1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/APSInt.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Support/Compiler.h"
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class StringLiteral;
49  class TargetInfo;
50  class ValueDecl;
51
52/// \brief A simple array of base specifiers.
53typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
54
55/// \brief An adjustment to be made to the temporary created when emitting a
56/// reference binding, which accesses a particular subobject of that temporary.
57struct SubobjectAdjustment {
58  enum {
59    DerivedToBaseAdjustment,
60    FieldAdjustment,
61    MemberPointerAdjustment
62  } Kind;
63
64
65  struct DTB {
66    const CastExpr *BasePath;
67    const CXXRecordDecl *DerivedClass;
68  };
69
70  struct P {
71    const MemberPointerType *MPT;
72    Expr *RHS;
73  };
74
75  union {
76    struct DTB DerivedToBase;
77    FieldDecl *Field;
78    struct P Ptr;
79  };
80
81  SubobjectAdjustment(const CastExpr *BasePath,
82                      const CXXRecordDecl *DerivedClass)
83    : Kind(DerivedToBaseAdjustment) {
84    DerivedToBase.BasePath = BasePath;
85    DerivedToBase.DerivedClass = DerivedClass;
86  }
87
88  SubobjectAdjustment(FieldDecl *Field)
89    : Kind(FieldAdjustment) {
90    this->Field = Field;
91  }
92
93  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
94    : Kind(MemberPointerAdjustment) {
95    this->Ptr.MPT = MPT;
96    this->Ptr.RHS = RHS;
97  }
98};
99
100/// Expr - This represents one expression.  Note that Expr's are subclasses of
101/// Stmt.  This allows an expression to be transparently used any place a Stmt
102/// is required.
103///
104class Expr : public Stmt {
105  QualType TR;
106
107protected:
108  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
109       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
110    : Stmt(SC)
111  {
112    ExprBits.TypeDependent = TD;
113    ExprBits.ValueDependent = VD;
114    ExprBits.InstantiationDependent = ID;
115    ExprBits.ValueKind = VK;
116    ExprBits.ObjectKind = OK;
117    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
118    setType(T);
119  }
120
121  /// \brief Construct an empty expression.
122  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
123
124public:
125  QualType getType() const { return TR; }
126  void setType(QualType t) {
127    // In C++, the type of an expression is always adjusted so that it
128    // will not have reference type (C++ [expr]p6). Use
129    // QualType::getNonReferenceType() to retrieve the non-reference
130    // type. Additionally, inspect Expr::isLvalue to determine whether
131    // an expression that is adjusted in this manner should be
132    // considered an lvalue.
133    assert((t.isNull() || !t->isReferenceType()) &&
134           "Expressions can't have reference type");
135
136    TR = t;
137  }
138
139  /// isValueDependent - Determines whether this expression is
140  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
141  /// array bound of "Chars" in the following example is
142  /// value-dependent.
143  /// @code
144  /// template<int Size, char (&Chars)[Size]> struct meta_string;
145  /// @endcode
146  bool isValueDependent() const { return ExprBits.ValueDependent; }
147
148  /// \brief Set whether this expression is value-dependent or not.
149  void setValueDependent(bool VD) {
150    ExprBits.ValueDependent = VD;
151    if (VD)
152      ExprBits.InstantiationDependent = true;
153  }
154
155  /// isTypeDependent - Determines whether this expression is
156  /// type-dependent (C++ [temp.dep.expr]), which means that its type
157  /// could change from one template instantiation to the next. For
158  /// example, the expressions "x" and "x + y" are type-dependent in
159  /// the following code, but "y" is not type-dependent:
160  /// @code
161  /// template<typename T>
162  /// void add(T x, int y) {
163  ///   x + y;
164  /// }
165  /// @endcode
166  bool isTypeDependent() const { return ExprBits.TypeDependent; }
167
168  /// \brief Set whether this expression is type-dependent or not.
169  void setTypeDependent(bool TD) {
170    ExprBits.TypeDependent = TD;
171    if (TD)
172      ExprBits.InstantiationDependent = true;
173  }
174
175  /// \brief Whether this expression is instantiation-dependent, meaning that
176  /// it depends in some way on a template parameter, even if neither its type
177  /// nor (constant) value can change due to the template instantiation.
178  ///
179  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
180  /// instantiation-dependent (since it involves a template parameter \c T), but
181  /// is neither type- nor value-dependent, since the type of the inner
182  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
183  /// \c sizeof is known.
184  ///
185  /// \code
186  /// template<typename T>
187  /// void f(T x, T y) {
188  ///   sizeof(sizeof(T() + T());
189  /// }
190  /// \endcode
191  ///
192  bool isInstantiationDependent() const {
193    return ExprBits.InstantiationDependent;
194  }
195
196  /// \brief Set whether this expression is instantiation-dependent or not.
197  void setInstantiationDependent(bool ID) {
198    ExprBits.InstantiationDependent = ID;
199  }
200
201  /// \brief Whether this expression contains an unexpanded parameter
202  /// pack (for C++11 variadic templates).
203  ///
204  /// Given the following function template:
205  ///
206  /// \code
207  /// template<typename F, typename ...Types>
208  /// void forward(const F &f, Types &&...args) {
209  ///   f(static_cast<Types&&>(args)...);
210  /// }
211  /// \endcode
212  ///
213  /// The expressions \c args and \c static_cast<Types&&>(args) both
214  /// contain parameter packs.
215  bool containsUnexpandedParameterPack() const {
216    return ExprBits.ContainsUnexpandedParameterPack;
217  }
218
219  /// \brief Set the bit that describes whether this expression
220  /// contains an unexpanded parameter pack.
221  void setContainsUnexpandedParameterPack(bool PP = true) {
222    ExprBits.ContainsUnexpandedParameterPack = PP;
223  }
224
225  /// getExprLoc - Return the preferred location for the arrow when diagnosing
226  /// a problem with a generic expression.
227  SourceLocation getExprLoc() const LLVM_READONLY;
228
229  /// isUnusedResultAWarning - Return true if this immediate expression should
230  /// be warned about if the result is unused.  If so, fill in expr, location,
231  /// and ranges with expr to warn on and source locations/ranges appropriate
232  /// for a warning.
233  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
234                              SourceRange &R1, SourceRange &R2,
235                              ASTContext &Ctx) const;
236
237  /// isLValue - True if this expression is an "l-value" according to
238  /// the rules of the current language.  C and C++ give somewhat
239  /// different rules for this concept, but in general, the result of
240  /// an l-value expression identifies a specific object whereas the
241  /// result of an r-value expression is a value detached from any
242  /// specific storage.
243  ///
244  /// C++11 divides the concept of "r-value" into pure r-values
245  /// ("pr-values") and so-called expiring values ("x-values"), which
246  /// identify specific objects that can be safely cannibalized for
247  /// their resources.  This is an unfortunate abuse of terminology on
248  /// the part of the C++ committee.  In Clang, when we say "r-value",
249  /// we generally mean a pr-value.
250  bool isLValue() const { return getValueKind() == VK_LValue; }
251  bool isRValue() const { return getValueKind() == VK_RValue; }
252  bool isXValue() const { return getValueKind() == VK_XValue; }
253  bool isGLValue() const { return getValueKind() != VK_RValue; }
254
255  enum LValueClassification {
256    LV_Valid,
257    LV_NotObjectType,
258    LV_IncompleteVoidType,
259    LV_DuplicateVectorComponents,
260    LV_InvalidExpression,
261    LV_InvalidMessageExpression,
262    LV_MemberFunction,
263    LV_SubObjCPropertySetting,
264    LV_ClassTemporary,
265    LV_ArrayTemporary
266  };
267  /// Reasons why an expression might not be an l-value.
268  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
269
270  enum isModifiableLvalueResult {
271    MLV_Valid,
272    MLV_NotObjectType,
273    MLV_IncompleteVoidType,
274    MLV_DuplicateVectorComponents,
275    MLV_InvalidExpression,
276    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
277    MLV_IncompleteType,
278    MLV_ConstQualified,
279    MLV_ArrayType,
280    MLV_NoSetterProperty,
281    MLV_MemberFunction,
282    MLV_SubObjCPropertySetting,
283    MLV_InvalidMessageExpression,
284    MLV_ClassTemporary,
285    MLV_ArrayTemporary
286  };
287  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
288  /// does not have an incomplete type, does not have a const-qualified type,
289  /// and if it is a structure or union, does not have any member (including,
290  /// recursively, any member or element of all contained aggregates or unions)
291  /// with a const-qualified type.
292  ///
293  /// \param Loc [in,out] - A source location which *may* be filled
294  /// in with the location of the expression making this a
295  /// non-modifiable lvalue, if specified.
296  isModifiableLvalueResult
297  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
298
299  /// \brief The return type of classify(). Represents the C++11 expression
300  ///        taxonomy.
301  class Classification {
302  public:
303    /// \brief The various classification results. Most of these mean prvalue.
304    enum Kinds {
305      CL_LValue,
306      CL_XValue,
307      CL_Function, // Functions cannot be lvalues in C.
308      CL_Void, // Void cannot be an lvalue in C.
309      CL_AddressableVoid, // Void expression whose address can be taken in C.
310      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
311      CL_MemberFunction, // An expression referring to a member function
312      CL_SubObjCPropertySetting,
313      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
314      CL_ArrayTemporary, // A temporary of array type.
315      CL_ObjCMessageRValue, // ObjC message is an rvalue
316      CL_PRValue // A prvalue for any other reason, of any other type
317    };
318    /// \brief The results of modification testing.
319    enum ModifiableType {
320      CM_Untested, // testModifiable was false.
321      CM_Modifiable,
322      CM_RValue, // Not modifiable because it's an rvalue
323      CM_Function, // Not modifiable because it's a function; C++ only
324      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
325      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
326      CM_ConstQualified,
327      CM_ArrayType,
328      CM_IncompleteType
329    };
330
331  private:
332    friend class Expr;
333
334    unsigned short Kind;
335    unsigned short Modifiable;
336
337    explicit Classification(Kinds k, ModifiableType m)
338      : Kind(k), Modifiable(m)
339    {}
340
341  public:
342    Classification() {}
343
344    Kinds getKind() const { return static_cast<Kinds>(Kind); }
345    ModifiableType getModifiable() const {
346      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
347      return static_cast<ModifiableType>(Modifiable);
348    }
349    bool isLValue() const { return Kind == CL_LValue; }
350    bool isXValue() const { return Kind == CL_XValue; }
351    bool isGLValue() const { return Kind <= CL_XValue; }
352    bool isPRValue() const { return Kind >= CL_Function; }
353    bool isRValue() const { return Kind >= CL_XValue; }
354    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
355
356    /// \brief Create a simple, modifiably lvalue
357    static Classification makeSimpleLValue() {
358      return Classification(CL_LValue, CM_Modifiable);
359    }
360
361  };
362  /// \brief Classify - Classify this expression according to the C++11
363  ///        expression taxonomy.
364  ///
365  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
366  /// old lvalue vs rvalue. This function determines the type of expression this
367  /// is. There are three expression types:
368  /// - lvalues are classical lvalues as in C++03.
369  /// - prvalues are equivalent to rvalues in C++03.
370  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
371  ///   function returning an rvalue reference.
372  /// lvalues and xvalues are collectively referred to as glvalues, while
373  /// prvalues and xvalues together form rvalues.
374  Classification Classify(ASTContext &Ctx) const {
375    return ClassifyImpl(Ctx, nullptr);
376  }
377
378  /// \brief ClassifyModifiable - Classify this expression according to the
379  ///        C++11 expression taxonomy, and see if it is valid on the left side
380  ///        of an assignment.
381  ///
382  /// This function extends classify in that it also tests whether the
383  /// expression is modifiable (C99 6.3.2.1p1).
384  /// \param Loc A source location that might be filled with a relevant location
385  ///            if the expression is not modifiable.
386  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
387    return ClassifyImpl(Ctx, &Loc);
388  }
389
390  /// getValueKindForType - Given a formal return or parameter type,
391  /// give its value kind.
392  static ExprValueKind getValueKindForType(QualType T) {
393    if (const ReferenceType *RT = T->getAs<ReferenceType>())
394      return (isa<LValueReferenceType>(RT)
395                ? VK_LValue
396                : (RT->getPointeeType()->isFunctionType()
397                     ? VK_LValue : VK_XValue));
398    return VK_RValue;
399  }
400
401  /// getValueKind - The value kind that this expression produces.
402  ExprValueKind getValueKind() const {
403    return static_cast<ExprValueKind>(ExprBits.ValueKind);
404  }
405
406  /// getObjectKind - The object kind that this expression produces.
407  /// Object kinds are meaningful only for expressions that yield an
408  /// l-value or x-value.
409  ExprObjectKind getObjectKind() const {
410    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
411  }
412
413  bool isOrdinaryOrBitFieldObject() const {
414    ExprObjectKind OK = getObjectKind();
415    return (OK == OK_Ordinary || OK == OK_BitField);
416  }
417
418  /// setValueKind - Set the value kind produced by this expression.
419  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
420
421  /// setObjectKind - Set the object kind produced by this expression.
422  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
423
424private:
425  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
426
427public:
428
429  /// \brief Returns true if this expression is a gl-value that
430  /// potentially refers to a bit-field.
431  ///
432  /// In C++, whether a gl-value refers to a bitfield is essentially
433  /// an aspect of the value-kind type system.
434  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
435
436  /// \brief If this expression refers to a bit-field, retrieve the
437  /// declaration of that bit-field.
438  ///
439  /// Note that this returns a non-null pointer in subtly different
440  /// places than refersToBitField returns true.  In particular, this can
441  /// return a non-null pointer even for r-values loaded from
442  /// bit-fields, but it will return null for a conditional bit-field.
443  FieldDecl *getSourceBitField();
444
445  const FieldDecl *getSourceBitField() const {
446    return const_cast<Expr*>(this)->getSourceBitField();
447  }
448
449  /// \brief If this expression is an l-value for an Objective C
450  /// property, find the underlying property reference expression.
451  const ObjCPropertyRefExpr *getObjCProperty() const;
452
453  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
454  bool isObjCSelfExpr() const;
455
456  /// \brief Returns whether this expression refers to a vector element.
457  bool refersToVectorElement() const;
458
459  /// \brief Returns whether this expression has a placeholder type.
460  bool hasPlaceholderType() const {
461    return getType()->isPlaceholderType();
462  }
463
464  /// \brief Returns whether this expression has a specific placeholder type.
465  bool hasPlaceholderType(BuiltinType::Kind K) const {
466    assert(BuiltinType::isPlaceholderTypeKind(K));
467    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
468      return BT->getKind() == K;
469    return false;
470  }
471
472  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
473  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
474  /// but also int expressions which are produced by things like comparisons in
475  /// C.
476  bool isKnownToHaveBooleanValue() const;
477
478  /// isIntegerConstantExpr - Return true if this expression is a valid integer
479  /// constant expression, and, if so, return its value in Result.  If not a
480  /// valid i-c-e, return false and fill in Loc (if specified) with the location
481  /// of the invalid expression.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
486                             SourceLocation *Loc = nullptr,
487                             bool isEvaluated = true) const;
488  bool isIntegerConstantExpr(const ASTContext &Ctx,
489                             SourceLocation *Loc = nullptr) const;
490
491  /// isCXX98IntegralConstantExpr - Return true if this expression is an
492  /// integral constant expression in C++98. Can only be used in C++.
493  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
494
495  /// isCXX11ConstantExpr - Return true if this expression is a constant
496  /// expression in C++11. Can only be used in C++.
497  ///
498  /// Note: This does not perform the implicit conversions required by C++11
499  /// [expr.const]p5.
500  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
501                           SourceLocation *Loc = nullptr) const;
502
503  /// isPotentialConstantExpr - Return true if this function's definition
504  /// might be usable in a constant expression in C++11, if it were marked
505  /// constexpr. Return false if the function can never produce a constant
506  /// expression, along with diagnostics describing why not.
507  static bool isPotentialConstantExpr(const FunctionDecl *FD,
508                                      SmallVectorImpl<
509                                        PartialDiagnosticAt> &Diags);
510
511  /// isPotentialConstantExprUnevaluted - Return true if this expression might
512  /// be usable in a constant expression in C++11 in an unevaluated context, if
513  /// it were in function FD marked constexpr. Return false if the function can
514  /// never produce a constant expression, along with diagnostics describing
515  /// why not.
516  static bool isPotentialConstantExprUnevaluated(Expr *E,
517                                                 const FunctionDecl *FD,
518                                                 SmallVectorImpl<
519                                                   PartialDiagnosticAt> &Diags);
520
521  /// isConstantInitializer - Returns true if this expression can be emitted to
522  /// IR as a constant, and thus can be used as a constant initializer in C.
523  /// If this expression is not constant and Culprit is non-null,
524  /// it is used to store the address of first non constant expr.
525  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
526                             const Expr **Culprit = nullptr) const;
527
528  /// EvalStatus is a struct with detailed info about an evaluation in progress.
529  struct EvalStatus {
530    /// HasSideEffects - Whether the evaluated expression has side effects.
531    /// For example, (f() && 0) can be folded, but it still has side effects.
532    bool HasSideEffects;
533
534    /// Diag - If this is non-null, it will be filled in with a stack of notes
535    /// indicating why evaluation failed (or why it failed to produce a constant
536    /// expression).
537    /// If the expression is unfoldable, the notes will indicate why it's not
538    /// foldable. If the expression is foldable, but not a constant expression,
539    /// the notes will describes why it isn't a constant expression. If the
540    /// expression *is* a constant expression, no notes will be produced.
541    SmallVectorImpl<PartialDiagnosticAt> *Diag;
542
543    EvalStatus() : HasSideEffects(false), Diag(nullptr) {}
544
545    // hasSideEffects - Return true if the evaluated expression has
546    // side effects.
547    bool hasSideEffects() const {
548      return HasSideEffects;
549    }
550  };
551
552  /// EvalResult is a struct with detailed info about an evaluated expression.
553  struct EvalResult : EvalStatus {
554    /// Val - This is the value the expression can be folded to.
555    APValue Val;
556
557    // isGlobalLValue - Return true if the evaluated lvalue expression
558    // is global.
559    bool isGlobalLValue() const;
560  };
561
562  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
563  /// an rvalue using any crazy technique (that has nothing to do with language
564  /// standards) that we want to, even if the expression has side-effects. If
565  /// this function returns true, it returns the folded constant in Result. If
566  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
567  /// applied.
568  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
569
570  /// EvaluateAsBooleanCondition - Return true if this is a constant
571  /// which we we can fold and convert to a boolean condition using
572  /// any crazy technique that we want to, even if the expression has
573  /// side-effects.
574  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
575
576  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
577
578  /// EvaluateAsInt - Return true if this is a constant which we can fold and
579  /// convert to an integer, using any crazy technique that we want to.
580  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
581                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
582
583  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
584  /// constant folded without side-effects, but discard the result.
585  bool isEvaluatable(const ASTContext &Ctx) const;
586
587  /// HasSideEffects - This routine returns true for all those expressions
588  /// which have any effect other than producing a value. Example is a function
589  /// call, volatile variable read, or throwing an exception. If
590  /// IncludePossibleEffects is false, this call treats certain expressions with
591  /// potential side effects (such as function call-like expressions,
592  /// instantiation-dependent expressions, or invocations from a macro) as not
593  /// having side effects.
594  bool HasSideEffects(const ASTContext &Ctx,
595                      bool IncludePossibleEffects = true) const;
596
597  /// \brief Determine whether this expression involves a call to any function
598  /// that is not trivial.
599  bool hasNonTrivialCall(ASTContext &Ctx);
600
601  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
602  /// integer. This must be called on an expression that constant folds to an
603  /// integer.
604  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
605                    SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
606
607  void EvaluateForOverflow(const ASTContext &Ctx) const;
608
609  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
610  /// lvalue with link time known address, with no side-effects.
611  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
612
613  /// EvaluateAsInitializer - Evaluate an expression as if it were the
614  /// initializer of the given declaration. Returns true if the initializer
615  /// can be folded to a constant, and produces any relevant notes. In C++11,
616  /// notes will be produced if the expression is not a constant expression.
617  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
618                             const VarDecl *VD,
619                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
620
621  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
622  /// of a call to the given function with the given arguments, inside an
623  /// unevaluated context. Returns true if the expression could be folded to a
624  /// constant.
625  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
626                                const FunctionDecl *Callee,
627                                ArrayRef<const Expr*> Args) const;
628
629  /// \brief Enumeration used to describe the kind of Null pointer constant
630  /// returned from \c isNullPointerConstant().
631  enum NullPointerConstantKind {
632    /// \brief Expression is not a Null pointer constant.
633    NPCK_NotNull = 0,
634
635    /// \brief Expression is a Null pointer constant built from a zero integer
636    /// expression that is not a simple, possibly parenthesized, zero literal.
637    /// C++ Core Issue 903 will classify these expressions as "not pointers"
638    /// once it is adopted.
639    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
640    NPCK_ZeroExpression,
641
642    /// \brief Expression is a Null pointer constant built from a literal zero.
643    NPCK_ZeroLiteral,
644
645    /// \brief Expression is a C++11 nullptr.
646    NPCK_CXX11_nullptr,
647
648    /// \brief Expression is a GNU-style __null constant.
649    NPCK_GNUNull
650  };
651
652  /// \brief Enumeration used to describe how \c isNullPointerConstant()
653  /// should cope with value-dependent expressions.
654  enum NullPointerConstantValueDependence {
655    /// \brief Specifies that the expression should never be value-dependent.
656    NPC_NeverValueDependent = 0,
657
658    /// \brief Specifies that a value-dependent expression of integral or
659    /// dependent type should be considered a null pointer constant.
660    NPC_ValueDependentIsNull,
661
662    /// \brief Specifies that a value-dependent expression should be considered
663    /// to never be a null pointer constant.
664    NPC_ValueDependentIsNotNull
665  };
666
667  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
668  /// a Null pointer constant. The return value can further distinguish the
669  /// kind of NULL pointer constant that was detected.
670  NullPointerConstantKind isNullPointerConstant(
671      ASTContext &Ctx,
672      NullPointerConstantValueDependence NPC) const;
673
674  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
675  /// write barrier.
676  bool isOBJCGCCandidate(ASTContext &Ctx) const;
677
678  /// \brief Returns true if this expression is a bound member function.
679  bool isBoundMemberFunction(ASTContext &Ctx) const;
680
681  /// \brief Given an expression of bound-member type, find the type
682  /// of the member.  Returns null if this is an *overloaded* bound
683  /// member expression.
684  static QualType findBoundMemberType(const Expr *expr);
685
686  /// IgnoreImpCasts - Skip past any implicit casts which might
687  /// surround this expression.  Only skips ImplicitCastExprs.
688  Expr *IgnoreImpCasts() LLVM_READONLY;
689
690  /// IgnoreImplicit - Skip past any implicit AST nodes which might
691  /// surround this expression.
692  Expr *IgnoreImplicit() LLVM_READONLY {
693    return cast<Expr>(Stmt::IgnoreImplicit());
694  }
695
696  const Expr *IgnoreImplicit() const LLVM_READONLY {
697    return const_cast<Expr*>(this)->IgnoreImplicit();
698  }
699
700  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
701  ///  its subexpression.  If that subexpression is also a ParenExpr,
702  ///  then this method recursively returns its subexpression, and so forth.
703  ///  Otherwise, the method returns the current Expr.
704  Expr *IgnoreParens() LLVM_READONLY;
705
706  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
707  /// or CastExprs, returning their operand.
708  Expr *IgnoreParenCasts() LLVM_READONLY;
709
710  /// Ignore casts.  Strip off any CastExprs, returning their operand.
711  Expr *IgnoreCasts() LLVM_READONLY;
712
713  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
714  /// any ParenExpr or ImplicitCastExprs, returning their operand.
715  Expr *IgnoreParenImpCasts() LLVM_READONLY;
716
717  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
718  /// call to a conversion operator, return the argument.
719  Expr *IgnoreConversionOperator() LLVM_READONLY;
720
721  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
722    return const_cast<Expr*>(this)->IgnoreConversionOperator();
723  }
724
725  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
726    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
727  }
728
729  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
730  /// CastExprs that represent lvalue casts, returning their operand.
731  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
732
733  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
734    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
735  }
736
737  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
738  /// value (including ptr->int casts of the same size).  Strip off any
739  /// ParenExpr or CastExprs, returning their operand.
740  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
741
742  /// Ignore parentheses and derived-to-base casts.
743  Expr *ignoreParenBaseCasts() LLVM_READONLY;
744
745  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
746    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
747  }
748
749  /// \brief Determine whether this expression is a default function argument.
750  ///
751  /// Default arguments are implicitly generated in the abstract syntax tree
752  /// by semantic analysis for function calls, object constructions, etc. in
753  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
754  /// this routine also looks through any implicit casts to determine whether
755  /// the expression is a default argument.
756  bool isDefaultArgument() const;
757
758  /// \brief Determine whether the result of this expression is a
759  /// temporary object of the given class type.
760  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
761
762  /// \brief Whether this expression is an implicit reference to 'this' in C++.
763  bool isImplicitCXXThis() const;
764
765  const Expr *IgnoreImpCasts() const LLVM_READONLY {
766    return const_cast<Expr*>(this)->IgnoreImpCasts();
767  }
768  const Expr *IgnoreParens() const LLVM_READONLY {
769    return const_cast<Expr*>(this)->IgnoreParens();
770  }
771  const Expr *IgnoreParenCasts() const LLVM_READONLY {
772    return const_cast<Expr*>(this)->IgnoreParenCasts();
773  }
774  /// Strip off casts, but keep parentheses.
775  const Expr *IgnoreCasts() const LLVM_READONLY {
776    return const_cast<Expr*>(this)->IgnoreCasts();
777  }
778
779  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
780    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
781  }
782
783  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
784
785  /// \brief For an expression of class type or pointer to class type,
786  /// return the most derived class decl the expression is known to refer to.
787  ///
788  /// If this expression is a cast, this method looks through it to find the
789  /// most derived decl that can be inferred from the expression.
790  /// This is valid because derived-to-base conversions have undefined
791  /// behavior if the object isn't dynamically of the derived type.
792  const CXXRecordDecl *getBestDynamicClassType() const;
793
794  /// Walk outwards from an expression we want to bind a reference to and
795  /// find the expression whose lifetime needs to be extended. Record
796  /// the LHSs of comma expressions and adjustments needed along the path.
797  const Expr *skipRValueSubobjectAdjustments(
798      SmallVectorImpl<const Expr *> &CommaLHS,
799      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
800
801  static bool classof(const Stmt *T) {
802    return T->getStmtClass() >= firstExprConstant &&
803           T->getStmtClass() <= lastExprConstant;
804  }
805};
806
807
808//===----------------------------------------------------------------------===//
809// Primary Expressions.
810//===----------------------------------------------------------------------===//
811
812/// OpaqueValueExpr - An expression referring to an opaque object of a
813/// fixed type and value class.  These don't correspond to concrete
814/// syntax; instead they're used to express operations (usually copy
815/// operations) on values whose source is generally obvious from
816/// context.
817class OpaqueValueExpr : public Expr {
818  friend class ASTStmtReader;
819  Expr *SourceExpr;
820  SourceLocation Loc;
821
822public:
823  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
824                  ExprObjectKind OK = OK_Ordinary,
825                  Expr *SourceExpr = nullptr)
826    : Expr(OpaqueValueExprClass, T, VK, OK,
827           T->isDependentType(),
828           T->isDependentType() ||
829           (SourceExpr && SourceExpr->isValueDependent()),
830           T->isInstantiationDependentType(),
831           false),
832      SourceExpr(SourceExpr), Loc(Loc) {
833  }
834
835  /// Given an expression which invokes a copy constructor --- i.e.  a
836  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
837  /// find the OpaqueValueExpr that's the source of the construction.
838  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
839
840  explicit OpaqueValueExpr(EmptyShell Empty)
841    : Expr(OpaqueValueExprClass, Empty) { }
842
843  /// \brief Retrieve the location of this expression.
844  SourceLocation getLocation() const { return Loc; }
845
846  SourceLocation getLocStart() const LLVM_READONLY {
847    return SourceExpr ? SourceExpr->getLocStart() : Loc;
848  }
849  SourceLocation getLocEnd() const LLVM_READONLY {
850    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
851  }
852  SourceLocation getExprLoc() const LLVM_READONLY {
853    if (SourceExpr) return SourceExpr->getExprLoc();
854    return Loc;
855  }
856
857  child_range children() { return child_range(); }
858
859  /// The source expression of an opaque value expression is the
860  /// expression which originally generated the value.  This is
861  /// provided as a convenience for analyses that don't wish to
862  /// precisely model the execution behavior of the program.
863  ///
864  /// The source expression is typically set when building the
865  /// expression which binds the opaque value expression in the first
866  /// place.
867  Expr *getSourceExpr() const { return SourceExpr; }
868
869  static bool classof(const Stmt *T) {
870    return T->getStmtClass() == OpaqueValueExprClass;
871  }
872};
873
874/// \brief A reference to a declared variable, function, enum, etc.
875/// [C99 6.5.1p2]
876///
877/// This encodes all the information about how a declaration is referenced
878/// within an expression.
879///
880/// There are several optional constructs attached to DeclRefExprs only when
881/// they apply in order to conserve memory. These are laid out past the end of
882/// the object, and flags in the DeclRefExprBitfield track whether they exist:
883///
884///   DeclRefExprBits.HasQualifier:
885///       Specifies when this declaration reference expression has a C++
886///       nested-name-specifier.
887///   DeclRefExprBits.HasFoundDecl:
888///       Specifies when this declaration reference expression has a record of
889///       a NamedDecl (different from the referenced ValueDecl) which was found
890///       during name lookup and/or overload resolution.
891///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
892///       Specifies when this declaration reference expression has an explicit
893///       C++ template keyword and/or template argument list.
894///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
895///       Specifies when this declaration reference expression (validly)
896///       refers to an enclosed local or a captured variable.
897class DeclRefExpr : public Expr {
898  /// \brief The declaration that we are referencing.
899  ValueDecl *D;
900
901  /// \brief The location of the declaration name itself.
902  SourceLocation Loc;
903
904  /// \brief Provides source/type location info for the declaration name
905  /// embedded in D.
906  DeclarationNameLoc DNLoc;
907
908  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
909  NestedNameSpecifierLoc &getInternalQualifierLoc() {
910    assert(hasQualifier());
911    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
912  }
913
914  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
915  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
916    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
917  }
918
919  /// \brief Test whether there is a distinct FoundDecl attached to the end of
920  /// this DRE.
921  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
922
923  /// \brief Helper to retrieve the optional NamedDecl through which this
924  /// reference occurred.
925  NamedDecl *&getInternalFoundDecl() {
926    assert(hasFoundDecl());
927    if (hasQualifier())
928      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
929    return *reinterpret_cast<NamedDecl **>(this + 1);
930  }
931
932  /// \brief Helper to retrieve the optional NamedDecl through which this
933  /// reference occurred.
934  NamedDecl *getInternalFoundDecl() const {
935    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
936  }
937
938  DeclRefExpr(const ASTContext &Ctx,
939              NestedNameSpecifierLoc QualifierLoc,
940              SourceLocation TemplateKWLoc,
941              ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
942              const DeclarationNameInfo &NameInfo,
943              NamedDecl *FoundD,
944              const TemplateArgumentListInfo *TemplateArgs,
945              QualType T, ExprValueKind VK);
946
947  /// \brief Construct an empty declaration reference expression.
948  explicit DeclRefExpr(EmptyShell Empty)
949    : Expr(DeclRefExprClass, Empty) { }
950
951  /// \brief Computes the type- and value-dependence flags for this
952  /// declaration reference expression.
953  void computeDependence(const ASTContext &C);
954
955public:
956  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
957              ExprValueKind VK, SourceLocation L,
958              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
959    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
960      D(D), Loc(L), DNLoc(LocInfo) {
961    DeclRefExprBits.HasQualifier = 0;
962    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
963    DeclRefExprBits.HasFoundDecl = 0;
964    DeclRefExprBits.HadMultipleCandidates = 0;
965    DeclRefExprBits.RefersToEnclosingVariableOrCapture =
966        RefersToEnclosingVariableOrCapture;
967    computeDependence(D->getASTContext());
968  }
969
970  static DeclRefExpr *
971  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
972         SourceLocation TemplateKWLoc, ValueDecl *D,
973         bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
974         QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
975         const TemplateArgumentListInfo *TemplateArgs = nullptr);
976
977  static DeclRefExpr *
978  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
979         SourceLocation TemplateKWLoc, ValueDecl *D,
980         bool RefersToEnclosingVariableOrCapture,
981         const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
982         NamedDecl *FoundD = nullptr,
983         const TemplateArgumentListInfo *TemplateArgs = nullptr);
984
985  /// \brief Construct an empty declaration reference expression.
986  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
987                                  bool HasQualifier,
988                                  bool HasFoundDecl,
989                                  bool HasTemplateKWAndArgsInfo,
990                                  unsigned NumTemplateArgs);
991
992  ValueDecl *getDecl() { return D; }
993  const ValueDecl *getDecl() const { return D; }
994  void setDecl(ValueDecl *NewD) { D = NewD; }
995
996  DeclarationNameInfo getNameInfo() const {
997    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
998  }
999
1000  SourceLocation getLocation() const { return Loc; }
1001  void setLocation(SourceLocation L) { Loc = L; }
1002  SourceLocation getLocStart() const LLVM_READONLY;
1003  SourceLocation getLocEnd() const LLVM_READONLY;
1004
1005  /// \brief Determine whether this declaration reference was preceded by a
1006  /// C++ nested-name-specifier, e.g., \c N::foo.
1007  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1008
1009  /// \brief If the name was qualified, retrieves the nested-name-specifier
1010  /// that precedes the name. Otherwise, returns NULL.
1011  NestedNameSpecifier *getQualifier() const {
1012    if (!hasQualifier())
1013      return nullptr;
1014
1015    return getInternalQualifierLoc().getNestedNameSpecifier();
1016  }
1017
1018  /// \brief If the name was qualified, retrieves the nested-name-specifier
1019  /// that precedes the name, with source-location information.
1020  NestedNameSpecifierLoc getQualifierLoc() const {
1021    if (!hasQualifier())
1022      return NestedNameSpecifierLoc();
1023
1024    return getInternalQualifierLoc();
1025  }
1026
1027  /// \brief Get the NamedDecl through which this reference occurred.
1028  ///
1029  /// This Decl may be different from the ValueDecl actually referred to in the
1030  /// presence of using declarations, etc. It always returns non-NULL, and may
1031  /// simple return the ValueDecl when appropriate.
1032  NamedDecl *getFoundDecl() {
1033    return hasFoundDecl() ? getInternalFoundDecl() : D;
1034  }
1035
1036  /// \brief Get the NamedDecl through which this reference occurred.
1037  /// See non-const variant.
1038  const NamedDecl *getFoundDecl() const {
1039    return hasFoundDecl() ? getInternalFoundDecl() : D;
1040  }
1041
1042  bool hasTemplateKWAndArgsInfo() const {
1043    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1044  }
1045
1046  /// \brief Return the optional template keyword and arguments info.
1047  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1048    if (!hasTemplateKWAndArgsInfo())
1049      return nullptr;
1050
1051    if (hasFoundDecl())
1052      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1053        &getInternalFoundDecl() + 1);
1054
1055    if (hasQualifier())
1056      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1057        &getInternalQualifierLoc() + 1);
1058
1059    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1060  }
1061
1062  /// \brief Return the optional template keyword and arguments info.
1063  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1064    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1065  }
1066
1067  /// \brief Retrieve the location of the template keyword preceding
1068  /// this name, if any.
1069  SourceLocation getTemplateKeywordLoc() const {
1070    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1071    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1072  }
1073
1074  /// \brief Retrieve the location of the left angle bracket starting the
1075  /// explicit template argument list following the name, if any.
1076  SourceLocation getLAngleLoc() const {
1077    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1078    return getTemplateKWAndArgsInfo()->LAngleLoc;
1079  }
1080
1081  /// \brief Retrieve the location of the right angle bracket ending the
1082  /// explicit template argument list following the name, if any.
1083  SourceLocation getRAngleLoc() const {
1084    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1085    return getTemplateKWAndArgsInfo()->RAngleLoc;
1086  }
1087
1088  /// \brief Determines whether the name in this declaration reference
1089  /// was preceded by the template keyword.
1090  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1091
1092  /// \brief Determines whether this declaration reference was followed by an
1093  /// explicit template argument list.
1094  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1095
1096  /// \brief Retrieve the explicit template argument list that followed the
1097  /// member template name.
1098  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1099    assert(hasExplicitTemplateArgs());
1100    return *getTemplateKWAndArgsInfo();
1101  }
1102
1103  /// \brief Retrieve the explicit template argument list that followed the
1104  /// member template name.
1105  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1106    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1107  }
1108
1109  /// \brief Retrieves the optional explicit template arguments.
1110  /// This points to the same data as getExplicitTemplateArgs(), but
1111  /// returns null if there are no explicit template arguments.
1112  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1113    if (!hasExplicitTemplateArgs()) return nullptr;
1114    return &getExplicitTemplateArgs();
1115  }
1116
1117  /// \brief Copies the template arguments (if present) into the given
1118  /// structure.
1119  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1120    if (hasExplicitTemplateArgs())
1121      getExplicitTemplateArgs().copyInto(List);
1122  }
1123
1124  /// \brief Retrieve the template arguments provided as part of this
1125  /// template-id.
1126  const TemplateArgumentLoc *getTemplateArgs() const {
1127    if (!hasExplicitTemplateArgs())
1128      return nullptr;
1129
1130    return getExplicitTemplateArgs().getTemplateArgs();
1131  }
1132
1133  /// \brief Retrieve the number of template arguments provided as part of this
1134  /// template-id.
1135  unsigned getNumTemplateArgs() const {
1136    if (!hasExplicitTemplateArgs())
1137      return 0;
1138
1139    return getExplicitTemplateArgs().NumTemplateArgs;
1140  }
1141
1142  /// \brief Returns true if this expression refers to a function that
1143  /// was resolved from an overloaded set having size greater than 1.
1144  bool hadMultipleCandidates() const {
1145    return DeclRefExprBits.HadMultipleCandidates;
1146  }
1147  /// \brief Sets the flag telling whether this expression refers to
1148  /// a function that was resolved from an overloaded set having size
1149  /// greater than 1.
1150  void setHadMultipleCandidates(bool V = true) {
1151    DeclRefExprBits.HadMultipleCandidates = V;
1152  }
1153
1154  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1155  /// variable?
1156  bool refersToEnclosingVariableOrCapture() const {
1157    return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1158  }
1159
1160  static bool classof(const Stmt *T) {
1161    return T->getStmtClass() == DeclRefExprClass;
1162  }
1163
1164  // Iterators
1165  child_range children() { return child_range(); }
1166
1167  friend class ASTStmtReader;
1168  friend class ASTStmtWriter;
1169};
1170
1171/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1172class PredefinedExpr : public Expr {
1173public:
1174  enum IdentType {
1175    Func,
1176    Function,
1177    LFunction,  // Same as Function, but as wide string.
1178    FuncDName,
1179    FuncSig,
1180    PrettyFunction,
1181    /// \brief The same as PrettyFunction, except that the
1182    /// 'virtual' keyword is omitted for virtual member functions.
1183    PrettyFunctionNoVirtual
1184  };
1185
1186private:
1187  SourceLocation Loc;
1188  IdentType Type;
1189  Stmt *FnName;
1190
1191public:
1192  PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
1193                 StringLiteral *SL);
1194
1195  /// \brief Construct an empty predefined expression.
1196  explicit PredefinedExpr(EmptyShell Empty)
1197      : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1198
1199  IdentType getIdentType() const { return Type; }
1200
1201  SourceLocation getLocation() const { return Loc; }
1202  void setLocation(SourceLocation L) { Loc = L; }
1203
1204  StringLiteral *getFunctionName();
1205  const StringLiteral *getFunctionName() const {
1206    return const_cast<PredefinedExpr *>(this)->getFunctionName();
1207  }
1208
1209  static StringRef getIdentTypeName(IdentType IT);
1210  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1211
1212  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1213  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1214
1215  static bool classof(const Stmt *T) {
1216    return T->getStmtClass() == PredefinedExprClass;
1217  }
1218
1219  // Iterators
1220  child_range children() { return child_range(&FnName, &FnName + 1); }
1221
1222  friend class ASTStmtReader;
1223};
1224
1225/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1226/// leaking memory.
1227///
1228/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1229/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1230/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1231/// the APFloat/APInt values will never get freed. APNumericStorage uses
1232/// ASTContext's allocator for memory allocation.
1233class APNumericStorage {
1234  union {
1235    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1236    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1237  };
1238  unsigned BitWidth;
1239
1240  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1241
1242  APNumericStorage(const APNumericStorage &) = delete;
1243  void operator=(const APNumericStorage &) = delete;
1244
1245protected:
1246  APNumericStorage() : VAL(0), BitWidth(0) { }
1247
1248  llvm::APInt getIntValue() const {
1249    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1250    if (NumWords > 1)
1251      return llvm::APInt(BitWidth, NumWords, pVal);
1252    else
1253      return llvm::APInt(BitWidth, VAL);
1254  }
1255  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1256};
1257
1258class APIntStorage : private APNumericStorage {
1259public:
1260  llvm::APInt getValue() const { return getIntValue(); }
1261  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1262    setIntValue(C, Val);
1263  }
1264};
1265
1266class APFloatStorage : private APNumericStorage {
1267public:
1268  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1269    return llvm::APFloat(Semantics, getIntValue());
1270  }
1271  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1272    setIntValue(C, Val.bitcastToAPInt());
1273  }
1274};
1275
1276class IntegerLiteral : public Expr, public APIntStorage {
1277  SourceLocation Loc;
1278
1279  /// \brief Construct an empty integer literal.
1280  explicit IntegerLiteral(EmptyShell Empty)
1281    : Expr(IntegerLiteralClass, Empty) { }
1282
1283public:
1284  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1285  // or UnsignedLongLongTy
1286  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1287                 SourceLocation l);
1288
1289  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1290  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1291  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1292  /// \param V - the value that the returned integer literal contains.
1293  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1294                                QualType type, SourceLocation l);
1295  /// \brief Returns a new empty integer literal.
1296  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1297
1298  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1299  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1300
1301  /// \brief Retrieve the location of the literal.
1302  SourceLocation getLocation() const { return Loc; }
1303
1304  void setLocation(SourceLocation Location) { Loc = Location; }
1305
1306  static bool classof(const Stmt *T) {
1307    return T->getStmtClass() == IntegerLiteralClass;
1308  }
1309
1310  // Iterators
1311  child_range children() { return child_range(); }
1312};
1313
1314class CharacterLiteral : public Expr {
1315public:
1316  enum CharacterKind {
1317    Ascii,
1318    Wide,
1319    UTF16,
1320    UTF32
1321  };
1322
1323private:
1324  unsigned Value;
1325  SourceLocation Loc;
1326public:
1327  // type should be IntTy
1328  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1329                   SourceLocation l)
1330    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1331           false, false),
1332      Value(value), Loc(l) {
1333    CharacterLiteralBits.Kind = kind;
1334  }
1335
1336  /// \brief Construct an empty character literal.
1337  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1338
1339  SourceLocation getLocation() const { return Loc; }
1340  CharacterKind getKind() const {
1341    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1342  }
1343
1344  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1345  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1346
1347  unsigned getValue() const { return Value; }
1348
1349  void setLocation(SourceLocation Location) { Loc = Location; }
1350  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1351  void setValue(unsigned Val) { Value = Val; }
1352
1353  static bool classof(const Stmt *T) {
1354    return T->getStmtClass() == CharacterLiteralClass;
1355  }
1356
1357  // Iterators
1358  child_range children() { return child_range(); }
1359};
1360
1361class FloatingLiteral : public Expr, private APFloatStorage {
1362  SourceLocation Loc;
1363
1364  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1365                  QualType Type, SourceLocation L);
1366
1367  /// \brief Construct an empty floating-point literal.
1368  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1369
1370public:
1371  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1372                                 bool isexact, QualType Type, SourceLocation L);
1373  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1374
1375  llvm::APFloat getValue() const {
1376    return APFloatStorage::getValue(getSemantics());
1377  }
1378  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1379    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1380    APFloatStorage::setValue(C, Val);
1381  }
1382
1383  /// Get a raw enumeration value representing the floating-point semantics of
1384  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1385  APFloatSemantics getRawSemantics() const {
1386    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1387  }
1388
1389  /// Set the raw enumeration value representing the floating-point semantics of
1390  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1391  void setRawSemantics(APFloatSemantics Sem) {
1392    FloatingLiteralBits.Semantics = Sem;
1393  }
1394
1395  /// Return the APFloat semantics this literal uses.
1396  const llvm::fltSemantics &getSemantics() const;
1397
1398  /// Set the APFloat semantics this literal uses.
1399  void setSemantics(const llvm::fltSemantics &Sem);
1400
1401  bool isExact() const { return FloatingLiteralBits.IsExact; }
1402  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1403
1404  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1405  /// double.  Note that this may cause loss of precision, but is useful for
1406  /// debugging dumps, etc.
1407  double getValueAsApproximateDouble() const;
1408
1409  SourceLocation getLocation() const { return Loc; }
1410  void setLocation(SourceLocation L) { Loc = L; }
1411
1412  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1413  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1414
1415  static bool classof(const Stmt *T) {
1416    return T->getStmtClass() == FloatingLiteralClass;
1417  }
1418
1419  // Iterators
1420  child_range children() { return child_range(); }
1421};
1422
1423/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1424/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1425/// IntegerLiteral classes.  Instances of this class always have a Complex type
1426/// whose element type matches the subexpression.
1427///
1428class ImaginaryLiteral : public Expr {
1429  Stmt *Val;
1430public:
1431  ImaginaryLiteral(Expr *val, QualType Ty)
1432    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1433           false, false),
1434      Val(val) {}
1435
1436  /// \brief Build an empty imaginary literal.
1437  explicit ImaginaryLiteral(EmptyShell Empty)
1438    : Expr(ImaginaryLiteralClass, Empty) { }
1439
1440  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1441  Expr *getSubExpr() { return cast<Expr>(Val); }
1442  void setSubExpr(Expr *E) { Val = E; }
1443
1444  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1445  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1446
1447  static bool classof(const Stmt *T) {
1448    return T->getStmtClass() == ImaginaryLiteralClass;
1449  }
1450
1451  // Iterators
1452  child_range children() { return child_range(&Val, &Val+1); }
1453};
1454
1455/// StringLiteral - This represents a string literal expression, e.g. "foo"
1456/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1457/// is NOT null-terminated, and the length of the string is determined by
1458/// calling getByteLength().  The C type for a string is always a
1459/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1460/// not.
1461///
1462/// Note that strings in C can be formed by concatenation of multiple string
1463/// literal pptokens in translation phase #6.  This keeps track of the locations
1464/// of each of these pieces.
1465///
1466/// Strings in C can also be truncated and extended by assigning into arrays,
1467/// e.g. with constructs like:
1468///   char X[2] = "foobar";
1469/// In this case, getByteLength() will return 6, but the string literal will
1470/// have type "char[2]".
1471class StringLiteral : public Expr {
1472public:
1473  enum StringKind {
1474    Ascii,
1475    Wide,
1476    UTF8,
1477    UTF16,
1478    UTF32
1479  };
1480
1481private:
1482  friend class ASTStmtReader;
1483
1484  union {
1485    const char *asChar;
1486    const uint16_t *asUInt16;
1487    const uint32_t *asUInt32;
1488  } StrData;
1489  unsigned Length;
1490  unsigned CharByteWidth : 4;
1491  unsigned Kind : 3;
1492  unsigned IsPascal : 1;
1493  unsigned NumConcatenated;
1494  SourceLocation TokLocs[1];
1495
1496  StringLiteral(QualType Ty) :
1497    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1498         false) {}
1499
1500  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1501
1502public:
1503  /// This is the "fully general" constructor that allows representation of
1504  /// strings formed from multiple concatenated tokens.
1505  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1506                               StringKind Kind, bool Pascal, QualType Ty,
1507                               const SourceLocation *Loc, unsigned NumStrs);
1508
1509  /// Simple constructor for string literals made from one token.
1510  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1511                               StringKind Kind, bool Pascal, QualType Ty,
1512                               SourceLocation Loc) {
1513    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1514  }
1515
1516  /// \brief Construct an empty string literal.
1517  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1518
1519  StringRef getString() const {
1520    assert(CharByteWidth==1
1521           && "This function is used in places that assume strings use char");
1522    return StringRef(StrData.asChar, getByteLength());
1523  }
1524
1525  /// Allow access to clients that need the byte representation, such as
1526  /// ASTWriterStmt::VisitStringLiteral().
1527  StringRef getBytes() const {
1528    // FIXME: StringRef may not be the right type to use as a result for this.
1529    if (CharByteWidth == 1)
1530      return StringRef(StrData.asChar, getByteLength());
1531    if (CharByteWidth == 4)
1532      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1533                       getByteLength());
1534    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1535    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1536                     getByteLength());
1537  }
1538
1539  void outputString(raw_ostream &OS) const;
1540
1541  uint32_t getCodeUnit(size_t i) const {
1542    assert(i < Length && "out of bounds access");
1543    if (CharByteWidth == 1)
1544      return static_cast<unsigned char>(StrData.asChar[i]);
1545    if (CharByteWidth == 4)
1546      return StrData.asUInt32[i];
1547    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1548    return StrData.asUInt16[i];
1549  }
1550
1551  unsigned getByteLength() const { return CharByteWidth*Length; }
1552  unsigned getLength() const { return Length; }
1553  unsigned getCharByteWidth() const { return CharByteWidth; }
1554
1555  /// \brief Sets the string data to the given string data.
1556  void setString(const ASTContext &C, StringRef Str,
1557                 StringKind Kind, bool IsPascal);
1558
1559  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1560
1561
1562  bool isAscii() const { return Kind == Ascii; }
1563  bool isWide() const { return Kind == Wide; }
1564  bool isUTF8() const { return Kind == UTF8; }
1565  bool isUTF16() const { return Kind == UTF16; }
1566  bool isUTF32() const { return Kind == UTF32; }
1567  bool isPascal() const { return IsPascal; }
1568
1569  bool containsNonAsciiOrNull() const {
1570    StringRef Str = getString();
1571    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1572      if (!isASCII(Str[i]) || !Str[i])
1573        return true;
1574    return false;
1575  }
1576
1577  /// getNumConcatenated - Get the number of string literal tokens that were
1578  /// concatenated in translation phase #6 to form this string literal.
1579  unsigned getNumConcatenated() const { return NumConcatenated; }
1580
1581  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1582    assert(TokNum < NumConcatenated && "Invalid tok number");
1583    return TokLocs[TokNum];
1584  }
1585  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1586    assert(TokNum < NumConcatenated && "Invalid tok number");
1587    TokLocs[TokNum] = L;
1588  }
1589
1590  /// getLocationOfByte - Return a source location that points to the specified
1591  /// byte of this string literal.
1592  ///
1593  /// Strings are amazingly complex.  They can be formed from multiple tokens
1594  /// and can have escape sequences in them in addition to the usual trigraph
1595  /// and escaped newline business.  This routine handles this complexity.
1596  ///
1597  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1598                                   const LangOptions &Features,
1599                                   const TargetInfo &Target) const;
1600
1601  typedef const SourceLocation *tokloc_iterator;
1602  tokloc_iterator tokloc_begin() const { return TokLocs; }
1603  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1604
1605  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1606  SourceLocation getLocEnd() const LLVM_READONLY {
1607    return TokLocs[NumConcatenated - 1];
1608  }
1609
1610  static bool classof(const Stmt *T) {
1611    return T->getStmtClass() == StringLiteralClass;
1612  }
1613
1614  // Iterators
1615  child_range children() { return child_range(); }
1616};
1617
1618/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1619/// AST node is only formed if full location information is requested.
1620class ParenExpr : public Expr {
1621  SourceLocation L, R;
1622  Stmt *Val;
1623public:
1624  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1625    : Expr(ParenExprClass, val->getType(),
1626           val->getValueKind(), val->getObjectKind(),
1627           val->isTypeDependent(), val->isValueDependent(),
1628           val->isInstantiationDependent(),
1629           val->containsUnexpandedParameterPack()),
1630      L(l), R(r), Val(val) {}
1631
1632  /// \brief Construct an empty parenthesized expression.
1633  explicit ParenExpr(EmptyShell Empty)
1634    : Expr(ParenExprClass, Empty) { }
1635
1636  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1637  Expr *getSubExpr() { return cast<Expr>(Val); }
1638  void setSubExpr(Expr *E) { Val = E; }
1639
1640  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1641  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1642
1643  /// \brief Get the location of the left parentheses '('.
1644  SourceLocation getLParen() const { return L; }
1645  void setLParen(SourceLocation Loc) { L = Loc; }
1646
1647  /// \brief Get the location of the right parentheses ')'.
1648  SourceLocation getRParen() const { return R; }
1649  void setRParen(SourceLocation Loc) { R = Loc; }
1650
1651  static bool classof(const Stmt *T) {
1652    return T->getStmtClass() == ParenExprClass;
1653  }
1654
1655  // Iterators
1656  child_range children() { return child_range(&Val, &Val+1); }
1657};
1658
1659
1660/// UnaryOperator - This represents the unary-expression's (except sizeof and
1661/// alignof), the postinc/postdec operators from postfix-expression, and various
1662/// extensions.
1663///
1664/// Notes on various nodes:
1665///
1666/// Real/Imag - These return the real/imag part of a complex operand.  If
1667///   applied to a non-complex value, the former returns its operand and the
1668///   later returns zero in the type of the operand.
1669///
1670class UnaryOperator : public Expr {
1671public:
1672  typedef UnaryOperatorKind Opcode;
1673
1674private:
1675  unsigned Opc : 5;
1676  SourceLocation Loc;
1677  Stmt *Val;
1678public:
1679
1680  UnaryOperator(Expr *input, Opcode opc, QualType type,
1681                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1682    : Expr(UnaryOperatorClass, type, VK, OK,
1683           input->isTypeDependent() || type->isDependentType(),
1684           input->isValueDependent(),
1685           (input->isInstantiationDependent() ||
1686            type->isInstantiationDependentType()),
1687           input->containsUnexpandedParameterPack()),
1688      Opc(opc), Loc(l), Val(input) {}
1689
1690  /// \brief Build an empty unary operator.
1691  explicit UnaryOperator(EmptyShell Empty)
1692    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1693
1694  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1695  void setOpcode(Opcode O) { Opc = O; }
1696
1697  Expr *getSubExpr() const { return cast<Expr>(Val); }
1698  void setSubExpr(Expr *E) { Val = E; }
1699
1700  /// getOperatorLoc - Return the location of the operator.
1701  SourceLocation getOperatorLoc() const { return Loc; }
1702  void setOperatorLoc(SourceLocation L) { Loc = L; }
1703
1704  /// isPostfix - Return true if this is a postfix operation, like x++.
1705  static bool isPostfix(Opcode Op) {
1706    return Op == UO_PostInc || Op == UO_PostDec;
1707  }
1708
1709  /// isPrefix - Return true if this is a prefix operation, like --x.
1710  static bool isPrefix(Opcode Op) {
1711    return Op == UO_PreInc || Op == UO_PreDec;
1712  }
1713
1714  bool isPrefix() const { return isPrefix(getOpcode()); }
1715  bool isPostfix() const { return isPostfix(getOpcode()); }
1716
1717  static bool isIncrementOp(Opcode Op) {
1718    return Op == UO_PreInc || Op == UO_PostInc;
1719  }
1720  bool isIncrementOp() const {
1721    return isIncrementOp(getOpcode());
1722  }
1723
1724  static bool isDecrementOp(Opcode Op) {
1725    return Op == UO_PreDec || Op == UO_PostDec;
1726  }
1727  bool isDecrementOp() const {
1728    return isDecrementOp(getOpcode());
1729  }
1730
1731  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1732  bool isIncrementDecrementOp() const {
1733    return isIncrementDecrementOp(getOpcode());
1734  }
1735
1736  static bool isArithmeticOp(Opcode Op) {
1737    return Op >= UO_Plus && Op <= UO_LNot;
1738  }
1739  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1740
1741  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1742  /// corresponds to, e.g. "sizeof" or "[pre]++"
1743  static StringRef getOpcodeStr(Opcode Op);
1744
1745  /// \brief Retrieve the unary opcode that corresponds to the given
1746  /// overloaded operator.
1747  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1748
1749  /// \brief Retrieve the overloaded operator kind that corresponds to
1750  /// the given unary opcode.
1751  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1752
1753  SourceLocation getLocStart() const LLVM_READONLY {
1754    return isPostfix() ? Val->getLocStart() : Loc;
1755  }
1756  SourceLocation getLocEnd() const LLVM_READONLY {
1757    return isPostfix() ? Loc : Val->getLocEnd();
1758  }
1759  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1760
1761  static bool classof(const Stmt *T) {
1762    return T->getStmtClass() == UnaryOperatorClass;
1763  }
1764
1765  // Iterators
1766  child_range children() { return child_range(&Val, &Val+1); }
1767};
1768
1769/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1770/// offsetof(record-type, member-designator). For example, given:
1771/// @code
1772/// struct S {
1773///   float f;
1774///   double d;
1775/// };
1776/// struct T {
1777///   int i;
1778///   struct S s[10];
1779/// };
1780/// @endcode
1781/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1782
1783class OffsetOfExpr : public Expr {
1784public:
1785  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1786  class OffsetOfNode {
1787  public:
1788    /// \brief The kind of offsetof node we have.
1789    enum Kind {
1790      /// \brief An index into an array.
1791      Array = 0x00,
1792      /// \brief A field.
1793      Field = 0x01,
1794      /// \brief A field in a dependent type, known only by its name.
1795      Identifier = 0x02,
1796      /// \brief An implicit indirection through a C++ base class, when the
1797      /// field found is in a base class.
1798      Base = 0x03
1799    };
1800
1801  private:
1802    enum { MaskBits = 2, Mask = 0x03 };
1803
1804    /// \brief The source range that covers this part of the designator.
1805    SourceRange Range;
1806
1807    /// \brief The data describing the designator, which comes in three
1808    /// different forms, depending on the lower two bits.
1809    ///   - An unsigned index into the array of Expr*'s stored after this node
1810    ///     in memory, for [constant-expression] designators.
1811    ///   - A FieldDecl*, for references to a known field.
1812    ///   - An IdentifierInfo*, for references to a field with a given name
1813    ///     when the class type is dependent.
1814    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1815    ///     base class.
1816    uintptr_t Data;
1817
1818  public:
1819    /// \brief Create an offsetof node that refers to an array element.
1820    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1821                 SourceLocation RBracketLoc)
1822      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1823
1824    /// \brief Create an offsetof node that refers to a field.
1825    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1826                 SourceLocation NameLoc)
1827      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1828        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1829
1830    /// \brief Create an offsetof node that refers to an identifier.
1831    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1832                 SourceLocation NameLoc)
1833      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1834        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1835
1836    /// \brief Create an offsetof node that refers into a C++ base class.
1837    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1838      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1839
1840    /// \brief Determine what kind of offsetof node this is.
1841    Kind getKind() const {
1842      return static_cast<Kind>(Data & Mask);
1843    }
1844
1845    /// \brief For an array element node, returns the index into the array
1846    /// of expressions.
1847    unsigned getArrayExprIndex() const {
1848      assert(getKind() == Array);
1849      return Data >> 2;
1850    }
1851
1852    /// \brief For a field offsetof node, returns the field.
1853    FieldDecl *getField() const {
1854      assert(getKind() == Field);
1855      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1856    }
1857
1858    /// \brief For a field or identifier offsetof node, returns the name of
1859    /// the field.
1860    IdentifierInfo *getFieldName() const;
1861
1862    /// \brief For a base class node, returns the base specifier.
1863    CXXBaseSpecifier *getBase() const {
1864      assert(getKind() == Base);
1865      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1866    }
1867
1868    /// \brief Retrieve the source range that covers this offsetof node.
1869    ///
1870    /// For an array element node, the source range contains the locations of
1871    /// the square brackets. For a field or identifier node, the source range
1872    /// contains the location of the period (if there is one) and the
1873    /// identifier.
1874    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1875    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1876    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1877  };
1878
1879private:
1880
1881  SourceLocation OperatorLoc, RParenLoc;
1882  // Base type;
1883  TypeSourceInfo *TSInfo;
1884  // Number of sub-components (i.e. instances of OffsetOfNode).
1885  unsigned NumComps;
1886  // Number of sub-expressions (i.e. array subscript expressions).
1887  unsigned NumExprs;
1888
1889  OffsetOfExpr(const ASTContext &C, QualType type,
1890               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1891               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1892               SourceLocation RParenLoc);
1893
1894  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1895    : Expr(OffsetOfExprClass, EmptyShell()),
1896      TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1897
1898public:
1899
1900  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1901                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1902                              ArrayRef<OffsetOfNode> comps,
1903                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1904
1905  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1906                                   unsigned NumComps, unsigned NumExprs);
1907
1908  /// getOperatorLoc - Return the location of the operator.
1909  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1910  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1911
1912  /// \brief Return the location of the right parentheses.
1913  SourceLocation getRParenLoc() const { return RParenLoc; }
1914  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1915
1916  TypeSourceInfo *getTypeSourceInfo() const {
1917    return TSInfo;
1918  }
1919  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1920    TSInfo = tsi;
1921  }
1922
1923  const OffsetOfNode &getComponent(unsigned Idx) const {
1924    assert(Idx < NumComps && "Subscript out of range");
1925    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1926  }
1927
1928  void setComponent(unsigned Idx, OffsetOfNode ON) {
1929    assert(Idx < NumComps && "Subscript out of range");
1930    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1931  }
1932
1933  unsigned getNumComponents() const {
1934    return NumComps;
1935  }
1936
1937  Expr* getIndexExpr(unsigned Idx) {
1938    assert(Idx < NumExprs && "Subscript out of range");
1939    return reinterpret_cast<Expr **>(
1940                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1941  }
1942  const Expr *getIndexExpr(unsigned Idx) const {
1943    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1944  }
1945
1946  void setIndexExpr(unsigned Idx, Expr* E) {
1947    assert(Idx < NumComps && "Subscript out of range");
1948    reinterpret_cast<Expr **>(
1949                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1950  }
1951
1952  unsigned getNumExpressions() const {
1953    return NumExprs;
1954  }
1955
1956  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1957  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1958
1959  static bool classof(const Stmt *T) {
1960    return T->getStmtClass() == OffsetOfExprClass;
1961  }
1962
1963  // Iterators
1964  child_range children() {
1965    Stmt **begin =
1966      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1967                               + NumComps);
1968    return child_range(begin, begin + NumExprs);
1969  }
1970};
1971
1972/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1973/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1974/// vec_step (OpenCL 1.1 6.11.12).
1975class UnaryExprOrTypeTraitExpr : public Expr {
1976  union {
1977    TypeSourceInfo *Ty;
1978    Stmt *Ex;
1979  } Argument;
1980  SourceLocation OpLoc, RParenLoc;
1981
1982public:
1983  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1984                           QualType resultType, SourceLocation op,
1985                           SourceLocation rp) :
1986      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1987           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1988           // Value-dependent if the argument is type-dependent.
1989           TInfo->getType()->isDependentType(),
1990           TInfo->getType()->isInstantiationDependentType(),
1991           TInfo->getType()->containsUnexpandedParameterPack()),
1992      OpLoc(op), RParenLoc(rp) {
1993    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1994    UnaryExprOrTypeTraitExprBits.IsType = true;
1995    Argument.Ty = TInfo;
1996  }
1997
1998  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1999                           QualType resultType, SourceLocation op,
2000                           SourceLocation rp);
2001
2002  /// \brief Construct an empty sizeof/alignof expression.
2003  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
2004    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2005
2006  UnaryExprOrTypeTrait getKind() const {
2007    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2008  }
2009  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2010
2011  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2012  QualType getArgumentType() const {
2013    return getArgumentTypeInfo()->getType();
2014  }
2015  TypeSourceInfo *getArgumentTypeInfo() const {
2016    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2017    return Argument.Ty;
2018  }
2019  Expr *getArgumentExpr() {
2020    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2021    return static_cast<Expr*>(Argument.Ex);
2022  }
2023  const Expr *getArgumentExpr() const {
2024    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2025  }
2026
2027  void setArgument(Expr *E) {
2028    Argument.Ex = E;
2029    UnaryExprOrTypeTraitExprBits.IsType = false;
2030  }
2031  void setArgument(TypeSourceInfo *TInfo) {
2032    Argument.Ty = TInfo;
2033    UnaryExprOrTypeTraitExprBits.IsType = true;
2034  }
2035
2036  /// Gets the argument type, or the type of the argument expression, whichever
2037  /// is appropriate.
2038  QualType getTypeOfArgument() const {
2039    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2040  }
2041
2042  SourceLocation getOperatorLoc() const { return OpLoc; }
2043  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2044
2045  SourceLocation getRParenLoc() const { return RParenLoc; }
2046  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2047
2048  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2049  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2050
2051  static bool classof(const Stmt *T) {
2052    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2053  }
2054
2055  // Iterators
2056  child_range children();
2057};
2058
2059//===----------------------------------------------------------------------===//
2060// Postfix Operators.
2061//===----------------------------------------------------------------------===//
2062
2063/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2064class ArraySubscriptExpr : public Expr {
2065  enum { LHS, RHS, END_EXPR=2 };
2066  Stmt* SubExprs[END_EXPR];
2067  SourceLocation RBracketLoc;
2068public:
2069  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2070                     ExprValueKind VK, ExprObjectKind OK,
2071                     SourceLocation rbracketloc)
2072  : Expr(ArraySubscriptExprClass, t, VK, OK,
2073         lhs->isTypeDependent() || rhs->isTypeDependent(),
2074         lhs->isValueDependent() || rhs->isValueDependent(),
2075         (lhs->isInstantiationDependent() ||
2076          rhs->isInstantiationDependent()),
2077         (lhs->containsUnexpandedParameterPack() ||
2078          rhs->containsUnexpandedParameterPack())),
2079    RBracketLoc(rbracketloc) {
2080    SubExprs[LHS] = lhs;
2081    SubExprs[RHS] = rhs;
2082  }
2083
2084  /// \brief Create an empty array subscript expression.
2085  explicit ArraySubscriptExpr(EmptyShell Shell)
2086    : Expr(ArraySubscriptExprClass, Shell) { }
2087
2088  /// An array access can be written A[4] or 4[A] (both are equivalent).
2089  /// - getBase() and getIdx() always present the normalized view: A[4].
2090  ///    In this case getBase() returns "A" and getIdx() returns "4".
2091  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2092  ///    4[A] getLHS() returns "4".
2093  /// Note: Because vector element access is also written A[4] we must
2094  /// predicate the format conversion in getBase and getIdx only on the
2095  /// the type of the RHS, as it is possible for the LHS to be a vector of
2096  /// integer type
2097  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2098  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2099  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2100
2101  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2102  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2103  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2104
2105  Expr *getBase() {
2106    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2107  }
2108
2109  const Expr *getBase() const {
2110    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2111  }
2112
2113  Expr *getIdx() {
2114    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2115  }
2116
2117  const Expr *getIdx() const {
2118    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2119  }
2120
2121  SourceLocation getLocStart() const LLVM_READONLY {
2122    return getLHS()->getLocStart();
2123  }
2124  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2125
2126  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2127  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2128
2129  SourceLocation getExprLoc() const LLVM_READONLY {
2130    return getBase()->getExprLoc();
2131  }
2132
2133  static bool classof(const Stmt *T) {
2134    return T->getStmtClass() == ArraySubscriptExprClass;
2135  }
2136
2137  // Iterators
2138  child_range children() {
2139    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2140  }
2141};
2142
2143
2144/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2145/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2146/// while its subclasses may represent alternative syntax that (semantically)
2147/// results in a function call. For example, CXXOperatorCallExpr is
2148/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2149/// "str1 + str2" to resolve to a function call.
2150class CallExpr : public Expr {
2151  enum { FN=0, PREARGS_START=1 };
2152  Stmt **SubExprs;
2153  unsigned NumArgs;
2154  SourceLocation RParenLoc;
2155
2156protected:
2157  // These versions of the constructor are for derived classes.
2158  CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2159           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2160           SourceLocation rparenloc);
2161  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2162           EmptyShell Empty);
2163
2164  Stmt *getPreArg(unsigned i) {
2165    assert(i < getNumPreArgs() && "Prearg access out of range!");
2166    return SubExprs[PREARGS_START+i];
2167  }
2168  const Stmt *getPreArg(unsigned i) const {
2169    assert(i < getNumPreArgs() && "Prearg access out of range!");
2170    return SubExprs[PREARGS_START+i];
2171  }
2172  void setPreArg(unsigned i, Stmt *PreArg) {
2173    assert(i < getNumPreArgs() && "Prearg access out of range!");
2174    SubExprs[PREARGS_START+i] = PreArg;
2175  }
2176
2177  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2178
2179public:
2180  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2181           ExprValueKind VK, SourceLocation rparenloc);
2182
2183  /// \brief Build an empty call expression.
2184  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2185
2186  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2187  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2188  void setCallee(Expr *F) { SubExprs[FN] = F; }
2189
2190  Decl *getCalleeDecl();
2191  const Decl *getCalleeDecl() const {
2192    return const_cast<CallExpr*>(this)->getCalleeDecl();
2193  }
2194
2195  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2196  FunctionDecl *getDirectCallee();
2197  const FunctionDecl *getDirectCallee() const {
2198    return const_cast<CallExpr*>(this)->getDirectCallee();
2199  }
2200
2201  /// getNumArgs - Return the number of actual arguments to this call.
2202  ///
2203  unsigned getNumArgs() const { return NumArgs; }
2204
2205  /// \brief Retrieve the call arguments.
2206  Expr **getArgs() {
2207    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2208  }
2209  const Expr *const *getArgs() const {
2210    return const_cast<CallExpr*>(this)->getArgs();
2211  }
2212
2213  /// getArg - Return the specified argument.
2214  Expr *getArg(unsigned Arg) {
2215    assert(Arg < NumArgs && "Arg access out of range!");
2216    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2217  }
2218  const Expr *getArg(unsigned Arg) const {
2219    assert(Arg < NumArgs && "Arg access out of range!");
2220    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2221  }
2222
2223  /// setArg - Set the specified argument.
2224  void setArg(unsigned Arg, Expr *ArgExpr) {
2225    assert(Arg < NumArgs && "Arg access out of range!");
2226    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2227  }
2228
2229  /// setNumArgs - This changes the number of arguments present in this call.
2230  /// Any orphaned expressions are deleted by this, and any new operands are set
2231  /// to null.
2232  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2233
2234  typedef ExprIterator arg_iterator;
2235  typedef ConstExprIterator const_arg_iterator;
2236  typedef llvm::iterator_range<arg_iterator> arg_range;
2237  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2238
2239  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2240  arg_const_range arguments() const {
2241    return arg_const_range(arg_begin(), arg_end());
2242  }
2243
2244  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2245  arg_iterator arg_end() {
2246    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2247  }
2248  const_arg_iterator arg_begin() const {
2249    return SubExprs+PREARGS_START+getNumPreArgs();
2250  }
2251  const_arg_iterator arg_end() const {
2252    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2253  }
2254
2255  /// This method provides fast access to all the subexpressions of
2256  /// a CallExpr without going through the slower virtual child_iterator
2257  /// interface.  This provides efficient reverse iteration of the
2258  /// subexpressions.  This is currently used for CFG construction.
2259  ArrayRef<Stmt*> getRawSubExprs() {
2260    return llvm::makeArrayRef(SubExprs,
2261                              getNumPreArgs() + PREARGS_START + getNumArgs());
2262  }
2263
2264  /// getNumCommas - Return the number of commas that must have been present in
2265  /// this function call.
2266  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2267
2268  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2269  /// of the callee. If not, return 0.
2270  unsigned getBuiltinCallee() const;
2271
2272  /// \brief Returns \c true if this is a call to a builtin which does not
2273  /// evaluate side-effects within its arguments.
2274  bool isUnevaluatedBuiltinCall(ASTContext &Ctx) const;
2275
2276  /// getCallReturnType - Get the return type of the call expr. This is not
2277  /// always the type of the expr itself, if the return type is a reference
2278  /// type.
2279  QualType getCallReturnType(const ASTContext &Ctx) const;
2280
2281  SourceLocation getRParenLoc() const { return RParenLoc; }
2282  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2283
2284  SourceLocation getLocStart() const LLVM_READONLY;
2285  SourceLocation getLocEnd() const LLVM_READONLY;
2286
2287  static bool classof(const Stmt *T) {
2288    return T->getStmtClass() >= firstCallExprConstant &&
2289           T->getStmtClass() <= lastCallExprConstant;
2290  }
2291
2292  // Iterators
2293  child_range children() {
2294    return child_range(&SubExprs[0],
2295                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2296  }
2297};
2298
2299/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2300///
2301class MemberExpr : public Expr {
2302  /// Extra data stored in some member expressions.
2303  struct MemberNameQualifier {
2304    /// \brief The nested-name-specifier that qualifies the name, including
2305    /// source-location information.
2306    NestedNameSpecifierLoc QualifierLoc;
2307
2308    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2309    /// name qualifiers.
2310    DeclAccessPair FoundDecl;
2311  };
2312
2313  /// Base - the expression for the base pointer or structure references.  In
2314  /// X.F, this is "X".
2315  Stmt *Base;
2316
2317  /// MemberDecl - This is the decl being referenced by the field/member name.
2318  /// In X.F, this is the decl referenced by F.
2319  ValueDecl *MemberDecl;
2320
2321  /// MemberDNLoc - Provides source/type location info for the
2322  /// declaration name embedded in MemberDecl.
2323  DeclarationNameLoc MemberDNLoc;
2324
2325  /// MemberLoc - This is the location of the member name.
2326  SourceLocation MemberLoc;
2327
2328  /// This is the location of the -> or . in the expression.
2329  SourceLocation OperatorLoc;
2330
2331  /// IsArrow - True if this is "X->F", false if this is "X.F".
2332  bool IsArrow : 1;
2333
2334  /// \brief True if this member expression used a nested-name-specifier to
2335  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2336  /// declaration.  When true, a MemberNameQualifier
2337  /// structure is allocated immediately after the MemberExpr.
2338  bool HasQualifierOrFoundDecl : 1;
2339
2340  /// \brief True if this member expression specified a template keyword
2341  /// and/or a template argument list explicitly, e.g., x->f<int>,
2342  /// x->template f, x->template f<int>.
2343  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2344  /// TemplateArguments (if any) are allocated immediately after
2345  /// the MemberExpr or, if the member expression also has a qualifier,
2346  /// after the MemberNameQualifier structure.
2347  bool HasTemplateKWAndArgsInfo : 1;
2348
2349  /// \brief True if this member expression refers to a method that
2350  /// was resolved from an overloaded set having size greater than 1.
2351  bool HadMultipleCandidates : 1;
2352
2353  /// \brief Retrieve the qualifier that preceded the member name, if any.
2354  MemberNameQualifier *getMemberQualifier() {
2355    assert(HasQualifierOrFoundDecl);
2356    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2357  }
2358
2359  /// \brief Retrieve the qualifier that preceded the member name, if any.
2360  const MemberNameQualifier *getMemberQualifier() const {
2361    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2362  }
2363
2364public:
2365  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2366             ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2367             QualType ty, ExprValueKind VK, ExprObjectKind OK)
2368      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2369             base->isValueDependent(), base->isInstantiationDependent(),
2370             base->containsUnexpandedParameterPack()),
2371        Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2372        MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2373        IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2374        HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2375    assert(memberdecl->getDeclName() == NameInfo.getName());
2376  }
2377
2378  // NOTE: this constructor should be used only when it is known that
2379  // the member name can not provide additional syntactic info
2380  // (i.e., source locations for C++ operator names or type source info
2381  // for constructors, destructors and conversion operators).
2382  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2383             ValueDecl *memberdecl, SourceLocation l, QualType ty,
2384             ExprValueKind VK, ExprObjectKind OK)
2385      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2386             base->isValueDependent(), base->isInstantiationDependent(),
2387             base->containsUnexpandedParameterPack()),
2388        Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2389        OperatorLoc(operatorloc), IsArrow(isarrow),
2390        HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2391        HadMultipleCandidates(false) {}
2392
2393  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2394                            SourceLocation OperatorLoc,
2395                            NestedNameSpecifierLoc QualifierLoc,
2396                            SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2397                            DeclAccessPair founddecl,
2398                            DeclarationNameInfo MemberNameInfo,
2399                            const TemplateArgumentListInfo *targs, QualType ty,
2400                            ExprValueKind VK, ExprObjectKind OK);
2401
2402  void setBase(Expr *E) { Base = E; }
2403  Expr *getBase() const { return cast<Expr>(Base); }
2404
2405  /// \brief Retrieve the member declaration to which this expression refers.
2406  ///
2407  /// The returned declaration will either be a FieldDecl or (in C++)
2408  /// a CXXMethodDecl.
2409  ValueDecl *getMemberDecl() const { return MemberDecl; }
2410  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2411
2412  /// \brief Retrieves the declaration found by lookup.
2413  DeclAccessPair getFoundDecl() const {
2414    if (!HasQualifierOrFoundDecl)
2415      return DeclAccessPair::make(getMemberDecl(),
2416                                  getMemberDecl()->getAccess());
2417    return getMemberQualifier()->FoundDecl;
2418  }
2419
2420  /// \brief Determines whether this member expression actually had
2421  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2422  /// x->Base::foo.
2423  bool hasQualifier() const { return getQualifier() != nullptr; }
2424
2425  /// \brief If the member name was qualified, retrieves the
2426  /// nested-name-specifier that precedes the member name. Otherwise, returns
2427  /// NULL.
2428  NestedNameSpecifier *getQualifier() const {
2429    if (!HasQualifierOrFoundDecl)
2430      return nullptr;
2431
2432    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2433  }
2434
2435  /// \brief If the member name was qualified, retrieves the
2436  /// nested-name-specifier that precedes the member name, with source-location
2437  /// information.
2438  NestedNameSpecifierLoc getQualifierLoc() const {
2439    if (!hasQualifier())
2440      return NestedNameSpecifierLoc();
2441
2442    return getMemberQualifier()->QualifierLoc;
2443  }
2444
2445  /// \brief Return the optional template keyword and arguments info.
2446  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2447    if (!HasTemplateKWAndArgsInfo)
2448      return nullptr;
2449
2450    if (!HasQualifierOrFoundDecl)
2451      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2452
2453    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2454                                                      getMemberQualifier() + 1);
2455  }
2456
2457  /// \brief Return the optional template keyword and arguments info.
2458  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2459    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2460  }
2461
2462  /// \brief Retrieve the location of the template keyword preceding
2463  /// the member name, if any.
2464  SourceLocation getTemplateKeywordLoc() const {
2465    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2466    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2467  }
2468
2469  /// \brief Retrieve the location of the left angle bracket starting the
2470  /// explicit template argument list following the member name, if any.
2471  SourceLocation getLAngleLoc() const {
2472    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2473    return getTemplateKWAndArgsInfo()->LAngleLoc;
2474  }
2475
2476  /// \brief Retrieve the location of the right angle bracket ending the
2477  /// explicit template argument list following the member name, if any.
2478  SourceLocation getRAngleLoc() const {
2479    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2480    return getTemplateKWAndArgsInfo()->RAngleLoc;
2481  }
2482
2483  /// Determines whether the member name was preceded by the template keyword.
2484  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2485
2486  /// \brief Determines whether the member name was followed by an
2487  /// explicit template argument list.
2488  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2489
2490  /// \brief Copies the template arguments (if present) into the given
2491  /// structure.
2492  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2493    if (hasExplicitTemplateArgs())
2494      getExplicitTemplateArgs().copyInto(List);
2495  }
2496
2497  /// \brief Retrieve the explicit template argument list that
2498  /// follow the member template name.  This must only be called on an
2499  /// expression with explicit template arguments.
2500  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2501    assert(hasExplicitTemplateArgs());
2502    return *getTemplateKWAndArgsInfo();
2503  }
2504
2505  /// \brief Retrieve the explicit template argument list that
2506  /// followed the member template name.  This must only be called on
2507  /// an expression with explicit template arguments.
2508  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2509    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2510  }
2511
2512  /// \brief Retrieves the optional explicit template arguments.
2513  /// This points to the same data as getExplicitTemplateArgs(), but
2514  /// returns null if there are no explicit template arguments.
2515  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2516    if (!hasExplicitTemplateArgs()) return nullptr;
2517    return &getExplicitTemplateArgs();
2518  }
2519
2520  /// \brief Retrieve the template arguments provided as part of this
2521  /// template-id.
2522  const TemplateArgumentLoc *getTemplateArgs() const {
2523    if (!hasExplicitTemplateArgs())
2524      return nullptr;
2525
2526    return getExplicitTemplateArgs().getTemplateArgs();
2527  }
2528
2529  /// \brief Retrieve the number of template arguments provided as part of this
2530  /// template-id.
2531  unsigned getNumTemplateArgs() const {
2532    if (!hasExplicitTemplateArgs())
2533      return 0;
2534
2535    return getExplicitTemplateArgs().NumTemplateArgs;
2536  }
2537
2538  /// \brief Retrieve the member declaration name info.
2539  DeclarationNameInfo getMemberNameInfo() const {
2540    return DeclarationNameInfo(MemberDecl->getDeclName(),
2541                               MemberLoc, MemberDNLoc);
2542  }
2543
2544  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2545
2546  bool isArrow() const { return IsArrow; }
2547  void setArrow(bool A) { IsArrow = A; }
2548
2549  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2550  /// location of 'F'.
2551  SourceLocation getMemberLoc() const { return MemberLoc; }
2552  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2553
2554  SourceLocation getLocStart() const LLVM_READONLY;
2555  SourceLocation getLocEnd() const LLVM_READONLY;
2556
2557  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2558
2559  /// \brief Determine whether the base of this explicit is implicit.
2560  bool isImplicitAccess() const {
2561    return getBase() && getBase()->isImplicitCXXThis();
2562  }
2563
2564  /// \brief Returns true if this member expression refers to a method that
2565  /// was resolved from an overloaded set having size greater than 1.
2566  bool hadMultipleCandidates() const {
2567    return HadMultipleCandidates;
2568  }
2569  /// \brief Sets the flag telling whether this expression refers to
2570  /// a method that was resolved from an overloaded set having size
2571  /// greater than 1.
2572  void setHadMultipleCandidates(bool V = true) {
2573    HadMultipleCandidates = V;
2574  }
2575
2576  static bool classof(const Stmt *T) {
2577    return T->getStmtClass() == MemberExprClass;
2578  }
2579
2580  // Iterators
2581  child_range children() { return child_range(&Base, &Base+1); }
2582
2583  friend class ASTReader;
2584  friend class ASTStmtWriter;
2585};
2586
2587/// CompoundLiteralExpr - [C99 6.5.2.5]
2588///
2589class CompoundLiteralExpr : public Expr {
2590  /// LParenLoc - If non-null, this is the location of the left paren in a
2591  /// compound literal like "(int){4}".  This can be null if this is a
2592  /// synthesized compound expression.
2593  SourceLocation LParenLoc;
2594
2595  /// The type as written.  This can be an incomplete array type, in
2596  /// which case the actual expression type will be different.
2597  /// The int part of the pair stores whether this expr is file scope.
2598  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2599  Stmt *Init;
2600public:
2601  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2602                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2603    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2604           tinfo->getType()->isDependentType(),
2605           init->isValueDependent(),
2606           (init->isInstantiationDependent() ||
2607            tinfo->getType()->isInstantiationDependentType()),
2608           init->containsUnexpandedParameterPack()),
2609      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2610
2611  /// \brief Construct an empty compound literal.
2612  explicit CompoundLiteralExpr(EmptyShell Empty)
2613    : Expr(CompoundLiteralExprClass, Empty) { }
2614
2615  const Expr *getInitializer() const { return cast<Expr>(Init); }
2616  Expr *getInitializer() { return cast<Expr>(Init); }
2617  void setInitializer(Expr *E) { Init = E; }
2618
2619  bool isFileScope() const { return TInfoAndScope.getInt(); }
2620  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2621
2622  SourceLocation getLParenLoc() const { return LParenLoc; }
2623  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2624
2625  TypeSourceInfo *getTypeSourceInfo() const {
2626    return TInfoAndScope.getPointer();
2627  }
2628  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2629    TInfoAndScope.setPointer(tinfo);
2630  }
2631
2632  SourceLocation getLocStart() const LLVM_READONLY {
2633    // FIXME: Init should never be null.
2634    if (!Init)
2635      return SourceLocation();
2636    if (LParenLoc.isInvalid())
2637      return Init->getLocStart();
2638    return LParenLoc;
2639  }
2640  SourceLocation getLocEnd() const LLVM_READONLY {
2641    // FIXME: Init should never be null.
2642    if (!Init)
2643      return SourceLocation();
2644    return Init->getLocEnd();
2645  }
2646
2647  static bool classof(const Stmt *T) {
2648    return T->getStmtClass() == CompoundLiteralExprClass;
2649  }
2650
2651  // Iterators
2652  child_range children() { return child_range(&Init, &Init+1); }
2653};
2654
2655/// CastExpr - Base class for type casts, including both implicit
2656/// casts (ImplicitCastExpr) and explicit casts that have some
2657/// representation in the source code (ExplicitCastExpr's derived
2658/// classes).
2659class CastExpr : public Expr {
2660private:
2661  Stmt *Op;
2662
2663  bool CastConsistency() const;
2664
2665  const CXXBaseSpecifier * const *path_buffer() const {
2666    return const_cast<CastExpr*>(this)->path_buffer();
2667  }
2668  CXXBaseSpecifier **path_buffer();
2669
2670  void setBasePathSize(unsigned basePathSize) {
2671    CastExprBits.BasePathSize = basePathSize;
2672    assert(CastExprBits.BasePathSize == basePathSize &&
2673           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2674  }
2675
2676protected:
2677  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
2678           Expr *op, unsigned BasePathSize)
2679      : Expr(SC, ty, VK, OK_Ordinary,
2680             // Cast expressions are type-dependent if the type is
2681             // dependent (C++ [temp.dep.expr]p3).
2682             ty->isDependentType(),
2683             // Cast expressions are value-dependent if the type is
2684             // dependent or if the subexpression is value-dependent.
2685             ty->isDependentType() || (op && op->isValueDependent()),
2686             (ty->isInstantiationDependentType() ||
2687              (op && op->isInstantiationDependent())),
2688             // An implicit cast expression doesn't (lexically) contain an
2689             // unexpanded pack, even if its target type does.
2690             ((SC != ImplicitCastExprClass &&
2691               ty->containsUnexpandedParameterPack()) ||
2692              (op && op->containsUnexpandedParameterPack()))),
2693        Op(op) {
2694    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2695    CastExprBits.Kind = kind;
2696    setBasePathSize(BasePathSize);
2697    assert(CastConsistency());
2698  }
2699
2700  /// \brief Construct an empty cast.
2701  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2702    : Expr(SC, Empty) {
2703    setBasePathSize(BasePathSize);
2704  }
2705
2706public:
2707  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2708  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2709  const char *getCastKindName() const;
2710
2711  Expr *getSubExpr() { return cast<Expr>(Op); }
2712  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2713  void setSubExpr(Expr *E) { Op = E; }
2714
2715  /// \brief Retrieve the cast subexpression as it was written in the source
2716  /// code, looking through any implicit casts or other intermediate nodes
2717  /// introduced by semantic analysis.
2718  Expr *getSubExprAsWritten();
2719  const Expr *getSubExprAsWritten() const {
2720    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2721  }
2722
2723  typedef CXXBaseSpecifier **path_iterator;
2724  typedef const CXXBaseSpecifier * const *path_const_iterator;
2725  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2726  unsigned path_size() const { return CastExprBits.BasePathSize; }
2727  path_iterator path_begin() { return path_buffer(); }
2728  path_iterator path_end() { return path_buffer() + path_size(); }
2729  path_const_iterator path_begin() const { return path_buffer(); }
2730  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2731
2732  void setCastPath(const CXXCastPath &Path);
2733
2734  static bool classof(const Stmt *T) {
2735    return T->getStmtClass() >= firstCastExprConstant &&
2736           T->getStmtClass() <= lastCastExprConstant;
2737  }
2738
2739  // Iterators
2740  child_range children() { return child_range(&Op, &Op+1); }
2741};
2742
2743/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2744/// conversions, which have no direct representation in the original
2745/// source code. For example: converting T[]->T*, void f()->void
2746/// (*f)(), float->double, short->int, etc.
2747///
2748/// In C, implicit casts always produce rvalues. However, in C++, an
2749/// implicit cast whose result is being bound to a reference will be
2750/// an lvalue or xvalue. For example:
2751///
2752/// @code
2753/// class Base { };
2754/// class Derived : public Base { };
2755/// Derived &&ref();
2756/// void f(Derived d) {
2757///   Base& b = d; // initializer is an ImplicitCastExpr
2758///                // to an lvalue of type Base
2759///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2760///                     // to an xvalue of type Base
2761/// }
2762/// @endcode
2763class ImplicitCastExpr : public CastExpr {
2764private:
2765  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2766                   unsigned BasePathLength, ExprValueKind VK)
2767    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2768  }
2769
2770  /// \brief Construct an empty implicit cast.
2771  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2772    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2773
2774public:
2775  enum OnStack_t { OnStack };
2776  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2777                   ExprValueKind VK)
2778    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2779  }
2780
2781  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2782                                  CastKind Kind, Expr *Operand,
2783                                  const CXXCastPath *BasePath,
2784                                  ExprValueKind Cat);
2785
2786  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2787                                       unsigned PathSize);
2788
2789  SourceLocation getLocStart() const LLVM_READONLY {
2790    return getSubExpr()->getLocStart();
2791  }
2792  SourceLocation getLocEnd() const LLVM_READONLY {
2793    return getSubExpr()->getLocEnd();
2794  }
2795
2796  static bool classof(const Stmt *T) {
2797    return T->getStmtClass() == ImplicitCastExprClass;
2798  }
2799};
2800
2801inline Expr *Expr::IgnoreImpCasts() {
2802  Expr *e = this;
2803  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2804    e = ice->getSubExpr();
2805  return e;
2806}
2807
2808/// ExplicitCastExpr - An explicit cast written in the source
2809/// code.
2810///
2811/// This class is effectively an abstract class, because it provides
2812/// the basic representation of an explicitly-written cast without
2813/// specifying which kind of cast (C cast, functional cast, static
2814/// cast, etc.) was written; specific derived classes represent the
2815/// particular style of cast and its location information.
2816///
2817/// Unlike implicit casts, explicit cast nodes have two different
2818/// types: the type that was written into the source code, and the
2819/// actual type of the expression as determined by semantic
2820/// analysis. These types may differ slightly. For example, in C++ one
2821/// can cast to a reference type, which indicates that the resulting
2822/// expression will be an lvalue or xvalue. The reference type, however,
2823/// will not be used as the type of the expression.
2824class ExplicitCastExpr : public CastExpr {
2825  /// TInfo - Source type info for the (written) type
2826  /// this expression is casting to.
2827  TypeSourceInfo *TInfo;
2828
2829protected:
2830  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2831                   CastKind kind, Expr *op, unsigned PathSize,
2832                   TypeSourceInfo *writtenTy)
2833    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2834
2835  /// \brief Construct an empty explicit cast.
2836  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2837    : CastExpr(SC, Shell, PathSize) { }
2838
2839public:
2840  /// getTypeInfoAsWritten - Returns the type source info for the type
2841  /// that this expression is casting to.
2842  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2843  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2844
2845  /// getTypeAsWritten - Returns the type that this expression is
2846  /// casting to, as written in the source code.
2847  QualType getTypeAsWritten() const { return TInfo->getType(); }
2848
2849  static bool classof(const Stmt *T) {
2850     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2851            T->getStmtClass() <= lastExplicitCastExprConstant;
2852  }
2853};
2854
2855/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2856/// cast in C++ (C++ [expr.cast]), which uses the syntax
2857/// (Type)expr. For example: @c (int)f.
2858class CStyleCastExpr : public ExplicitCastExpr {
2859  SourceLocation LPLoc; // the location of the left paren
2860  SourceLocation RPLoc; // the location of the right paren
2861
2862  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2863                 unsigned PathSize, TypeSourceInfo *writtenTy,
2864                 SourceLocation l, SourceLocation r)
2865    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2866                       writtenTy), LPLoc(l), RPLoc(r) {}
2867
2868  /// \brief Construct an empty C-style explicit cast.
2869  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2870    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2871
2872public:
2873  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2874                                ExprValueKind VK, CastKind K,
2875                                Expr *Op, const CXXCastPath *BasePath,
2876                                TypeSourceInfo *WrittenTy, SourceLocation L,
2877                                SourceLocation R);
2878
2879  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2880                                     unsigned PathSize);
2881
2882  SourceLocation getLParenLoc() const { return LPLoc; }
2883  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2884
2885  SourceLocation getRParenLoc() const { return RPLoc; }
2886  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2887
2888  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2889  SourceLocation getLocEnd() const LLVM_READONLY {
2890    return getSubExpr()->getLocEnd();
2891  }
2892
2893  static bool classof(const Stmt *T) {
2894    return T->getStmtClass() == CStyleCastExprClass;
2895  }
2896};
2897
2898/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2899///
2900/// This expression node kind describes a builtin binary operation,
2901/// such as "x + y" for integer values "x" and "y". The operands will
2902/// already have been converted to appropriate types (e.g., by
2903/// performing promotions or conversions).
2904///
2905/// In C++, where operators may be overloaded, a different kind of
2906/// expression node (CXXOperatorCallExpr) is used to express the
2907/// invocation of an overloaded operator with operator syntax. Within
2908/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2909/// used to store an expression "x + y" depends on the subexpressions
2910/// for x and y. If neither x or y is type-dependent, and the "+"
2911/// operator resolves to a built-in operation, BinaryOperator will be
2912/// used to express the computation (x and y may still be
2913/// value-dependent). If either x or y is type-dependent, or if the
2914/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2915/// be used to express the computation.
2916class BinaryOperator : public Expr {
2917public:
2918  typedef BinaryOperatorKind Opcode;
2919
2920private:
2921  unsigned Opc : 6;
2922
2923  // Records the FP_CONTRACT pragma status at the point that this binary
2924  // operator was parsed. This bit is only meaningful for operations on
2925  // floating point types. For all other types it should default to
2926  // false.
2927  unsigned FPContractable : 1;
2928  SourceLocation OpLoc;
2929
2930  enum { LHS, RHS, END_EXPR };
2931  Stmt* SubExprs[END_EXPR];
2932public:
2933
2934  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2935                 ExprValueKind VK, ExprObjectKind OK,
2936                 SourceLocation opLoc, bool fpContractable)
2937    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2938           lhs->isTypeDependent() || rhs->isTypeDependent(),
2939           lhs->isValueDependent() || rhs->isValueDependent(),
2940           (lhs->isInstantiationDependent() ||
2941            rhs->isInstantiationDependent()),
2942           (lhs->containsUnexpandedParameterPack() ||
2943            rhs->containsUnexpandedParameterPack())),
2944      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2945    SubExprs[LHS] = lhs;
2946    SubExprs[RHS] = rhs;
2947    assert(!isCompoundAssignmentOp() &&
2948           "Use CompoundAssignOperator for compound assignments");
2949  }
2950
2951  /// \brief Construct an empty binary operator.
2952  explicit BinaryOperator(EmptyShell Empty)
2953    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2954
2955  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2956  SourceLocation getOperatorLoc() const { return OpLoc; }
2957  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2958
2959  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2960  void setOpcode(Opcode O) { Opc = O; }
2961
2962  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2963  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2964  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2965  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2966
2967  SourceLocation getLocStart() const LLVM_READONLY {
2968    return getLHS()->getLocStart();
2969  }
2970  SourceLocation getLocEnd() const LLVM_READONLY {
2971    return getRHS()->getLocEnd();
2972  }
2973
2974  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2975  /// corresponds to, e.g. "<<=".
2976  static StringRef getOpcodeStr(Opcode Op);
2977
2978  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2979
2980  /// \brief Retrieve the binary opcode that corresponds to the given
2981  /// overloaded operator.
2982  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2983
2984  /// \brief Retrieve the overloaded operator kind that corresponds to
2985  /// the given binary opcode.
2986  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2987
2988  /// predicates to categorize the respective opcodes.
2989  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2990  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2991  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2992  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2993  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2994  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2995
2996  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2997  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2998
2999  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3000  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3001
3002  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3003  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3004
3005  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
3006  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3007
3008  static Opcode negateComparisonOp(Opcode Opc) {
3009    switch (Opc) {
3010    default:
3011      llvm_unreachable("Not a comparsion operator.");
3012    case BO_LT: return BO_GE;
3013    case BO_GT: return BO_LE;
3014    case BO_LE: return BO_GT;
3015    case BO_GE: return BO_LT;
3016    case BO_EQ: return BO_NE;
3017    case BO_NE: return BO_EQ;
3018    }
3019  }
3020
3021  static Opcode reverseComparisonOp(Opcode Opc) {
3022    switch (Opc) {
3023    default:
3024      llvm_unreachable("Not a comparsion operator.");
3025    case BO_LT: return BO_GT;
3026    case BO_GT: return BO_LT;
3027    case BO_LE: return BO_GE;
3028    case BO_GE: return BO_LE;
3029    case BO_EQ:
3030    case BO_NE:
3031      return Opc;
3032    }
3033  }
3034
3035  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3036  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3037
3038  static bool isAssignmentOp(Opcode Opc) {
3039    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3040  }
3041  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3042
3043  static bool isCompoundAssignmentOp(Opcode Opc) {
3044    return Opc > BO_Assign && Opc <= BO_OrAssign;
3045  }
3046  bool isCompoundAssignmentOp() const {
3047    return isCompoundAssignmentOp(getOpcode());
3048  }
3049  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3050    assert(isCompoundAssignmentOp(Opc));
3051    if (Opc >= BO_AndAssign)
3052      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3053    else
3054      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3055  }
3056
3057  static bool isShiftAssignOp(Opcode Opc) {
3058    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3059  }
3060  bool isShiftAssignOp() const {
3061    return isShiftAssignOp(getOpcode());
3062  }
3063
3064  static bool classof(const Stmt *S) {
3065    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3066           S->getStmtClass() <= lastBinaryOperatorConstant;
3067  }
3068
3069  // Iterators
3070  child_range children() {
3071    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3072  }
3073
3074  // Set the FP contractability status of this operator. Only meaningful for
3075  // operations on floating point types.
3076  void setFPContractable(bool FPC) { FPContractable = FPC; }
3077
3078  // Get the FP contractability status of this operator. Only meaningful for
3079  // operations on floating point types.
3080  bool isFPContractable() const { return FPContractable; }
3081
3082protected:
3083  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3084                 ExprValueKind VK, ExprObjectKind OK,
3085                 SourceLocation opLoc, bool fpContractable, bool dead2)
3086    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3087           lhs->isTypeDependent() || rhs->isTypeDependent(),
3088           lhs->isValueDependent() || rhs->isValueDependent(),
3089           (lhs->isInstantiationDependent() ||
3090            rhs->isInstantiationDependent()),
3091           (lhs->containsUnexpandedParameterPack() ||
3092            rhs->containsUnexpandedParameterPack())),
3093      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3094    SubExprs[LHS] = lhs;
3095    SubExprs[RHS] = rhs;
3096  }
3097
3098  BinaryOperator(StmtClass SC, EmptyShell Empty)
3099    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3100};
3101
3102/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3103/// track of the type the operation is performed in.  Due to the semantics of
3104/// these operators, the operands are promoted, the arithmetic performed, an
3105/// implicit conversion back to the result type done, then the assignment takes
3106/// place.  This captures the intermediate type which the computation is done
3107/// in.
3108class CompoundAssignOperator : public BinaryOperator {
3109  QualType ComputationLHSType;
3110  QualType ComputationResultType;
3111public:
3112  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3113                         ExprValueKind VK, ExprObjectKind OK,
3114                         QualType CompLHSType, QualType CompResultType,
3115                         SourceLocation OpLoc, bool fpContractable)
3116    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3117                     true),
3118      ComputationLHSType(CompLHSType),
3119      ComputationResultType(CompResultType) {
3120    assert(isCompoundAssignmentOp() &&
3121           "Only should be used for compound assignments");
3122  }
3123
3124  /// \brief Build an empty compound assignment operator expression.
3125  explicit CompoundAssignOperator(EmptyShell Empty)
3126    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3127
3128  // The two computation types are the type the LHS is converted
3129  // to for the computation and the type of the result; the two are
3130  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3131  QualType getComputationLHSType() const { return ComputationLHSType; }
3132  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3133
3134  QualType getComputationResultType() const { return ComputationResultType; }
3135  void setComputationResultType(QualType T) { ComputationResultType = T; }
3136
3137  static bool classof(const Stmt *S) {
3138    return S->getStmtClass() == CompoundAssignOperatorClass;
3139  }
3140};
3141
3142/// AbstractConditionalOperator - An abstract base class for
3143/// ConditionalOperator and BinaryConditionalOperator.
3144class AbstractConditionalOperator : public Expr {
3145  SourceLocation QuestionLoc, ColonLoc;
3146  friend class ASTStmtReader;
3147
3148protected:
3149  AbstractConditionalOperator(StmtClass SC, QualType T,
3150                              ExprValueKind VK, ExprObjectKind OK,
3151                              bool TD, bool VD, bool ID,
3152                              bool ContainsUnexpandedParameterPack,
3153                              SourceLocation qloc,
3154                              SourceLocation cloc)
3155    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3156      QuestionLoc(qloc), ColonLoc(cloc) {}
3157
3158  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3159    : Expr(SC, Empty) { }
3160
3161public:
3162  // getCond - Return the expression representing the condition for
3163  //   the ?: operator.
3164  Expr *getCond() const;
3165
3166  // getTrueExpr - Return the subexpression representing the value of
3167  //   the expression if the condition evaluates to true.
3168  Expr *getTrueExpr() const;
3169
3170  // getFalseExpr - Return the subexpression representing the value of
3171  //   the expression if the condition evaluates to false.  This is
3172  //   the same as getRHS.
3173  Expr *getFalseExpr() const;
3174
3175  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3176  SourceLocation getColonLoc() const { return ColonLoc; }
3177
3178  static bool classof(const Stmt *T) {
3179    return T->getStmtClass() == ConditionalOperatorClass ||
3180           T->getStmtClass() == BinaryConditionalOperatorClass;
3181  }
3182};
3183
3184/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3185/// middle" extension is a BinaryConditionalOperator.
3186class ConditionalOperator : public AbstractConditionalOperator {
3187  enum { COND, LHS, RHS, END_EXPR };
3188  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3189
3190  friend class ASTStmtReader;
3191public:
3192  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3193                      SourceLocation CLoc, Expr *rhs,
3194                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3195    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3196           // FIXME: the type of the conditional operator doesn't
3197           // depend on the type of the conditional, but the standard
3198           // seems to imply that it could. File a bug!
3199           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3200           (cond->isValueDependent() || lhs->isValueDependent() ||
3201            rhs->isValueDependent()),
3202           (cond->isInstantiationDependent() ||
3203            lhs->isInstantiationDependent() ||
3204            rhs->isInstantiationDependent()),
3205           (cond->containsUnexpandedParameterPack() ||
3206            lhs->containsUnexpandedParameterPack() ||
3207            rhs->containsUnexpandedParameterPack()),
3208                                  QLoc, CLoc) {
3209    SubExprs[COND] = cond;
3210    SubExprs[LHS] = lhs;
3211    SubExprs[RHS] = rhs;
3212  }
3213
3214  /// \brief Build an empty conditional operator.
3215  explicit ConditionalOperator(EmptyShell Empty)
3216    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3217
3218  // getCond - Return the expression representing the condition for
3219  //   the ?: operator.
3220  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3221
3222  // getTrueExpr - Return the subexpression representing the value of
3223  //   the expression if the condition evaluates to true.
3224  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3225
3226  // getFalseExpr - Return the subexpression representing the value of
3227  //   the expression if the condition evaluates to false.  This is
3228  //   the same as getRHS.
3229  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3230
3231  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3232  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3233
3234  SourceLocation getLocStart() const LLVM_READONLY {
3235    return getCond()->getLocStart();
3236  }
3237  SourceLocation getLocEnd() const LLVM_READONLY {
3238    return getRHS()->getLocEnd();
3239  }
3240
3241  static bool classof(const Stmt *T) {
3242    return T->getStmtClass() == ConditionalOperatorClass;
3243  }
3244
3245  // Iterators
3246  child_range children() {
3247    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3248  }
3249};
3250
3251/// BinaryConditionalOperator - The GNU extension to the conditional
3252/// operator which allows the middle operand to be omitted.
3253///
3254/// This is a different expression kind on the assumption that almost
3255/// every client ends up needing to know that these are different.
3256class BinaryConditionalOperator : public AbstractConditionalOperator {
3257  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3258
3259  /// - the common condition/left-hand-side expression, which will be
3260  ///   evaluated as the opaque value
3261  /// - the condition, expressed in terms of the opaque value
3262  /// - the left-hand-side, expressed in terms of the opaque value
3263  /// - the right-hand-side
3264  Stmt *SubExprs[NUM_SUBEXPRS];
3265  OpaqueValueExpr *OpaqueValue;
3266
3267  friend class ASTStmtReader;
3268public:
3269  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3270                            Expr *cond, Expr *lhs, Expr *rhs,
3271                            SourceLocation qloc, SourceLocation cloc,
3272                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3273    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3274           (common->isTypeDependent() || rhs->isTypeDependent()),
3275           (common->isValueDependent() || rhs->isValueDependent()),
3276           (common->isInstantiationDependent() ||
3277            rhs->isInstantiationDependent()),
3278           (common->containsUnexpandedParameterPack() ||
3279            rhs->containsUnexpandedParameterPack()),
3280                                  qloc, cloc),
3281      OpaqueValue(opaqueValue) {
3282    SubExprs[COMMON] = common;
3283    SubExprs[COND] = cond;
3284    SubExprs[LHS] = lhs;
3285    SubExprs[RHS] = rhs;
3286    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3287  }
3288
3289  /// \brief Build an empty conditional operator.
3290  explicit BinaryConditionalOperator(EmptyShell Empty)
3291    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3292
3293  /// \brief getCommon - Return the common expression, written to the
3294  ///   left of the condition.  The opaque value will be bound to the
3295  ///   result of this expression.
3296  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3297
3298  /// \brief getOpaqueValue - Return the opaque value placeholder.
3299  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3300
3301  /// \brief getCond - Return the condition expression; this is defined
3302  ///   in terms of the opaque value.
3303  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3304
3305  /// \brief getTrueExpr - Return the subexpression which will be
3306  ///   evaluated if the condition evaluates to true;  this is defined
3307  ///   in terms of the opaque value.
3308  Expr *getTrueExpr() const {
3309    return cast<Expr>(SubExprs[LHS]);
3310  }
3311
3312  /// \brief getFalseExpr - Return the subexpression which will be
3313  ///   evaluated if the condnition evaluates to false; this is
3314  ///   defined in terms of the opaque value.
3315  Expr *getFalseExpr() const {
3316    return cast<Expr>(SubExprs[RHS]);
3317  }
3318
3319  SourceLocation getLocStart() const LLVM_READONLY {
3320    return getCommon()->getLocStart();
3321  }
3322  SourceLocation getLocEnd() const LLVM_READONLY {
3323    return getFalseExpr()->getLocEnd();
3324  }
3325
3326  static bool classof(const Stmt *T) {
3327    return T->getStmtClass() == BinaryConditionalOperatorClass;
3328  }
3329
3330  // Iterators
3331  child_range children() {
3332    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3333  }
3334};
3335
3336inline Expr *AbstractConditionalOperator::getCond() const {
3337  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3338    return co->getCond();
3339  return cast<BinaryConditionalOperator>(this)->getCond();
3340}
3341
3342inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3343  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3344    return co->getTrueExpr();
3345  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3346}
3347
3348inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3349  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3350    return co->getFalseExpr();
3351  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3352}
3353
3354/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3355class AddrLabelExpr : public Expr {
3356  SourceLocation AmpAmpLoc, LabelLoc;
3357  LabelDecl *Label;
3358public:
3359  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3360                QualType t)
3361    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3362           false),
3363      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3364
3365  /// \brief Build an empty address of a label expression.
3366  explicit AddrLabelExpr(EmptyShell Empty)
3367    : Expr(AddrLabelExprClass, Empty) { }
3368
3369  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3370  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3371  SourceLocation getLabelLoc() const { return LabelLoc; }
3372  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3373
3374  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3375  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3376
3377  LabelDecl *getLabel() const { return Label; }
3378  void setLabel(LabelDecl *L) { Label = L; }
3379
3380  static bool classof(const Stmt *T) {
3381    return T->getStmtClass() == AddrLabelExprClass;
3382  }
3383
3384  // Iterators
3385  child_range children() { return child_range(); }
3386};
3387
3388/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3389/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3390/// takes the value of the last subexpression.
3391///
3392/// A StmtExpr is always an r-value; values "returned" out of a
3393/// StmtExpr will be copied.
3394class StmtExpr : public Expr {
3395  Stmt *SubStmt;
3396  SourceLocation LParenLoc, RParenLoc;
3397public:
3398  // FIXME: Does type-dependence need to be computed differently?
3399  // FIXME: Do we need to compute instantiation instantiation-dependence for
3400  // statements? (ugh!)
3401  StmtExpr(CompoundStmt *substmt, QualType T,
3402           SourceLocation lp, SourceLocation rp) :
3403    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3404         T->isDependentType(), false, false, false),
3405    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3406
3407  /// \brief Build an empty statement expression.
3408  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3409
3410  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3411  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3412  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3413
3414  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3415  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3416
3417  SourceLocation getLParenLoc() const { return LParenLoc; }
3418  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3419  SourceLocation getRParenLoc() const { return RParenLoc; }
3420  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3421
3422  static bool classof(const Stmt *T) {
3423    return T->getStmtClass() == StmtExprClass;
3424  }
3425
3426  // Iterators
3427  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3428};
3429
3430
3431/// ShuffleVectorExpr - clang-specific builtin-in function
3432/// __builtin_shufflevector.
3433/// This AST node represents a operator that does a constant
3434/// shuffle, similar to LLVM's shufflevector instruction. It takes
3435/// two vectors and a variable number of constant indices,
3436/// and returns the appropriately shuffled vector.
3437class ShuffleVectorExpr : public Expr {
3438  SourceLocation BuiltinLoc, RParenLoc;
3439
3440  // SubExprs - the list of values passed to the __builtin_shufflevector
3441  // function. The first two are vectors, and the rest are constant
3442  // indices.  The number of values in this list is always
3443  // 2+the number of indices in the vector type.
3444  Stmt **SubExprs;
3445  unsigned NumExprs;
3446
3447public:
3448  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3449                    SourceLocation BLoc, SourceLocation RP);
3450
3451  /// \brief Build an empty vector-shuffle expression.
3452  explicit ShuffleVectorExpr(EmptyShell Empty)
3453    : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3454
3455  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3456  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3457
3458  SourceLocation getRParenLoc() const { return RParenLoc; }
3459  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3460
3461  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3462  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3463
3464  static bool classof(const Stmt *T) {
3465    return T->getStmtClass() == ShuffleVectorExprClass;
3466  }
3467
3468  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3469  /// constant expression, the actual arguments passed in, and the function
3470  /// pointers.
3471  unsigned getNumSubExprs() const { return NumExprs; }
3472
3473  /// \brief Retrieve the array of expressions.
3474  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3475
3476  /// getExpr - Return the Expr at the specified index.
3477  Expr *getExpr(unsigned Index) {
3478    assert((Index < NumExprs) && "Arg access out of range!");
3479    return cast<Expr>(SubExprs[Index]);
3480  }
3481  const Expr *getExpr(unsigned Index) const {
3482    assert((Index < NumExprs) && "Arg access out of range!");
3483    return cast<Expr>(SubExprs[Index]);
3484  }
3485
3486  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3487
3488  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3489    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3490    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3491  }
3492
3493  // Iterators
3494  child_range children() {
3495    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3496  }
3497};
3498
3499/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3500/// This AST node provides support for converting a vector type to another
3501/// vector type of the same arity.
3502class ConvertVectorExpr : public Expr {
3503private:
3504  Stmt *SrcExpr;
3505  TypeSourceInfo *TInfo;
3506  SourceLocation BuiltinLoc, RParenLoc;
3507
3508  friend class ASTReader;
3509  friend class ASTStmtReader;
3510  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3511
3512public:
3513  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3514             ExprValueKind VK, ExprObjectKind OK,
3515             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3516    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3517           DstType->isDependentType(),
3518           DstType->isDependentType() || SrcExpr->isValueDependent(),
3519           (DstType->isInstantiationDependentType() ||
3520            SrcExpr->isInstantiationDependent()),
3521           (DstType->containsUnexpandedParameterPack() ||
3522            SrcExpr->containsUnexpandedParameterPack())),
3523  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3524
3525  /// getSrcExpr - Return the Expr to be converted.
3526  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3527
3528  /// getTypeSourceInfo - Return the destination type.
3529  TypeSourceInfo *getTypeSourceInfo() const {
3530    return TInfo;
3531  }
3532  void setTypeSourceInfo(TypeSourceInfo *ti) {
3533    TInfo = ti;
3534  }
3535
3536  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3537  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3538
3539  /// getRParenLoc - Return the location of final right parenthesis.
3540  SourceLocation getRParenLoc() const { return RParenLoc; }
3541
3542  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3543  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3544
3545  static bool classof(const Stmt *T) {
3546    return T->getStmtClass() == ConvertVectorExprClass;
3547  }
3548
3549  // Iterators
3550  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3551};
3552
3553/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3554/// This AST node is similar to the conditional operator (?:) in C, with
3555/// the following exceptions:
3556/// - the test expression must be a integer constant expression.
3557/// - the expression returned acts like the chosen subexpression in every
3558///   visible way: the type is the same as that of the chosen subexpression,
3559///   and all predicates (whether it's an l-value, whether it's an integer
3560///   constant expression, etc.) return the same result as for the chosen
3561///   sub-expression.
3562class ChooseExpr : public Expr {
3563  enum { COND, LHS, RHS, END_EXPR };
3564  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3565  SourceLocation BuiltinLoc, RParenLoc;
3566  bool CondIsTrue;
3567public:
3568  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3569             QualType t, ExprValueKind VK, ExprObjectKind OK,
3570             SourceLocation RP, bool condIsTrue,
3571             bool TypeDependent, bool ValueDependent)
3572    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3573           (cond->isInstantiationDependent() ||
3574            lhs->isInstantiationDependent() ||
3575            rhs->isInstantiationDependent()),
3576           (cond->containsUnexpandedParameterPack() ||
3577            lhs->containsUnexpandedParameterPack() ||
3578            rhs->containsUnexpandedParameterPack())),
3579      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3580      SubExprs[COND] = cond;
3581      SubExprs[LHS] = lhs;
3582      SubExprs[RHS] = rhs;
3583    }
3584
3585  /// \brief Build an empty __builtin_choose_expr.
3586  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3587
3588  /// isConditionTrue - Return whether the condition is true (i.e. not
3589  /// equal to zero).
3590  bool isConditionTrue() const {
3591    assert(!isConditionDependent() &&
3592           "Dependent condition isn't true or false");
3593    return CondIsTrue;
3594  }
3595  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3596
3597  bool isConditionDependent() const {
3598    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3599  }
3600
3601  /// getChosenSubExpr - Return the subexpression chosen according to the
3602  /// condition.
3603  Expr *getChosenSubExpr() const {
3604    return isConditionTrue() ? getLHS() : getRHS();
3605  }
3606
3607  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3608  void setCond(Expr *E) { SubExprs[COND] = E; }
3609  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3610  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3611  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3612  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3613
3614  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3615  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3616
3617  SourceLocation getRParenLoc() const { return RParenLoc; }
3618  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3619
3620  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3621  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3622
3623  static bool classof(const Stmt *T) {
3624    return T->getStmtClass() == ChooseExprClass;
3625  }
3626
3627  // Iterators
3628  child_range children() {
3629    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3630  }
3631};
3632
3633/// GNUNullExpr - Implements the GNU __null extension, which is a name
3634/// for a null pointer constant that has integral type (e.g., int or
3635/// long) and is the same size and alignment as a pointer. The __null
3636/// extension is typically only used by system headers, which define
3637/// NULL as __null in C++ rather than using 0 (which is an integer
3638/// that may not match the size of a pointer).
3639class GNUNullExpr : public Expr {
3640  /// TokenLoc - The location of the __null keyword.
3641  SourceLocation TokenLoc;
3642
3643public:
3644  GNUNullExpr(QualType Ty, SourceLocation Loc)
3645    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3646           false),
3647      TokenLoc(Loc) { }
3648
3649  /// \brief Build an empty GNU __null expression.
3650  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3651
3652  /// getTokenLocation - The location of the __null token.
3653  SourceLocation getTokenLocation() const { return TokenLoc; }
3654  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3655
3656  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3657  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3658
3659  static bool classof(const Stmt *T) {
3660    return T->getStmtClass() == GNUNullExprClass;
3661  }
3662
3663  // Iterators
3664  child_range children() { return child_range(); }
3665};
3666
3667/// VAArgExpr, used for the builtin function __builtin_va_arg.
3668class VAArgExpr : public Expr {
3669  Stmt *Val;
3670  TypeSourceInfo *TInfo;
3671  SourceLocation BuiltinLoc, RParenLoc;
3672public:
3673  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3674            SourceLocation RPLoc, QualType t)
3675    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3676           t->isDependentType(), false,
3677           (TInfo->getType()->isInstantiationDependentType() ||
3678            e->isInstantiationDependent()),
3679           (TInfo->getType()->containsUnexpandedParameterPack() ||
3680            e->containsUnexpandedParameterPack())),
3681      Val(e), TInfo(TInfo),
3682      BuiltinLoc(BLoc),
3683      RParenLoc(RPLoc) { }
3684
3685  /// \brief Create an empty __builtin_va_arg expression.
3686  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3687
3688  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3689  Expr *getSubExpr() { return cast<Expr>(Val); }
3690  void setSubExpr(Expr *E) { Val = E; }
3691
3692  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3693  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3694
3695  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3696  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3697
3698  SourceLocation getRParenLoc() const { return RParenLoc; }
3699  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3700
3701  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3702  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3703
3704  static bool classof(const Stmt *T) {
3705    return T->getStmtClass() == VAArgExprClass;
3706  }
3707
3708  // Iterators
3709  child_range children() { return child_range(&Val, &Val+1); }
3710};
3711
3712/// @brief Describes an C or C++ initializer list.
3713///
3714/// InitListExpr describes an initializer list, which can be used to
3715/// initialize objects of different types, including
3716/// struct/class/union types, arrays, and vectors. For example:
3717///
3718/// @code
3719/// struct foo x = { 1, { 2, 3 } };
3720/// @endcode
3721///
3722/// Prior to semantic analysis, an initializer list will represent the
3723/// initializer list as written by the user, but will have the
3724/// placeholder type "void". This initializer list is called the
3725/// syntactic form of the initializer, and may contain C99 designated
3726/// initializers (represented as DesignatedInitExprs), initializations
3727/// of subobject members without explicit braces, and so on. Clients
3728/// interested in the original syntax of the initializer list should
3729/// use the syntactic form of the initializer list.
3730///
3731/// After semantic analysis, the initializer list will represent the
3732/// semantic form of the initializer, where the initializations of all
3733/// subobjects are made explicit with nested InitListExpr nodes and
3734/// C99 designators have been eliminated by placing the designated
3735/// initializations into the subobject they initialize. Additionally,
3736/// any "holes" in the initialization, where no initializer has been
3737/// specified for a particular subobject, will be replaced with
3738/// implicitly-generated ImplicitValueInitExpr expressions that
3739/// value-initialize the subobjects. Note, however, that the
3740/// initializer lists may still have fewer initializers than there are
3741/// elements to initialize within the object.
3742///
3743/// After semantic analysis has completed, given an initializer list,
3744/// method isSemanticForm() returns true if and only if this is the
3745/// semantic form of the initializer list (note: the same AST node
3746/// may at the same time be the syntactic form).
3747/// Given the semantic form of the initializer list, one can retrieve
3748/// the syntactic form of that initializer list (when different)
3749/// using method getSyntacticForm(); the method returns null if applied
3750/// to a initializer list which is already in syntactic form.
3751/// Similarly, given the syntactic form (i.e., an initializer list such
3752/// that isSemanticForm() returns false), one can retrieve the semantic
3753/// form using method getSemanticForm().
3754/// Since many initializer lists have the same syntactic and semantic forms,
3755/// getSyntacticForm() may return NULL, indicating that the current
3756/// semantic initializer list also serves as its syntactic form.
3757class InitListExpr : public Expr {
3758  // FIXME: Eliminate this vector in favor of ASTContext allocation
3759  typedef ASTVector<Stmt *> InitExprsTy;
3760  InitExprsTy InitExprs;
3761  SourceLocation LBraceLoc, RBraceLoc;
3762
3763  /// The alternative form of the initializer list (if it exists).
3764  /// The int part of the pair stores whether this initializer list is
3765  /// in semantic form. If not null, the pointer points to:
3766  ///   - the syntactic form, if this is in semantic form;
3767  ///   - the semantic form, if this is in syntactic form.
3768  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3769
3770  /// \brief Either:
3771  ///  If this initializer list initializes an array with more elements than
3772  ///  there are initializers in the list, specifies an expression to be used
3773  ///  for value initialization of the rest of the elements.
3774  /// Or
3775  ///  If this initializer list initializes a union, specifies which
3776  ///  field within the union will be initialized.
3777  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3778
3779public:
3780  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3781               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3782
3783  /// \brief Build an empty initializer list.
3784  explicit InitListExpr(EmptyShell Empty)
3785    : Expr(InitListExprClass, Empty) { }
3786
3787  unsigned getNumInits() const { return InitExprs.size(); }
3788
3789  /// \brief Retrieve the set of initializers.
3790  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3791
3792  const Expr *getInit(unsigned Init) const {
3793    assert(Init < getNumInits() && "Initializer access out of range!");
3794    return cast_or_null<Expr>(InitExprs[Init]);
3795  }
3796
3797  Expr *getInit(unsigned Init) {
3798    assert(Init < getNumInits() && "Initializer access out of range!");
3799    return cast_or_null<Expr>(InitExprs[Init]);
3800  }
3801
3802  void setInit(unsigned Init, Expr *expr) {
3803    assert(Init < getNumInits() && "Initializer access out of range!");
3804    InitExprs[Init] = expr;
3805
3806    if (expr) {
3807      ExprBits.TypeDependent |= expr->isTypeDependent();
3808      ExprBits.ValueDependent |= expr->isValueDependent();
3809      ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3810      ExprBits.ContainsUnexpandedParameterPack |=
3811          expr->containsUnexpandedParameterPack();
3812    }
3813  }
3814
3815  /// \brief Reserve space for some number of initializers.
3816  void reserveInits(const ASTContext &C, unsigned NumInits);
3817
3818  /// @brief Specify the number of initializers
3819  ///
3820  /// If there are more than @p NumInits initializers, the remaining
3821  /// initializers will be destroyed. If there are fewer than @p
3822  /// NumInits initializers, NULL expressions will be added for the
3823  /// unknown initializers.
3824  void resizeInits(const ASTContext &Context, unsigned NumInits);
3825
3826  /// @brief Updates the initializer at index @p Init with the new
3827  /// expression @p expr, and returns the old expression at that
3828  /// location.
3829  ///
3830  /// When @p Init is out of range for this initializer list, the
3831  /// initializer list will be extended with NULL expressions to
3832  /// accommodate the new entry.
3833  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3834
3835  /// \brief If this initializer list initializes an array with more elements
3836  /// than there are initializers in the list, specifies an expression to be
3837  /// used for value initialization of the rest of the elements.
3838  Expr *getArrayFiller() {
3839    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3840  }
3841  const Expr *getArrayFiller() const {
3842    return const_cast<InitListExpr *>(this)->getArrayFiller();
3843  }
3844  void setArrayFiller(Expr *filler);
3845
3846  /// \brief Return true if this is an array initializer and its array "filler"
3847  /// has been set.
3848  bool hasArrayFiller() const { return getArrayFiller(); }
3849
3850  /// \brief If this initializes a union, specifies which field in the
3851  /// union to initialize.
3852  ///
3853  /// Typically, this field is the first named field within the
3854  /// union. However, a designated initializer can specify the
3855  /// initialization of a different field within the union.
3856  FieldDecl *getInitializedFieldInUnion() {
3857    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3858  }
3859  const FieldDecl *getInitializedFieldInUnion() const {
3860    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3861  }
3862  void setInitializedFieldInUnion(FieldDecl *FD) {
3863    assert((FD == nullptr
3864            || getInitializedFieldInUnion() == nullptr
3865            || getInitializedFieldInUnion() == FD)
3866           && "Only one field of a union may be initialized at a time!");
3867    ArrayFillerOrUnionFieldInit = FD;
3868  }
3869
3870  // Explicit InitListExpr's originate from source code (and have valid source
3871  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3872  bool isExplicit() {
3873    return LBraceLoc.isValid() && RBraceLoc.isValid();
3874  }
3875
3876  // Is this an initializer for an array of characters, initialized by a string
3877  // literal or an @encode?
3878  bool isStringLiteralInit() const;
3879
3880  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3881  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3882  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3883  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3884
3885  bool isSemanticForm() const { return AltForm.getInt(); }
3886  InitListExpr *getSemanticForm() const {
3887    return isSemanticForm() ? nullptr : AltForm.getPointer();
3888  }
3889  InitListExpr *getSyntacticForm() const {
3890    return isSemanticForm() ? AltForm.getPointer() : nullptr;
3891  }
3892
3893  void setSyntacticForm(InitListExpr *Init) {
3894    AltForm.setPointer(Init);
3895    AltForm.setInt(true);
3896    Init->AltForm.setPointer(this);
3897    Init->AltForm.setInt(false);
3898  }
3899
3900  bool hadArrayRangeDesignator() const {
3901    return InitListExprBits.HadArrayRangeDesignator != 0;
3902  }
3903  void sawArrayRangeDesignator(bool ARD = true) {
3904    InitListExprBits.HadArrayRangeDesignator = ARD;
3905  }
3906
3907  SourceLocation getLocStart() const LLVM_READONLY;
3908  SourceLocation getLocEnd() const LLVM_READONLY;
3909
3910  static bool classof(const Stmt *T) {
3911    return T->getStmtClass() == InitListExprClass;
3912  }
3913
3914  // Iterators
3915  child_range children() {
3916    // FIXME: This does not include the array filler expression.
3917    if (InitExprs.empty()) return child_range();
3918    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3919  }
3920
3921  typedef InitExprsTy::iterator iterator;
3922  typedef InitExprsTy::const_iterator const_iterator;
3923  typedef InitExprsTy::reverse_iterator reverse_iterator;
3924  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3925
3926  iterator begin() { return InitExprs.begin(); }
3927  const_iterator begin() const { return InitExprs.begin(); }
3928  iterator end() { return InitExprs.end(); }
3929  const_iterator end() const { return InitExprs.end(); }
3930  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3931  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3932  reverse_iterator rend() { return InitExprs.rend(); }
3933  const_reverse_iterator rend() const { return InitExprs.rend(); }
3934
3935  friend class ASTStmtReader;
3936  friend class ASTStmtWriter;
3937};
3938
3939/// @brief Represents a C99 designated initializer expression.
3940///
3941/// A designated initializer expression (C99 6.7.8) contains one or
3942/// more designators (which can be field designators, array
3943/// designators, or GNU array-range designators) followed by an
3944/// expression that initializes the field or element(s) that the
3945/// designators refer to. For example, given:
3946///
3947/// @code
3948/// struct point {
3949///   double x;
3950///   double y;
3951/// };
3952/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3953/// @endcode
3954///
3955/// The InitListExpr contains three DesignatedInitExprs, the first of
3956/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3957/// designators, one array designator for @c [2] followed by one field
3958/// designator for @c .y. The initialization expression will be 1.0.
3959class DesignatedInitExpr : public Expr {
3960public:
3961  /// \brief Forward declaration of the Designator class.
3962  class Designator;
3963
3964private:
3965  /// The location of the '=' or ':' prior to the actual initializer
3966  /// expression.
3967  SourceLocation EqualOrColonLoc;
3968
3969  /// Whether this designated initializer used the GNU deprecated
3970  /// syntax rather than the C99 '=' syntax.
3971  bool GNUSyntax : 1;
3972
3973  /// The number of designators in this initializer expression.
3974  unsigned NumDesignators : 15;
3975
3976  /// The number of subexpressions of this initializer expression,
3977  /// which contains both the initializer and any additional
3978  /// expressions used by array and array-range designators.
3979  unsigned NumSubExprs : 16;
3980
3981  /// \brief The designators in this designated initialization
3982  /// expression.
3983  Designator *Designators;
3984
3985
3986  DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
3987                     const Designator *Designators,
3988                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3989                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3990
3991  explicit DesignatedInitExpr(unsigned NumSubExprs)
3992    : Expr(DesignatedInitExprClass, EmptyShell()),
3993      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
3994
3995public:
3996  /// A field designator, e.g., ".x".
3997  struct FieldDesignator {
3998    /// Refers to the field that is being initialized. The low bit
3999    /// of this field determines whether this is actually a pointer
4000    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4001    /// initially constructed, a field designator will store an
4002    /// IdentifierInfo*. After semantic analysis has resolved that
4003    /// name, the field designator will instead store a FieldDecl*.
4004    uintptr_t NameOrField;
4005
4006    /// The location of the '.' in the designated initializer.
4007    unsigned DotLoc;
4008
4009    /// The location of the field name in the designated initializer.
4010    unsigned FieldLoc;
4011  };
4012
4013  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4014  struct ArrayOrRangeDesignator {
4015    /// Location of the first index expression within the designated
4016    /// initializer expression's list of subexpressions.
4017    unsigned Index;
4018    /// The location of the '[' starting the array range designator.
4019    unsigned LBracketLoc;
4020    /// The location of the ellipsis separating the start and end
4021    /// indices. Only valid for GNU array-range designators.
4022    unsigned EllipsisLoc;
4023    /// The location of the ']' terminating the array range designator.
4024    unsigned RBracketLoc;
4025  };
4026
4027  /// @brief Represents a single C99 designator.
4028  ///
4029  /// @todo This class is infuriatingly similar to clang::Designator,
4030  /// but minor differences (storing indices vs. storing pointers)
4031  /// keep us from reusing it. Try harder, later, to rectify these
4032  /// differences.
4033  class Designator {
4034    /// @brief The kind of designator this describes.
4035    enum {
4036      FieldDesignator,
4037      ArrayDesignator,
4038      ArrayRangeDesignator
4039    } Kind;
4040
4041    union {
4042      /// A field designator, e.g., ".x".
4043      struct FieldDesignator Field;
4044      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4045      struct ArrayOrRangeDesignator ArrayOrRange;
4046    };
4047    friend class DesignatedInitExpr;
4048
4049  public:
4050    Designator() {}
4051
4052    /// @brief Initializes a field designator.
4053    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4054               SourceLocation FieldLoc)
4055      : Kind(FieldDesignator) {
4056      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4057      Field.DotLoc = DotLoc.getRawEncoding();
4058      Field.FieldLoc = FieldLoc.getRawEncoding();
4059    }
4060
4061    /// @brief Initializes an array designator.
4062    Designator(unsigned Index, SourceLocation LBracketLoc,
4063               SourceLocation RBracketLoc)
4064      : Kind(ArrayDesignator) {
4065      ArrayOrRange.Index = Index;
4066      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4067      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4068      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4069    }
4070
4071    /// @brief Initializes a GNU array-range designator.
4072    Designator(unsigned Index, SourceLocation LBracketLoc,
4073               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4074      : Kind(ArrayRangeDesignator) {
4075      ArrayOrRange.Index = Index;
4076      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4077      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4078      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4079    }
4080
4081    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4082    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4083    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4084
4085    IdentifierInfo *getFieldName() const;
4086
4087    FieldDecl *getField() const {
4088      assert(Kind == FieldDesignator && "Only valid on a field designator");
4089      if (Field.NameOrField & 0x01)
4090        return nullptr;
4091      else
4092        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4093    }
4094
4095    void setField(FieldDecl *FD) {
4096      assert(Kind == FieldDesignator && "Only valid on a field designator");
4097      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4098    }
4099
4100    SourceLocation getDotLoc() const {
4101      assert(Kind == FieldDesignator && "Only valid on a field designator");
4102      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4103    }
4104
4105    SourceLocation getFieldLoc() const {
4106      assert(Kind == FieldDesignator && "Only valid on a field designator");
4107      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4108    }
4109
4110    SourceLocation getLBracketLoc() const {
4111      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4112             "Only valid on an array or array-range designator");
4113      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4114    }
4115
4116    SourceLocation getRBracketLoc() const {
4117      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4118             "Only valid on an array or array-range designator");
4119      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4120    }
4121
4122    SourceLocation getEllipsisLoc() const {
4123      assert(Kind == ArrayRangeDesignator &&
4124             "Only valid on an array-range designator");
4125      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4126    }
4127
4128    unsigned getFirstExprIndex() const {
4129      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4130             "Only valid on an array or array-range designator");
4131      return ArrayOrRange.Index;
4132    }
4133
4134    SourceLocation getLocStart() const LLVM_READONLY {
4135      if (Kind == FieldDesignator)
4136        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4137      else
4138        return getLBracketLoc();
4139    }
4140    SourceLocation getLocEnd() const LLVM_READONLY {
4141      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4142    }
4143    SourceRange getSourceRange() const LLVM_READONLY {
4144      return SourceRange(getLocStart(), getLocEnd());
4145    }
4146  };
4147
4148  static DesignatedInitExpr *Create(const ASTContext &C,
4149                                    Designator *Designators,
4150                                    unsigned NumDesignators,
4151                                    ArrayRef<Expr*> IndexExprs,
4152                                    SourceLocation EqualOrColonLoc,
4153                                    bool GNUSyntax, Expr *Init);
4154
4155  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4156                                         unsigned NumIndexExprs);
4157
4158  /// @brief Returns the number of designators in this initializer.
4159  unsigned size() const { return NumDesignators; }
4160
4161  // Iterator access to the designators.
4162  typedef Designator *designators_iterator;
4163  designators_iterator designators_begin() { return Designators; }
4164  designators_iterator designators_end() {
4165    return Designators + NumDesignators;
4166  }
4167
4168  typedef const Designator *const_designators_iterator;
4169  const_designators_iterator designators_begin() const { return Designators; }
4170  const_designators_iterator designators_end() const {
4171    return Designators + NumDesignators;
4172  }
4173
4174  typedef llvm::iterator_range<designators_iterator> designators_range;
4175  designators_range designators() {
4176    return designators_range(designators_begin(), designators_end());
4177  }
4178
4179  typedef llvm::iterator_range<const_designators_iterator>
4180          designators_const_range;
4181  designators_const_range designators() const {
4182    return designators_const_range(designators_begin(), designators_end());
4183  }
4184
4185  typedef std::reverse_iterator<designators_iterator>
4186          reverse_designators_iterator;
4187  reverse_designators_iterator designators_rbegin() {
4188    return reverse_designators_iterator(designators_end());
4189  }
4190  reverse_designators_iterator designators_rend() {
4191    return reverse_designators_iterator(designators_begin());
4192  }
4193
4194  typedef std::reverse_iterator<const_designators_iterator>
4195          const_reverse_designators_iterator;
4196  const_reverse_designators_iterator designators_rbegin() const {
4197    return const_reverse_designators_iterator(designators_end());
4198  }
4199  const_reverse_designators_iterator designators_rend() const {
4200    return const_reverse_designators_iterator(designators_begin());
4201  }
4202
4203  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4204
4205  void setDesignators(const ASTContext &C, const Designator *Desigs,
4206                      unsigned NumDesigs);
4207
4208  Expr *getArrayIndex(const Designator &D) const;
4209  Expr *getArrayRangeStart(const Designator &D) const;
4210  Expr *getArrayRangeEnd(const Designator &D) const;
4211
4212  /// @brief Retrieve the location of the '=' that precedes the
4213  /// initializer value itself, if present.
4214  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4215  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4216
4217  /// @brief Determines whether this designated initializer used the
4218  /// deprecated GNU syntax for designated initializers.
4219  bool usesGNUSyntax() const { return GNUSyntax; }
4220  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4221
4222  /// @brief Retrieve the initializer value.
4223  Expr *getInit() const {
4224    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4225  }
4226
4227  void setInit(Expr *init) {
4228    *child_begin() = init;
4229  }
4230
4231  /// \brief Retrieve the total number of subexpressions in this
4232  /// designated initializer expression, including the actual
4233  /// initialized value and any expressions that occur within array
4234  /// and array-range designators.
4235  unsigned getNumSubExprs() const { return NumSubExprs; }
4236
4237  Expr *getSubExpr(unsigned Idx) const {
4238    assert(Idx < NumSubExprs && "Subscript out of range");
4239    return cast<Expr>(reinterpret_cast<Stmt *const *>(this + 1)[Idx]);
4240  }
4241
4242  void setSubExpr(unsigned Idx, Expr *E) {
4243    assert(Idx < NumSubExprs && "Subscript out of range");
4244    reinterpret_cast<Stmt **>(this + 1)[Idx] = E;
4245  }
4246
4247  /// \brief Replaces the designator at index @p Idx with the series
4248  /// of designators in [First, Last).
4249  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4250                        const Designator *First, const Designator *Last);
4251
4252  SourceRange getDesignatorsSourceRange() const;
4253
4254  SourceLocation getLocStart() const LLVM_READONLY;
4255  SourceLocation getLocEnd() const LLVM_READONLY;
4256
4257  static bool classof(const Stmt *T) {
4258    return T->getStmtClass() == DesignatedInitExprClass;
4259  }
4260
4261  // Iterators
4262  child_range children() {
4263    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4264    return child_range(begin, begin + NumSubExprs);
4265  }
4266};
4267
4268/// \brief Represents an implicitly-generated value initialization of
4269/// an object of a given type.
4270///
4271/// Implicit value initializations occur within semantic initializer
4272/// list expressions (InitListExpr) as placeholders for subobject
4273/// initializations not explicitly specified by the user.
4274///
4275/// \see InitListExpr
4276class ImplicitValueInitExpr : public Expr {
4277public:
4278  explicit ImplicitValueInitExpr(QualType ty)
4279    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4280           false, false, ty->isInstantiationDependentType(), false) { }
4281
4282  /// \brief Construct an empty implicit value initialization.
4283  explicit ImplicitValueInitExpr(EmptyShell Empty)
4284    : Expr(ImplicitValueInitExprClass, Empty) { }
4285
4286  static bool classof(const Stmt *T) {
4287    return T->getStmtClass() == ImplicitValueInitExprClass;
4288  }
4289
4290  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4291  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4292
4293  // Iterators
4294  child_range children() { return child_range(); }
4295};
4296
4297
4298class ParenListExpr : public Expr {
4299  Stmt **Exprs;
4300  unsigned NumExprs;
4301  SourceLocation LParenLoc, RParenLoc;
4302
4303public:
4304  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4305                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4306
4307  /// \brief Build an empty paren list.
4308  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4309
4310  unsigned getNumExprs() const { return NumExprs; }
4311
4312  const Expr* getExpr(unsigned Init) const {
4313    assert(Init < getNumExprs() && "Initializer access out of range!");
4314    return cast_or_null<Expr>(Exprs[Init]);
4315  }
4316
4317  Expr* getExpr(unsigned Init) {
4318    assert(Init < getNumExprs() && "Initializer access out of range!");
4319    return cast_or_null<Expr>(Exprs[Init]);
4320  }
4321
4322  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4323
4324  SourceLocation getLParenLoc() const { return LParenLoc; }
4325  SourceLocation getRParenLoc() const { return RParenLoc; }
4326
4327  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4328  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4329
4330  static bool classof(const Stmt *T) {
4331    return T->getStmtClass() == ParenListExprClass;
4332  }
4333
4334  // Iterators
4335  child_range children() {
4336    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4337  }
4338
4339  friend class ASTStmtReader;
4340  friend class ASTStmtWriter;
4341};
4342
4343
4344/// \brief Represents a C11 generic selection.
4345///
4346/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4347/// expression, followed by one or more generic associations.  Each generic
4348/// association specifies a type name and an expression, or "default" and an
4349/// expression (in which case it is known as a default generic association).
4350/// The type and value of the generic selection are identical to those of its
4351/// result expression, which is defined as the expression in the generic
4352/// association with a type name that is compatible with the type of the
4353/// controlling expression, or the expression in the default generic association
4354/// if no types are compatible.  For example:
4355///
4356/// @code
4357/// _Generic(X, double: 1, float: 2, default: 3)
4358/// @endcode
4359///
4360/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4361/// or 3 if "hello".
4362///
4363/// As an extension, generic selections are allowed in C++, where the following
4364/// additional semantics apply:
4365///
4366/// Any generic selection whose controlling expression is type-dependent or
4367/// which names a dependent type in its association list is result-dependent,
4368/// which means that the choice of result expression is dependent.
4369/// Result-dependent generic associations are both type- and value-dependent.
4370class GenericSelectionExpr : public Expr {
4371  enum { CONTROLLING, END_EXPR };
4372  TypeSourceInfo **AssocTypes;
4373  Stmt **SubExprs;
4374  unsigned NumAssocs, ResultIndex;
4375  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4376
4377public:
4378  GenericSelectionExpr(const ASTContext &Context,
4379                       SourceLocation GenericLoc, Expr *ControllingExpr,
4380                       ArrayRef<TypeSourceInfo*> AssocTypes,
4381                       ArrayRef<Expr*> AssocExprs,
4382                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4383                       bool ContainsUnexpandedParameterPack,
4384                       unsigned ResultIndex);
4385
4386  /// This constructor is used in the result-dependent case.
4387  GenericSelectionExpr(const ASTContext &Context,
4388                       SourceLocation GenericLoc, Expr *ControllingExpr,
4389                       ArrayRef<TypeSourceInfo*> AssocTypes,
4390                       ArrayRef<Expr*> AssocExprs,
4391                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4392                       bool ContainsUnexpandedParameterPack);
4393
4394  explicit GenericSelectionExpr(EmptyShell Empty)
4395    : Expr(GenericSelectionExprClass, Empty) { }
4396
4397  unsigned getNumAssocs() const { return NumAssocs; }
4398
4399  SourceLocation getGenericLoc() const { return GenericLoc; }
4400  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4401  SourceLocation getRParenLoc() const { return RParenLoc; }
4402
4403  const Expr *getAssocExpr(unsigned i) const {
4404    return cast<Expr>(SubExprs[END_EXPR+i]);
4405  }
4406  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4407
4408  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4409    return AssocTypes[i];
4410  }
4411  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4412
4413  QualType getAssocType(unsigned i) const {
4414    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4415      return TS->getType();
4416    else
4417      return QualType();
4418  }
4419
4420  const Expr *getControllingExpr() const {
4421    return cast<Expr>(SubExprs[CONTROLLING]);
4422  }
4423  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4424
4425  /// Whether this generic selection is result-dependent.
4426  bool isResultDependent() const { return ResultIndex == -1U; }
4427
4428  /// The zero-based index of the result expression's generic association in
4429  /// the generic selection's association list.  Defined only if the
4430  /// generic selection is not result-dependent.
4431  unsigned getResultIndex() const {
4432    assert(!isResultDependent() && "Generic selection is result-dependent");
4433    return ResultIndex;
4434  }
4435
4436  /// The generic selection's result expression.  Defined only if the
4437  /// generic selection is not result-dependent.
4438  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4439  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4440
4441  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4442  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4443
4444  static bool classof(const Stmt *T) {
4445    return T->getStmtClass() == GenericSelectionExprClass;
4446  }
4447
4448  child_range children() {
4449    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4450  }
4451
4452  friend class ASTStmtReader;
4453};
4454
4455//===----------------------------------------------------------------------===//
4456// Clang Extensions
4457//===----------------------------------------------------------------------===//
4458
4459
4460/// ExtVectorElementExpr - This represents access to specific elements of a
4461/// vector, and may occur on the left hand side or right hand side.  For example
4462/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4463///
4464/// Note that the base may have either vector or pointer to vector type, just
4465/// like a struct field reference.
4466///
4467class ExtVectorElementExpr : public Expr {
4468  Stmt *Base;
4469  IdentifierInfo *Accessor;
4470  SourceLocation AccessorLoc;
4471public:
4472  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4473                       IdentifierInfo &accessor, SourceLocation loc)
4474    : Expr(ExtVectorElementExprClass, ty, VK,
4475           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4476           base->isTypeDependent(), base->isValueDependent(),
4477           base->isInstantiationDependent(),
4478           base->containsUnexpandedParameterPack()),
4479      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4480
4481  /// \brief Build an empty vector element expression.
4482  explicit ExtVectorElementExpr(EmptyShell Empty)
4483    : Expr(ExtVectorElementExprClass, Empty) { }
4484
4485  const Expr *getBase() const { return cast<Expr>(Base); }
4486  Expr *getBase() { return cast<Expr>(Base); }
4487  void setBase(Expr *E) { Base = E; }
4488
4489  IdentifierInfo &getAccessor() const { return *Accessor; }
4490  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4491
4492  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4493  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4494
4495  /// getNumElements - Get the number of components being selected.
4496  unsigned getNumElements() const;
4497
4498  /// containsDuplicateElements - Return true if any element access is
4499  /// repeated.
4500  bool containsDuplicateElements() const;
4501
4502  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4503  /// aggregate Constant of ConstantInt(s).
4504  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4505
4506  SourceLocation getLocStart() const LLVM_READONLY {
4507    return getBase()->getLocStart();
4508  }
4509  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4510
4511  /// isArrow - Return true if the base expression is a pointer to vector,
4512  /// return false if the base expression is a vector.
4513  bool isArrow() const;
4514
4515  static bool classof(const Stmt *T) {
4516    return T->getStmtClass() == ExtVectorElementExprClass;
4517  }
4518
4519  // Iterators
4520  child_range children() { return child_range(&Base, &Base+1); }
4521};
4522
4523
4524/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4525/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4526class BlockExpr : public Expr {
4527protected:
4528  BlockDecl *TheBlock;
4529public:
4530  BlockExpr(BlockDecl *BD, QualType ty)
4531    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4532           ty->isDependentType(), ty->isDependentType(),
4533           ty->isInstantiationDependentType() || BD->isDependentContext(),
4534           false),
4535      TheBlock(BD) {}
4536
4537  /// \brief Build an empty block expression.
4538  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4539
4540  const BlockDecl *getBlockDecl() const { return TheBlock; }
4541  BlockDecl *getBlockDecl() { return TheBlock; }
4542  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4543
4544  // Convenience functions for probing the underlying BlockDecl.
4545  SourceLocation getCaretLocation() const;
4546  const Stmt *getBody() const;
4547  Stmt *getBody();
4548
4549  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4550  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4551
4552  /// getFunctionType - Return the underlying function type for this block.
4553  const FunctionProtoType *getFunctionType() const;
4554
4555  static bool classof(const Stmt *T) {
4556    return T->getStmtClass() == BlockExprClass;
4557  }
4558
4559  // Iterators
4560  child_range children() { return child_range(); }
4561};
4562
4563/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4564/// This AST node provides support for reinterpreting a type to another
4565/// type of the same size.
4566class AsTypeExpr : public Expr {
4567private:
4568  Stmt *SrcExpr;
4569  SourceLocation BuiltinLoc, RParenLoc;
4570
4571  friend class ASTReader;
4572  friend class ASTStmtReader;
4573  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4574
4575public:
4576  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4577             ExprValueKind VK, ExprObjectKind OK,
4578             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4579    : Expr(AsTypeExprClass, DstType, VK, OK,
4580           DstType->isDependentType(),
4581           DstType->isDependentType() || SrcExpr->isValueDependent(),
4582           (DstType->isInstantiationDependentType() ||
4583            SrcExpr->isInstantiationDependent()),
4584           (DstType->containsUnexpandedParameterPack() ||
4585            SrcExpr->containsUnexpandedParameterPack())),
4586  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4587
4588  /// getSrcExpr - Return the Expr to be converted.
4589  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4590
4591  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4592  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4593
4594  /// getRParenLoc - Return the location of final right parenthesis.
4595  SourceLocation getRParenLoc() const { return RParenLoc; }
4596
4597  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4598  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4599
4600  static bool classof(const Stmt *T) {
4601    return T->getStmtClass() == AsTypeExprClass;
4602  }
4603
4604  // Iterators
4605  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4606};
4607
4608/// PseudoObjectExpr - An expression which accesses a pseudo-object
4609/// l-value.  A pseudo-object is an abstract object, accesses to which
4610/// are translated to calls.  The pseudo-object expression has a
4611/// syntactic form, which shows how the expression was actually
4612/// written in the source code, and a semantic form, which is a series
4613/// of expressions to be executed in order which detail how the
4614/// operation is actually evaluated.  Optionally, one of the semantic
4615/// forms may also provide a result value for the expression.
4616///
4617/// If any of the semantic-form expressions is an OpaqueValueExpr,
4618/// that OVE is required to have a source expression, and it is bound
4619/// to the result of that source expression.  Such OVEs may appear
4620/// only in subsequent semantic-form expressions and as
4621/// sub-expressions of the syntactic form.
4622///
4623/// PseudoObjectExpr should be used only when an operation can be
4624/// usefully described in terms of fairly simple rewrite rules on
4625/// objects and functions that are meant to be used by end-developers.
4626/// For example, under the Itanium ABI, dynamic casts are implemented
4627/// as a call to a runtime function called __dynamic_cast; using this
4628/// class to describe that would be inappropriate because that call is
4629/// not really part of the user-visible semantics, and instead the
4630/// cast is properly reflected in the AST and IR-generation has been
4631/// taught to generate the call as necessary.  In contrast, an
4632/// Objective-C property access is semantically defined to be
4633/// equivalent to a particular message send, and this is very much
4634/// part of the user model.  The name of this class encourages this
4635/// modelling design.
4636class PseudoObjectExpr : public Expr {
4637  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4638  // Always at least two, because the first sub-expression is the
4639  // syntactic form.
4640
4641  // PseudoObjectExprBits.ResultIndex - The index of the
4642  // sub-expression holding the result.  0 means the result is void,
4643  // which is unambiguous because it's the index of the syntactic
4644  // form.  Note that this is therefore 1 higher than the value passed
4645  // in to Create, which is an index within the semantic forms.
4646  // Note also that ASTStmtWriter assumes this encoding.
4647
4648  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4649  const Expr * const *getSubExprsBuffer() const {
4650    return reinterpret_cast<const Expr * const *>(this + 1);
4651  }
4652
4653  friend class ASTStmtReader;
4654
4655  PseudoObjectExpr(QualType type, ExprValueKind VK,
4656                   Expr *syntactic, ArrayRef<Expr*> semantic,
4657                   unsigned resultIndex);
4658
4659  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4660
4661  unsigned getNumSubExprs() const {
4662    return PseudoObjectExprBits.NumSubExprs;
4663  }
4664
4665public:
4666  /// NoResult - A value for the result index indicating that there is
4667  /// no semantic result.
4668  enum : unsigned { NoResult = ~0U };
4669
4670  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4671                                  ArrayRef<Expr*> semantic,
4672                                  unsigned resultIndex);
4673
4674  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4675                                  unsigned numSemanticExprs);
4676
4677  /// Return the syntactic form of this expression, i.e. the
4678  /// expression it actually looks like.  Likely to be expressed in
4679  /// terms of OpaqueValueExprs bound in the semantic form.
4680  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4681  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4682
4683  /// Return the index of the result-bearing expression into the semantics
4684  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4685  unsigned getResultExprIndex() const {
4686    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4687    return PseudoObjectExprBits.ResultIndex - 1;
4688  }
4689
4690  /// Return the result-bearing expression, or null if there is none.
4691  Expr *getResultExpr() {
4692    if (PseudoObjectExprBits.ResultIndex == 0)
4693      return nullptr;
4694    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4695  }
4696  const Expr *getResultExpr() const {
4697    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4698  }
4699
4700  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4701
4702  typedef Expr * const *semantics_iterator;
4703  typedef const Expr * const *const_semantics_iterator;
4704  semantics_iterator semantics_begin() {
4705    return getSubExprsBuffer() + 1;
4706  }
4707  const_semantics_iterator semantics_begin() const {
4708    return getSubExprsBuffer() + 1;
4709  }
4710  semantics_iterator semantics_end() {
4711    return getSubExprsBuffer() + getNumSubExprs();
4712  }
4713  const_semantics_iterator semantics_end() const {
4714    return getSubExprsBuffer() + getNumSubExprs();
4715  }
4716  Expr *getSemanticExpr(unsigned index) {
4717    assert(index + 1 < getNumSubExprs());
4718    return getSubExprsBuffer()[index + 1];
4719  }
4720  const Expr *getSemanticExpr(unsigned index) const {
4721    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4722  }
4723
4724  SourceLocation getExprLoc() const LLVM_READONLY {
4725    return getSyntacticForm()->getExprLoc();
4726  }
4727
4728  SourceLocation getLocStart() const LLVM_READONLY {
4729    return getSyntacticForm()->getLocStart();
4730  }
4731  SourceLocation getLocEnd() const LLVM_READONLY {
4732    return getSyntacticForm()->getLocEnd();
4733  }
4734
4735  child_range children() {
4736    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4737    return child_range(cs, cs + getNumSubExprs());
4738  }
4739
4740  static bool classof(const Stmt *T) {
4741    return T->getStmtClass() == PseudoObjectExprClass;
4742  }
4743};
4744
4745/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4746/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4747/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4748/// All of these instructions take one primary pointer and at least one memory
4749/// order.
4750class AtomicExpr : public Expr {
4751public:
4752  enum AtomicOp {
4753#define BUILTIN(ID, TYPE, ATTRS)
4754#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4755#include "clang/Basic/Builtins.def"
4756    // Avoid trailing comma
4757    BI_First = 0
4758  };
4759
4760  // The ABI values for various atomic memory orderings.
4761  enum AtomicOrderingKind {
4762    AO_ABI_memory_order_relaxed = 0,
4763    AO_ABI_memory_order_consume = 1,
4764    AO_ABI_memory_order_acquire = 2,
4765    AO_ABI_memory_order_release = 3,
4766    AO_ABI_memory_order_acq_rel = 4,
4767    AO_ABI_memory_order_seq_cst = 5
4768  };
4769
4770private:
4771  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4772  Stmt* SubExprs[END_EXPR];
4773  unsigned NumSubExprs;
4774  SourceLocation BuiltinLoc, RParenLoc;
4775  AtomicOp Op;
4776
4777  friend class ASTStmtReader;
4778
4779public:
4780  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4781             AtomicOp op, SourceLocation RP);
4782
4783  /// \brief Determine the number of arguments the specified atomic builtin
4784  /// should have.
4785  static unsigned getNumSubExprs(AtomicOp Op);
4786
4787  /// \brief Build an empty AtomicExpr.
4788  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4789
4790  Expr *getPtr() const {
4791    return cast<Expr>(SubExprs[PTR]);
4792  }
4793  Expr *getOrder() const {
4794    return cast<Expr>(SubExprs[ORDER]);
4795  }
4796  Expr *getVal1() const {
4797    if (Op == AO__c11_atomic_init)
4798      return cast<Expr>(SubExprs[ORDER]);
4799    assert(NumSubExprs > VAL1);
4800    return cast<Expr>(SubExprs[VAL1]);
4801  }
4802  Expr *getOrderFail() const {
4803    assert(NumSubExprs > ORDER_FAIL);
4804    return cast<Expr>(SubExprs[ORDER_FAIL]);
4805  }
4806  Expr *getVal2() const {
4807    if (Op == AO__atomic_exchange)
4808      return cast<Expr>(SubExprs[ORDER_FAIL]);
4809    assert(NumSubExprs > VAL2);
4810    return cast<Expr>(SubExprs[VAL2]);
4811  }
4812  Expr *getWeak() const {
4813    assert(NumSubExprs > WEAK);
4814    return cast<Expr>(SubExprs[WEAK]);
4815  }
4816
4817  AtomicOp getOp() const { return Op; }
4818  unsigned getNumSubExprs() { return NumSubExprs; }
4819
4820  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4821
4822  bool isVolatile() const {
4823    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4824  }
4825
4826  bool isCmpXChg() const {
4827    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4828           getOp() == AO__c11_atomic_compare_exchange_weak ||
4829           getOp() == AO__atomic_compare_exchange ||
4830           getOp() == AO__atomic_compare_exchange_n;
4831  }
4832
4833  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4834  SourceLocation getRParenLoc() const { return RParenLoc; }
4835
4836  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4837  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4838
4839  static bool classof(const Stmt *T) {
4840    return T->getStmtClass() == AtomicExprClass;
4841  }
4842
4843  // Iterators
4844  child_range children() {
4845    return child_range(SubExprs, SubExprs+NumSubExprs);
4846  }
4847};
4848
4849/// TypoExpr - Internal placeholder for expressions where typo correction
4850/// still needs to be performed and/or an error diagnostic emitted.
4851class TypoExpr : public Expr {
4852public:
4853  TypoExpr(QualType T)
4854      : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
4855             /*isTypeDependent*/ true,
4856             /*isValueDependent*/ true,
4857             /*isInstantiationDependent*/ true,
4858             /*containsUnexpandedParameterPack*/ false) {
4859    assert(T->isDependentType() && "TypoExpr given a non-dependent type");
4860  }
4861
4862  child_range children() { return child_range(); }
4863  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4864  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4865};
4866}  // end namespace clang
4867
4868#endif
4869