cross_pt[1];
63979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    result[2] = pt[2] + w_cross_pt[2];
6400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
6410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
6420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace ceres
6440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
6450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#endif  // CERES_PUBLIC_ROTATION_H_
646