1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/AddressSpaces.h"
20#include "clang/Basic/Diagnostic.h"
21#include "clang/Basic/ExceptionSpecificationType.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/ADT/iterator_range.h"
34#include "llvm/Support/ErrorHandling.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Returns true if this address space is a superset of the other one.
405  /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
406  /// overlapping address spaces.
407  /// CL1.1 or CL1.2:
408  ///   every address space is a superset of itself.
409  /// CL2.0 adds:
410  ///   __generic is a superset of any address space except for __constant.
411  bool isAddressSpaceSupersetOf(Qualifiers other) const {
412    return
413        // Address spaces must match exactly.
414        getAddressSpace() == other.getAddressSpace() ||
415        // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
416        // for __constant can be used as __generic.
417        (getAddressSpace() == LangAS::opencl_generic &&
418         other.getAddressSpace() != LangAS::opencl_constant);
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set.
422  /// Generally this answers the question of whether an object with the other
423  /// qualifiers can be safely used as an object with these qualifiers.
424  bool compatiblyIncludes(Qualifiers other) const {
425    return isAddressSpaceSupersetOf(other) &&
426           // ObjC GC qualifiers can match, be added, or be removed, but can't
427           // be changed.
428           (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
429            !other.hasObjCGCAttr()) &&
430           // ObjC lifetime qualifiers must match exactly.
431           getObjCLifetime() == other.getObjCLifetime() &&
432           // CVR qualifiers may subset.
433           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
434  }
435
436  /// \brief Determines if these qualifiers compatibly include another set of
437  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
438  ///
439  /// One set of Objective-C lifetime qualifiers compatibly includes the other
440  /// if the lifetime qualifiers match, or if both are non-__weak and the
441  /// including set also contains the 'const' qualifier.
442  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
443    if (getObjCLifetime() == other.getObjCLifetime())
444      return true;
445
446    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
447      return false;
448
449    return hasConst();
450  }
451
452  /// \brief Determine whether this set of qualifiers is a strict superset of
453  /// another set of qualifiers, not considering qualifier compatibility.
454  bool isStrictSupersetOf(Qualifiers Other) const;
455
456  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
457  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
458
459  explicit operator bool() const { return hasQualifiers(); }
460
461  Qualifiers &operator+=(Qualifiers R) {
462    addQualifiers(R);
463    return *this;
464  }
465
466  // Union two qualifier sets.  If an enumerated qualifier appears
467  // in both sets, use the one from the right.
468  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
469    L += R;
470    return L;
471  }
472
473  Qualifiers &operator-=(Qualifiers R) {
474    removeQualifiers(R);
475    return *this;
476  }
477
478  /// \brief Compute the difference between two qualifier sets.
479  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
480    L -= R;
481    return L;
482  }
483
484  std::string getAsString() const;
485  std::string getAsString(const PrintingPolicy &Policy) const;
486
487  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
488  void print(raw_ostream &OS, const PrintingPolicy &Policy,
489             bool appendSpaceIfNonEmpty = false) const;
490
491  void Profile(llvm::FoldingSetNodeID &ID) const {
492    ID.AddInteger(Mask);
493  }
494
495private:
496
497  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
498  //           |C R V|GCAttr|Lifetime|AddressSpace|
499  uint32_t Mask;
500
501  static const uint32_t GCAttrMask = 0x18;
502  static const uint32_t GCAttrShift = 3;
503  static const uint32_t LifetimeMask = 0xE0;
504  static const uint32_t LifetimeShift = 5;
505  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
506  static const uint32_t AddressSpaceShift = 8;
507};
508
509/// A std::pair-like structure for storing a qualified type split
510/// into its local qualifiers and its locally-unqualified type.
511struct SplitQualType {
512  /// The locally-unqualified type.
513  const Type *Ty;
514
515  /// The local qualifiers.
516  Qualifiers Quals;
517
518  SplitQualType() : Ty(nullptr), Quals() {}
519  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
520
521  SplitQualType getSingleStepDesugaredType() const; // end of this file
522
523  // Make std::tie work.
524  std::pair<const Type *,Qualifiers> asPair() const {
525    return std::pair<const Type *, Qualifiers>(Ty, Quals);
526  }
527
528  friend bool operator==(SplitQualType a, SplitQualType b) {
529    return a.Ty == b.Ty && a.Quals == b.Quals;
530  }
531  friend bool operator!=(SplitQualType a, SplitQualType b) {
532    return a.Ty != b.Ty || a.Quals != b.Quals;
533  }
534};
535
536/// QualType - For efficiency, we don't store CV-qualified types as nodes on
537/// their own: instead each reference to a type stores the qualifiers.  This
538/// greatly reduces the number of nodes we need to allocate for types (for
539/// example we only need one for 'int', 'const int', 'volatile int',
540/// 'const volatile int', etc).
541///
542/// As an added efficiency bonus, instead of making this a pair, we
543/// just store the two bits we care about in the low bits of the
544/// pointer.  To handle the packing/unpacking, we make QualType be a
545/// simple wrapper class that acts like a smart pointer.  A third bit
546/// indicates whether there are extended qualifiers present, in which
547/// case the pointer points to a special structure.
548class QualType {
549  // Thankfully, these are efficiently composable.
550  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
551                       Qualifiers::FastWidth> Value;
552
553  const ExtQuals *getExtQualsUnsafe() const {
554    return Value.getPointer().get<const ExtQuals*>();
555  }
556
557  const Type *getTypePtrUnsafe() const {
558    return Value.getPointer().get<const Type*>();
559  }
560
561  const ExtQualsTypeCommonBase *getCommonPtr() const {
562    assert(!isNull() && "Cannot retrieve a NULL type pointer");
563    uintptr_t CommonPtrVal
564      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
565    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
566    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
567  }
568
569  friend class QualifierCollector;
570public:
571  QualType() {}
572
573  QualType(const Type *Ptr, unsigned Quals)
574    : Value(Ptr, Quals) {}
575  QualType(const ExtQuals *Ptr, unsigned Quals)
576    : Value(Ptr, Quals) {}
577
578  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
579  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
580
581  /// Retrieves a pointer to the underlying (unqualified) type.
582  ///
583  /// This function requires that the type not be NULL. If the type might be
584  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
585  const Type *getTypePtr() const;
586
587  const Type *getTypePtrOrNull() const;
588
589  /// Retrieves a pointer to the name of the base type.
590  const IdentifierInfo *getBaseTypeIdentifier() const;
591
592  /// Divides a QualType into its unqualified type and a set of local
593  /// qualifiers.
594  SplitQualType split() const;
595
596  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
597  static QualType getFromOpaquePtr(const void *Ptr) {
598    QualType T;
599    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
600    return T;
601  }
602
603  const Type &operator*() const {
604    return *getTypePtr();
605  }
606
607  const Type *operator->() const {
608    return getTypePtr();
609  }
610
611  bool isCanonical() const;
612  bool isCanonicalAsParam() const;
613
614  /// isNull - Return true if this QualType doesn't point to a type yet.
615  bool isNull() const {
616    return Value.getPointer().isNull();
617  }
618
619  /// \brief Determine whether this particular QualType instance has the
620  /// "const" qualifier set, without looking through typedefs that may have
621  /// added "const" at a different level.
622  bool isLocalConstQualified() const {
623    return (getLocalFastQualifiers() & Qualifiers::Const);
624  }
625
626  /// \brief Determine whether this type is const-qualified.
627  bool isConstQualified() const;
628
629  /// \brief Determine whether this particular QualType instance has the
630  /// "restrict" qualifier set, without looking through typedefs that may have
631  /// added "restrict" at a different level.
632  bool isLocalRestrictQualified() const {
633    return (getLocalFastQualifiers() & Qualifiers::Restrict);
634  }
635
636  /// \brief Determine whether this type is restrict-qualified.
637  bool isRestrictQualified() const;
638
639  /// \brief Determine whether this particular QualType instance has the
640  /// "volatile" qualifier set, without looking through typedefs that may have
641  /// added "volatile" at a different level.
642  bool isLocalVolatileQualified() const {
643    return (getLocalFastQualifiers() & Qualifiers::Volatile);
644  }
645
646  /// \brief Determine whether this type is volatile-qualified.
647  bool isVolatileQualified() const;
648
649  /// \brief Determine whether this particular QualType instance has any
650  /// qualifiers, without looking through any typedefs that might add
651  /// qualifiers at a different level.
652  bool hasLocalQualifiers() const {
653    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
654  }
655
656  /// \brief Determine whether this type has any qualifiers.
657  bool hasQualifiers() const;
658
659  /// \brief Determine whether this particular QualType instance has any
660  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
661  /// instance.
662  bool hasLocalNonFastQualifiers() const {
663    return Value.getPointer().is<const ExtQuals*>();
664  }
665
666  /// \brief Retrieve the set of qualifiers local to this particular QualType
667  /// instance, not including any qualifiers acquired through typedefs or
668  /// other sugar.
669  Qualifiers getLocalQualifiers() const;
670
671  /// \brief Retrieve the set of qualifiers applied to this type.
672  Qualifiers getQualifiers() const;
673
674  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
675  /// local to this particular QualType instance, not including any qualifiers
676  /// acquired through typedefs or other sugar.
677  unsigned getLocalCVRQualifiers() const {
678    return getLocalFastQualifiers();
679  }
680
681  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
682  /// applied to this type.
683  unsigned getCVRQualifiers() const;
684
685  bool isConstant(ASTContext& Ctx) const {
686    return QualType::isConstant(*this, Ctx);
687  }
688
689  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
690  bool isPODType(ASTContext &Context) const;
691
692  /// isCXX98PODType() - Return true if this is a POD type according to the
693  /// rules of the C++98 standard, regardless of the current compilation's
694  /// language.
695  bool isCXX98PODType(ASTContext &Context) const;
696
697  /// isCXX11PODType() - Return true if this is a POD type according to the
698  /// more relaxed rules of the C++11 standard, regardless of the current
699  /// compilation's language.
700  /// (C++0x [basic.types]p9)
701  bool isCXX11PODType(ASTContext &Context) const;
702
703  /// isTrivialType - Return true if this is a trivial type
704  /// (C++0x [basic.types]p9)
705  bool isTrivialType(ASTContext &Context) const;
706
707  /// isTriviallyCopyableType - Return true if this is a trivially
708  /// copyable type (C++0x [basic.types]p9)
709  bool isTriviallyCopyableType(ASTContext &Context) const;
710
711  // Don't promise in the API that anything besides 'const' can be
712  // easily added.
713
714  /// addConst - add the specified type qualifier to this QualType.
715  void addConst() {
716    addFastQualifiers(Qualifiers::Const);
717  }
718  QualType withConst() const {
719    return withFastQualifiers(Qualifiers::Const);
720  }
721
722  /// addVolatile - add the specified type qualifier to this QualType.
723  void addVolatile() {
724    addFastQualifiers(Qualifiers::Volatile);
725  }
726  QualType withVolatile() const {
727    return withFastQualifiers(Qualifiers::Volatile);
728  }
729
730  /// Add the restrict qualifier to this QualType.
731  void addRestrict() {
732    addFastQualifiers(Qualifiers::Restrict);
733  }
734  QualType withRestrict() const {
735    return withFastQualifiers(Qualifiers::Restrict);
736  }
737
738  QualType withCVRQualifiers(unsigned CVR) const {
739    return withFastQualifiers(CVR);
740  }
741
742  void addFastQualifiers(unsigned TQs) {
743    assert(!(TQs & ~Qualifiers::FastMask)
744           && "non-fast qualifier bits set in mask!");
745    Value.setInt(Value.getInt() | TQs);
746  }
747
748  void removeLocalConst();
749  void removeLocalVolatile();
750  void removeLocalRestrict();
751  void removeLocalCVRQualifiers(unsigned Mask);
752
753  void removeLocalFastQualifiers() { Value.setInt(0); }
754  void removeLocalFastQualifiers(unsigned Mask) {
755    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
756    Value.setInt(Value.getInt() & ~Mask);
757  }
758
759  // Creates a type with the given qualifiers in addition to any
760  // qualifiers already on this type.
761  QualType withFastQualifiers(unsigned TQs) const {
762    QualType T = *this;
763    T.addFastQualifiers(TQs);
764    return T;
765  }
766
767  // Creates a type with exactly the given fast qualifiers, removing
768  // any existing fast qualifiers.
769  QualType withExactLocalFastQualifiers(unsigned TQs) const {
770    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
771  }
772
773  // Removes fast qualifiers, but leaves any extended qualifiers in place.
774  QualType withoutLocalFastQualifiers() const {
775    QualType T = *this;
776    T.removeLocalFastQualifiers();
777    return T;
778  }
779
780  QualType getCanonicalType() const;
781
782  /// \brief Return this type with all of the instance-specific qualifiers
783  /// removed, but without removing any qualifiers that may have been applied
784  /// through typedefs.
785  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
786
787  /// \brief Retrieve the unqualified variant of the given type,
788  /// removing as little sugar as possible.
789  ///
790  /// This routine looks through various kinds of sugar to find the
791  /// least-desugared type that is unqualified. For example, given:
792  ///
793  /// \code
794  /// typedef int Integer;
795  /// typedef const Integer CInteger;
796  /// typedef CInteger DifferenceType;
797  /// \endcode
798  ///
799  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
800  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
801  ///
802  /// The resulting type might still be qualified if it's sugar for an array
803  /// type.  To strip qualifiers even from within a sugared array type, use
804  /// ASTContext::getUnqualifiedArrayType.
805  inline QualType getUnqualifiedType() const;
806
807  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
808  /// given type, removing as little sugar as possible.
809  ///
810  /// Like getUnqualifiedType(), but also returns the set of
811  /// qualifiers that were built up.
812  ///
813  /// The resulting type might still be qualified if it's sugar for an array
814  /// type.  To strip qualifiers even from within a sugared array type, use
815  /// ASTContext::getUnqualifiedArrayType.
816  inline SplitQualType getSplitUnqualifiedType() const;
817
818  /// \brief Determine whether this type is more qualified than the other
819  /// given type, requiring exact equality for non-CVR qualifiers.
820  bool isMoreQualifiedThan(QualType Other) const;
821
822  /// \brief Determine whether this type is at least as qualified as the other
823  /// given type, requiring exact equality for non-CVR qualifiers.
824  bool isAtLeastAsQualifiedAs(QualType Other) const;
825
826  QualType getNonReferenceType() const;
827
828  /// \brief Determine the type of a (typically non-lvalue) expression with the
829  /// specified result type.
830  ///
831  /// This routine should be used for expressions for which the return type is
832  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
833  /// an lvalue. It removes a top-level reference (since there are no
834  /// expressions of reference type) and deletes top-level cvr-qualifiers
835  /// from non-class types (in C++) or all types (in C).
836  QualType getNonLValueExprType(const ASTContext &Context) const;
837
838  /// getDesugaredType - Return the specified type with any "sugar" removed from
839  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
840  /// the type is already concrete, it returns it unmodified.  This is similar
841  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
842  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
843  /// concrete.
844  ///
845  /// Qualifiers are left in place.
846  QualType getDesugaredType(const ASTContext &Context) const {
847    return getDesugaredType(*this, Context);
848  }
849
850  SplitQualType getSplitDesugaredType() const {
851    return getSplitDesugaredType(*this);
852  }
853
854  /// \brief Return the specified type with one level of "sugar" removed from
855  /// the type.
856  ///
857  /// This routine takes off the first typedef, typeof, etc. If the outer level
858  /// of the type is already concrete, it returns it unmodified.
859  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
860    return getSingleStepDesugaredTypeImpl(*this, Context);
861  }
862
863  /// IgnoreParens - Returns the specified type after dropping any
864  /// outer-level parentheses.
865  QualType IgnoreParens() const {
866    if (isa<ParenType>(*this))
867      return QualType::IgnoreParens(*this);
868    return *this;
869  }
870
871  /// operator==/!= - Indicate whether the specified types and qualifiers are
872  /// identical.
873  friend bool operator==(const QualType &LHS, const QualType &RHS) {
874    return LHS.Value == RHS.Value;
875  }
876  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
877    return LHS.Value != RHS.Value;
878  }
879  std::string getAsString() const {
880    return getAsString(split());
881  }
882  static std::string getAsString(SplitQualType split) {
883    return getAsString(split.Ty, split.Quals);
884  }
885  static std::string getAsString(const Type *ty, Qualifiers qs);
886
887  std::string getAsString(const PrintingPolicy &Policy) const;
888
889  void print(raw_ostream &OS, const PrintingPolicy &Policy,
890             const Twine &PlaceHolder = Twine()) const {
891    print(split(), OS, Policy, PlaceHolder);
892  }
893  static void print(SplitQualType split, raw_ostream &OS,
894                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
895    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
896  }
897  static void print(const Type *ty, Qualifiers qs,
898                    raw_ostream &OS, const PrintingPolicy &policy,
899                    const Twine &PlaceHolder);
900
901  void getAsStringInternal(std::string &Str,
902                           const PrintingPolicy &Policy) const {
903    return getAsStringInternal(split(), Str, Policy);
904  }
905  static void getAsStringInternal(SplitQualType split, std::string &out,
906                                  const PrintingPolicy &policy) {
907    return getAsStringInternal(split.Ty, split.Quals, out, policy);
908  }
909  static void getAsStringInternal(const Type *ty, Qualifiers qs,
910                                  std::string &out,
911                                  const PrintingPolicy &policy);
912
913  class StreamedQualTypeHelper {
914    const QualType &T;
915    const PrintingPolicy &Policy;
916    const Twine &PlaceHolder;
917  public:
918    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
919                           const Twine &PlaceHolder)
920      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
921
922    friend raw_ostream &operator<<(raw_ostream &OS,
923                                   const StreamedQualTypeHelper &SQT) {
924      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
925      return OS;
926    }
927  };
928
929  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
930                                const Twine &PlaceHolder = Twine()) const {
931    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
932  }
933
934  void dump(const char *s) const;
935  void dump() const;
936
937  void Profile(llvm::FoldingSetNodeID &ID) const {
938    ID.AddPointer(getAsOpaquePtr());
939  }
940
941  /// getAddressSpace - Return the address space of this type.
942  inline unsigned getAddressSpace() const;
943
944  /// getObjCGCAttr - Returns gc attribute of this type.
945  inline Qualifiers::GC getObjCGCAttr() const;
946
947  /// isObjCGCWeak true when Type is objc's weak.
948  bool isObjCGCWeak() const {
949    return getObjCGCAttr() == Qualifiers::Weak;
950  }
951
952  /// isObjCGCStrong true when Type is objc's strong.
953  bool isObjCGCStrong() const {
954    return getObjCGCAttr() == Qualifiers::Strong;
955  }
956
957  /// getObjCLifetime - Returns lifetime attribute of this type.
958  Qualifiers::ObjCLifetime getObjCLifetime() const {
959    return getQualifiers().getObjCLifetime();
960  }
961
962  bool hasNonTrivialObjCLifetime() const {
963    return getQualifiers().hasNonTrivialObjCLifetime();
964  }
965
966  bool hasStrongOrWeakObjCLifetime() const {
967    return getQualifiers().hasStrongOrWeakObjCLifetime();
968  }
969
970  enum DestructionKind {
971    DK_none,
972    DK_cxx_destructor,
973    DK_objc_strong_lifetime,
974    DK_objc_weak_lifetime
975  };
976
977  /// isDestructedType - nonzero if objects of this type require
978  /// non-trivial work to clean up after.  Non-zero because it's
979  /// conceivable that qualifiers (objc_gc(weak)?) could make
980  /// something require destruction.
981  DestructionKind isDestructedType() const {
982    return isDestructedTypeImpl(*this);
983  }
984
985  /// \brief Determine whether expressions of the given type are forbidden
986  /// from being lvalues in C.
987  ///
988  /// The expression types that are forbidden to be lvalues are:
989  ///   - 'void', but not qualified void
990  ///   - function types
991  ///
992  /// The exact rule here is C99 6.3.2.1:
993  ///   An lvalue is an expression with an object type or an incomplete
994  ///   type other than void.
995  bool isCForbiddenLValueType() const;
996
997private:
998  // These methods are implemented in a separate translation unit;
999  // "static"-ize them to avoid creating temporary QualTypes in the
1000  // caller.
1001  static bool isConstant(QualType T, ASTContext& Ctx);
1002  static QualType getDesugaredType(QualType T, const ASTContext &Context);
1003  static SplitQualType getSplitDesugaredType(QualType T);
1004  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1005  static QualType getSingleStepDesugaredTypeImpl(QualType type,
1006                                                 const ASTContext &C);
1007  static QualType IgnoreParens(QualType T);
1008  static DestructionKind isDestructedTypeImpl(QualType type);
1009};
1010
1011} // end clang.
1012
1013namespace llvm {
1014/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1015/// to a specific Type class.
1016template<> struct simplify_type< ::clang::QualType> {
1017  typedef const ::clang::Type *SimpleType;
1018  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1019    return Val.getTypePtr();
1020  }
1021};
1022
1023// Teach SmallPtrSet that QualType is "basically a pointer".
1024template<>
1025class PointerLikeTypeTraits<clang::QualType> {
1026public:
1027  static inline void *getAsVoidPointer(clang::QualType P) {
1028    return P.getAsOpaquePtr();
1029  }
1030  static inline clang::QualType getFromVoidPointer(void *P) {
1031    return clang::QualType::getFromOpaquePtr(P);
1032  }
1033  // Various qualifiers go in low bits.
1034  enum { NumLowBitsAvailable = 0 };
1035};
1036
1037} // end namespace llvm
1038
1039namespace clang {
1040
1041/// \brief Base class that is common to both the \c ExtQuals and \c Type
1042/// classes, which allows \c QualType to access the common fields between the
1043/// two.
1044///
1045class ExtQualsTypeCommonBase {
1046  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1047    : BaseType(baseType), CanonicalType(canon) {}
1048
1049  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1050  /// a self-referential pointer (for \c Type).
1051  ///
1052  /// This pointer allows an efficient mapping from a QualType to its
1053  /// underlying type pointer.
1054  const Type *const BaseType;
1055
1056  /// \brief The canonical type of this type.  A QualType.
1057  QualType CanonicalType;
1058
1059  friend class QualType;
1060  friend class Type;
1061  friend class ExtQuals;
1062};
1063
1064/// ExtQuals - We can encode up to four bits in the low bits of a
1065/// type pointer, but there are many more type qualifiers that we want
1066/// to be able to apply to an arbitrary type.  Therefore we have this
1067/// struct, intended to be heap-allocated and used by QualType to
1068/// store qualifiers.
1069///
1070/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1071/// in three low bits on the QualType pointer; a fourth bit records whether
1072/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1073/// Objective-C GC attributes) are much more rare.
1074class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1075  // NOTE: changing the fast qualifiers should be straightforward as
1076  // long as you don't make 'const' non-fast.
1077  // 1. Qualifiers:
1078  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1079  //       Fast qualifiers must occupy the low-order bits.
1080  //    b) Update Qualifiers::FastWidth and FastMask.
1081  // 2. QualType:
1082  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1083  //    b) Update remove{Volatile,Restrict}, defined near the end of
1084  //       this header.
1085  // 3. ASTContext:
1086  //    a) Update get{Volatile,Restrict}Type.
1087
1088  /// Quals - the immutable set of qualifiers applied by this
1089  /// node;  always contains extended qualifiers.
1090  Qualifiers Quals;
1091
1092  ExtQuals *this_() { return this; }
1093
1094public:
1095  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1096    : ExtQualsTypeCommonBase(baseType,
1097                             canon.isNull() ? QualType(this_(), 0) : canon),
1098      Quals(quals)
1099  {
1100    assert(Quals.hasNonFastQualifiers()
1101           && "ExtQuals created with no fast qualifiers");
1102    assert(!Quals.hasFastQualifiers()
1103           && "ExtQuals created with fast qualifiers");
1104  }
1105
1106  Qualifiers getQualifiers() const { return Quals; }
1107
1108  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1109  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1110
1111  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1112  Qualifiers::ObjCLifetime getObjCLifetime() const {
1113    return Quals.getObjCLifetime();
1114  }
1115
1116  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1117  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1118
1119  const Type *getBaseType() const { return BaseType; }
1120
1121public:
1122  void Profile(llvm::FoldingSetNodeID &ID) const {
1123    Profile(ID, getBaseType(), Quals);
1124  }
1125  static void Profile(llvm::FoldingSetNodeID &ID,
1126                      const Type *BaseType,
1127                      Qualifiers Quals) {
1128    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1129    ID.AddPointer(BaseType);
1130    Quals.Profile(ID);
1131  }
1132};
1133
1134/// \brief The kind of C++0x ref-qualifier associated with a function type,
1135/// which determines whether a member function's "this" object can be an
1136/// lvalue, rvalue, or neither.
1137enum RefQualifierKind {
1138  /// \brief No ref-qualifier was provided.
1139  RQ_None = 0,
1140  /// \brief An lvalue ref-qualifier was provided (\c &).
1141  RQ_LValue,
1142  /// \brief An rvalue ref-qualifier was provided (\c &&).
1143  RQ_RValue
1144};
1145
1146/// Type - This is the base class of the type hierarchy.  A central concept
1147/// with types is that each type always has a canonical type.  A canonical type
1148/// is the type with any typedef names stripped out of it or the types it
1149/// references.  For example, consider:
1150///
1151///  typedef int  foo;
1152///  typedef foo* bar;
1153///    'int *'    'foo *'    'bar'
1154///
1155/// There will be a Type object created for 'int'.  Since int is canonical, its
1156/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1157/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1158/// there is a PointerType that represents 'int*', which, like 'int', is
1159/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1160/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1161/// is also 'int*'.
1162///
1163/// Non-canonical types are useful for emitting diagnostics, without losing
1164/// information about typedefs being used.  Canonical types are useful for type
1165/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1166/// about whether something has a particular form (e.g. is a function type),
1167/// because they implicitly, recursively, strip all typedefs out of a type.
1168///
1169/// Types, once created, are immutable.
1170///
1171class Type : public ExtQualsTypeCommonBase {
1172public:
1173  enum TypeClass {
1174#define TYPE(Class, Base) Class,
1175#define LAST_TYPE(Class) TypeLast = Class,
1176#define ABSTRACT_TYPE(Class, Base)
1177#include "clang/AST/TypeNodes.def"
1178    TagFirst = Record, TagLast = Enum
1179  };
1180
1181private:
1182  Type(const Type &) = delete;
1183  void operator=(const Type &) = delete;
1184
1185  /// Bitfields required by the Type class.
1186  class TypeBitfields {
1187    friend class Type;
1188    template <class T> friend class TypePropertyCache;
1189
1190    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1191    unsigned TC : 8;
1192
1193    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1194    unsigned Dependent : 1;
1195
1196    /// \brief Whether this type somehow involves a template parameter, even
1197    /// if the resolution of the type does not depend on a template parameter.
1198    unsigned InstantiationDependent : 1;
1199
1200    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1201    unsigned VariablyModified : 1;
1202
1203    /// \brief Whether this type contains an unexpanded parameter pack
1204    /// (for C++0x variadic templates).
1205    unsigned ContainsUnexpandedParameterPack : 1;
1206
1207    /// \brief True if the cache (i.e. the bitfields here starting with
1208    /// 'Cache') is valid.
1209    mutable unsigned CacheValid : 1;
1210
1211    /// \brief Linkage of this type.
1212    mutable unsigned CachedLinkage : 3;
1213
1214    /// \brief Whether this type involves and local or unnamed types.
1215    mutable unsigned CachedLocalOrUnnamed : 1;
1216
1217    /// \brief FromAST - Whether this type comes from an AST file.
1218    mutable unsigned FromAST : 1;
1219
1220    bool isCacheValid() const {
1221      return CacheValid;
1222    }
1223    Linkage getLinkage() const {
1224      assert(isCacheValid() && "getting linkage from invalid cache");
1225      return static_cast<Linkage>(CachedLinkage);
1226    }
1227    bool hasLocalOrUnnamedType() const {
1228      assert(isCacheValid() && "getting linkage from invalid cache");
1229      return CachedLocalOrUnnamed;
1230    }
1231  };
1232  enum { NumTypeBits = 18 };
1233
1234protected:
1235  // These classes allow subclasses to somewhat cleanly pack bitfields
1236  // into Type.
1237
1238  class ArrayTypeBitfields {
1239    friend class ArrayType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// IndexTypeQuals - CVR qualifiers from declarations like
1244    /// 'int X[static restrict 4]'. For function parameters only.
1245    unsigned IndexTypeQuals : 3;
1246
1247    /// SizeModifier - storage class qualifiers from declarations like
1248    /// 'int X[static restrict 4]'. For function parameters only.
1249    /// Actually an ArrayType::ArraySizeModifier.
1250    unsigned SizeModifier : 3;
1251  };
1252
1253  class BuiltinTypeBitfields {
1254    friend class BuiltinType;
1255
1256    unsigned : NumTypeBits;
1257
1258    /// The kind (BuiltinType::Kind) of builtin type this is.
1259    unsigned Kind : 8;
1260  };
1261
1262  class FunctionTypeBitfields {
1263    friend class FunctionType;
1264    friend class FunctionProtoType;
1265
1266    unsigned : NumTypeBits;
1267
1268    /// Extra information which affects how the function is called, like
1269    /// regparm and the calling convention.
1270    unsigned ExtInfo : 9;
1271
1272    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1273    /// other bitfields.
1274    /// The qualifiers are part of FunctionProtoType because...
1275    ///
1276    /// C++ 8.3.5p4: The return type, the parameter type list and the
1277    /// cv-qualifier-seq, [...], are part of the function type.
1278    unsigned TypeQuals : 3;
1279
1280    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1281    ///
1282    /// This is a value of type \c RefQualifierKind.
1283    unsigned RefQualifier : 2;
1284  };
1285
1286  class ObjCObjectTypeBitfields {
1287    friend class ObjCObjectType;
1288
1289    unsigned : NumTypeBits;
1290
1291    /// NumProtocols - The number of protocols stored directly on this
1292    /// object type.
1293    unsigned NumProtocols : 32 - NumTypeBits;
1294  };
1295
1296  class ReferenceTypeBitfields {
1297    friend class ReferenceType;
1298
1299    unsigned : NumTypeBits;
1300
1301    /// True if the type was originally spelled with an lvalue sigil.
1302    /// This is never true of rvalue references but can also be false
1303    /// on lvalue references because of C++0x [dcl.typedef]p9,
1304    /// as follows:
1305    ///
1306    ///   typedef int &ref;    // lvalue, spelled lvalue
1307    ///   typedef int &&rvref; // rvalue
1308    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1309    ///   ref &&a;             // lvalue, inner ref
1310    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1311    ///   rvref &&a;           // rvalue, inner ref
1312    unsigned SpelledAsLValue : 1;
1313
1314    /// True if the inner type is a reference type.  This only happens
1315    /// in non-canonical forms.
1316    unsigned InnerRef : 1;
1317  };
1318
1319  class TypeWithKeywordBitfields {
1320    friend class TypeWithKeyword;
1321
1322    unsigned : NumTypeBits;
1323
1324    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1325    unsigned Keyword : 8;
1326  };
1327
1328  class VectorTypeBitfields {
1329    friend class VectorType;
1330
1331    unsigned : NumTypeBits;
1332
1333    /// VecKind - The kind of vector, either a generic vector type or some
1334    /// target-specific vector type such as for AltiVec or Neon.
1335    unsigned VecKind : 3;
1336
1337    /// NumElements - The number of elements in the vector.
1338    unsigned NumElements : 29 - NumTypeBits;
1339
1340    enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1341  };
1342
1343  class AttributedTypeBitfields {
1344    friend class AttributedType;
1345
1346    unsigned : NumTypeBits;
1347
1348    /// AttrKind - an AttributedType::Kind
1349    unsigned AttrKind : 32 - NumTypeBits;
1350  };
1351
1352  class AutoTypeBitfields {
1353    friend class AutoType;
1354
1355    unsigned : NumTypeBits;
1356
1357    /// Was this placeholder type spelled as 'decltype(auto)'?
1358    unsigned IsDecltypeAuto : 1;
1359  };
1360
1361  union {
1362    TypeBitfields TypeBits;
1363    ArrayTypeBitfields ArrayTypeBits;
1364    AttributedTypeBitfields AttributedTypeBits;
1365    AutoTypeBitfields AutoTypeBits;
1366    BuiltinTypeBitfields BuiltinTypeBits;
1367    FunctionTypeBitfields FunctionTypeBits;
1368    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1369    ReferenceTypeBitfields ReferenceTypeBits;
1370    TypeWithKeywordBitfields TypeWithKeywordBits;
1371    VectorTypeBitfields VectorTypeBits;
1372  };
1373
1374private:
1375  /// \brief Set whether this type comes from an AST file.
1376  void setFromAST(bool V = true) const {
1377    TypeBits.FromAST = V;
1378  }
1379
1380  template <class T> friend class TypePropertyCache;
1381
1382protected:
1383  // silence VC++ warning C4355: 'this' : used in base member initializer list
1384  Type *this_() { return this; }
1385  Type(TypeClass tc, QualType canon, bool Dependent,
1386       bool InstantiationDependent, bool VariablyModified,
1387       bool ContainsUnexpandedParameterPack)
1388    : ExtQualsTypeCommonBase(this,
1389                             canon.isNull() ? QualType(this_(), 0) : canon) {
1390    TypeBits.TC = tc;
1391    TypeBits.Dependent = Dependent;
1392    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1393    TypeBits.VariablyModified = VariablyModified;
1394    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1395    TypeBits.CacheValid = false;
1396    TypeBits.CachedLocalOrUnnamed = false;
1397    TypeBits.CachedLinkage = NoLinkage;
1398    TypeBits.FromAST = false;
1399  }
1400  friend class ASTContext;
1401
1402  void setDependent(bool D = true) {
1403    TypeBits.Dependent = D;
1404    if (D)
1405      TypeBits.InstantiationDependent = true;
1406  }
1407  void setInstantiationDependent(bool D = true) {
1408    TypeBits.InstantiationDependent = D; }
1409  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1410  }
1411  void setContainsUnexpandedParameterPack(bool PP = true) {
1412    TypeBits.ContainsUnexpandedParameterPack = PP;
1413  }
1414
1415public:
1416  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1417
1418  /// \brief Whether this type comes from an AST file.
1419  bool isFromAST() const { return TypeBits.FromAST; }
1420
1421  /// \brief Whether this type is or contains an unexpanded parameter
1422  /// pack, used to support C++0x variadic templates.
1423  ///
1424  /// A type that contains a parameter pack shall be expanded by the
1425  /// ellipsis operator at some point. For example, the typedef in the
1426  /// following example contains an unexpanded parameter pack 'T':
1427  ///
1428  /// \code
1429  /// template<typename ...T>
1430  /// struct X {
1431  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1432  /// };
1433  /// \endcode
1434  ///
1435  /// Note that this routine does not specify which
1436  bool containsUnexpandedParameterPack() const {
1437    return TypeBits.ContainsUnexpandedParameterPack;
1438  }
1439
1440  /// Determines if this type would be canonical if it had no further
1441  /// qualification.
1442  bool isCanonicalUnqualified() const {
1443    return CanonicalType == QualType(this, 0);
1444  }
1445
1446  /// Pull a single level of sugar off of this locally-unqualified type.
1447  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1448  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1449  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1450
1451  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1452  /// object types, function types, and incomplete types.
1453
1454  /// isIncompleteType - Return true if this is an incomplete type.
1455  /// A type that can describe objects, but which lacks information needed to
1456  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1457  /// routine will need to determine if the size is actually required.
1458  ///
1459  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1460  /// that can be completed (such as a C struct, C++ class, or Objective-C
1461  /// class), will be set to the declaration.
1462  bool isIncompleteType(NamedDecl **Def = nullptr) const;
1463
1464  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1465  /// type, in other words, not a function type.
1466  bool isIncompleteOrObjectType() const {
1467    return !isFunctionType();
1468  }
1469
1470  /// \brief Determine whether this type is an object type.
1471  bool isObjectType() const {
1472    // C++ [basic.types]p8:
1473    //   An object type is a (possibly cv-qualified) type that is not a
1474    //   function type, not a reference type, and not a void type.
1475    return !isReferenceType() && !isFunctionType() && !isVoidType();
1476  }
1477
1478  /// isLiteralType - Return true if this is a literal type
1479  /// (C++11 [basic.types]p10)
1480  bool isLiteralType(const ASTContext &Ctx) const;
1481
1482  /// \brief Test if this type is a standard-layout type.
1483  /// (C++0x [basic.type]p9)
1484  bool isStandardLayoutType() const;
1485
1486  /// Helper methods to distinguish type categories. All type predicates
1487  /// operate on the canonical type, ignoring typedefs and qualifiers.
1488
1489  /// isBuiltinType - returns true if the type is a builtin type.
1490  bool isBuiltinType() const;
1491
1492  /// isSpecificBuiltinType - Test for a particular builtin type.
1493  bool isSpecificBuiltinType(unsigned K) const;
1494
1495  /// isPlaceholderType - Test for a type which does not represent an
1496  /// actual type-system type but is instead used as a placeholder for
1497  /// various convenient purposes within Clang.  All such types are
1498  /// BuiltinTypes.
1499  bool isPlaceholderType() const;
1500  const BuiltinType *getAsPlaceholderType() const;
1501
1502  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1503  bool isSpecificPlaceholderType(unsigned K) const;
1504
1505  /// isNonOverloadPlaceholderType - Test for a placeholder type
1506  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1507  bool isNonOverloadPlaceholderType() const;
1508
1509  /// isIntegerType() does *not* include complex integers (a GCC extension).
1510  /// isComplexIntegerType() can be used to test for complex integers.
1511  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1512  bool isEnumeralType() const;
1513  bool isBooleanType() const;
1514  bool isCharType() const;
1515  bool isWideCharType() const;
1516  bool isChar16Type() const;
1517  bool isChar32Type() const;
1518  bool isAnyCharacterType() const;
1519  bool isIntegralType(ASTContext &Ctx) const;
1520
1521  /// \brief Determine whether this type is an integral or enumeration type.
1522  bool isIntegralOrEnumerationType() const;
1523  /// \brief Determine whether this type is an integral or unscoped enumeration
1524  /// type.
1525  bool isIntegralOrUnscopedEnumerationType() const;
1526
1527  /// Floating point categories.
1528  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1529  /// isComplexType() does *not* include complex integers (a GCC extension).
1530  /// isComplexIntegerType() can be used to test for complex integers.
1531  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1532  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1533  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1534  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1535  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1536  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1537  bool isVoidType() const;         // C99 6.2.5p19
1538  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1539  bool isAggregateType() const;
1540  bool isFundamentalType() const;
1541  bool isCompoundType() const;
1542
1543  // Type Predicates: Check to see if this type is structurally the specified
1544  // type, ignoring typedefs and qualifiers.
1545  bool isFunctionType() const;
1546  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1547  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1548  bool isPointerType() const;
1549  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1550  bool isBlockPointerType() const;
1551  bool isVoidPointerType() const;
1552  bool isReferenceType() const;
1553  bool isLValueReferenceType() const;
1554  bool isRValueReferenceType() const;
1555  bool isFunctionPointerType() const;
1556  bool isMemberPointerType() const;
1557  bool isMemberFunctionPointerType() const;
1558  bool isMemberDataPointerType() const;
1559  bool isArrayType() const;
1560  bool isConstantArrayType() const;
1561  bool isIncompleteArrayType() const;
1562  bool isVariableArrayType() const;
1563  bool isDependentSizedArrayType() const;
1564  bool isRecordType() const;
1565  bool isClassType() const;
1566  bool isStructureType() const;
1567  bool isInterfaceType() const;
1568  bool isStructureOrClassType() const;
1569  bool isUnionType() const;
1570  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1571  bool isVectorType() const;                    // GCC vector type.
1572  bool isExtVectorType() const;                 // Extended vector type.
1573  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1574  bool isObjCRetainableType() const;            // ObjC object or block pointer
1575  bool isObjCLifetimeType() const;              // (array of)* retainable type
1576  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1577  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1578  bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
1579  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1580  // for the common case.
1581  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1582  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1583  bool isObjCQualifiedIdType() const;           // id<foo>
1584  bool isObjCQualifiedClassType() const;        // Class<foo>
1585  bool isObjCObjectOrInterfaceType() const;
1586  bool isObjCIdType() const;                    // id
1587  bool isObjCClassType() const;                 // Class
1588  bool isObjCSelType() const;                 // Class
1589  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1590  bool isObjCARCBridgableType() const;
1591  bool isCARCBridgableType() const;
1592  bool isTemplateTypeParmType() const;          // C++ template type parameter
1593  bool isNullPtrType() const;                   // C++0x nullptr_t
1594  bool isAtomicType() const;                    // C11 _Atomic()
1595
1596  bool isImage1dT() const;                      // OpenCL image1d_t
1597  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1598  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1599  bool isImage2dT() const;                      // OpenCL image2d_t
1600  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1601  bool isImage3dT() const;                      // OpenCL image3d_t
1602
1603  bool isImageType() const;                     // Any OpenCL image type
1604
1605  bool isSamplerT() const;                      // OpenCL sampler_t
1606  bool isEventT() const;                        // OpenCL event_t
1607
1608  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1609
1610  /// Determines if this type, which must satisfy
1611  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1612  /// than implicitly __strong.
1613  bool isObjCARCImplicitlyUnretainedType() const;
1614
1615  /// Return the implicit lifetime for this type, which must not be dependent.
1616  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1617
1618  enum ScalarTypeKind {
1619    STK_CPointer,
1620    STK_BlockPointer,
1621    STK_ObjCObjectPointer,
1622    STK_MemberPointer,
1623    STK_Bool,
1624    STK_Integral,
1625    STK_Floating,
1626    STK_IntegralComplex,
1627    STK_FloatingComplex
1628  };
1629  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1630  ScalarTypeKind getScalarTypeKind() const;
1631
1632  /// isDependentType - Whether this type is a dependent type, meaning
1633  /// that its definition somehow depends on a template parameter
1634  /// (C++ [temp.dep.type]).
1635  bool isDependentType() const { return TypeBits.Dependent; }
1636
1637  /// \brief Determine whether this type is an instantiation-dependent type,
1638  /// meaning that the type involves a template parameter (even if the
1639  /// definition does not actually depend on the type substituted for that
1640  /// template parameter).
1641  bool isInstantiationDependentType() const {
1642    return TypeBits.InstantiationDependent;
1643  }
1644
1645  /// \brief Determine whether this type is an undeduced type, meaning that
1646  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1647  bool isUndeducedType() const;
1648
1649  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1650  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1651
1652  /// \brief Whether this type involves a variable-length array type
1653  /// with a definite size.
1654  bool hasSizedVLAType() const;
1655
1656  /// \brief Whether this type is or contains a local or unnamed type.
1657  bool hasUnnamedOrLocalType() const;
1658
1659  bool isOverloadableType() const;
1660
1661  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1662  bool isElaboratedTypeSpecifier() const;
1663
1664  bool canDecayToPointerType() const;
1665
1666  /// hasPointerRepresentation - Whether this type is represented
1667  /// natively as a pointer; this includes pointers, references, block
1668  /// pointers, and Objective-C interface, qualified id, and qualified
1669  /// interface types, as well as nullptr_t.
1670  bool hasPointerRepresentation() const;
1671
1672  /// hasObjCPointerRepresentation - Whether this type can represent
1673  /// an objective pointer type for the purpose of GC'ability
1674  bool hasObjCPointerRepresentation() const;
1675
1676  /// \brief Determine whether this type has an integer representation
1677  /// of some sort, e.g., it is an integer type or a vector.
1678  bool hasIntegerRepresentation() const;
1679
1680  /// \brief Determine whether this type has an signed integer representation
1681  /// of some sort, e.g., it is an signed integer type or a vector.
1682  bool hasSignedIntegerRepresentation() const;
1683
1684  /// \brief Determine whether this type has an unsigned integer representation
1685  /// of some sort, e.g., it is an unsigned integer type or a vector.
1686  bool hasUnsignedIntegerRepresentation() const;
1687
1688  /// \brief Determine whether this type has a floating-point representation
1689  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1690  bool hasFloatingRepresentation() const;
1691
1692  // Type Checking Functions: Check to see if this type is structurally the
1693  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1694  // the best type we can.
1695  const RecordType *getAsStructureType() const;
1696  /// NOTE: getAs*ArrayType are methods on ASTContext.
1697  const RecordType *getAsUnionType() const;
1698  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1699  // The following is a convenience method that returns an ObjCObjectPointerType
1700  // for object declared using an interface.
1701  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1702  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1703  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1704  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1705
1706  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1707  /// because the type is a RecordType or because it is the injected-class-name
1708  /// type of a class template or class template partial specialization.
1709  CXXRecordDecl *getAsCXXRecordDecl() const;
1710
1711  /// \brief Retrieves the TagDecl that this type refers to, either
1712  /// because the type is a TagType or because it is the injected-class-name
1713  /// type of a class template or class template partial specialization.
1714  TagDecl *getAsTagDecl() const;
1715
1716  /// If this is a pointer or reference to a RecordType, return the
1717  /// CXXRecordDecl that that type refers to.
1718  ///
1719  /// If this is not a pointer or reference, or the type being pointed to does
1720  /// not refer to a CXXRecordDecl, returns NULL.
1721  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1722
1723  /// \brief Get the AutoType whose type will be deduced for a variable with
1724  /// an initializer of this type. This looks through declarators like pointer
1725  /// types, but not through decltype or typedefs.
1726  AutoType *getContainedAutoType() const;
1727
1728  /// Member-template getAs<specific type>'.  Look through sugar for
1729  /// an instance of \<specific type>.   This scheme will eventually
1730  /// replace the specific getAsXXXX methods above.
1731  ///
1732  /// There are some specializations of this member template listed
1733  /// immediately following this class.
1734  template <typename T> const T *getAs() const;
1735
1736  /// A variant of getAs<> for array types which silently discards
1737  /// qualifiers from the outermost type.
1738  const ArrayType *getAsArrayTypeUnsafe() const;
1739
1740  /// Member-template castAs<specific type>.  Look through sugar for
1741  /// the underlying instance of \<specific type>.
1742  ///
1743  /// This method has the same relationship to getAs<T> as cast<T> has
1744  /// to dyn_cast<T>; which is to say, the underlying type *must*
1745  /// have the intended type, and this method will never return null.
1746  template <typename T> const T *castAs() const;
1747
1748  /// A variant of castAs<> for array type which silently discards
1749  /// qualifiers from the outermost type.
1750  const ArrayType *castAsArrayTypeUnsafe() const;
1751
1752  /// getBaseElementTypeUnsafe - Get the base element type of this
1753  /// type, potentially discarding type qualifiers.  This method
1754  /// should never be used when type qualifiers are meaningful.
1755  const Type *getBaseElementTypeUnsafe() const;
1756
1757  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1758  /// element type of the array, potentially with type qualifiers missing.
1759  /// This method should never be used when type qualifiers are meaningful.
1760  const Type *getArrayElementTypeNoTypeQual() const;
1761
1762  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1763  /// pointer, this returns the respective pointee.
1764  QualType getPointeeType() const;
1765
1766  /// getUnqualifiedDesugaredType() - Return the specified type with
1767  /// any "sugar" removed from the type, removing any typedefs,
1768  /// typeofs, etc., as well as any qualifiers.
1769  const Type *getUnqualifiedDesugaredType() const;
1770
1771  /// More type predicates useful for type checking/promotion
1772  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1773
1774  /// isSignedIntegerType - Return true if this is an integer type that is
1775  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1776  /// or an enum decl which has a signed representation.
1777  bool isSignedIntegerType() const;
1778
1779  /// isUnsignedIntegerType - Return true if this is an integer type that is
1780  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1781  /// or an enum decl which has an unsigned representation.
1782  bool isUnsignedIntegerType() const;
1783
1784  /// Determines whether this is an integer type that is signed or an
1785  /// enumeration types whose underlying type is a signed integer type.
1786  bool isSignedIntegerOrEnumerationType() const;
1787
1788  /// Determines whether this is an integer type that is unsigned or an
1789  /// enumeration types whose underlying type is a unsigned integer type.
1790  bool isUnsignedIntegerOrEnumerationType() const;
1791
1792  /// isConstantSizeType - Return true if this is not a variable sized type,
1793  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1794  /// incomplete types.
1795  bool isConstantSizeType() const;
1796
1797  /// isSpecifierType - Returns true if this type can be represented by some
1798  /// set of type specifiers.
1799  bool isSpecifierType() const;
1800
1801  /// \brief Determine the linkage of this type.
1802  Linkage getLinkage() const;
1803
1804  /// \brief Determine the visibility of this type.
1805  Visibility getVisibility() const {
1806    return getLinkageAndVisibility().getVisibility();
1807  }
1808
1809  /// \brief Return true if the visibility was explicitly set is the code.
1810  bool isVisibilityExplicit() const {
1811    return getLinkageAndVisibility().isVisibilityExplicit();
1812  }
1813
1814  /// \brief Determine the linkage and visibility of this type.
1815  LinkageInfo getLinkageAndVisibility() const;
1816
1817  /// \brief True if the computed linkage is valid. Used for consistency
1818  /// checking. Should always return true.
1819  bool isLinkageValid() const;
1820
1821  const char *getTypeClassName() const;
1822
1823  QualType getCanonicalTypeInternal() const {
1824    return CanonicalType;
1825  }
1826  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1827  void dump() const;
1828
1829  friend class ASTReader;
1830  friend class ASTWriter;
1831};
1832
1833/// \brief This will check for a TypedefType by removing any existing sugar
1834/// until it reaches a TypedefType or a non-sugared type.
1835template <> const TypedefType *Type::getAs() const;
1836
1837/// \brief This will check for a TemplateSpecializationType by removing any
1838/// existing sugar until it reaches a TemplateSpecializationType or a
1839/// non-sugared type.
1840template <> const TemplateSpecializationType *Type::getAs() const;
1841
1842/// \brief This will check for an AttributedType by removing any existing sugar
1843/// until it reaches an AttributedType or a non-sugared type.
1844template <> const AttributedType *Type::getAs() const;
1845
1846// We can do canonical leaf types faster, because we don't have to
1847// worry about preserving child type decoration.
1848#define TYPE(Class, Base)
1849#define LEAF_TYPE(Class) \
1850template <> inline const Class##Type *Type::getAs() const { \
1851  return dyn_cast<Class##Type>(CanonicalType); \
1852} \
1853template <> inline const Class##Type *Type::castAs() const { \
1854  return cast<Class##Type>(CanonicalType); \
1855}
1856#include "clang/AST/TypeNodes.def"
1857
1858
1859/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1860/// types are always canonical and have a literal name field.
1861class BuiltinType : public Type {
1862public:
1863  enum Kind {
1864#define BUILTIN_TYPE(Id, SingletonId) Id,
1865#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1866#include "clang/AST/BuiltinTypes.def"
1867  };
1868
1869public:
1870  BuiltinType(Kind K)
1871    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1872           /*InstantiationDependent=*/(K == Dependent),
1873           /*VariablyModified=*/false,
1874           /*Unexpanded paramter pack=*/false) {
1875    BuiltinTypeBits.Kind = K;
1876  }
1877
1878  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1879  StringRef getName(const PrintingPolicy &Policy) const;
1880  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1881    // The StringRef is null-terminated.
1882    StringRef str = getName(Policy);
1883    assert(!str.empty() && str.data()[str.size()] == '\0');
1884    return str.data();
1885  }
1886
1887  bool isSugared() const { return false; }
1888  QualType desugar() const { return QualType(this, 0); }
1889
1890  bool isInteger() const {
1891    return getKind() >= Bool && getKind() <= Int128;
1892  }
1893
1894  bool isSignedInteger() const {
1895    return getKind() >= Char_S && getKind() <= Int128;
1896  }
1897
1898  bool isUnsignedInteger() const {
1899    return getKind() >= Bool && getKind() <= UInt128;
1900  }
1901
1902  bool isFloatingPoint() const {
1903    return getKind() >= Half && getKind() <= LongDouble;
1904  }
1905
1906  /// Determines whether the given kind corresponds to a placeholder type.
1907  static bool isPlaceholderTypeKind(Kind K) {
1908    return K >= Overload;
1909  }
1910
1911  /// Determines whether this type is a placeholder type, i.e. a type
1912  /// which cannot appear in arbitrary positions in a fully-formed
1913  /// expression.
1914  bool isPlaceholderType() const {
1915    return isPlaceholderTypeKind(getKind());
1916  }
1917
1918  /// Determines whether this type is a placeholder type other than
1919  /// Overload.  Most placeholder types require only syntactic
1920  /// information about their context in order to be resolved (e.g.
1921  /// whether it is a call expression), which means they can (and
1922  /// should) be resolved in an earlier "phase" of analysis.
1923  /// Overload expressions sometimes pick up further information
1924  /// from their context, like whether the context expects a
1925  /// specific function-pointer type, and so frequently need
1926  /// special treatment.
1927  bool isNonOverloadPlaceholderType() const {
1928    return getKind() > Overload;
1929  }
1930
1931  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1932};
1933
1934/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1935/// types (_Complex float etc) as well as the GCC integer complex extensions.
1936///
1937class ComplexType : public Type, public llvm::FoldingSetNode {
1938  QualType ElementType;
1939  ComplexType(QualType Element, QualType CanonicalPtr) :
1940    Type(Complex, CanonicalPtr, Element->isDependentType(),
1941         Element->isInstantiationDependentType(),
1942         Element->isVariablyModifiedType(),
1943         Element->containsUnexpandedParameterPack()),
1944    ElementType(Element) {
1945  }
1946  friend class ASTContext;  // ASTContext creates these.
1947
1948public:
1949  QualType getElementType() const { return ElementType; }
1950
1951  bool isSugared() const { return false; }
1952  QualType desugar() const { return QualType(this, 0); }
1953
1954  void Profile(llvm::FoldingSetNodeID &ID) {
1955    Profile(ID, getElementType());
1956  }
1957  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1958    ID.AddPointer(Element.getAsOpaquePtr());
1959  }
1960
1961  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1962};
1963
1964/// ParenType - Sugar for parentheses used when specifying types.
1965///
1966class ParenType : public Type, public llvm::FoldingSetNode {
1967  QualType Inner;
1968
1969  ParenType(QualType InnerType, QualType CanonType) :
1970    Type(Paren, CanonType, InnerType->isDependentType(),
1971         InnerType->isInstantiationDependentType(),
1972         InnerType->isVariablyModifiedType(),
1973         InnerType->containsUnexpandedParameterPack()),
1974    Inner(InnerType) {
1975  }
1976  friend class ASTContext;  // ASTContext creates these.
1977
1978public:
1979
1980  QualType getInnerType() const { return Inner; }
1981
1982  bool isSugared() const { return true; }
1983  QualType desugar() const { return getInnerType(); }
1984
1985  void Profile(llvm::FoldingSetNodeID &ID) {
1986    Profile(ID, getInnerType());
1987  }
1988  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1989    Inner.Profile(ID);
1990  }
1991
1992  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1993};
1994
1995/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1996///
1997class PointerType : public Type, public llvm::FoldingSetNode {
1998  QualType PointeeType;
1999
2000  PointerType(QualType Pointee, QualType CanonicalPtr) :
2001    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2002         Pointee->isInstantiationDependentType(),
2003         Pointee->isVariablyModifiedType(),
2004         Pointee->containsUnexpandedParameterPack()),
2005    PointeeType(Pointee) {
2006  }
2007  friend class ASTContext;  // ASTContext creates these.
2008
2009public:
2010
2011  QualType getPointeeType() const { return PointeeType; }
2012
2013  /// \brief Returns true if address spaces of pointers overlap.
2014  /// OpenCL v2.0 defines conversion rules for pointers to different
2015  /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2016  /// address spaces.
2017  /// CL1.1 or CL1.2:
2018  ///   address spaces overlap iff they are they same.
2019  /// CL2.0 adds:
2020  ///   __generic overlaps with any address space except for __constant.
2021  bool isAddressSpaceOverlapping(const PointerType &other) const {
2022    Qualifiers thisQuals = PointeeType.getQualifiers();
2023    Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2024    // Address spaces overlap if at least one of them is a superset of another
2025    return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2026           otherQuals.isAddressSpaceSupersetOf(thisQuals);
2027  }
2028
2029  bool isSugared() const { return false; }
2030  QualType desugar() const { return QualType(this, 0); }
2031
2032  void Profile(llvm::FoldingSetNodeID &ID) {
2033    Profile(ID, getPointeeType());
2034  }
2035  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2036    ID.AddPointer(Pointee.getAsOpaquePtr());
2037  }
2038
2039  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2040};
2041
2042/// \brief Represents a type which was implicitly adjusted by the semantic
2043/// engine for arbitrary reasons.  For example, array and function types can
2044/// decay, and function types can have their calling conventions adjusted.
2045class AdjustedType : public Type, public llvm::FoldingSetNode {
2046  QualType OriginalTy;
2047  QualType AdjustedTy;
2048
2049protected:
2050  AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2051               QualType CanonicalPtr)
2052      : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2053             OriginalTy->isInstantiationDependentType(),
2054             OriginalTy->isVariablyModifiedType(),
2055             OriginalTy->containsUnexpandedParameterPack()),
2056        OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2057
2058  friend class ASTContext;  // ASTContext creates these.
2059
2060public:
2061  QualType getOriginalType() const { return OriginalTy; }
2062  QualType getAdjustedType() const { return AdjustedTy; }
2063
2064  bool isSugared() const { return true; }
2065  QualType desugar() const { return AdjustedTy; }
2066
2067  void Profile(llvm::FoldingSetNodeID &ID) {
2068    Profile(ID, OriginalTy, AdjustedTy);
2069  }
2070  static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2071    ID.AddPointer(Orig.getAsOpaquePtr());
2072    ID.AddPointer(New.getAsOpaquePtr());
2073  }
2074
2075  static bool classof(const Type *T) {
2076    return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2077  }
2078};
2079
2080/// \brief Represents a pointer type decayed from an array or function type.
2081class DecayedType : public AdjustedType {
2082
2083  DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
2084      : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
2085    assert(isa<PointerType>(getAdjustedType()));
2086  }
2087
2088  friend class ASTContext;  // ASTContext creates these.
2089
2090public:
2091  QualType getDecayedType() const { return getAdjustedType(); }
2092
2093  QualType getPointeeType() const {
2094    return cast<PointerType>(getDecayedType())->getPointeeType();
2095  }
2096
2097  static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2098};
2099
2100/// BlockPointerType - pointer to a block type.
2101/// This type is to represent types syntactically represented as
2102/// "void (^)(int)", etc. Pointee is required to always be a function type.
2103///
2104class BlockPointerType : public Type, public llvm::FoldingSetNode {
2105  QualType PointeeType;  // Block is some kind of pointer type
2106  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2107    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2108         Pointee->isInstantiationDependentType(),
2109         Pointee->isVariablyModifiedType(),
2110         Pointee->containsUnexpandedParameterPack()),
2111    PointeeType(Pointee) {
2112  }
2113  friend class ASTContext;  // ASTContext creates these.
2114
2115public:
2116
2117  // Get the pointee type. Pointee is required to always be a function type.
2118  QualType getPointeeType() const { return PointeeType; }
2119
2120  bool isSugared() const { return false; }
2121  QualType desugar() const { return QualType(this, 0); }
2122
2123  void Profile(llvm::FoldingSetNodeID &ID) {
2124      Profile(ID, getPointeeType());
2125  }
2126  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2127      ID.AddPointer(Pointee.getAsOpaquePtr());
2128  }
2129
2130  static bool classof(const Type *T) {
2131    return T->getTypeClass() == BlockPointer;
2132  }
2133};
2134
2135/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2136///
2137class ReferenceType : public Type, public llvm::FoldingSetNode {
2138  QualType PointeeType;
2139
2140protected:
2141  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2142                bool SpelledAsLValue) :
2143    Type(tc, CanonicalRef, Referencee->isDependentType(),
2144         Referencee->isInstantiationDependentType(),
2145         Referencee->isVariablyModifiedType(),
2146         Referencee->containsUnexpandedParameterPack()),
2147    PointeeType(Referencee)
2148  {
2149    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2150    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2151  }
2152
2153public:
2154  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2155  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2156
2157  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2158  QualType getPointeeType() const {
2159    // FIXME: this might strip inner qualifiers; okay?
2160    const ReferenceType *T = this;
2161    while (T->isInnerRef())
2162      T = T->PointeeType->castAs<ReferenceType>();
2163    return T->PointeeType;
2164  }
2165
2166  void Profile(llvm::FoldingSetNodeID &ID) {
2167    Profile(ID, PointeeType, isSpelledAsLValue());
2168  }
2169  static void Profile(llvm::FoldingSetNodeID &ID,
2170                      QualType Referencee,
2171                      bool SpelledAsLValue) {
2172    ID.AddPointer(Referencee.getAsOpaquePtr());
2173    ID.AddBoolean(SpelledAsLValue);
2174  }
2175
2176  static bool classof(const Type *T) {
2177    return T->getTypeClass() == LValueReference ||
2178           T->getTypeClass() == RValueReference;
2179  }
2180};
2181
2182/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2183///
2184class LValueReferenceType : public ReferenceType {
2185  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2186                      bool SpelledAsLValue) :
2187    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2188  {}
2189  friend class ASTContext; // ASTContext creates these
2190public:
2191  bool isSugared() const { return false; }
2192  QualType desugar() const { return QualType(this, 0); }
2193
2194  static bool classof(const Type *T) {
2195    return T->getTypeClass() == LValueReference;
2196  }
2197};
2198
2199/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2200///
2201class RValueReferenceType : public ReferenceType {
2202  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2203    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2204  }
2205  friend class ASTContext; // ASTContext creates these
2206public:
2207  bool isSugared() const { return false; }
2208  QualType desugar() const { return QualType(this, 0); }
2209
2210  static bool classof(const Type *T) {
2211    return T->getTypeClass() == RValueReference;
2212  }
2213};
2214
2215/// MemberPointerType - C++ 8.3.3 - Pointers to members
2216///
2217class MemberPointerType : public Type, public llvm::FoldingSetNode {
2218  QualType PointeeType;
2219  /// The class of which the pointee is a member. Must ultimately be a
2220  /// RecordType, but could be a typedef or a template parameter too.
2221  const Type *Class;
2222
2223  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2224    Type(MemberPointer, CanonicalPtr,
2225         Cls->isDependentType() || Pointee->isDependentType(),
2226         (Cls->isInstantiationDependentType() ||
2227          Pointee->isInstantiationDependentType()),
2228         Pointee->isVariablyModifiedType(),
2229         (Cls->containsUnexpandedParameterPack() ||
2230          Pointee->containsUnexpandedParameterPack())),
2231    PointeeType(Pointee), Class(Cls) {
2232  }
2233  friend class ASTContext; // ASTContext creates these.
2234
2235public:
2236  QualType getPointeeType() const { return PointeeType; }
2237
2238  /// Returns true if the member type (i.e. the pointee type) is a
2239  /// function type rather than a data-member type.
2240  bool isMemberFunctionPointer() const {
2241    return PointeeType->isFunctionProtoType();
2242  }
2243
2244  /// Returns true if the member type (i.e. the pointee type) is a
2245  /// data type rather than a function type.
2246  bool isMemberDataPointer() const {
2247    return !PointeeType->isFunctionProtoType();
2248  }
2249
2250  const Type *getClass() const { return Class; }
2251  CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2252
2253  bool isSugared() const { return false; }
2254  QualType desugar() const { return QualType(this, 0); }
2255
2256  void Profile(llvm::FoldingSetNodeID &ID) {
2257    Profile(ID, getPointeeType(), getClass());
2258  }
2259  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2260                      const Type *Class) {
2261    ID.AddPointer(Pointee.getAsOpaquePtr());
2262    ID.AddPointer(Class);
2263  }
2264
2265  static bool classof(const Type *T) {
2266    return T->getTypeClass() == MemberPointer;
2267  }
2268};
2269
2270/// ArrayType - C99 6.7.5.2 - Array Declarators.
2271///
2272class ArrayType : public Type, public llvm::FoldingSetNode {
2273public:
2274  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2275  /// an array with a static size (e.g. int X[static 4]), or an array
2276  /// with a star size (e.g. int X[*]).
2277  /// 'static' is only allowed on function parameters.
2278  enum ArraySizeModifier {
2279    Normal, Static, Star
2280  };
2281private:
2282  /// ElementType - The element type of the array.
2283  QualType ElementType;
2284
2285protected:
2286  // C++ [temp.dep.type]p1:
2287  //   A type is dependent if it is...
2288  //     - an array type constructed from any dependent type or whose
2289  //       size is specified by a constant expression that is
2290  //       value-dependent,
2291  ArrayType(TypeClass tc, QualType et, QualType can,
2292            ArraySizeModifier sm, unsigned tq,
2293            bool ContainsUnexpandedParameterPack)
2294    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2295           et->isInstantiationDependentType() || tc == DependentSizedArray,
2296           (tc == VariableArray || et->isVariablyModifiedType()),
2297           ContainsUnexpandedParameterPack),
2298      ElementType(et) {
2299    ArrayTypeBits.IndexTypeQuals = tq;
2300    ArrayTypeBits.SizeModifier = sm;
2301  }
2302
2303  friend class ASTContext;  // ASTContext creates these.
2304
2305public:
2306  QualType getElementType() const { return ElementType; }
2307  ArraySizeModifier getSizeModifier() const {
2308    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2309  }
2310  Qualifiers getIndexTypeQualifiers() const {
2311    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2312  }
2313  unsigned getIndexTypeCVRQualifiers() const {
2314    return ArrayTypeBits.IndexTypeQuals;
2315  }
2316
2317  static bool classof(const Type *T) {
2318    return T->getTypeClass() == ConstantArray ||
2319           T->getTypeClass() == VariableArray ||
2320           T->getTypeClass() == IncompleteArray ||
2321           T->getTypeClass() == DependentSizedArray;
2322  }
2323};
2324
2325/// ConstantArrayType - This class represents the canonical version of
2326/// C arrays with a specified constant size.  For example, the canonical
2327/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2328/// type is 'int' and the size is 404.
2329class ConstantArrayType : public ArrayType {
2330  llvm::APInt Size; // Allows us to unique the type.
2331
2332  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2333                    ArraySizeModifier sm, unsigned tq)
2334    : ArrayType(ConstantArray, et, can, sm, tq,
2335                et->containsUnexpandedParameterPack()),
2336      Size(size) {}
2337protected:
2338  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2339                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2340    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2341      Size(size) {}
2342  friend class ASTContext;  // ASTContext creates these.
2343public:
2344  const llvm::APInt &getSize() const { return Size; }
2345  bool isSugared() const { return false; }
2346  QualType desugar() const { return QualType(this, 0); }
2347
2348
2349  /// \brief Determine the number of bits required to address a member of
2350  // an array with the given element type and number of elements.
2351  static unsigned getNumAddressingBits(ASTContext &Context,
2352                                       QualType ElementType,
2353                                       const llvm::APInt &NumElements);
2354
2355  /// \brief Determine the maximum number of active bits that an array's size
2356  /// can require, which limits the maximum size of the array.
2357  static unsigned getMaxSizeBits(ASTContext &Context);
2358
2359  void Profile(llvm::FoldingSetNodeID &ID) {
2360    Profile(ID, getElementType(), getSize(),
2361            getSizeModifier(), getIndexTypeCVRQualifiers());
2362  }
2363  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2364                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2365                      unsigned TypeQuals) {
2366    ID.AddPointer(ET.getAsOpaquePtr());
2367    ID.AddInteger(ArraySize.getZExtValue());
2368    ID.AddInteger(SizeMod);
2369    ID.AddInteger(TypeQuals);
2370  }
2371  static bool classof(const Type *T) {
2372    return T->getTypeClass() == ConstantArray;
2373  }
2374};
2375
2376/// IncompleteArrayType - This class represents C arrays with an unspecified
2377/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2378/// type is 'int' and the size is unspecified.
2379class IncompleteArrayType : public ArrayType {
2380
2381  IncompleteArrayType(QualType et, QualType can,
2382                      ArraySizeModifier sm, unsigned tq)
2383    : ArrayType(IncompleteArray, et, can, sm, tq,
2384                et->containsUnexpandedParameterPack()) {}
2385  friend class ASTContext;  // ASTContext creates these.
2386public:
2387  bool isSugared() const { return false; }
2388  QualType desugar() const { return QualType(this, 0); }
2389
2390  static bool classof(const Type *T) {
2391    return T->getTypeClass() == IncompleteArray;
2392  }
2393
2394  friend class StmtIteratorBase;
2395
2396  void Profile(llvm::FoldingSetNodeID &ID) {
2397    Profile(ID, getElementType(), getSizeModifier(),
2398            getIndexTypeCVRQualifiers());
2399  }
2400
2401  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2402                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2403    ID.AddPointer(ET.getAsOpaquePtr());
2404    ID.AddInteger(SizeMod);
2405    ID.AddInteger(TypeQuals);
2406  }
2407};
2408
2409/// VariableArrayType - This class represents C arrays with a specified size
2410/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2411/// Since the size expression is an arbitrary expression, we store it as such.
2412///
2413/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2414/// should not be: two lexically equivalent variable array types could mean
2415/// different things, for example, these variables do not have the same type
2416/// dynamically:
2417///
2418/// void foo(int x) {
2419///   int Y[x];
2420///   ++x;
2421///   int Z[x];
2422/// }
2423///
2424class VariableArrayType : public ArrayType {
2425  /// SizeExpr - An assignment expression. VLA's are only permitted within
2426  /// a function block.
2427  Stmt *SizeExpr;
2428  /// Brackets - The left and right array brackets.
2429  SourceRange Brackets;
2430
2431  VariableArrayType(QualType et, QualType can, Expr *e,
2432                    ArraySizeModifier sm, unsigned tq,
2433                    SourceRange brackets)
2434    : ArrayType(VariableArray, et, can, sm, tq,
2435                et->containsUnexpandedParameterPack()),
2436      SizeExpr((Stmt*) e), Brackets(brackets) {}
2437  friend class ASTContext;  // ASTContext creates these.
2438
2439public:
2440  Expr *getSizeExpr() const {
2441    // We use C-style casts instead of cast<> here because we do not wish
2442    // to have a dependency of Type.h on Stmt.h/Expr.h.
2443    return (Expr*) SizeExpr;
2444  }
2445  SourceRange getBracketsRange() const { return Brackets; }
2446  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2447  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2448
2449  bool isSugared() const { return false; }
2450  QualType desugar() const { return QualType(this, 0); }
2451
2452  static bool classof(const Type *T) {
2453    return T->getTypeClass() == VariableArray;
2454  }
2455
2456  friend class StmtIteratorBase;
2457
2458  void Profile(llvm::FoldingSetNodeID &ID) {
2459    llvm_unreachable("Cannot unique VariableArrayTypes.");
2460  }
2461};
2462
2463/// DependentSizedArrayType - This type represents an array type in
2464/// C++ whose size is a value-dependent expression. For example:
2465///
2466/// \code
2467/// template<typename T, int Size>
2468/// class array {
2469///   T data[Size];
2470/// };
2471/// \endcode
2472///
2473/// For these types, we won't actually know what the array bound is
2474/// until template instantiation occurs, at which point this will
2475/// become either a ConstantArrayType or a VariableArrayType.
2476class DependentSizedArrayType : public ArrayType {
2477  const ASTContext &Context;
2478
2479  /// \brief An assignment expression that will instantiate to the
2480  /// size of the array.
2481  ///
2482  /// The expression itself might be NULL, in which case the array
2483  /// type will have its size deduced from an initializer.
2484  Stmt *SizeExpr;
2485
2486  /// Brackets - The left and right array brackets.
2487  SourceRange Brackets;
2488
2489  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2490                          Expr *e, ArraySizeModifier sm, unsigned tq,
2491                          SourceRange brackets);
2492
2493  friend class ASTContext;  // ASTContext creates these.
2494
2495public:
2496  Expr *getSizeExpr() const {
2497    // We use C-style casts instead of cast<> here because we do not wish
2498    // to have a dependency of Type.h on Stmt.h/Expr.h.
2499    return (Expr*) SizeExpr;
2500  }
2501  SourceRange getBracketsRange() const { return Brackets; }
2502  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2503  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2504
2505  bool isSugared() const { return false; }
2506  QualType desugar() const { return QualType(this, 0); }
2507
2508  static bool classof(const Type *T) {
2509    return T->getTypeClass() == DependentSizedArray;
2510  }
2511
2512  friend class StmtIteratorBase;
2513
2514
2515  void Profile(llvm::FoldingSetNodeID &ID) {
2516    Profile(ID, Context, getElementType(),
2517            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2518  }
2519
2520  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2521                      QualType ET, ArraySizeModifier SizeMod,
2522                      unsigned TypeQuals, Expr *E);
2523};
2524
2525/// DependentSizedExtVectorType - This type represent an extended vector type
2526/// where either the type or size is dependent. For example:
2527/// @code
2528/// template<typename T, int Size>
2529/// class vector {
2530///   typedef T __attribute__((ext_vector_type(Size))) type;
2531/// }
2532/// @endcode
2533class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2534  const ASTContext &Context;
2535  Expr *SizeExpr;
2536  /// ElementType - The element type of the array.
2537  QualType ElementType;
2538  SourceLocation loc;
2539
2540  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2541                              QualType can, Expr *SizeExpr, SourceLocation loc);
2542
2543  friend class ASTContext;
2544
2545public:
2546  Expr *getSizeExpr() const { return SizeExpr; }
2547  QualType getElementType() const { return ElementType; }
2548  SourceLocation getAttributeLoc() const { return loc; }
2549
2550  bool isSugared() const { return false; }
2551  QualType desugar() const { return QualType(this, 0); }
2552
2553  static bool classof(const Type *T) {
2554    return T->getTypeClass() == DependentSizedExtVector;
2555  }
2556
2557  void Profile(llvm::FoldingSetNodeID &ID) {
2558    Profile(ID, Context, getElementType(), getSizeExpr());
2559  }
2560
2561  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2562                      QualType ElementType, Expr *SizeExpr);
2563};
2564
2565
2566/// VectorType - GCC generic vector type. This type is created using
2567/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2568/// bytes; or from an Altivec __vector or vector declaration.
2569/// Since the constructor takes the number of vector elements, the
2570/// client is responsible for converting the size into the number of elements.
2571class VectorType : public Type, public llvm::FoldingSetNode {
2572public:
2573  enum VectorKind {
2574    GenericVector,  // not a target-specific vector type
2575    AltiVecVector,  // is AltiVec vector
2576    AltiVecPixel,   // is AltiVec 'vector Pixel'
2577    AltiVecBool,    // is AltiVec 'vector bool ...'
2578    NeonVector,     // is ARM Neon vector
2579    NeonPolyVector  // is ARM Neon polynomial vector
2580  };
2581protected:
2582  /// ElementType - The element type of the vector.
2583  QualType ElementType;
2584
2585  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2586             VectorKind vecKind);
2587
2588  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2589             QualType canonType, VectorKind vecKind);
2590
2591  friend class ASTContext;  // ASTContext creates these.
2592
2593public:
2594
2595  QualType getElementType() const { return ElementType; }
2596  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2597  static bool isVectorSizeTooLarge(unsigned NumElements) {
2598    return NumElements > VectorTypeBitfields::MaxNumElements;
2599  }
2600
2601  bool isSugared() const { return false; }
2602  QualType desugar() const { return QualType(this, 0); }
2603
2604  VectorKind getVectorKind() const {
2605    return VectorKind(VectorTypeBits.VecKind);
2606  }
2607
2608  void Profile(llvm::FoldingSetNodeID &ID) {
2609    Profile(ID, getElementType(), getNumElements(),
2610            getTypeClass(), getVectorKind());
2611  }
2612  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2613                      unsigned NumElements, TypeClass TypeClass,
2614                      VectorKind VecKind) {
2615    ID.AddPointer(ElementType.getAsOpaquePtr());
2616    ID.AddInteger(NumElements);
2617    ID.AddInteger(TypeClass);
2618    ID.AddInteger(VecKind);
2619  }
2620
2621  static bool classof(const Type *T) {
2622    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2623  }
2624};
2625
2626/// ExtVectorType - Extended vector type. This type is created using
2627/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2628/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2629/// class enables syntactic extensions, like Vector Components for accessing
2630/// points, colors, and textures (modeled after OpenGL Shading Language).
2631class ExtVectorType : public VectorType {
2632  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2633    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2634  friend class ASTContext;  // ASTContext creates these.
2635public:
2636  static int getPointAccessorIdx(char c) {
2637    switch (c) {
2638    default: return -1;
2639    case 'x': case 'r': return 0;
2640    case 'y': case 'g': return 1;
2641    case 'z': case 'b': return 2;
2642    case 'w': case 'a': return 3;
2643    }
2644  }
2645  static int getNumericAccessorIdx(char c) {
2646    switch (c) {
2647      default: return -1;
2648      case '0': return 0;
2649      case '1': return 1;
2650      case '2': return 2;
2651      case '3': return 3;
2652      case '4': return 4;
2653      case '5': return 5;
2654      case '6': return 6;
2655      case '7': return 7;
2656      case '8': return 8;
2657      case '9': return 9;
2658      case 'A':
2659      case 'a': return 10;
2660      case 'B':
2661      case 'b': return 11;
2662      case 'C':
2663      case 'c': return 12;
2664      case 'D':
2665      case 'd': return 13;
2666      case 'E':
2667      case 'e': return 14;
2668      case 'F':
2669      case 'f': return 15;
2670    }
2671  }
2672
2673  static int getAccessorIdx(char c) {
2674    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2675    return getNumericAccessorIdx(c);
2676  }
2677
2678  bool isAccessorWithinNumElements(char c) const {
2679    if (int idx = getAccessorIdx(c)+1)
2680      return unsigned(idx-1) < getNumElements();
2681    return false;
2682  }
2683  bool isSugared() const { return false; }
2684  QualType desugar() const { return QualType(this, 0); }
2685
2686  static bool classof(const Type *T) {
2687    return T->getTypeClass() == ExtVector;
2688  }
2689};
2690
2691/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2692/// class of FunctionNoProtoType and FunctionProtoType.
2693///
2694class FunctionType : public Type {
2695  // The type returned by the function.
2696  QualType ResultType;
2697
2698 public:
2699  /// ExtInfo - A class which abstracts out some details necessary for
2700  /// making a call.
2701  ///
2702  /// It is not actually used directly for storing this information in
2703  /// a FunctionType, although FunctionType does currently use the
2704  /// same bit-pattern.
2705  ///
2706  // If you add a field (say Foo), other than the obvious places (both,
2707  // constructors, compile failures), what you need to update is
2708  // * Operator==
2709  // * getFoo
2710  // * withFoo
2711  // * functionType. Add Foo, getFoo.
2712  // * ASTContext::getFooType
2713  // * ASTContext::mergeFunctionTypes
2714  // * FunctionNoProtoType::Profile
2715  // * FunctionProtoType::Profile
2716  // * TypePrinter::PrintFunctionProto
2717  // * AST read and write
2718  // * Codegen
2719  class ExtInfo {
2720    // Feel free to rearrange or add bits, but if you go over 9,
2721    // you'll need to adjust both the Bits field below and
2722    // Type::FunctionTypeBitfields.
2723
2724    //   |  CC  |noreturn|produces|regparm|
2725    //   |0 .. 3|   4    |    5   | 6 .. 8|
2726    //
2727    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2728    enum { CallConvMask = 0xF };
2729    enum { NoReturnMask = 0x10 };
2730    enum { ProducesResultMask = 0x20 };
2731    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2732           RegParmOffset = 6 }; // Assumed to be the last field
2733
2734    uint16_t Bits;
2735
2736    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2737
2738    friend class FunctionType;
2739
2740   public:
2741    // Constructor with no defaults. Use this when you know that you
2742    // have all the elements (when reading an AST file for example).
2743    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2744            bool producesResult) {
2745      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2746      Bits = ((unsigned) cc) |
2747             (noReturn ? NoReturnMask : 0) |
2748             (producesResult ? ProducesResultMask : 0) |
2749             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2750    }
2751
2752    // Constructor with all defaults. Use when for example creating a
2753    // function know to use defaults.
2754    ExtInfo() : Bits(CC_C) { }
2755
2756    // Constructor with just the calling convention, which is an important part
2757    // of the canonical type.
2758    ExtInfo(CallingConv CC) : Bits(CC) { }
2759
2760    bool getNoReturn() const { return Bits & NoReturnMask; }
2761    bool getProducesResult() const { return Bits & ProducesResultMask; }
2762    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2763    unsigned getRegParm() const {
2764      unsigned RegParm = Bits >> RegParmOffset;
2765      if (RegParm > 0)
2766        --RegParm;
2767      return RegParm;
2768    }
2769    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2770
2771    bool operator==(ExtInfo Other) const {
2772      return Bits == Other.Bits;
2773    }
2774    bool operator!=(ExtInfo Other) const {
2775      return Bits != Other.Bits;
2776    }
2777
2778    // Note that we don't have setters. That is by design, use
2779    // the following with methods instead of mutating these objects.
2780
2781    ExtInfo withNoReturn(bool noReturn) const {
2782      if (noReturn)
2783        return ExtInfo(Bits | NoReturnMask);
2784      else
2785        return ExtInfo(Bits & ~NoReturnMask);
2786    }
2787
2788    ExtInfo withProducesResult(bool producesResult) const {
2789      if (producesResult)
2790        return ExtInfo(Bits | ProducesResultMask);
2791      else
2792        return ExtInfo(Bits & ~ProducesResultMask);
2793    }
2794
2795    ExtInfo withRegParm(unsigned RegParm) const {
2796      assert(RegParm < 7 && "Invalid regparm value");
2797      return ExtInfo((Bits & ~RegParmMask) |
2798                     ((RegParm + 1) << RegParmOffset));
2799    }
2800
2801    ExtInfo withCallingConv(CallingConv cc) const {
2802      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2803    }
2804
2805    void Profile(llvm::FoldingSetNodeID &ID) const {
2806      ID.AddInteger(Bits);
2807    }
2808  };
2809
2810protected:
2811  FunctionType(TypeClass tc, QualType res,
2812               QualType Canonical, bool Dependent,
2813               bool InstantiationDependent,
2814               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2815               ExtInfo Info)
2816    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2817           ContainsUnexpandedParameterPack),
2818      ResultType(res) {
2819    FunctionTypeBits.ExtInfo = Info.Bits;
2820  }
2821  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2822
2823public:
2824  QualType getReturnType() const { return ResultType; }
2825
2826  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2827  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2828  /// \brief Determine whether this function type includes the GNU noreturn
2829  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2830  /// type.
2831  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2832  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2833  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2834  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2835  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2836  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2837
2838  /// \brief Determine the type of an expression that calls a function of
2839  /// this type.
2840  QualType getCallResultType(ASTContext &Context) const {
2841    return getReturnType().getNonLValueExprType(Context);
2842  }
2843
2844  static StringRef getNameForCallConv(CallingConv CC);
2845
2846  static bool classof(const Type *T) {
2847    return T->getTypeClass() == FunctionNoProto ||
2848           T->getTypeClass() == FunctionProto;
2849  }
2850};
2851
2852/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2853/// no information available about its arguments.
2854class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2855  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2856    : FunctionType(FunctionNoProto, Result, Canonical,
2857                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2858                   Result->isVariablyModifiedType(),
2859                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2860
2861  friend class ASTContext;  // ASTContext creates these.
2862
2863public:
2864  // No additional state past what FunctionType provides.
2865
2866  bool isSugared() const { return false; }
2867  QualType desugar() const { return QualType(this, 0); }
2868
2869  void Profile(llvm::FoldingSetNodeID &ID) {
2870    Profile(ID, getReturnType(), getExtInfo());
2871  }
2872  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2873                      ExtInfo Info) {
2874    Info.Profile(ID);
2875    ID.AddPointer(ResultType.getAsOpaquePtr());
2876  }
2877
2878  static bool classof(const Type *T) {
2879    return T->getTypeClass() == FunctionNoProto;
2880  }
2881};
2882
2883/// FunctionProtoType - Represents a prototype with parameter type info, e.g.
2884/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2885/// parameters, not as having a single void parameter. Such a type can have an
2886/// exception specification, but this specification is not part of the canonical
2887/// type.
2888class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2889public:
2890  struct ExceptionSpecInfo {
2891    ExceptionSpecInfo()
2892        : Type(EST_None), NoexceptExpr(nullptr),
2893          SourceDecl(nullptr), SourceTemplate(nullptr) {}
2894
2895    ExceptionSpecInfo(ExceptionSpecificationType EST)
2896        : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
2897          SourceTemplate(nullptr) {}
2898
2899    /// The kind of exception specification this is.
2900    ExceptionSpecificationType Type;
2901    /// Explicitly-specified list of exception types.
2902    ArrayRef<QualType> Exceptions;
2903    /// Noexcept expression, if this is EST_ComputedNoexcept.
2904    Expr *NoexceptExpr;
2905    /// The function whose exception specification this is, for
2906    /// EST_Unevaluated and EST_Uninstantiated.
2907    FunctionDecl *SourceDecl;
2908    /// The function template whose exception specification this is instantiated
2909    /// from, for EST_Uninstantiated.
2910    FunctionDecl *SourceTemplate;
2911  };
2912
2913  /// ExtProtoInfo - Extra information about a function prototype.
2914  struct ExtProtoInfo {
2915    ExtProtoInfo()
2916        : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2917          RefQualifier(RQ_None), ConsumedParameters(nullptr) {}
2918
2919    ExtProtoInfo(CallingConv CC)
2920        : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2921          RefQualifier(RQ_None), ConsumedParameters(nullptr) {}
2922
2923    ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
2924      ExtProtoInfo Result(*this);
2925      Result.ExceptionSpec = O;
2926      return Result;
2927    }
2928
2929    FunctionType::ExtInfo ExtInfo;
2930    bool Variadic : 1;
2931    bool HasTrailingReturn : 1;
2932    unsigned char TypeQuals;
2933    RefQualifierKind RefQualifier;
2934    ExceptionSpecInfo ExceptionSpec;
2935    const bool *ConsumedParameters;
2936  };
2937
2938private:
2939  /// \brief Determine whether there are any argument types that
2940  /// contain an unexpanded parameter pack.
2941  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2942                                                 unsigned numArgs) {
2943    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2944      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2945        return true;
2946
2947    return false;
2948  }
2949
2950  FunctionProtoType(QualType result, ArrayRef<QualType> params,
2951                    QualType canonical, const ExtProtoInfo &epi);
2952
2953  /// The number of parameters this function has, not counting '...'.
2954  unsigned NumParams : 15;
2955
2956  /// NumExceptions - The number of types in the exception spec, if any.
2957  unsigned NumExceptions : 9;
2958
2959  /// ExceptionSpecType - The type of exception specification this function has.
2960  unsigned ExceptionSpecType : 4;
2961
2962  /// HasAnyConsumedParams - Whether this function has any consumed parameters.
2963  unsigned HasAnyConsumedParams : 1;
2964
2965  /// Variadic - Whether the function is variadic.
2966  unsigned Variadic : 1;
2967
2968  /// HasTrailingReturn - Whether this function has a trailing return type.
2969  unsigned HasTrailingReturn : 1;
2970
2971  // ParamInfo - There is an variable size array after the class in memory that
2972  // holds the parameter types.
2973
2974  // Exceptions - There is another variable size array after ArgInfo that
2975  // holds the exception types.
2976
2977  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2978  // to the expression in the noexcept() specifier.
2979
2980  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2981  // be a pair of FunctionDecl* pointing to the function which should be used to
2982  // instantiate this function type's exception specification, and the function
2983  // from which it should be instantiated.
2984
2985  // ConsumedParameters - A variable size array, following Exceptions
2986  // and of length NumParams, holding flags indicating which parameters
2987  // are consumed.  This only appears if HasAnyConsumedParams is true.
2988
2989  friend class ASTContext;  // ASTContext creates these.
2990
2991  const bool *getConsumedParamsBuffer() const {
2992    assert(hasAnyConsumedParams());
2993
2994    // Find the end of the exceptions.
2995    Expr *const *eh_end = reinterpret_cast<Expr *const *>(param_type_end());
2996    if (getExceptionSpecType() != EST_ComputedNoexcept)
2997      eh_end += NumExceptions;
2998    else
2999      eh_end += 1; // NoexceptExpr
3000
3001    return reinterpret_cast<const bool*>(eh_end);
3002  }
3003
3004public:
3005  unsigned getNumParams() const { return NumParams; }
3006  QualType getParamType(unsigned i) const {
3007    assert(i < NumParams && "invalid parameter index");
3008    return param_type_begin()[i];
3009  }
3010  ArrayRef<QualType> getParamTypes() const {
3011    return llvm::makeArrayRef(param_type_begin(), param_type_end());
3012  }
3013
3014  ExtProtoInfo getExtProtoInfo() const {
3015    ExtProtoInfo EPI;
3016    EPI.ExtInfo = getExtInfo();
3017    EPI.Variadic = isVariadic();
3018    EPI.HasTrailingReturn = hasTrailingReturn();
3019    EPI.ExceptionSpec.Type = getExceptionSpecType();
3020    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
3021    EPI.RefQualifier = getRefQualifier();
3022    if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3023      EPI.ExceptionSpec.Exceptions = exceptions();
3024    } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3025      EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3026    } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3027      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3028      EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3029    } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3030      EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3031    }
3032    if (hasAnyConsumedParams())
3033      EPI.ConsumedParameters = getConsumedParamsBuffer();
3034    return EPI;
3035  }
3036
3037  /// \brief Get the kind of exception specification on this function.
3038  ExceptionSpecificationType getExceptionSpecType() const {
3039    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
3040  }
3041  /// \brief Return whether this function has any kind of exception spec.
3042  bool hasExceptionSpec() const {
3043    return getExceptionSpecType() != EST_None;
3044  }
3045  /// \brief Return whether this function has a dynamic (throw) exception spec.
3046  bool hasDynamicExceptionSpec() const {
3047    return isDynamicExceptionSpec(getExceptionSpecType());
3048  }
3049  /// \brief Return whether this function has a noexcept exception spec.
3050  bool hasNoexceptExceptionSpec() const {
3051    return isNoexceptExceptionSpec(getExceptionSpecType());
3052  }
3053  /// \brief Return whether this function has a dependent exception spec.
3054  bool hasDependentExceptionSpec() const;
3055  /// \brief Result type of getNoexceptSpec().
3056  enum NoexceptResult {
3057    NR_NoNoexcept,  ///< There is no noexcept specifier.
3058    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
3059    NR_Dependent,   ///< The noexcept specifier is dependent.
3060    NR_Throw,       ///< The noexcept specifier evaluates to false.
3061    NR_Nothrow      ///< The noexcept specifier evaluates to true.
3062  };
3063  /// \brief Get the meaning of the noexcept spec on this function, if any.
3064  NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
3065  unsigned getNumExceptions() const { return NumExceptions; }
3066  QualType getExceptionType(unsigned i) const {
3067    assert(i < NumExceptions && "Invalid exception number!");
3068    return exception_begin()[i];
3069  }
3070  Expr *getNoexceptExpr() const {
3071    if (getExceptionSpecType() != EST_ComputedNoexcept)
3072      return nullptr;
3073    // NoexceptExpr sits where the arguments end.
3074    return *reinterpret_cast<Expr *const *>(param_type_end());
3075  }
3076  /// \brief If this function type has an exception specification which hasn't
3077  /// been determined yet (either because it has not been evaluated or because
3078  /// it has not been instantiated), this is the function whose exception
3079  /// specification is represented by this type.
3080  FunctionDecl *getExceptionSpecDecl() const {
3081    if (getExceptionSpecType() != EST_Uninstantiated &&
3082        getExceptionSpecType() != EST_Unevaluated)
3083      return nullptr;
3084    return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
3085  }
3086  /// \brief If this function type has an uninstantiated exception
3087  /// specification, this is the function whose exception specification
3088  /// should be instantiated to find the exception specification for
3089  /// this type.
3090  FunctionDecl *getExceptionSpecTemplate() const {
3091    if (getExceptionSpecType() != EST_Uninstantiated)
3092      return nullptr;
3093    return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
3094  }
3095  /// \brief Determine whether this function type has a non-throwing exception
3096  /// specification. If this depends on template arguments, returns
3097  /// \c ResultIfDependent.
3098  bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
3099
3100  bool isVariadic() const { return Variadic; }
3101
3102  /// \brief Determines whether this function prototype contains a
3103  /// parameter pack at the end.
3104  ///
3105  /// A function template whose last parameter is a parameter pack can be
3106  /// called with an arbitrary number of arguments, much like a variadic
3107  /// function.
3108  bool isTemplateVariadic() const;
3109
3110  bool hasTrailingReturn() const { return HasTrailingReturn; }
3111
3112  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
3113
3114
3115  /// \brief Retrieve the ref-qualifier associated with this function type.
3116  RefQualifierKind getRefQualifier() const {
3117    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
3118  }
3119
3120  typedef const QualType *param_type_iterator;
3121  typedef llvm::iterator_range<param_type_iterator> param_type_range;
3122
3123  param_type_range param_types() const {
3124    return param_type_range(param_type_begin(), param_type_end());
3125  }
3126  param_type_iterator param_type_begin() const {
3127    return reinterpret_cast<const QualType *>(this+1);
3128  }
3129  param_type_iterator param_type_end() const {
3130    return param_type_begin() + NumParams;
3131  }
3132
3133  typedef const QualType *exception_iterator;
3134
3135  ArrayRef<QualType> exceptions() const {
3136    return llvm::makeArrayRef(exception_begin(), exception_end());
3137  }
3138  exception_iterator exception_begin() const {
3139    // exceptions begin where arguments end
3140    return param_type_end();
3141  }
3142  exception_iterator exception_end() const {
3143    if (getExceptionSpecType() != EST_Dynamic)
3144      return exception_begin();
3145    return exception_begin() + NumExceptions;
3146  }
3147
3148  bool hasAnyConsumedParams() const { return HasAnyConsumedParams; }
3149  bool isParamConsumed(unsigned I) const {
3150    assert(I < getNumParams() && "parameter index out of range");
3151    if (hasAnyConsumedParams())
3152      return getConsumedParamsBuffer()[I];
3153    return false;
3154  }
3155
3156  bool isSugared() const { return false; }
3157  QualType desugar() const { return QualType(this, 0); }
3158
3159  void printExceptionSpecification(raw_ostream &OS,
3160                                   const PrintingPolicy &Policy) const;
3161
3162  static bool classof(const Type *T) {
3163    return T->getTypeClass() == FunctionProto;
3164  }
3165
3166  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3167  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3168                      param_type_iterator ArgTys, unsigned NumArgs,
3169                      const ExtProtoInfo &EPI, const ASTContext &Context);
3170};
3171
3172
3173/// \brief Represents the dependent type named by a dependently-scoped
3174/// typename using declaration, e.g.
3175///   using typename Base<T>::foo;
3176/// Template instantiation turns these into the underlying type.
3177class UnresolvedUsingType : public Type {
3178  UnresolvedUsingTypenameDecl *Decl;
3179
3180  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3181    : Type(UnresolvedUsing, QualType(), true, true, false,
3182           /*ContainsUnexpandedParameterPack=*/false),
3183      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3184  friend class ASTContext; // ASTContext creates these.
3185public:
3186
3187  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3188
3189  bool isSugared() const { return false; }
3190  QualType desugar() const { return QualType(this, 0); }
3191
3192  static bool classof(const Type *T) {
3193    return T->getTypeClass() == UnresolvedUsing;
3194  }
3195
3196  void Profile(llvm::FoldingSetNodeID &ID) {
3197    return Profile(ID, Decl);
3198  }
3199  static void Profile(llvm::FoldingSetNodeID &ID,
3200                      UnresolvedUsingTypenameDecl *D) {
3201    ID.AddPointer(D);
3202  }
3203};
3204
3205
3206class TypedefType : public Type {
3207  TypedefNameDecl *Decl;
3208protected:
3209  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3210    : Type(tc, can, can->isDependentType(),
3211           can->isInstantiationDependentType(),
3212           can->isVariablyModifiedType(),
3213           /*ContainsUnexpandedParameterPack=*/false),
3214      Decl(const_cast<TypedefNameDecl*>(D)) {
3215    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3216  }
3217  friend class ASTContext;  // ASTContext creates these.
3218public:
3219
3220  TypedefNameDecl *getDecl() const { return Decl; }
3221
3222  bool isSugared() const { return true; }
3223  QualType desugar() const;
3224
3225  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3226};
3227
3228/// TypeOfExprType (GCC extension).
3229class TypeOfExprType : public Type {
3230  Expr *TOExpr;
3231
3232protected:
3233  TypeOfExprType(Expr *E, QualType can = QualType());
3234  friend class ASTContext;  // ASTContext creates these.
3235public:
3236  Expr *getUnderlyingExpr() const { return TOExpr; }
3237
3238  /// \brief Remove a single level of sugar.
3239  QualType desugar() const;
3240
3241  /// \brief Returns whether this type directly provides sugar.
3242  bool isSugared() const;
3243
3244  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3245};
3246
3247/// \brief Internal representation of canonical, dependent
3248/// typeof(expr) types.
3249///
3250/// This class is used internally by the ASTContext to manage
3251/// canonical, dependent types, only. Clients will only see instances
3252/// of this class via TypeOfExprType nodes.
3253class DependentTypeOfExprType
3254  : public TypeOfExprType, public llvm::FoldingSetNode {
3255  const ASTContext &Context;
3256
3257public:
3258  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3259    : TypeOfExprType(E), Context(Context) { }
3260
3261  void Profile(llvm::FoldingSetNodeID &ID) {
3262    Profile(ID, Context, getUnderlyingExpr());
3263  }
3264
3265  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3266                      Expr *E);
3267};
3268
3269/// TypeOfType (GCC extension).
3270class TypeOfType : public Type {
3271  QualType TOType;
3272  TypeOfType(QualType T, QualType can)
3273    : Type(TypeOf, can, T->isDependentType(),
3274           T->isInstantiationDependentType(),
3275           T->isVariablyModifiedType(),
3276           T->containsUnexpandedParameterPack()),
3277      TOType(T) {
3278    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3279  }
3280  friend class ASTContext;  // ASTContext creates these.
3281public:
3282  QualType getUnderlyingType() const { return TOType; }
3283
3284  /// \brief Remove a single level of sugar.
3285  QualType desugar() const { return getUnderlyingType(); }
3286
3287  /// \brief Returns whether this type directly provides sugar.
3288  bool isSugared() const { return true; }
3289
3290  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3291};
3292
3293/// DecltypeType (C++0x)
3294class DecltypeType : public Type {
3295  Expr *E;
3296  QualType UnderlyingType;
3297
3298protected:
3299  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3300  friend class ASTContext;  // ASTContext creates these.
3301public:
3302  Expr *getUnderlyingExpr() const { return E; }
3303  QualType getUnderlyingType() const { return UnderlyingType; }
3304
3305  /// \brief Remove a single level of sugar.
3306  QualType desugar() const;
3307
3308  /// \brief Returns whether this type directly provides sugar.
3309  bool isSugared() const;
3310
3311  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3312};
3313
3314/// \brief Internal representation of canonical, dependent
3315/// decltype(expr) types.
3316///
3317/// This class is used internally by the ASTContext to manage
3318/// canonical, dependent types, only. Clients will only see instances
3319/// of this class via DecltypeType nodes.
3320class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3321  const ASTContext &Context;
3322
3323public:
3324  DependentDecltypeType(const ASTContext &Context, Expr *E);
3325
3326  void Profile(llvm::FoldingSetNodeID &ID) {
3327    Profile(ID, Context, getUnderlyingExpr());
3328  }
3329
3330  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3331                      Expr *E);
3332};
3333
3334/// \brief A unary type transform, which is a type constructed from another
3335class UnaryTransformType : public Type {
3336public:
3337  enum UTTKind {
3338    EnumUnderlyingType
3339  };
3340
3341private:
3342  /// The untransformed type.
3343  QualType BaseType;
3344  /// The transformed type if not dependent, otherwise the same as BaseType.
3345  QualType UnderlyingType;
3346
3347  UTTKind UKind;
3348protected:
3349  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3350                     QualType CanonicalTy);
3351  friend class ASTContext;
3352public:
3353  bool isSugared() const { return !isDependentType(); }
3354  QualType desugar() const { return UnderlyingType; }
3355
3356  QualType getUnderlyingType() const { return UnderlyingType; }
3357  QualType getBaseType() const { return BaseType; }
3358
3359  UTTKind getUTTKind() const { return UKind; }
3360
3361  static bool classof(const Type *T) {
3362    return T->getTypeClass() == UnaryTransform;
3363  }
3364};
3365
3366class TagType : public Type {
3367  /// Stores the TagDecl associated with this type. The decl may point to any
3368  /// TagDecl that declares the entity.
3369  TagDecl * decl;
3370
3371  friend class ASTReader;
3372
3373protected:
3374  TagType(TypeClass TC, const TagDecl *D, QualType can);
3375
3376public:
3377  TagDecl *getDecl() const;
3378
3379  /// @brief Determines whether this type is in the process of being
3380  /// defined.
3381  bool isBeingDefined() const;
3382
3383  static bool classof(const Type *T) {
3384    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3385  }
3386};
3387
3388/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3389/// to detect TagType objects of structs/unions/classes.
3390class RecordType : public TagType {
3391protected:
3392  explicit RecordType(const RecordDecl *D)
3393    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3394  explicit RecordType(TypeClass TC, RecordDecl *D)
3395    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3396  friend class ASTContext;   // ASTContext creates these.
3397public:
3398
3399  RecordDecl *getDecl() const {
3400    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3401  }
3402
3403  // FIXME: This predicate is a helper to QualType/Type. It needs to
3404  // recursively check all fields for const-ness. If any field is declared
3405  // const, it needs to return false.
3406  bool hasConstFields() const { return false; }
3407
3408  bool isSugared() const { return false; }
3409  QualType desugar() const { return QualType(this, 0); }
3410
3411  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3412};
3413
3414/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3415/// to detect TagType objects of enums.
3416class EnumType : public TagType {
3417  explicit EnumType(const EnumDecl *D)
3418    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3419  friend class ASTContext;   // ASTContext creates these.
3420public:
3421
3422  EnumDecl *getDecl() const {
3423    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3424  }
3425
3426  bool isSugared() const { return false; }
3427  QualType desugar() const { return QualType(this, 0); }
3428
3429  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3430};
3431
3432/// AttributedType - An attributed type is a type to which a type
3433/// attribute has been applied.  The "modified type" is the
3434/// fully-sugared type to which the attributed type was applied;
3435/// generally it is not canonically equivalent to the attributed type.
3436/// The "equivalent type" is the minimally-desugared type which the
3437/// type is canonically equivalent to.
3438///
3439/// For example, in the following attributed type:
3440///     int32_t __attribute__((vector_size(16)))
3441///   - the modified type is the TypedefType for int32_t
3442///   - the equivalent type is VectorType(16, int32_t)
3443///   - the canonical type is VectorType(16, int)
3444class AttributedType : public Type, public llvm::FoldingSetNode {
3445public:
3446  // It is really silly to have yet another attribute-kind enum, but
3447  // clang::attr::Kind doesn't currently cover the pure type attrs.
3448  enum Kind {
3449    // Expression operand.
3450    attr_address_space,
3451    attr_regparm,
3452    attr_vector_size,
3453    attr_neon_vector_type,
3454    attr_neon_polyvector_type,
3455
3456    FirstExprOperandKind = attr_address_space,
3457    LastExprOperandKind = attr_neon_polyvector_type,
3458
3459    // Enumerated operand (string or keyword).
3460    attr_objc_gc,
3461    attr_objc_ownership,
3462    attr_pcs,
3463    attr_pcs_vfp,
3464
3465    FirstEnumOperandKind = attr_objc_gc,
3466    LastEnumOperandKind = attr_pcs_vfp,
3467
3468    // No operand.
3469    attr_noreturn,
3470    attr_cdecl,
3471    attr_fastcall,
3472    attr_stdcall,
3473    attr_thiscall,
3474    attr_pascal,
3475    attr_vectorcall,
3476    attr_inteloclbicc,
3477    attr_ms_abi,
3478    attr_sysv_abi,
3479    attr_ptr32,
3480    attr_ptr64,
3481    attr_sptr,
3482    attr_uptr
3483  };
3484
3485private:
3486  QualType ModifiedType;
3487  QualType EquivalentType;
3488
3489  friend class ASTContext; // creates these
3490
3491  AttributedType(QualType canon, Kind attrKind,
3492                 QualType modified, QualType equivalent)
3493    : Type(Attributed, canon, canon->isDependentType(),
3494           canon->isInstantiationDependentType(),
3495           canon->isVariablyModifiedType(),
3496           canon->containsUnexpandedParameterPack()),
3497      ModifiedType(modified), EquivalentType(equivalent) {
3498    AttributedTypeBits.AttrKind = attrKind;
3499  }
3500
3501public:
3502  Kind getAttrKind() const {
3503    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3504  }
3505
3506  QualType getModifiedType() const { return ModifiedType; }
3507  QualType getEquivalentType() const { return EquivalentType; }
3508
3509  bool isSugared() const { return true; }
3510  QualType desugar() const { return getEquivalentType(); }
3511
3512  bool isMSTypeSpec() const;
3513
3514  bool isCallingConv() const;
3515
3516  void Profile(llvm::FoldingSetNodeID &ID) {
3517    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3518  }
3519
3520  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3521                      QualType modified, QualType equivalent) {
3522    ID.AddInteger(attrKind);
3523    ID.AddPointer(modified.getAsOpaquePtr());
3524    ID.AddPointer(equivalent.getAsOpaquePtr());
3525  }
3526
3527  static bool classof(const Type *T) {
3528    return T->getTypeClass() == Attributed;
3529  }
3530};
3531
3532class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3533  // Helper data collector for canonical types.
3534  struct CanonicalTTPTInfo {
3535    unsigned Depth : 15;
3536    unsigned ParameterPack : 1;
3537    unsigned Index : 16;
3538  };
3539
3540  union {
3541    // Info for the canonical type.
3542    CanonicalTTPTInfo CanTTPTInfo;
3543    // Info for the non-canonical type.
3544    TemplateTypeParmDecl *TTPDecl;
3545  };
3546
3547  /// Build a non-canonical type.
3548  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3549    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3550           /*InstantiationDependent=*/true,
3551           /*VariablyModified=*/false,
3552           Canon->containsUnexpandedParameterPack()),
3553      TTPDecl(TTPDecl) { }
3554
3555  /// Build the canonical type.
3556  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3557    : Type(TemplateTypeParm, QualType(this, 0),
3558           /*Dependent=*/true,
3559           /*InstantiationDependent=*/true,
3560           /*VariablyModified=*/false, PP) {
3561    CanTTPTInfo.Depth = D;
3562    CanTTPTInfo.Index = I;
3563    CanTTPTInfo.ParameterPack = PP;
3564  }
3565
3566  friend class ASTContext;  // ASTContext creates these
3567
3568  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3569    QualType Can = getCanonicalTypeInternal();
3570    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3571  }
3572
3573public:
3574  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3575  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3576  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3577
3578  TemplateTypeParmDecl *getDecl() const {
3579    return isCanonicalUnqualified() ? nullptr : TTPDecl;
3580  }
3581
3582  IdentifierInfo *getIdentifier() const;
3583
3584  bool isSugared() const { return false; }
3585  QualType desugar() const { return QualType(this, 0); }
3586
3587  void Profile(llvm::FoldingSetNodeID &ID) {
3588    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3589  }
3590
3591  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3592                      unsigned Index, bool ParameterPack,
3593                      TemplateTypeParmDecl *TTPDecl) {
3594    ID.AddInteger(Depth);
3595    ID.AddInteger(Index);
3596    ID.AddBoolean(ParameterPack);
3597    ID.AddPointer(TTPDecl);
3598  }
3599
3600  static bool classof(const Type *T) {
3601    return T->getTypeClass() == TemplateTypeParm;
3602  }
3603};
3604
3605/// \brief Represents the result of substituting a type for a template
3606/// type parameter.
3607///
3608/// Within an instantiated template, all template type parameters have
3609/// been replaced with these.  They are used solely to record that a
3610/// type was originally written as a template type parameter;
3611/// therefore they are never canonical.
3612class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3613  // The original type parameter.
3614  const TemplateTypeParmType *Replaced;
3615
3616  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3617    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3618           Canon->isInstantiationDependentType(),
3619           Canon->isVariablyModifiedType(),
3620           Canon->containsUnexpandedParameterPack()),
3621      Replaced(Param) { }
3622
3623  friend class ASTContext;
3624
3625public:
3626  /// Gets the template parameter that was substituted for.
3627  const TemplateTypeParmType *getReplacedParameter() const {
3628    return Replaced;
3629  }
3630
3631  /// Gets the type that was substituted for the template
3632  /// parameter.
3633  QualType getReplacementType() const {
3634    return getCanonicalTypeInternal();
3635  }
3636
3637  bool isSugared() const { return true; }
3638  QualType desugar() const { return getReplacementType(); }
3639
3640  void Profile(llvm::FoldingSetNodeID &ID) {
3641    Profile(ID, getReplacedParameter(), getReplacementType());
3642  }
3643  static void Profile(llvm::FoldingSetNodeID &ID,
3644                      const TemplateTypeParmType *Replaced,
3645                      QualType Replacement) {
3646    ID.AddPointer(Replaced);
3647    ID.AddPointer(Replacement.getAsOpaquePtr());
3648  }
3649
3650  static bool classof(const Type *T) {
3651    return T->getTypeClass() == SubstTemplateTypeParm;
3652  }
3653};
3654
3655/// \brief Represents the result of substituting a set of types for a template
3656/// type parameter pack.
3657///
3658/// When a pack expansion in the source code contains multiple parameter packs
3659/// and those parameter packs correspond to different levels of template
3660/// parameter lists, this type node is used to represent a template type
3661/// parameter pack from an outer level, which has already had its argument pack
3662/// substituted but that still lives within a pack expansion that itself
3663/// could not be instantiated. When actually performing a substitution into
3664/// that pack expansion (e.g., when all template parameters have corresponding
3665/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3666/// at the current pack substitution index.
3667class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3668  /// \brief The original type parameter.
3669  const TemplateTypeParmType *Replaced;
3670
3671  /// \brief A pointer to the set of template arguments that this
3672  /// parameter pack is instantiated with.
3673  const TemplateArgument *Arguments;
3674
3675  /// \brief The number of template arguments in \c Arguments.
3676  unsigned NumArguments;
3677
3678  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3679                                QualType Canon,
3680                                const TemplateArgument &ArgPack);
3681
3682  friend class ASTContext;
3683
3684public:
3685  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3686
3687  /// Gets the template parameter that was substituted for.
3688  const TemplateTypeParmType *getReplacedParameter() const {
3689    return Replaced;
3690  }
3691
3692  bool isSugared() const { return false; }
3693  QualType desugar() const { return QualType(this, 0); }
3694
3695  TemplateArgument getArgumentPack() const;
3696
3697  void Profile(llvm::FoldingSetNodeID &ID);
3698  static void Profile(llvm::FoldingSetNodeID &ID,
3699                      const TemplateTypeParmType *Replaced,
3700                      const TemplateArgument &ArgPack);
3701
3702  static bool classof(const Type *T) {
3703    return T->getTypeClass() == SubstTemplateTypeParmPack;
3704  }
3705};
3706
3707/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
3708///
3709/// These types are usually a placeholder for a deduced type. However, before
3710/// the initializer is attached, or if the initializer is type-dependent, there
3711/// is no deduced type and an auto type is canonical. In the latter case, it is
3712/// also a dependent type.
3713class AutoType : public Type, public llvm::FoldingSetNode {
3714  AutoType(QualType DeducedType, bool IsDecltypeAuto,
3715           bool IsDependent)
3716    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3717           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
3718           /*VariablyModified=*/false,
3719           /*ContainsParameterPack=*/DeducedType.isNull()
3720               ? false : DeducedType->containsUnexpandedParameterPack()) {
3721    assert((DeducedType.isNull() || !IsDependent) &&
3722           "auto deduced to dependent type");
3723    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
3724  }
3725
3726  friend class ASTContext;  // ASTContext creates these
3727
3728public:
3729  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
3730
3731  bool isSugared() const { return !isCanonicalUnqualified(); }
3732  QualType desugar() const { return getCanonicalTypeInternal(); }
3733
3734  /// \brief Get the type deduced for this auto type, or null if it's either
3735  /// not been deduced or was deduced to a dependent type.
3736  QualType getDeducedType() const {
3737    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
3738  }
3739  bool isDeduced() const {
3740    return !isCanonicalUnqualified() || isDependentType();
3741  }
3742
3743  void Profile(llvm::FoldingSetNodeID &ID) {
3744    Profile(ID, getDeducedType(), isDecltypeAuto(),
3745		    isDependentType());
3746  }
3747
3748  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
3749                      bool IsDecltypeAuto, bool IsDependent) {
3750    ID.AddPointer(Deduced.getAsOpaquePtr());
3751    ID.AddBoolean(IsDecltypeAuto);
3752    ID.AddBoolean(IsDependent);
3753  }
3754
3755  static bool classof(const Type *T) {
3756    return T->getTypeClass() == Auto;
3757  }
3758};
3759
3760/// \brief Represents a type template specialization; the template
3761/// must be a class template, a type alias template, or a template
3762/// template parameter.  A template which cannot be resolved to one of
3763/// these, e.g. because it is written with a dependent scope
3764/// specifier, is instead represented as a
3765/// @c DependentTemplateSpecializationType.
3766///
3767/// A non-dependent template specialization type is always "sugar",
3768/// typically for a @c RecordType.  For example, a class template
3769/// specialization type of @c vector<int> will refer to a tag type for
3770/// the instantiation @c std::vector<int, std::allocator<int>>
3771///
3772/// Template specializations are dependent if either the template or
3773/// any of the template arguments are dependent, in which case the
3774/// type may also be canonical.
3775///
3776/// Instances of this type are allocated with a trailing array of
3777/// TemplateArguments, followed by a QualType representing the
3778/// non-canonical aliased type when the template is a type alias
3779/// template.
3780class TemplateSpecializationType
3781  : public Type, public llvm::FoldingSetNode {
3782  /// \brief The name of the template being specialized.  This is
3783  /// either a TemplateName::Template (in which case it is a
3784  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3785  /// TypeAliasTemplateDecl*), a
3786  /// TemplateName::SubstTemplateTemplateParmPack, or a
3787  /// TemplateName::SubstTemplateTemplateParm (in which case the
3788  /// replacement must, recursively, be one of these).
3789  TemplateName Template;
3790
3791  /// \brief - The number of template arguments named in this class
3792  /// template specialization.
3793  unsigned NumArgs : 31;
3794
3795  /// \brief Whether this template specialization type is a substituted
3796  /// type alias.
3797  bool TypeAlias : 1;
3798
3799  TemplateSpecializationType(TemplateName T,
3800                             const TemplateArgument *Args,
3801                             unsigned NumArgs, QualType Canon,
3802                             QualType Aliased);
3803
3804  friend class ASTContext;  // ASTContext creates these
3805
3806public:
3807  /// \brief Determine whether any of the given template arguments are
3808  /// dependent.
3809  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3810                                            unsigned NumArgs,
3811                                            bool &InstantiationDependent);
3812
3813  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3814                                            bool &InstantiationDependent);
3815
3816  /// \brief Print a template argument list, including the '<' and '>'
3817  /// enclosing the template arguments.
3818  static void PrintTemplateArgumentList(raw_ostream &OS,
3819                                        const TemplateArgument *Args,
3820                                        unsigned NumArgs,
3821                                        const PrintingPolicy &Policy,
3822                                        bool SkipBrackets = false);
3823
3824  static void PrintTemplateArgumentList(raw_ostream &OS,
3825                                        const TemplateArgumentLoc *Args,
3826                                        unsigned NumArgs,
3827                                        const PrintingPolicy &Policy);
3828
3829  static void PrintTemplateArgumentList(raw_ostream &OS,
3830                                        const TemplateArgumentListInfo &,
3831                                        const PrintingPolicy &Policy);
3832
3833  /// True if this template specialization type matches a current
3834  /// instantiation in the context in which it is found.
3835  bool isCurrentInstantiation() const {
3836    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3837  }
3838
3839  /// \brief Determine if this template specialization type is for a type alias
3840  /// template that has been substituted.
3841  ///
3842  /// Nearly every template specialization type whose template is an alias
3843  /// template will be substituted. However, this is not the case when
3844  /// the specialization contains a pack expansion but the template alias
3845  /// does not have a corresponding parameter pack, e.g.,
3846  ///
3847  /// \code
3848  /// template<typename T, typename U, typename V> struct S;
3849  /// template<typename T, typename U> using A = S<T, int, U>;
3850  /// template<typename... Ts> struct X {
3851  ///   typedef A<Ts...> type; // not a type alias
3852  /// };
3853  /// \endcode
3854  bool isTypeAlias() const { return TypeAlias; }
3855
3856  /// Get the aliased type, if this is a specialization of a type alias
3857  /// template.
3858  QualType getAliasedType() const {
3859    assert(isTypeAlias() && "not a type alias template specialization");
3860    return *reinterpret_cast<const QualType*>(end());
3861  }
3862
3863  typedef const TemplateArgument * iterator;
3864
3865  iterator begin() const { return getArgs(); }
3866  iterator end() const; // defined inline in TemplateBase.h
3867
3868  /// \brief Retrieve the name of the template that we are specializing.
3869  TemplateName getTemplateName() const { return Template; }
3870
3871  /// \brief Retrieve the template arguments.
3872  const TemplateArgument *getArgs() const {
3873    return reinterpret_cast<const TemplateArgument *>(this + 1);
3874  }
3875
3876  /// \brief Retrieve the number of template arguments.
3877  unsigned getNumArgs() const { return NumArgs; }
3878
3879  /// \brief Retrieve a specific template argument as a type.
3880  /// \pre @c isArgType(Arg)
3881  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3882
3883  bool isSugared() const {
3884    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3885  }
3886  QualType desugar() const { return getCanonicalTypeInternal(); }
3887
3888  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3889    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3890    if (isTypeAlias())
3891      getAliasedType().Profile(ID);
3892  }
3893
3894  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3895                      const TemplateArgument *Args,
3896                      unsigned NumArgs,
3897                      const ASTContext &Context);
3898
3899  static bool classof(const Type *T) {
3900    return T->getTypeClass() == TemplateSpecialization;
3901  }
3902};
3903
3904/// \brief The injected class name of a C++ class template or class
3905/// template partial specialization.  Used to record that a type was
3906/// spelled with a bare identifier rather than as a template-id; the
3907/// equivalent for non-templated classes is just RecordType.
3908///
3909/// Injected class name types are always dependent.  Template
3910/// instantiation turns these into RecordTypes.
3911///
3912/// Injected class name types are always canonical.  This works
3913/// because it is impossible to compare an injected class name type
3914/// with the corresponding non-injected template type, for the same
3915/// reason that it is impossible to directly compare template
3916/// parameters from different dependent contexts: injected class name
3917/// types can only occur within the scope of a particular templated
3918/// declaration, and within that scope every template specialization
3919/// will canonicalize to the injected class name (when appropriate
3920/// according to the rules of the language).
3921class InjectedClassNameType : public Type {
3922  CXXRecordDecl *Decl;
3923
3924  /// The template specialization which this type represents.
3925  /// For example, in
3926  ///   template <class T> class A { ... };
3927  /// this is A<T>, whereas in
3928  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3929  /// this is A<B<X,Y> >.
3930  ///
3931  /// It is always unqualified, always a template specialization type,
3932  /// and always dependent.
3933  QualType InjectedType;
3934
3935  friend class ASTContext; // ASTContext creates these.
3936  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3937                          // currently suitable for AST reading, too much
3938                          // interdependencies.
3939  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3940    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3941           /*InstantiationDependent=*/true,
3942           /*VariablyModified=*/false,
3943           /*ContainsUnexpandedParameterPack=*/false),
3944      Decl(D), InjectedType(TST) {
3945    assert(isa<TemplateSpecializationType>(TST));
3946    assert(!TST.hasQualifiers());
3947    assert(TST->isDependentType());
3948  }
3949
3950public:
3951  QualType getInjectedSpecializationType() const { return InjectedType; }
3952  const TemplateSpecializationType *getInjectedTST() const {
3953    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3954  }
3955
3956  CXXRecordDecl *getDecl() const;
3957
3958  bool isSugared() const { return false; }
3959  QualType desugar() const { return QualType(this, 0); }
3960
3961  static bool classof(const Type *T) {
3962    return T->getTypeClass() == InjectedClassName;
3963  }
3964};
3965
3966/// \brief The kind of a tag type.
3967enum TagTypeKind {
3968  /// \brief The "struct" keyword.
3969  TTK_Struct,
3970  /// \brief The "__interface" keyword.
3971  TTK_Interface,
3972  /// \brief The "union" keyword.
3973  TTK_Union,
3974  /// \brief The "class" keyword.
3975  TTK_Class,
3976  /// \brief The "enum" keyword.
3977  TTK_Enum
3978};
3979
3980/// \brief The elaboration keyword that precedes a qualified type name or
3981/// introduces an elaborated-type-specifier.
3982enum ElaboratedTypeKeyword {
3983  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3984  ETK_Struct,
3985  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3986  ETK_Interface,
3987  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3988  ETK_Union,
3989  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3990  ETK_Class,
3991  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3992  ETK_Enum,
3993  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3994  /// \c typename T::type.
3995  ETK_Typename,
3996  /// \brief No keyword precedes the qualified type name.
3997  ETK_None
3998};
3999
4000/// A helper class for Type nodes having an ElaboratedTypeKeyword.
4001/// The keyword in stored in the free bits of the base class.
4002/// Also provides a few static helpers for converting and printing
4003/// elaborated type keyword and tag type kind enumerations.
4004class TypeWithKeyword : public Type {
4005protected:
4006  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
4007                  QualType Canonical, bool Dependent,
4008                  bool InstantiationDependent, bool VariablyModified,
4009                  bool ContainsUnexpandedParameterPack)
4010  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
4011         ContainsUnexpandedParameterPack) {
4012    TypeWithKeywordBits.Keyword = Keyword;
4013  }
4014
4015public:
4016  ElaboratedTypeKeyword getKeyword() const {
4017    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
4018  }
4019
4020  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
4021  /// into an elaborated type keyword.
4022  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
4023
4024  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
4025  /// into a tag type kind.  It is an error to provide a type specifier
4026  /// which *isn't* a tag kind here.
4027  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
4028
4029  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
4030  /// elaborated type keyword.
4031  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
4032
4033  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
4034  // a TagTypeKind. It is an error to provide an elaborated type keyword
4035  /// which *isn't* a tag kind here.
4036  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
4037
4038  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
4039
4040  static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
4041
4042  static StringRef getTagTypeKindName(TagTypeKind Kind) {
4043    return getKeywordName(getKeywordForTagTypeKind(Kind));
4044  }
4045
4046  class CannotCastToThisType {};
4047  static CannotCastToThisType classof(const Type *);
4048};
4049
4050/// \brief Represents a type that was referred to using an elaborated type
4051/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
4052/// or both.
4053///
4054/// This type is used to keep track of a type name as written in the
4055/// source code, including tag keywords and any nested-name-specifiers.
4056/// The type itself is always "sugar", used to express what was written
4057/// in the source code but containing no additional semantic information.
4058class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
4059
4060  /// \brief The nested name specifier containing the qualifier.
4061  NestedNameSpecifier *NNS;
4062
4063  /// \brief The type that this qualified name refers to.
4064  QualType NamedType;
4065
4066  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4067                 QualType NamedType, QualType CanonType)
4068    : TypeWithKeyword(Keyword, Elaborated, CanonType,
4069                      NamedType->isDependentType(),
4070                      NamedType->isInstantiationDependentType(),
4071                      NamedType->isVariablyModifiedType(),
4072                      NamedType->containsUnexpandedParameterPack()),
4073      NNS(NNS), NamedType(NamedType) {
4074    assert(!(Keyword == ETK_None && NNS == nullptr) &&
4075           "ElaboratedType cannot have elaborated type keyword "
4076           "and name qualifier both null.");
4077  }
4078
4079  friend class ASTContext;  // ASTContext creates these
4080
4081public:
4082  ~ElaboratedType();
4083
4084  /// \brief Retrieve the qualification on this type.
4085  NestedNameSpecifier *getQualifier() const { return NNS; }
4086
4087  /// \brief Retrieve the type named by the qualified-id.
4088  QualType getNamedType() const { return NamedType; }
4089
4090  /// \brief Remove a single level of sugar.
4091  QualType desugar() const { return getNamedType(); }
4092
4093  /// \brief Returns whether this type directly provides sugar.
4094  bool isSugared() const { return true; }
4095
4096  void Profile(llvm::FoldingSetNodeID &ID) {
4097    Profile(ID, getKeyword(), NNS, NamedType);
4098  }
4099
4100  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4101                      NestedNameSpecifier *NNS, QualType NamedType) {
4102    ID.AddInteger(Keyword);
4103    ID.AddPointer(NNS);
4104    NamedType.Profile(ID);
4105  }
4106
4107  static bool classof(const Type *T) {
4108    return T->getTypeClass() == Elaborated;
4109  }
4110};
4111
4112/// \brief Represents a qualified type name for which the type name is
4113/// dependent.
4114///
4115/// DependentNameType represents a class of dependent types that involve a
4116/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
4117/// name of a type. The DependentNameType may start with a "typename" (for a
4118/// typename-specifier), "class", "struct", "union", or "enum" (for a
4119/// dependent elaborated-type-specifier), or nothing (in contexts where we
4120/// know that we must be referring to a type, e.g., in a base class specifier).
4121/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
4122/// mode, this type is used with non-dependent names to delay name lookup until
4123/// instantiation.
4124class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4125
4126  /// \brief The nested name specifier containing the qualifier.
4127  NestedNameSpecifier *NNS;
4128
4129  /// \brief The type that this typename specifier refers to.
4130  const IdentifierInfo *Name;
4131
4132  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4133                    const IdentifierInfo *Name, QualType CanonType)
4134    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4135                      /*InstantiationDependent=*/true,
4136                      /*VariablyModified=*/false,
4137                      NNS->containsUnexpandedParameterPack()),
4138      NNS(NNS), Name(Name) {}
4139
4140  friend class ASTContext;  // ASTContext creates these
4141
4142public:
4143  /// \brief Retrieve the qualification on this type.
4144  NestedNameSpecifier *getQualifier() const { return NNS; }
4145
4146  /// \brief Retrieve the type named by the typename specifier as an
4147  /// identifier.
4148  ///
4149  /// This routine will return a non-NULL identifier pointer when the
4150  /// form of the original typename was terminated by an identifier,
4151  /// e.g., "typename T::type".
4152  const IdentifierInfo *getIdentifier() const {
4153    return Name;
4154  }
4155
4156  bool isSugared() const { return false; }
4157  QualType desugar() const { return QualType(this, 0); }
4158
4159  void Profile(llvm::FoldingSetNodeID &ID) {
4160    Profile(ID, getKeyword(), NNS, Name);
4161  }
4162
4163  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4164                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4165    ID.AddInteger(Keyword);
4166    ID.AddPointer(NNS);
4167    ID.AddPointer(Name);
4168  }
4169
4170  static bool classof(const Type *T) {
4171    return T->getTypeClass() == DependentName;
4172  }
4173};
4174
4175/// DependentTemplateSpecializationType - Represents a template
4176/// specialization type whose template cannot be resolved, e.g.
4177///   A<T>::template B<T>
4178class DependentTemplateSpecializationType :
4179  public TypeWithKeyword, public llvm::FoldingSetNode {
4180
4181  /// \brief The nested name specifier containing the qualifier.
4182  NestedNameSpecifier *NNS;
4183
4184  /// \brief The identifier of the template.
4185  const IdentifierInfo *Name;
4186
4187  /// \brief - The number of template arguments named in this class
4188  /// template specialization.
4189  unsigned NumArgs;
4190
4191  const TemplateArgument *getArgBuffer() const {
4192    return reinterpret_cast<const TemplateArgument*>(this+1);
4193  }
4194  TemplateArgument *getArgBuffer() {
4195    return reinterpret_cast<TemplateArgument*>(this+1);
4196  }
4197
4198  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4199                                      NestedNameSpecifier *NNS,
4200                                      const IdentifierInfo *Name,
4201                                      unsigned NumArgs,
4202                                      const TemplateArgument *Args,
4203                                      QualType Canon);
4204
4205  friend class ASTContext;  // ASTContext creates these
4206
4207public:
4208  NestedNameSpecifier *getQualifier() const { return NNS; }
4209  const IdentifierInfo *getIdentifier() const { return Name; }
4210
4211  /// \brief Retrieve the template arguments.
4212  const TemplateArgument *getArgs() const {
4213    return getArgBuffer();
4214  }
4215
4216  /// \brief Retrieve the number of template arguments.
4217  unsigned getNumArgs() const { return NumArgs; }
4218
4219  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4220
4221  typedef const TemplateArgument * iterator;
4222  iterator begin() const { return getArgs(); }
4223  iterator end() const; // inline in TemplateBase.h
4224
4225  bool isSugared() const { return false; }
4226  QualType desugar() const { return QualType(this, 0); }
4227
4228  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4229    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4230  }
4231
4232  static void Profile(llvm::FoldingSetNodeID &ID,
4233                      const ASTContext &Context,
4234                      ElaboratedTypeKeyword Keyword,
4235                      NestedNameSpecifier *Qualifier,
4236                      const IdentifierInfo *Name,
4237                      unsigned NumArgs,
4238                      const TemplateArgument *Args);
4239
4240  static bool classof(const Type *T) {
4241    return T->getTypeClass() == DependentTemplateSpecialization;
4242  }
4243};
4244
4245/// \brief Represents a pack expansion of types.
4246///
4247/// Pack expansions are part of C++0x variadic templates. A pack
4248/// expansion contains a pattern, which itself contains one or more
4249/// "unexpanded" parameter packs. When instantiated, a pack expansion
4250/// produces a series of types, each instantiated from the pattern of
4251/// the expansion, where the Ith instantiation of the pattern uses the
4252/// Ith arguments bound to each of the unexpanded parameter packs. The
4253/// pack expansion is considered to "expand" these unexpanded
4254/// parameter packs.
4255///
4256/// \code
4257/// template<typename ...Types> struct tuple;
4258///
4259/// template<typename ...Types>
4260/// struct tuple_of_references {
4261///   typedef tuple<Types&...> type;
4262/// };
4263/// \endcode
4264///
4265/// Here, the pack expansion \c Types&... is represented via a
4266/// PackExpansionType whose pattern is Types&.
4267class PackExpansionType : public Type, public llvm::FoldingSetNode {
4268  /// \brief The pattern of the pack expansion.
4269  QualType Pattern;
4270
4271  /// \brief The number of expansions that this pack expansion will
4272  /// generate when substituted (+1), or indicates that
4273  ///
4274  /// This field will only have a non-zero value when some of the parameter
4275  /// packs that occur within the pattern have been substituted but others have
4276  /// not.
4277  unsigned NumExpansions;
4278
4279  PackExpansionType(QualType Pattern, QualType Canon,
4280                    Optional<unsigned> NumExpansions)
4281    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4282           /*InstantiationDependent=*/true,
4283           /*VariablyModified=*/Pattern->isVariablyModifiedType(),
4284           /*ContainsUnexpandedParameterPack=*/false),
4285      Pattern(Pattern),
4286      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4287
4288  friend class ASTContext;  // ASTContext creates these
4289
4290public:
4291  /// \brief Retrieve the pattern of this pack expansion, which is the
4292  /// type that will be repeatedly instantiated when instantiating the
4293  /// pack expansion itself.
4294  QualType getPattern() const { return Pattern; }
4295
4296  /// \brief Retrieve the number of expansions that this pack expansion will
4297  /// generate, if known.
4298  Optional<unsigned> getNumExpansions() const {
4299    if (NumExpansions)
4300      return NumExpansions - 1;
4301
4302    return None;
4303  }
4304
4305  bool isSugared() const { return !Pattern->isDependentType(); }
4306  QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
4307
4308  void Profile(llvm::FoldingSetNodeID &ID) {
4309    Profile(ID, getPattern(), getNumExpansions());
4310  }
4311
4312  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4313                      Optional<unsigned> NumExpansions) {
4314    ID.AddPointer(Pattern.getAsOpaquePtr());
4315    ID.AddBoolean(NumExpansions.hasValue());
4316    if (NumExpansions)
4317      ID.AddInteger(*NumExpansions);
4318  }
4319
4320  static bool classof(const Type *T) {
4321    return T->getTypeClass() == PackExpansion;
4322  }
4323};
4324
4325/// ObjCObjectType - Represents a class type in Objective C.
4326/// Every Objective C type is a combination of a base type and a
4327/// list of protocols.
4328///
4329/// Given the following declarations:
4330/// \code
4331///   \@class C;
4332///   \@protocol P;
4333/// \endcode
4334///
4335/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4336/// with base C and no protocols.
4337///
4338/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4339///
4340/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
4341/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4342/// and no protocols.
4343///
4344/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
4345/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4346/// this should get its own sugar class to better represent the source.
4347class ObjCObjectType : public Type {
4348  // ObjCObjectType.NumProtocols - the number of protocols stored
4349  // after the ObjCObjectPointerType node.
4350  //
4351  // These protocols are those written directly on the type.  If
4352  // protocol qualifiers ever become additive, the iterators will need
4353  // to get kindof complicated.
4354  //
4355  // In the canonical object type, these are sorted alphabetically
4356  // and uniqued.
4357
4358  /// Either a BuiltinType or an InterfaceType or sugar for either.
4359  QualType BaseType;
4360
4361  ObjCProtocolDecl * const *getProtocolStorage() const {
4362    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4363  }
4364
4365  ObjCProtocolDecl **getProtocolStorage();
4366
4367protected:
4368  ObjCObjectType(QualType Canonical, QualType Base,
4369                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4370
4371  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4372  ObjCObjectType(enum Nonce_ObjCInterface)
4373        : Type(ObjCInterface, QualType(), false, false, false, false),
4374      BaseType(QualType(this_(), 0)) {
4375    ObjCObjectTypeBits.NumProtocols = 0;
4376  }
4377
4378public:
4379  /// getBaseType - Gets the base type of this object type.  This is
4380  /// always (possibly sugar for) one of:
4381  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4382  ///    user, which is a typedef for an ObjCObjectPointerType)
4383  ///  - the 'Class' builtin type (same caveat)
4384  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4385  QualType getBaseType() const { return BaseType; }
4386
4387  bool isObjCId() const {
4388    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4389  }
4390  bool isObjCClass() const {
4391    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4392  }
4393  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4394  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4395  bool isObjCUnqualifiedIdOrClass() const {
4396    if (!qual_empty()) return false;
4397    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4398      return T->getKind() == BuiltinType::ObjCId ||
4399             T->getKind() == BuiltinType::ObjCClass;
4400    return false;
4401  }
4402  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4403  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4404
4405  /// Gets the interface declaration for this object type, if the base type
4406  /// really is an interface.
4407  ObjCInterfaceDecl *getInterface() const;
4408
4409  typedef ObjCProtocolDecl * const *qual_iterator;
4410  typedef llvm::iterator_range<qual_iterator> qual_range;
4411
4412  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
4413  qual_iterator qual_begin() const { return getProtocolStorage(); }
4414  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4415
4416  bool qual_empty() const { return getNumProtocols() == 0; }
4417
4418  /// getNumProtocols - Return the number of qualifying protocols in this
4419  /// interface type, or 0 if there are none.
4420  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4421
4422  /// \brief Fetch a protocol by index.
4423  ObjCProtocolDecl *getProtocol(unsigned I) const {
4424    assert(I < getNumProtocols() && "Out-of-range protocol access");
4425    return qual_begin()[I];
4426  }
4427
4428  bool isSugared() const { return false; }
4429  QualType desugar() const { return QualType(this, 0); }
4430
4431  static bool classof(const Type *T) {
4432    return T->getTypeClass() == ObjCObject ||
4433           T->getTypeClass() == ObjCInterface;
4434  }
4435};
4436
4437/// ObjCObjectTypeImpl - A class providing a concrete implementation
4438/// of ObjCObjectType, so as to not increase the footprint of
4439/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4440/// system should not reference this type.
4441class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4442  friend class ASTContext;
4443
4444  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4445  // will need to be modified.
4446
4447  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4448                     ObjCProtocolDecl * const *Protocols,
4449                     unsigned NumProtocols)
4450    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4451
4452public:
4453  void Profile(llvm::FoldingSetNodeID &ID);
4454  static void Profile(llvm::FoldingSetNodeID &ID,
4455                      QualType Base,
4456                      ObjCProtocolDecl *const *protocols,
4457                      unsigned NumProtocols);
4458};
4459
4460inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4461  return reinterpret_cast<ObjCProtocolDecl**>(
4462            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4463}
4464
4465/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4466/// object oriented design.  They basically correspond to C++ classes.  There
4467/// are two kinds of interface types, normal interfaces like "NSString" and
4468/// qualified interfaces, which are qualified with a protocol list like
4469/// "NSString<NSCopyable, NSAmazing>".
4470///
4471/// ObjCInterfaceType guarantees the following properties when considered
4472/// as a subtype of its superclass, ObjCObjectType:
4473///   - There are no protocol qualifiers.  To reinforce this, code which
4474///     tries to invoke the protocol methods via an ObjCInterfaceType will
4475///     fail to compile.
4476///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4477///     T->getBaseType() == QualType(T, 0).
4478class ObjCInterfaceType : public ObjCObjectType {
4479  mutable ObjCInterfaceDecl *Decl;
4480
4481  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4482    : ObjCObjectType(Nonce_ObjCInterface),
4483      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4484  friend class ASTContext;  // ASTContext creates these.
4485  friend class ASTReader;
4486  friend class ObjCInterfaceDecl;
4487
4488public:
4489  /// getDecl - Get the declaration of this interface.
4490  ObjCInterfaceDecl *getDecl() const { return Decl; }
4491
4492  bool isSugared() const { return false; }
4493  QualType desugar() const { return QualType(this, 0); }
4494
4495  static bool classof(const Type *T) {
4496    return T->getTypeClass() == ObjCInterface;
4497  }
4498
4499  // Nonsense to "hide" certain members of ObjCObjectType within this
4500  // class.  People asking for protocols on an ObjCInterfaceType are
4501  // not going to get what they want: ObjCInterfaceTypes are
4502  // guaranteed to have no protocols.
4503  enum {
4504    qual_iterator,
4505    qual_begin,
4506    qual_end,
4507    getNumProtocols,
4508    getProtocol
4509  };
4510};
4511
4512inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4513  if (const ObjCInterfaceType *T =
4514        getBaseType()->getAs<ObjCInterfaceType>())
4515    return T->getDecl();
4516  return nullptr;
4517}
4518
4519/// ObjCObjectPointerType - Used to represent a pointer to an
4520/// Objective C object.  These are constructed from pointer
4521/// declarators when the pointee type is an ObjCObjectType (or sugar
4522/// for one).  In addition, the 'id' and 'Class' types are typedefs
4523/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4524/// are translated into these.
4525///
4526/// Pointers to pointers to Objective C objects are still PointerTypes;
4527/// only the first level of pointer gets it own type implementation.
4528class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4529  QualType PointeeType;
4530
4531  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4532    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4533      PointeeType(Pointee) {}
4534  friend class ASTContext;  // ASTContext creates these.
4535
4536public:
4537  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4538  /// The result will always be an ObjCObjectType or sugar thereof.
4539  QualType getPointeeType() const { return PointeeType; }
4540
4541  /// getObjCObjectType - Gets the type pointed to by this ObjC
4542  /// pointer.  This method always returns non-null.
4543  ///
4544  /// This method is equivalent to getPointeeType() except that
4545  /// it discards any typedefs (or other sugar) between this
4546  /// type and the "outermost" object type.  So for:
4547  /// \code
4548  ///   \@class A; \@protocol P; \@protocol Q;
4549  ///   typedef A<P> AP;
4550  ///   typedef A A1;
4551  ///   typedef A1<P> A1P;
4552  ///   typedef A1P<Q> A1PQ;
4553  /// \endcode
4554  /// For 'A*', getObjectType() will return 'A'.
4555  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4556  /// For 'AP*', getObjectType() will return 'A<P>'.
4557  /// For 'A1*', getObjectType() will return 'A'.
4558  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4559  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4560  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4561  ///   adding protocols to a protocol-qualified base discards the
4562  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4563  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4564  ///   qualifiers more complicated).
4565  const ObjCObjectType *getObjectType() const {
4566    return PointeeType->castAs<ObjCObjectType>();
4567  }
4568
4569  /// getInterfaceType - If this pointer points to an Objective C
4570  /// \@interface type, gets the type for that interface.  Any protocol
4571  /// qualifiers on the interface are ignored.
4572  ///
4573  /// \return null if the base type for this pointer is 'id' or 'Class'
4574  const ObjCInterfaceType *getInterfaceType() const {
4575    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4576  }
4577
4578  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4579  /// type, gets the declaration for that interface.
4580  ///
4581  /// \return null if the base type for this pointer is 'id' or 'Class'
4582  ObjCInterfaceDecl *getInterfaceDecl() const {
4583    return getObjectType()->getInterface();
4584  }
4585
4586  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4587  /// its object type is the primitive 'id' type with no protocols.
4588  bool isObjCIdType() const {
4589    return getObjectType()->isObjCUnqualifiedId();
4590  }
4591
4592  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4593  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4594  bool isObjCClassType() const {
4595    return getObjectType()->isObjCUnqualifiedClass();
4596  }
4597
4598  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4599  /// non-empty set of protocols.
4600  bool isObjCQualifiedIdType() const {
4601    return getObjectType()->isObjCQualifiedId();
4602  }
4603
4604  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4605  /// some non-empty set of protocols.
4606  bool isObjCQualifiedClassType() const {
4607    return getObjectType()->isObjCQualifiedClass();
4608  }
4609
4610  /// An iterator over the qualifiers on the object type.  Provided
4611  /// for convenience.  This will always iterate over the full set of
4612  /// protocols on a type, not just those provided directly.
4613  typedef ObjCObjectType::qual_iterator qual_iterator;
4614  typedef llvm::iterator_range<qual_iterator> qual_range;
4615
4616  qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
4617  qual_iterator qual_begin() const {
4618    return getObjectType()->qual_begin();
4619  }
4620  qual_iterator qual_end() const {
4621    return getObjectType()->qual_end();
4622  }
4623  bool qual_empty() const { return getObjectType()->qual_empty(); }
4624
4625  /// getNumProtocols - Return the number of qualifying protocols on
4626  /// the object type.
4627  unsigned getNumProtocols() const {
4628    return getObjectType()->getNumProtocols();
4629  }
4630
4631  /// \brief Retrieve a qualifying protocol by index on the object
4632  /// type.
4633  ObjCProtocolDecl *getProtocol(unsigned I) const {
4634    return getObjectType()->getProtocol(I);
4635  }
4636
4637  bool isSugared() const { return false; }
4638  QualType desugar() const { return QualType(this, 0); }
4639
4640  void Profile(llvm::FoldingSetNodeID &ID) {
4641    Profile(ID, getPointeeType());
4642  }
4643  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4644    ID.AddPointer(T.getAsOpaquePtr());
4645  }
4646  static bool classof(const Type *T) {
4647    return T->getTypeClass() == ObjCObjectPointer;
4648  }
4649};
4650
4651class AtomicType : public Type, public llvm::FoldingSetNode {
4652  QualType ValueType;
4653
4654  AtomicType(QualType ValTy, QualType Canonical)
4655    : Type(Atomic, Canonical, ValTy->isDependentType(),
4656           ValTy->isInstantiationDependentType(),
4657           ValTy->isVariablyModifiedType(),
4658           ValTy->containsUnexpandedParameterPack()),
4659      ValueType(ValTy) {}
4660  friend class ASTContext;  // ASTContext creates these.
4661
4662  public:
4663  /// getValueType - Gets the type contained by this atomic type, i.e.
4664  /// the type returned by performing an atomic load of this atomic type.
4665  QualType getValueType() const { return ValueType; }
4666
4667  bool isSugared() const { return false; }
4668  QualType desugar() const { return QualType(this, 0); }
4669
4670  void Profile(llvm::FoldingSetNodeID &ID) {
4671    Profile(ID, getValueType());
4672  }
4673  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4674    ID.AddPointer(T.getAsOpaquePtr());
4675  }
4676  static bool classof(const Type *T) {
4677    return T->getTypeClass() == Atomic;
4678  }
4679};
4680
4681/// A qualifier set is used to build a set of qualifiers.
4682class QualifierCollector : public Qualifiers {
4683public:
4684  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4685
4686  /// Collect any qualifiers on the given type and return an
4687  /// unqualified type.  The qualifiers are assumed to be consistent
4688  /// with those already in the type.
4689  const Type *strip(QualType type) {
4690    addFastQualifiers(type.getLocalFastQualifiers());
4691    if (!type.hasLocalNonFastQualifiers())
4692      return type.getTypePtrUnsafe();
4693
4694    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4695    addConsistentQualifiers(extQuals->getQualifiers());
4696    return extQuals->getBaseType();
4697  }
4698
4699  /// Apply the collected qualifiers to the given type.
4700  QualType apply(const ASTContext &Context, QualType QT) const;
4701
4702  /// Apply the collected qualifiers to the given type.
4703  QualType apply(const ASTContext &Context, const Type* T) const;
4704};
4705
4706
4707// Inline function definitions.
4708
4709inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4710  SplitQualType desugar =
4711    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4712  desugar.Quals.addConsistentQualifiers(Quals);
4713  return desugar;
4714}
4715
4716inline const Type *QualType::getTypePtr() const {
4717  return getCommonPtr()->BaseType;
4718}
4719
4720inline const Type *QualType::getTypePtrOrNull() const {
4721  return (isNull() ? nullptr : getCommonPtr()->BaseType);
4722}
4723
4724inline SplitQualType QualType::split() const {
4725  if (!hasLocalNonFastQualifiers())
4726    return SplitQualType(getTypePtrUnsafe(),
4727                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4728
4729  const ExtQuals *eq = getExtQualsUnsafe();
4730  Qualifiers qs = eq->getQualifiers();
4731  qs.addFastQualifiers(getLocalFastQualifiers());
4732  return SplitQualType(eq->getBaseType(), qs);
4733}
4734
4735inline Qualifiers QualType::getLocalQualifiers() const {
4736  Qualifiers Quals;
4737  if (hasLocalNonFastQualifiers())
4738    Quals = getExtQualsUnsafe()->getQualifiers();
4739  Quals.addFastQualifiers(getLocalFastQualifiers());
4740  return Quals;
4741}
4742
4743inline Qualifiers QualType::getQualifiers() const {
4744  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4745  quals.addFastQualifiers(getLocalFastQualifiers());
4746  return quals;
4747}
4748
4749inline unsigned QualType::getCVRQualifiers() const {
4750  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4751  cvr |= getLocalCVRQualifiers();
4752  return cvr;
4753}
4754
4755inline QualType QualType::getCanonicalType() const {
4756  QualType canon = getCommonPtr()->CanonicalType;
4757  return canon.withFastQualifiers(getLocalFastQualifiers());
4758}
4759
4760inline bool QualType::isCanonical() const {
4761  return getTypePtr()->isCanonicalUnqualified();
4762}
4763
4764inline bool QualType::isCanonicalAsParam() const {
4765  if (!isCanonical()) return false;
4766  if (hasLocalQualifiers()) return false;
4767
4768  const Type *T = getTypePtr();
4769  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4770    return false;
4771
4772  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4773}
4774
4775inline bool QualType::isConstQualified() const {
4776  return isLocalConstQualified() ||
4777         getCommonPtr()->CanonicalType.isLocalConstQualified();
4778}
4779
4780inline bool QualType::isRestrictQualified() const {
4781  return isLocalRestrictQualified() ||
4782         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4783}
4784
4785
4786inline bool QualType::isVolatileQualified() const {
4787  return isLocalVolatileQualified() ||
4788         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4789}
4790
4791inline bool QualType::hasQualifiers() const {
4792  return hasLocalQualifiers() ||
4793         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4794}
4795
4796inline QualType QualType::getUnqualifiedType() const {
4797  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4798    return QualType(getTypePtr(), 0);
4799
4800  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4801}
4802
4803inline SplitQualType QualType::getSplitUnqualifiedType() const {
4804  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4805    return split();
4806
4807  return getSplitUnqualifiedTypeImpl(*this);
4808}
4809
4810inline void QualType::removeLocalConst() {
4811  removeLocalFastQualifiers(Qualifiers::Const);
4812}
4813
4814inline void QualType::removeLocalRestrict() {
4815  removeLocalFastQualifiers(Qualifiers::Restrict);
4816}
4817
4818inline void QualType::removeLocalVolatile() {
4819  removeLocalFastQualifiers(Qualifiers::Volatile);
4820}
4821
4822inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4823  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4824  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4825
4826  // Fast path: we don't need to touch the slow qualifiers.
4827  removeLocalFastQualifiers(Mask);
4828}
4829
4830/// getAddressSpace - Return the address space of this type.
4831inline unsigned QualType::getAddressSpace() const {
4832  return getQualifiers().getAddressSpace();
4833}
4834
4835/// getObjCGCAttr - Return the gc attribute of this type.
4836inline Qualifiers::GC QualType::getObjCGCAttr() const {
4837  return getQualifiers().getObjCGCAttr();
4838}
4839
4840inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4841  if (const PointerType *PT = t.getAs<PointerType>()) {
4842    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4843      return FT->getExtInfo();
4844  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4845    return FT->getExtInfo();
4846
4847  return FunctionType::ExtInfo();
4848}
4849
4850inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4851  return getFunctionExtInfo(*t);
4852}
4853
4854/// isMoreQualifiedThan - Determine whether this type is more
4855/// qualified than the Other type. For example, "const volatile int"
4856/// is more qualified than "const int", "volatile int", and
4857/// "int". However, it is not more qualified than "const volatile
4858/// int".
4859inline bool QualType::isMoreQualifiedThan(QualType other) const {
4860  Qualifiers myQuals = getQualifiers();
4861  Qualifiers otherQuals = other.getQualifiers();
4862  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4863}
4864
4865/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4866/// as qualified as the Other type. For example, "const volatile
4867/// int" is at least as qualified as "const int", "volatile int",
4868/// "int", and "const volatile int".
4869inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4870  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4871}
4872
4873/// getNonReferenceType - If Type is a reference type (e.g., const
4874/// int&), returns the type that the reference refers to ("const
4875/// int"). Otherwise, returns the type itself. This routine is used
4876/// throughout Sema to implement C++ 5p6:
4877///
4878///   If an expression initially has the type "reference to T" (8.3.2,
4879///   8.5.3), the type is adjusted to "T" prior to any further
4880///   analysis, the expression designates the object or function
4881///   denoted by the reference, and the expression is an lvalue.
4882inline QualType QualType::getNonReferenceType() const {
4883  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4884    return RefType->getPointeeType();
4885  else
4886    return *this;
4887}
4888
4889inline bool QualType::isCForbiddenLValueType() const {
4890  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4891          getTypePtr()->isFunctionType());
4892}
4893
4894/// \brief Tests whether the type is categorized as a fundamental type.
4895///
4896/// \returns True for types specified in C++0x [basic.fundamental].
4897inline bool Type::isFundamentalType() const {
4898  return isVoidType() ||
4899         // FIXME: It's really annoying that we don't have an
4900         // 'isArithmeticType()' which agrees with the standard definition.
4901         (isArithmeticType() && !isEnumeralType());
4902}
4903
4904/// \brief Tests whether the type is categorized as a compound type.
4905///
4906/// \returns True for types specified in C++0x [basic.compound].
4907inline bool Type::isCompoundType() const {
4908  // C++0x [basic.compound]p1:
4909  //   Compound types can be constructed in the following ways:
4910  //    -- arrays of objects of a given type [...];
4911  return isArrayType() ||
4912  //    -- functions, which have parameters of given types [...];
4913         isFunctionType() ||
4914  //    -- pointers to void or objects or functions [...];
4915         isPointerType() ||
4916  //    -- references to objects or functions of a given type. [...]
4917         isReferenceType() ||
4918  //    -- classes containing a sequence of objects of various types, [...];
4919         isRecordType() ||
4920  //    -- unions, which are classes capable of containing objects of different
4921  //               types at different times;
4922         isUnionType() ||
4923  //    -- enumerations, which comprise a set of named constant values. [...];
4924         isEnumeralType() ||
4925  //    -- pointers to non-static class members, [...].
4926         isMemberPointerType();
4927}
4928
4929inline bool Type::isFunctionType() const {
4930  return isa<FunctionType>(CanonicalType);
4931}
4932inline bool Type::isPointerType() const {
4933  return isa<PointerType>(CanonicalType);
4934}
4935inline bool Type::isAnyPointerType() const {
4936  return isPointerType() || isObjCObjectPointerType();
4937}
4938inline bool Type::isBlockPointerType() const {
4939  return isa<BlockPointerType>(CanonicalType);
4940}
4941inline bool Type::isReferenceType() const {
4942  return isa<ReferenceType>(CanonicalType);
4943}
4944inline bool Type::isLValueReferenceType() const {
4945  return isa<LValueReferenceType>(CanonicalType);
4946}
4947inline bool Type::isRValueReferenceType() const {
4948  return isa<RValueReferenceType>(CanonicalType);
4949}
4950inline bool Type::isFunctionPointerType() const {
4951  if (const PointerType *T = getAs<PointerType>())
4952    return T->getPointeeType()->isFunctionType();
4953  else
4954    return false;
4955}
4956inline bool Type::isMemberPointerType() const {
4957  return isa<MemberPointerType>(CanonicalType);
4958}
4959inline bool Type::isMemberFunctionPointerType() const {
4960  if (const MemberPointerType* T = getAs<MemberPointerType>())
4961    return T->isMemberFunctionPointer();
4962  else
4963    return false;
4964}
4965inline bool Type::isMemberDataPointerType() const {
4966  if (const MemberPointerType* T = getAs<MemberPointerType>())
4967    return T->isMemberDataPointer();
4968  else
4969    return false;
4970}
4971inline bool Type::isArrayType() const {
4972  return isa<ArrayType>(CanonicalType);
4973}
4974inline bool Type::isConstantArrayType() const {
4975  return isa<ConstantArrayType>(CanonicalType);
4976}
4977inline bool Type::isIncompleteArrayType() const {
4978  return isa<IncompleteArrayType>(CanonicalType);
4979}
4980inline bool Type::isVariableArrayType() const {
4981  return isa<VariableArrayType>(CanonicalType);
4982}
4983inline bool Type::isDependentSizedArrayType() const {
4984  return isa<DependentSizedArrayType>(CanonicalType);
4985}
4986inline bool Type::isBuiltinType() const {
4987  return isa<BuiltinType>(CanonicalType);
4988}
4989inline bool Type::isRecordType() const {
4990  return isa<RecordType>(CanonicalType);
4991}
4992inline bool Type::isEnumeralType() const {
4993  return isa<EnumType>(CanonicalType);
4994}
4995inline bool Type::isAnyComplexType() const {
4996  return isa<ComplexType>(CanonicalType);
4997}
4998inline bool Type::isVectorType() const {
4999  return isa<VectorType>(CanonicalType);
5000}
5001inline bool Type::isExtVectorType() const {
5002  return isa<ExtVectorType>(CanonicalType);
5003}
5004inline bool Type::isObjCObjectPointerType() const {
5005  return isa<ObjCObjectPointerType>(CanonicalType);
5006}
5007inline bool Type::isObjCObjectType() const {
5008  return isa<ObjCObjectType>(CanonicalType);
5009}
5010inline bool Type::isObjCObjectOrInterfaceType() const {
5011  return isa<ObjCInterfaceType>(CanonicalType) ||
5012    isa<ObjCObjectType>(CanonicalType);
5013}
5014inline bool Type::isAtomicType() const {
5015  return isa<AtomicType>(CanonicalType);
5016}
5017
5018inline bool Type::isObjCQualifiedIdType() const {
5019  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5020    return OPT->isObjCQualifiedIdType();
5021  return false;
5022}
5023inline bool Type::isObjCQualifiedClassType() const {
5024  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5025    return OPT->isObjCQualifiedClassType();
5026  return false;
5027}
5028inline bool Type::isObjCIdType() const {
5029  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5030    return OPT->isObjCIdType();
5031  return false;
5032}
5033inline bool Type::isObjCClassType() const {
5034  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
5035    return OPT->isObjCClassType();
5036  return false;
5037}
5038inline bool Type::isObjCSelType() const {
5039  if (const PointerType *OPT = getAs<PointerType>())
5040    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
5041  return false;
5042}
5043inline bool Type::isObjCBuiltinType() const {
5044  return isObjCIdType() || isObjCClassType() || isObjCSelType();
5045}
5046
5047inline bool Type::isImage1dT() const {
5048  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
5049}
5050
5051inline bool Type::isImage1dArrayT() const {
5052  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
5053}
5054
5055inline bool Type::isImage1dBufferT() const {
5056  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
5057}
5058
5059inline bool Type::isImage2dT() const {
5060  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
5061}
5062
5063inline bool Type::isImage2dArrayT() const {
5064  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
5065}
5066
5067inline bool Type::isImage3dT() const {
5068  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
5069}
5070
5071inline bool Type::isSamplerT() const {
5072  return isSpecificBuiltinType(BuiltinType::OCLSampler);
5073}
5074
5075inline bool Type::isEventT() const {
5076  return isSpecificBuiltinType(BuiltinType::OCLEvent);
5077}
5078
5079inline bool Type::isImageType() const {
5080  return isImage3dT() ||
5081         isImage2dT() || isImage2dArrayT() ||
5082         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
5083}
5084
5085inline bool Type::isOpenCLSpecificType() const {
5086  return isSamplerT() || isEventT() || isImageType();
5087}
5088
5089inline bool Type::isTemplateTypeParmType() const {
5090  return isa<TemplateTypeParmType>(CanonicalType);
5091}
5092
5093inline bool Type::isSpecificBuiltinType(unsigned K) const {
5094  if (const BuiltinType *BT = getAs<BuiltinType>())
5095    if (BT->getKind() == (BuiltinType::Kind) K)
5096      return true;
5097  return false;
5098}
5099
5100inline bool Type::isPlaceholderType() const {
5101  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5102    return BT->isPlaceholderType();
5103  return false;
5104}
5105
5106inline const BuiltinType *Type::getAsPlaceholderType() const {
5107  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5108    if (BT->isPlaceholderType())
5109      return BT;
5110  return nullptr;
5111}
5112
5113inline bool Type::isSpecificPlaceholderType(unsigned K) const {
5114  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
5115  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5116    return (BT->getKind() == (BuiltinType::Kind) K);
5117  return false;
5118}
5119
5120inline bool Type::isNonOverloadPlaceholderType() const {
5121  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5122    return BT->isNonOverloadPlaceholderType();
5123  return false;
5124}
5125
5126inline bool Type::isVoidType() const {
5127  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5128    return BT->getKind() == BuiltinType::Void;
5129  return false;
5130}
5131
5132inline bool Type::isHalfType() const {
5133  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5134    return BT->getKind() == BuiltinType::Half;
5135  // FIXME: Should we allow complex __fp16? Probably not.
5136  return false;
5137}
5138
5139inline bool Type::isNullPtrType() const {
5140  if (const BuiltinType *BT = getAs<BuiltinType>())
5141    return BT->getKind() == BuiltinType::NullPtr;
5142  return false;
5143}
5144
5145extern bool IsEnumDeclComplete(EnumDecl *);
5146extern bool IsEnumDeclScoped(EnumDecl *);
5147
5148inline bool Type::isIntegerType() const {
5149  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5150    return BT->getKind() >= BuiltinType::Bool &&
5151           BT->getKind() <= BuiltinType::Int128;
5152  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5153    // Incomplete enum types are not treated as integer types.
5154    // FIXME: In C++, enum types are never integer types.
5155    return IsEnumDeclComplete(ET->getDecl()) &&
5156      !IsEnumDeclScoped(ET->getDecl());
5157  }
5158  return false;
5159}
5160
5161inline bool Type::isScalarType() const {
5162  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5163    return BT->getKind() > BuiltinType::Void &&
5164           BT->getKind() <= BuiltinType::NullPtr;
5165  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5166    // Enums are scalar types, but only if they are defined.  Incomplete enums
5167    // are not treated as scalar types.
5168    return IsEnumDeclComplete(ET->getDecl());
5169  return isa<PointerType>(CanonicalType) ||
5170         isa<BlockPointerType>(CanonicalType) ||
5171         isa<MemberPointerType>(CanonicalType) ||
5172         isa<ComplexType>(CanonicalType) ||
5173         isa<ObjCObjectPointerType>(CanonicalType);
5174}
5175
5176inline bool Type::isIntegralOrEnumerationType() const {
5177  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5178    return BT->getKind() >= BuiltinType::Bool &&
5179           BT->getKind() <= BuiltinType::Int128;
5180
5181  // Check for a complete enum type; incomplete enum types are not properly an
5182  // enumeration type in the sense required here.
5183  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5184    return IsEnumDeclComplete(ET->getDecl());
5185
5186  return false;
5187}
5188
5189inline bool Type::isBooleanType() const {
5190  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5191    return BT->getKind() == BuiltinType::Bool;
5192  return false;
5193}
5194
5195inline bool Type::isUndeducedType() const {
5196  const AutoType *AT = getContainedAutoType();
5197  return AT && !AT->isDeduced();
5198}
5199
5200/// \brief Determines whether this is a type for which one can define
5201/// an overloaded operator.
5202inline bool Type::isOverloadableType() const {
5203  return isDependentType() || isRecordType() || isEnumeralType();
5204}
5205
5206/// \brief Determines whether this type can decay to a pointer type.
5207inline bool Type::canDecayToPointerType() const {
5208  return isFunctionType() || isArrayType();
5209}
5210
5211inline bool Type::hasPointerRepresentation() const {
5212  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5213          isObjCObjectPointerType() || isNullPtrType());
5214}
5215
5216inline bool Type::hasObjCPointerRepresentation() const {
5217  return isObjCObjectPointerType();
5218}
5219
5220inline const Type *Type::getBaseElementTypeUnsafe() const {
5221  const Type *type = this;
5222  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5223    type = arrayType->getElementType().getTypePtr();
5224  return type;
5225}
5226
5227/// Insertion operator for diagnostics.  This allows sending QualType's into a
5228/// diagnostic with <<.
5229inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5230                                           QualType T) {
5231  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5232                  DiagnosticsEngine::ak_qualtype);
5233  return DB;
5234}
5235
5236/// Insertion operator for partial diagnostics.  This allows sending QualType's
5237/// into a diagnostic with <<.
5238inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5239                                           QualType T) {
5240  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5241                  DiagnosticsEngine::ak_qualtype);
5242  return PD;
5243}
5244
5245// Helper class template that is used by Type::getAs to ensure that one does
5246// not try to look through a qualified type to get to an array type.
5247template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
5248                                          std::is_base_of<ArrayType, T>::value)>
5249struct ArrayType_cannot_be_used_with_getAs {};
5250
5251template<typename T>
5252struct ArrayType_cannot_be_used_with_getAs<T, true>;
5253
5254// Member-template getAs<specific type>'.
5255template <typename T> const T *Type::getAs() const {
5256  ArrayType_cannot_be_used_with_getAs<T> at;
5257  (void)at;
5258
5259  // If this is directly a T type, return it.
5260  if (const T *Ty = dyn_cast<T>(this))
5261    return Ty;
5262
5263  // If the canonical form of this type isn't the right kind, reject it.
5264  if (!isa<T>(CanonicalType))
5265    return nullptr;
5266
5267  // If this is a typedef for the type, strip the typedef off without
5268  // losing all typedef information.
5269  return cast<T>(getUnqualifiedDesugaredType());
5270}
5271
5272inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5273  // If this is directly an array type, return it.
5274  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5275    return arr;
5276
5277  // If the canonical form of this type isn't the right kind, reject it.
5278  if (!isa<ArrayType>(CanonicalType))
5279    return nullptr;
5280
5281  // If this is a typedef for the type, strip the typedef off without
5282  // losing all typedef information.
5283  return cast<ArrayType>(getUnqualifiedDesugaredType());
5284}
5285
5286template <typename T> const T *Type::castAs() const {
5287  ArrayType_cannot_be_used_with_getAs<T> at;
5288  (void) at;
5289
5290  if (const T *ty = dyn_cast<T>(this)) return ty;
5291  assert(isa<T>(CanonicalType));
5292  return cast<T>(getUnqualifiedDesugaredType());
5293}
5294
5295inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5296  assert(isa<ArrayType>(CanonicalType));
5297  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5298  return cast<ArrayType>(getUnqualifiedDesugaredType());
5299}
5300
5301}  // end namespace clang
5302
5303#endif
5304