1//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Decl.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/IdentifierTable.h"
29#include "clang/Basic/Module.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Frontend/FrontendDiagnostic.h"
33#include "llvm/Support/ErrorHandling.h"
34#include <algorithm>
35
36using namespace clang;
37
38Decl *clang::getPrimaryMergedDecl(Decl *D) {
39  return D->getASTContext().getPrimaryMergedDecl(D);
40}
41
42// Defined here so that it can be inlined into its direct callers.
43bool Decl::isOutOfLine() const {
44  return !getLexicalDeclContext()->Equals(getDeclContext());
45}
46
47//===----------------------------------------------------------------------===//
48// NamedDecl Implementation
49//===----------------------------------------------------------------------===//
50
51// Visibility rules aren't rigorously externally specified, but here
52// are the basic principles behind what we implement:
53//
54// 1. An explicit visibility attribute is generally a direct expression
55// of the user's intent and should be honored.  Only the innermost
56// visibility attribute applies.  If no visibility attribute applies,
57// global visibility settings are considered.
58//
59// 2. There is one caveat to the above: on or in a template pattern,
60// an explicit visibility attribute is just a default rule, and
61// visibility can be decreased by the visibility of template
62// arguments.  But this, too, has an exception: an attribute on an
63// explicit specialization or instantiation causes all the visibility
64// restrictions of the template arguments to be ignored.
65//
66// 3. A variable that does not otherwise have explicit visibility can
67// be restricted by the visibility of its type.
68//
69// 4. A visibility restriction is explicit if it comes from an
70// attribute (or something like it), not a global visibility setting.
71// When emitting a reference to an external symbol, visibility
72// restrictions are ignored unless they are explicit.
73//
74// 5. When computing the visibility of a non-type, including a
75// non-type member of a class, only non-type visibility restrictions
76// are considered: the 'visibility' attribute, global value-visibility
77// settings, and a few special cases like __private_extern.
78//
79// 6. When computing the visibility of a type, including a type member
80// of a class, only type visibility restrictions are considered:
81// the 'type_visibility' attribute and global type-visibility settings.
82// However, a 'visibility' attribute counts as a 'type_visibility'
83// attribute on any declaration that only has the former.
84//
85// The visibility of a "secondary" entity, like a template argument,
86// is computed using the kind of that entity, not the kind of the
87// primary entity for which we are computing visibility.  For example,
88// the visibility of a specialization of either of these templates:
89//   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
90//   template <class T, bool (&compare)(T, X)> class matcher;
91// is restricted according to the type visibility of the argument 'T',
92// the type visibility of 'bool(&)(T,X)', and the value visibility of
93// the argument function 'compare'.  That 'has_match' is a value
94// and 'matcher' is a type only matters when looking for attributes
95// and settings from the immediate context.
96
97const unsigned IgnoreExplicitVisibilityBit = 2;
98const unsigned IgnoreAllVisibilityBit = 4;
99
100/// Kinds of LV computation.  The linkage side of the computation is
101/// always the same, but different things can change how visibility is
102/// computed.
103enum LVComputationKind {
104  /// Do an LV computation for, ultimately, a type.
105  /// Visibility may be restricted by type visibility settings and
106  /// the visibility of template arguments.
107  LVForType = NamedDecl::VisibilityForType,
108
109  /// Do an LV computation for, ultimately, a non-type declaration.
110  /// Visibility may be restricted by value visibility settings and
111  /// the visibility of template arguments.
112  LVForValue = NamedDecl::VisibilityForValue,
113
114  /// Do an LV computation for, ultimately, a type that already has
115  /// some sort of explicit visibility.  Visibility may only be
116  /// restricted by the visibility of template arguments.
117  LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
118
119  /// Do an LV computation for, ultimately, a non-type declaration
120  /// that already has some sort of explicit visibility.  Visibility
121  /// may only be restricted by the visibility of template arguments.
122  LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
123
124  /// Do an LV computation when we only care about the linkage.
125  LVForLinkageOnly =
126      LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
127};
128
129/// Does this computation kind permit us to consider additional
130/// visibility settings from attributes and the like?
131static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
132  return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
133}
134
135/// Given an LVComputationKind, return one of the same type/value sort
136/// that records that it already has explicit visibility.
137static LVComputationKind
138withExplicitVisibilityAlready(LVComputationKind oldKind) {
139  LVComputationKind newKind =
140    static_cast<LVComputationKind>(unsigned(oldKind) |
141                                   IgnoreExplicitVisibilityBit);
142  assert(oldKind != LVForType          || newKind == LVForExplicitType);
143  assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
144  assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
145  assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
146  return newKind;
147}
148
149static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
150                                                  LVComputationKind kind) {
151  assert(!hasExplicitVisibilityAlready(kind) &&
152         "asking for explicit visibility when we shouldn't be");
153  return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
154}
155
156/// Is the given declaration a "type" or a "value" for the purposes of
157/// visibility computation?
158static bool usesTypeVisibility(const NamedDecl *D) {
159  return isa<TypeDecl>(D) ||
160         isa<ClassTemplateDecl>(D) ||
161         isa<ObjCInterfaceDecl>(D);
162}
163
164/// Does the given declaration have member specialization information,
165/// and if so, is it an explicit specialization?
166template <class T> static typename
167std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
168isExplicitMemberSpecialization(const T *D) {
169  if (const MemberSpecializationInfo *member =
170        D->getMemberSpecializationInfo()) {
171    return member->isExplicitSpecialization();
172  }
173  return false;
174}
175
176/// For templates, this question is easier: a member template can't be
177/// explicitly instantiated, so there's a single bit indicating whether
178/// or not this is an explicit member specialization.
179static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
180  return D->isMemberSpecialization();
181}
182
183/// Given a visibility attribute, return the explicit visibility
184/// associated with it.
185template <class T>
186static Visibility getVisibilityFromAttr(const T *attr) {
187  switch (attr->getVisibility()) {
188  case T::Default:
189    return DefaultVisibility;
190  case T::Hidden:
191    return HiddenVisibility;
192  case T::Protected:
193    return ProtectedVisibility;
194  }
195  llvm_unreachable("bad visibility kind");
196}
197
198/// Return the explicit visibility of the given declaration.
199static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
200                                    NamedDecl::ExplicitVisibilityKind kind) {
201  // If we're ultimately computing the visibility of a type, look for
202  // a 'type_visibility' attribute before looking for 'visibility'.
203  if (kind == NamedDecl::VisibilityForType) {
204    if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
205      return getVisibilityFromAttr(A);
206    }
207  }
208
209  // If this declaration has an explicit visibility attribute, use it.
210  if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
211    return getVisibilityFromAttr(A);
212  }
213
214  // If we're on Mac OS X, an 'availability' for Mac OS X attribute
215  // implies visibility(default).
216  if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
217    for (const auto *A : D->specific_attrs<AvailabilityAttr>())
218      if (A->getPlatform()->getName().equals("macosx"))
219        return DefaultVisibility;
220  }
221
222  return None;
223}
224
225static LinkageInfo
226getLVForType(const Type &T, LVComputationKind computation) {
227  if (computation == LVForLinkageOnly)
228    return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
229  return T.getLinkageAndVisibility();
230}
231
232/// \brief Get the most restrictive linkage for the types in the given
233/// template parameter list.  For visibility purposes, template
234/// parameters are part of the signature of a template.
235static LinkageInfo
236getLVForTemplateParameterList(const TemplateParameterList *Params,
237                              LVComputationKind computation) {
238  LinkageInfo LV;
239  for (const NamedDecl *P : *Params) {
240    // Template type parameters are the most common and never
241    // contribute to visibility, pack or not.
242    if (isa<TemplateTypeParmDecl>(P))
243      continue;
244
245    // Non-type template parameters can be restricted by the value type, e.g.
246    //   template <enum X> class A { ... };
247    // We have to be careful here, though, because we can be dealing with
248    // dependent types.
249    if (const NonTypeTemplateParmDecl *NTTP =
250            dyn_cast<NonTypeTemplateParmDecl>(P)) {
251      // Handle the non-pack case first.
252      if (!NTTP->isExpandedParameterPack()) {
253        if (!NTTP->getType()->isDependentType()) {
254          LV.merge(getLVForType(*NTTP->getType(), computation));
255        }
256        continue;
257      }
258
259      // Look at all the types in an expanded pack.
260      for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
261        QualType type = NTTP->getExpansionType(i);
262        if (!type->isDependentType())
263          LV.merge(type->getLinkageAndVisibility());
264      }
265      continue;
266    }
267
268    // Template template parameters can be restricted by their
269    // template parameters, recursively.
270    const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
271
272    // Handle the non-pack case first.
273    if (!TTP->isExpandedParameterPack()) {
274      LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
275                                             computation));
276      continue;
277    }
278
279    // Look at all expansions in an expanded pack.
280    for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
281           i != n; ++i) {
282      LV.merge(getLVForTemplateParameterList(
283          TTP->getExpansionTemplateParameters(i), computation));
284    }
285  }
286
287  return LV;
288}
289
290/// getLVForDecl - Get the linkage and visibility for the given declaration.
291static LinkageInfo getLVForDecl(const NamedDecl *D,
292                                LVComputationKind computation);
293
294static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
295  const Decl *Ret = nullptr;
296  const DeclContext *DC = D->getDeclContext();
297  while (DC->getDeclKind() != Decl::TranslationUnit) {
298    if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
299      Ret = cast<Decl>(DC);
300    DC = DC->getParent();
301  }
302  return Ret;
303}
304
305/// \brief Get the most restrictive linkage for the types and
306/// declarations in the given template argument list.
307///
308/// Note that we don't take an LVComputationKind because we always
309/// want to honor the visibility of template arguments in the same way.
310static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
311                                                LVComputationKind computation) {
312  LinkageInfo LV;
313
314  for (const TemplateArgument &Arg : Args) {
315    switch (Arg.getKind()) {
316    case TemplateArgument::Null:
317    case TemplateArgument::Integral:
318    case TemplateArgument::Expression:
319      continue;
320
321    case TemplateArgument::Type:
322      LV.merge(getLVForType(*Arg.getAsType(), computation));
323      continue;
324
325    case TemplateArgument::Declaration:
326      if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
327        assert(!usesTypeVisibility(ND));
328        LV.merge(getLVForDecl(ND, computation));
329      }
330      continue;
331
332    case TemplateArgument::NullPtr:
333      LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
334      continue;
335
336    case TemplateArgument::Template:
337    case TemplateArgument::TemplateExpansion:
338      if (TemplateDecl *Template =
339              Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
340        LV.merge(getLVForDecl(Template, computation));
341      continue;
342
343    case TemplateArgument::Pack:
344      LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
345      continue;
346    }
347    llvm_unreachable("bad template argument kind");
348  }
349
350  return LV;
351}
352
353static LinkageInfo
354getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
355                             LVComputationKind computation) {
356  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
357}
358
359static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
360                        const FunctionTemplateSpecializationInfo *specInfo) {
361  // Include visibility from the template parameters and arguments
362  // only if this is not an explicit instantiation or specialization
363  // with direct explicit visibility.  (Implicit instantiations won't
364  // have a direct attribute.)
365  if (!specInfo->isExplicitInstantiationOrSpecialization())
366    return true;
367
368  return !fn->hasAttr<VisibilityAttr>();
369}
370
371/// Merge in template-related linkage and visibility for the given
372/// function template specialization.
373///
374/// We don't need a computation kind here because we can assume
375/// LVForValue.
376///
377/// \param[out] LV the computation to use for the parent
378static void
379mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
380                const FunctionTemplateSpecializationInfo *specInfo,
381                LVComputationKind computation) {
382  bool considerVisibility =
383    shouldConsiderTemplateVisibility(fn, specInfo);
384
385  // Merge information from the template parameters.
386  FunctionTemplateDecl *temp = specInfo->getTemplate();
387  LinkageInfo tempLV =
388    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
389  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
390
391  // Merge information from the template arguments.
392  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
393  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
394  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
395}
396
397/// Does the given declaration have a direct visibility attribute
398/// that would match the given rules?
399static bool hasDirectVisibilityAttribute(const NamedDecl *D,
400                                         LVComputationKind computation) {
401  switch (computation) {
402  case LVForType:
403  case LVForExplicitType:
404    if (D->hasAttr<TypeVisibilityAttr>())
405      return true;
406    // fallthrough
407  case LVForValue:
408  case LVForExplicitValue:
409    if (D->hasAttr<VisibilityAttr>())
410      return true;
411    return false;
412  case LVForLinkageOnly:
413    return false;
414  }
415  llvm_unreachable("bad visibility computation kind");
416}
417
418/// Should we consider visibility associated with the template
419/// arguments and parameters of the given class template specialization?
420static bool shouldConsiderTemplateVisibility(
421                                 const ClassTemplateSpecializationDecl *spec,
422                                 LVComputationKind computation) {
423  // Include visibility from the template parameters and arguments
424  // only if this is not an explicit instantiation or specialization
425  // with direct explicit visibility (and note that implicit
426  // instantiations won't have a direct attribute).
427  //
428  // Furthermore, we want to ignore template parameters and arguments
429  // for an explicit specialization when computing the visibility of a
430  // member thereof with explicit visibility.
431  //
432  // This is a bit complex; let's unpack it.
433  //
434  // An explicit class specialization is an independent, top-level
435  // declaration.  As such, if it or any of its members has an
436  // explicit visibility attribute, that must directly express the
437  // user's intent, and we should honor it.  The same logic applies to
438  // an explicit instantiation of a member of such a thing.
439
440  // Fast path: if this is not an explicit instantiation or
441  // specialization, we always want to consider template-related
442  // visibility restrictions.
443  if (!spec->isExplicitInstantiationOrSpecialization())
444    return true;
445
446  // This is the 'member thereof' check.
447  if (spec->isExplicitSpecialization() &&
448      hasExplicitVisibilityAlready(computation))
449    return false;
450
451  return !hasDirectVisibilityAttribute(spec, computation);
452}
453
454/// Merge in template-related linkage and visibility for the given
455/// class template specialization.
456static void mergeTemplateLV(LinkageInfo &LV,
457                            const ClassTemplateSpecializationDecl *spec,
458                            LVComputationKind computation) {
459  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
460
461  // Merge information from the template parameters, but ignore
462  // visibility if we're only considering template arguments.
463
464  ClassTemplateDecl *temp = spec->getSpecializedTemplate();
465  LinkageInfo tempLV =
466    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
467  LV.mergeMaybeWithVisibility(tempLV,
468           considerVisibility && !hasExplicitVisibilityAlready(computation));
469
470  // Merge information from the template arguments.  We ignore
471  // template-argument visibility if we've got an explicit
472  // instantiation with a visibility attribute.
473  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
474  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
475  if (considerVisibility)
476    LV.mergeVisibility(argsLV);
477  LV.mergeExternalVisibility(argsLV);
478}
479
480/// Should we consider visibility associated with the template
481/// arguments and parameters of the given variable template
482/// specialization? As usual, follow class template specialization
483/// logic up to initialization.
484static bool shouldConsiderTemplateVisibility(
485                                 const VarTemplateSpecializationDecl *spec,
486                                 LVComputationKind computation) {
487  // Include visibility from the template parameters and arguments
488  // only if this is not an explicit instantiation or specialization
489  // with direct explicit visibility (and note that implicit
490  // instantiations won't have a direct attribute).
491  if (!spec->isExplicitInstantiationOrSpecialization())
492    return true;
493
494  // An explicit variable specialization is an independent, top-level
495  // declaration.  As such, if it has an explicit visibility attribute,
496  // that must directly express the user's intent, and we should honor
497  // it.
498  if (spec->isExplicitSpecialization() &&
499      hasExplicitVisibilityAlready(computation))
500    return false;
501
502  return !hasDirectVisibilityAttribute(spec, computation);
503}
504
505/// Merge in template-related linkage and visibility for the given
506/// variable template specialization. As usual, follow class template
507/// specialization logic up to initialization.
508static void mergeTemplateLV(LinkageInfo &LV,
509                            const VarTemplateSpecializationDecl *spec,
510                            LVComputationKind computation) {
511  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
512
513  // Merge information from the template parameters, but ignore
514  // visibility if we're only considering template arguments.
515
516  VarTemplateDecl *temp = spec->getSpecializedTemplate();
517  LinkageInfo tempLV =
518    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
519  LV.mergeMaybeWithVisibility(tempLV,
520           considerVisibility && !hasExplicitVisibilityAlready(computation));
521
522  // Merge information from the template arguments.  We ignore
523  // template-argument visibility if we've got an explicit
524  // instantiation with a visibility attribute.
525  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
526  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
527  if (considerVisibility)
528    LV.mergeVisibility(argsLV);
529  LV.mergeExternalVisibility(argsLV);
530}
531
532static bool useInlineVisibilityHidden(const NamedDecl *D) {
533  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
534  const LangOptions &Opts = D->getASTContext().getLangOpts();
535  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
536    return false;
537
538  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
539  if (!FD)
540    return false;
541
542  TemplateSpecializationKind TSK = TSK_Undeclared;
543  if (FunctionTemplateSpecializationInfo *spec
544      = FD->getTemplateSpecializationInfo()) {
545    TSK = spec->getTemplateSpecializationKind();
546  } else if (MemberSpecializationInfo *MSI =
547             FD->getMemberSpecializationInfo()) {
548    TSK = MSI->getTemplateSpecializationKind();
549  }
550
551  const FunctionDecl *Def = nullptr;
552  // InlineVisibilityHidden only applies to definitions, and
553  // isInlined() only gives meaningful answers on definitions
554  // anyway.
555  return TSK != TSK_ExplicitInstantiationDeclaration &&
556    TSK != TSK_ExplicitInstantiationDefinition &&
557    FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
558}
559
560template <typename T> static bool isFirstInExternCContext(T *D) {
561  const T *First = D->getFirstDecl();
562  return First->isInExternCContext();
563}
564
565static bool isSingleLineLanguageLinkage(const Decl &D) {
566  if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
567    if (!SD->hasBraces())
568      return true;
569  return false;
570}
571
572static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
573                                              LVComputationKind computation) {
574  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
575         "Not a name having namespace scope");
576  ASTContext &Context = D->getASTContext();
577
578  // C++ [basic.link]p3:
579  //   A name having namespace scope (3.3.6) has internal linkage if it
580  //   is the name of
581  //     - an object, reference, function or function template that is
582  //       explicitly declared static; or,
583  // (This bullet corresponds to C99 6.2.2p3.)
584  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
585    // Explicitly declared static.
586    if (Var->getStorageClass() == SC_Static)
587      return LinkageInfo::internal();
588
589    // - a non-volatile object or reference that is explicitly declared const
590    //   or constexpr and neither explicitly declared extern nor previously
591    //   declared to have external linkage; or (there is no equivalent in C99)
592    if (Context.getLangOpts().CPlusPlus &&
593        Var->getType().isConstQualified() &&
594        !Var->getType().isVolatileQualified()) {
595      const VarDecl *PrevVar = Var->getPreviousDecl();
596      if (PrevVar)
597        return getLVForDecl(PrevVar, computation);
598
599      if (Var->getStorageClass() != SC_Extern &&
600          Var->getStorageClass() != SC_PrivateExtern &&
601          !isSingleLineLanguageLinkage(*Var))
602        return LinkageInfo::internal();
603    }
604
605    for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
606         PrevVar = PrevVar->getPreviousDecl()) {
607      if (PrevVar->getStorageClass() == SC_PrivateExtern &&
608          Var->getStorageClass() == SC_None)
609        return PrevVar->getLinkageAndVisibility();
610      // Explicitly declared static.
611      if (PrevVar->getStorageClass() == SC_Static)
612        return LinkageInfo::internal();
613    }
614  } else if (const FunctionDecl *Function = D->getAsFunction()) {
615    // C++ [temp]p4:
616    //   A non-member function template can have internal linkage; any
617    //   other template name shall have external linkage.
618
619    // Explicitly declared static.
620    if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
621      return LinkageInfo(InternalLinkage, DefaultVisibility, false);
622  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
623    //   - a data member of an anonymous union.
624    const VarDecl *VD = IFD->getVarDecl();
625    assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
626    return getLVForNamespaceScopeDecl(VD, computation);
627  }
628  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
629
630  if (D->isInAnonymousNamespace()) {
631    const VarDecl *Var = dyn_cast<VarDecl>(D);
632    const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
633    if ((!Var || !isFirstInExternCContext(Var)) &&
634        (!Func || !isFirstInExternCContext(Func)))
635      return LinkageInfo::uniqueExternal();
636  }
637
638  // Set up the defaults.
639
640  // C99 6.2.2p5:
641  //   If the declaration of an identifier for an object has file
642  //   scope and no storage-class specifier, its linkage is
643  //   external.
644  LinkageInfo LV;
645
646  if (!hasExplicitVisibilityAlready(computation)) {
647    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
648      LV.mergeVisibility(*Vis, true);
649    } else {
650      // If we're declared in a namespace with a visibility attribute,
651      // use that namespace's visibility, and it still counts as explicit.
652      for (const DeclContext *DC = D->getDeclContext();
653           !isa<TranslationUnitDecl>(DC);
654           DC = DC->getParent()) {
655        const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
656        if (!ND) continue;
657        if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
658          LV.mergeVisibility(*Vis, true);
659          break;
660        }
661      }
662    }
663
664    // Add in global settings if the above didn't give us direct visibility.
665    if (!LV.isVisibilityExplicit()) {
666      // Use global type/value visibility as appropriate.
667      Visibility globalVisibility;
668      if (computation == LVForValue) {
669        globalVisibility = Context.getLangOpts().getValueVisibilityMode();
670      } else {
671        assert(computation == LVForType);
672        globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
673      }
674      LV.mergeVisibility(globalVisibility, /*explicit*/ false);
675
676      // If we're paying attention to global visibility, apply
677      // -finline-visibility-hidden if this is an inline method.
678      if (useInlineVisibilityHidden(D))
679        LV.mergeVisibility(HiddenVisibility, true);
680    }
681  }
682
683  // C++ [basic.link]p4:
684
685  //   A name having namespace scope has external linkage if it is the
686  //   name of
687  //
688  //     - an object or reference, unless it has internal linkage; or
689  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
690    // GCC applies the following optimization to variables and static
691    // data members, but not to functions:
692    //
693    // Modify the variable's LV by the LV of its type unless this is
694    // C or extern "C".  This follows from [basic.link]p9:
695    //   A type without linkage shall not be used as the type of a
696    //   variable or function with external linkage unless
697    //    - the entity has C language linkage, or
698    //    - the entity is declared within an unnamed namespace, or
699    //    - the entity is not used or is defined in the same
700    //      translation unit.
701    // and [basic.link]p10:
702    //   ...the types specified by all declarations referring to a
703    //   given variable or function shall be identical...
704    // C does not have an equivalent rule.
705    //
706    // Ignore this if we've got an explicit attribute;  the user
707    // probably knows what they're doing.
708    //
709    // Note that we don't want to make the variable non-external
710    // because of this, but unique-external linkage suits us.
711    if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
712      LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
713      if (TypeLV.getLinkage() != ExternalLinkage)
714        return LinkageInfo::uniqueExternal();
715      if (!LV.isVisibilityExplicit())
716        LV.mergeVisibility(TypeLV);
717    }
718
719    if (Var->getStorageClass() == SC_PrivateExtern)
720      LV.mergeVisibility(HiddenVisibility, true);
721
722    // Note that Sema::MergeVarDecl already takes care of implementing
723    // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
724    // to do it here.
725
726    // As per function and class template specializations (below),
727    // consider LV for the template and template arguments.  We're at file
728    // scope, so we do not need to worry about nested specializations.
729    if (const VarTemplateSpecializationDecl *spec
730              = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
731      mergeTemplateLV(LV, spec, computation);
732    }
733
734  //     - a function, unless it has internal linkage; or
735  } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
736    // In theory, we can modify the function's LV by the LV of its
737    // type unless it has C linkage (see comment above about variables
738    // for justification).  In practice, GCC doesn't do this, so it's
739    // just too painful to make work.
740
741    if (Function->getStorageClass() == SC_PrivateExtern)
742      LV.mergeVisibility(HiddenVisibility, true);
743
744    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
745    // merging storage classes and visibility attributes, so we don't have to
746    // look at previous decls in here.
747
748    // In C++, then if the type of the function uses a type with
749    // unique-external linkage, it's not legally usable from outside
750    // this translation unit.  However, we should use the C linkage
751    // rules instead for extern "C" declarations.
752    if (Context.getLangOpts().CPlusPlus &&
753        !Function->isInExternCContext()) {
754      // Only look at the type-as-written. If this function has an auto-deduced
755      // return type, we can't compute the linkage of that type because it could
756      // require looking at the linkage of this function, and we don't need this
757      // for correctness because the type is not part of the function's
758      // signature.
759      // FIXME: This is a hack. We should be able to solve this circularity and
760      // the one in getLVForClassMember for Functions some other way.
761      QualType TypeAsWritten = Function->getType();
762      if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
763        TypeAsWritten = TSI->getType();
764      if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
765        return LinkageInfo::uniqueExternal();
766    }
767
768    // Consider LV from the template and the template arguments.
769    // We're at file scope, so we do not need to worry about nested
770    // specializations.
771    if (FunctionTemplateSpecializationInfo *specInfo
772                               = Function->getTemplateSpecializationInfo()) {
773      mergeTemplateLV(LV, Function, specInfo, computation);
774    }
775
776  //     - a named class (Clause 9), or an unnamed class defined in a
777  //       typedef declaration in which the class has the typedef name
778  //       for linkage purposes (7.1.3); or
779  //     - a named enumeration (7.2), or an unnamed enumeration
780  //       defined in a typedef declaration in which the enumeration
781  //       has the typedef name for linkage purposes (7.1.3); or
782  } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
783    // Unnamed tags have no linkage.
784    if (!Tag->hasNameForLinkage())
785      return LinkageInfo::none();
786
787    // If this is a class template specialization, consider the
788    // linkage of the template and template arguments.  We're at file
789    // scope, so we do not need to worry about nested specializations.
790    if (const ClassTemplateSpecializationDecl *spec
791          = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
792      mergeTemplateLV(LV, spec, computation);
793    }
794
795  //     - an enumerator belonging to an enumeration with external linkage;
796  } else if (isa<EnumConstantDecl>(D)) {
797    LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
798                                      computation);
799    if (!isExternalFormalLinkage(EnumLV.getLinkage()))
800      return LinkageInfo::none();
801    LV.merge(EnumLV);
802
803  //     - a template, unless it is a function template that has
804  //       internal linkage (Clause 14);
805  } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
806    bool considerVisibility = !hasExplicitVisibilityAlready(computation);
807    LinkageInfo tempLV =
808      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
809    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
810
811  //     - a namespace (7.3), unless it is declared within an unnamed
812  //       namespace.
813  } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
814    return LV;
815
816  // By extension, we assign external linkage to Objective-C
817  // interfaces.
818  } else if (isa<ObjCInterfaceDecl>(D)) {
819    // fallout
820
821  // Everything not covered here has no linkage.
822  } else {
823    // FIXME: A typedef declaration has linkage if it gives a type a name for
824    // linkage purposes.
825    return LinkageInfo::none();
826  }
827
828  // If we ended up with non-external linkage, visibility should
829  // always be default.
830  if (LV.getLinkage() != ExternalLinkage)
831    return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
832
833  return LV;
834}
835
836static LinkageInfo getLVForClassMember(const NamedDecl *D,
837                                       LVComputationKind computation) {
838  // Only certain class members have linkage.  Note that fields don't
839  // really have linkage, but it's convenient to say they do for the
840  // purposes of calculating linkage of pointer-to-data-member
841  // template arguments.
842  //
843  // Templates also don't officially have linkage, but since we ignore
844  // the C++ standard and look at template arguments when determining
845  // linkage and visibility of a template specialization, we might hit
846  // a template template argument that way. If we do, we need to
847  // consider its linkage.
848  if (!(isa<CXXMethodDecl>(D) ||
849        isa<VarDecl>(D) ||
850        isa<FieldDecl>(D) ||
851        isa<IndirectFieldDecl>(D) ||
852        isa<TagDecl>(D) ||
853        isa<TemplateDecl>(D)))
854    return LinkageInfo::none();
855
856  LinkageInfo LV;
857
858  // If we have an explicit visibility attribute, merge that in.
859  if (!hasExplicitVisibilityAlready(computation)) {
860    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
861      LV.mergeVisibility(*Vis, true);
862    // If we're paying attention to global visibility, apply
863    // -finline-visibility-hidden if this is an inline method.
864    //
865    // Note that we do this before merging information about
866    // the class visibility.
867    if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
868      LV.mergeVisibility(HiddenVisibility, true);
869  }
870
871  // If this class member has an explicit visibility attribute, the only
872  // thing that can change its visibility is the template arguments, so
873  // only look for them when processing the class.
874  LVComputationKind classComputation = computation;
875  if (LV.isVisibilityExplicit())
876    classComputation = withExplicitVisibilityAlready(computation);
877
878  LinkageInfo classLV =
879    getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
880  // If the class already has unique-external linkage, we can't improve.
881  if (classLV.getLinkage() == UniqueExternalLinkage)
882    return LinkageInfo::uniqueExternal();
883
884  if (!isExternallyVisible(classLV.getLinkage()))
885    return LinkageInfo::none();
886
887
888  // Otherwise, don't merge in classLV yet, because in certain cases
889  // we need to completely ignore the visibility from it.
890
891  // Specifically, if this decl exists and has an explicit attribute.
892  const NamedDecl *explicitSpecSuppressor = nullptr;
893
894  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
895    // If the type of the function uses a type with unique-external
896    // linkage, it's not legally usable from outside this translation unit.
897    // But only look at the type-as-written. If this function has an auto-deduced
898    // return type, we can't compute the linkage of that type because it could
899    // require looking at the linkage of this function, and we don't need this
900    // for correctness because the type is not part of the function's
901    // signature.
902    // FIXME: This is a hack. We should be able to solve this circularity and the
903    // one in getLVForNamespaceScopeDecl for Functions some other way.
904    {
905      QualType TypeAsWritten = MD->getType();
906      if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
907        TypeAsWritten = TSI->getType();
908      if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
909        return LinkageInfo::uniqueExternal();
910    }
911    // If this is a method template specialization, use the linkage for
912    // the template parameters and arguments.
913    if (FunctionTemplateSpecializationInfo *spec
914           = MD->getTemplateSpecializationInfo()) {
915      mergeTemplateLV(LV, MD, spec, computation);
916      if (spec->isExplicitSpecialization()) {
917        explicitSpecSuppressor = MD;
918      } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
919        explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
920      }
921    } else if (isExplicitMemberSpecialization(MD)) {
922      explicitSpecSuppressor = MD;
923    }
924
925  } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
926    if (const ClassTemplateSpecializationDecl *spec
927        = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
928      mergeTemplateLV(LV, spec, computation);
929      if (spec->isExplicitSpecialization()) {
930        explicitSpecSuppressor = spec;
931      } else {
932        const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
933        if (isExplicitMemberSpecialization(temp)) {
934          explicitSpecSuppressor = temp->getTemplatedDecl();
935        }
936      }
937    } else if (isExplicitMemberSpecialization(RD)) {
938      explicitSpecSuppressor = RD;
939    }
940
941  // Static data members.
942  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
943    if (const VarTemplateSpecializationDecl *spec
944        = dyn_cast<VarTemplateSpecializationDecl>(VD))
945      mergeTemplateLV(LV, spec, computation);
946
947    // Modify the variable's linkage by its type, but ignore the
948    // type's visibility unless it's a definition.
949    LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
950    if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
951      LV.mergeVisibility(typeLV);
952    LV.mergeExternalVisibility(typeLV);
953
954    if (isExplicitMemberSpecialization(VD)) {
955      explicitSpecSuppressor = VD;
956    }
957
958  // Template members.
959  } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
960    bool considerVisibility =
961      (!LV.isVisibilityExplicit() &&
962       !classLV.isVisibilityExplicit() &&
963       !hasExplicitVisibilityAlready(computation));
964    LinkageInfo tempLV =
965      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
966    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
967
968    if (const RedeclarableTemplateDecl *redeclTemp =
969          dyn_cast<RedeclarableTemplateDecl>(temp)) {
970      if (isExplicitMemberSpecialization(redeclTemp)) {
971        explicitSpecSuppressor = temp->getTemplatedDecl();
972      }
973    }
974  }
975
976  // We should never be looking for an attribute directly on a template.
977  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
978
979  // If this member is an explicit member specialization, and it has
980  // an explicit attribute, ignore visibility from the parent.
981  bool considerClassVisibility = true;
982  if (explicitSpecSuppressor &&
983      // optimization: hasDVA() is true only with explicit visibility.
984      LV.isVisibilityExplicit() &&
985      classLV.getVisibility() != DefaultVisibility &&
986      hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
987    considerClassVisibility = false;
988  }
989
990  // Finally, merge in information from the class.
991  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
992  return LV;
993}
994
995void NamedDecl::anchor() { }
996
997static LinkageInfo computeLVForDecl(const NamedDecl *D,
998                                    LVComputationKind computation);
999
1000bool NamedDecl::isLinkageValid() const {
1001  if (!hasCachedLinkage())
1002    return true;
1003
1004  return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1005         getCachedLinkage();
1006}
1007
1008ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1009  StringRef name = getName();
1010  if (name.empty()) return SFF_None;
1011
1012  if (name.front() == 'C')
1013    if (name == "CFStringCreateWithFormat" ||
1014        name == "CFStringCreateWithFormatAndArguments" ||
1015        name == "CFStringAppendFormat" ||
1016        name == "CFStringAppendFormatAndArguments")
1017      return SFF_CFString;
1018  return SFF_None;
1019}
1020
1021Linkage NamedDecl::getLinkageInternal() const {
1022  // We don't care about visibility here, so ask for the cheapest
1023  // possible visibility analysis.
1024  return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1025}
1026
1027LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1028  LVComputationKind computation =
1029    (usesTypeVisibility(this) ? LVForType : LVForValue);
1030  return getLVForDecl(this, computation);
1031}
1032
1033static Optional<Visibility>
1034getExplicitVisibilityAux(const NamedDecl *ND,
1035                         NamedDecl::ExplicitVisibilityKind kind,
1036                         bool IsMostRecent) {
1037  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1038
1039  // Check the declaration itself first.
1040  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1041    return V;
1042
1043  // If this is a member class of a specialization of a class template
1044  // and the corresponding decl has explicit visibility, use that.
1045  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1046    CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1047    if (InstantiatedFrom)
1048      return getVisibilityOf(InstantiatedFrom, kind);
1049  }
1050
1051  // If there wasn't explicit visibility there, and this is a
1052  // specialization of a class template, check for visibility
1053  // on the pattern.
1054  if (const ClassTemplateSpecializationDecl *spec
1055        = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1056    return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1057                           kind);
1058
1059  // Use the most recent declaration.
1060  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1061    const NamedDecl *MostRecent = ND->getMostRecentDecl();
1062    if (MostRecent != ND)
1063      return getExplicitVisibilityAux(MostRecent, kind, true);
1064  }
1065
1066  if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1067    if (Var->isStaticDataMember()) {
1068      VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1069      if (InstantiatedFrom)
1070        return getVisibilityOf(InstantiatedFrom, kind);
1071    }
1072
1073    if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1074      return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1075                             kind);
1076
1077    return None;
1078  }
1079  // Also handle function template specializations.
1080  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1081    // If the function is a specialization of a template with an
1082    // explicit visibility attribute, use that.
1083    if (FunctionTemplateSpecializationInfo *templateInfo
1084          = fn->getTemplateSpecializationInfo())
1085      return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1086                             kind);
1087
1088    // If the function is a member of a specialization of a class template
1089    // and the corresponding decl has explicit visibility, use that.
1090    FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1091    if (InstantiatedFrom)
1092      return getVisibilityOf(InstantiatedFrom, kind);
1093
1094    return None;
1095  }
1096
1097  // The visibility of a template is stored in the templated decl.
1098  if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1099    return getVisibilityOf(TD->getTemplatedDecl(), kind);
1100
1101  return None;
1102}
1103
1104Optional<Visibility>
1105NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1106  return getExplicitVisibilityAux(this, kind, false);
1107}
1108
1109static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1110                                   LVComputationKind computation) {
1111  // This lambda has its linkage/visibility determined by its owner.
1112  if (ContextDecl) {
1113    if (isa<ParmVarDecl>(ContextDecl))
1114      DC = ContextDecl->getDeclContext()->getRedeclContext();
1115    else
1116      return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1117  }
1118
1119  if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1120    return getLVForDecl(ND, computation);
1121
1122  return LinkageInfo::external();
1123}
1124
1125static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1126                                     LVComputationKind computation) {
1127  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1128    if (Function->isInAnonymousNamespace() &&
1129        !Function->isInExternCContext())
1130      return LinkageInfo::uniqueExternal();
1131
1132    // This is a "void f();" which got merged with a file static.
1133    if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1134      return LinkageInfo::internal();
1135
1136    LinkageInfo LV;
1137    if (!hasExplicitVisibilityAlready(computation)) {
1138      if (Optional<Visibility> Vis =
1139              getExplicitVisibility(Function, computation))
1140        LV.mergeVisibility(*Vis, true);
1141    }
1142
1143    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1144    // merging storage classes and visibility attributes, so we don't have to
1145    // look at previous decls in here.
1146
1147    return LV;
1148  }
1149
1150  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1151    if (Var->hasExternalStorage()) {
1152      if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1153        return LinkageInfo::uniqueExternal();
1154
1155      LinkageInfo LV;
1156      if (Var->getStorageClass() == SC_PrivateExtern)
1157        LV.mergeVisibility(HiddenVisibility, true);
1158      else if (!hasExplicitVisibilityAlready(computation)) {
1159        if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1160          LV.mergeVisibility(*Vis, true);
1161      }
1162
1163      if (const VarDecl *Prev = Var->getPreviousDecl()) {
1164        LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1165        if (PrevLV.getLinkage())
1166          LV.setLinkage(PrevLV.getLinkage());
1167        LV.mergeVisibility(PrevLV);
1168      }
1169
1170      return LV;
1171    }
1172
1173    if (!Var->isStaticLocal())
1174      return LinkageInfo::none();
1175  }
1176
1177  ASTContext &Context = D->getASTContext();
1178  if (!Context.getLangOpts().CPlusPlus)
1179    return LinkageInfo::none();
1180
1181  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1182  if (!OuterD)
1183    return LinkageInfo::none();
1184
1185  LinkageInfo LV;
1186  if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1187    if (!BD->getBlockManglingNumber())
1188      return LinkageInfo::none();
1189
1190    LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1191                         BD->getBlockManglingContextDecl(), computation);
1192  } else {
1193    const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1194    if (!FD->isInlined() &&
1195        !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1196      return LinkageInfo::none();
1197
1198    LV = getLVForDecl(FD, computation);
1199  }
1200  if (!isExternallyVisible(LV.getLinkage()))
1201    return LinkageInfo::none();
1202  return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1203                     LV.isVisibilityExplicit());
1204}
1205
1206static inline const CXXRecordDecl*
1207getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1208  const CXXRecordDecl *Ret = Record;
1209  while (Record && Record->isLambda()) {
1210    Ret = Record;
1211    if (!Record->getParent()) break;
1212    // Get the Containing Class of this Lambda Class
1213    Record = dyn_cast_or_null<CXXRecordDecl>(
1214      Record->getParent()->getParent());
1215  }
1216  return Ret;
1217}
1218
1219static LinkageInfo computeLVForDecl(const NamedDecl *D,
1220                                    LVComputationKind computation) {
1221  // Objective-C: treat all Objective-C declarations as having external
1222  // linkage.
1223  switch (D->getKind()) {
1224    default:
1225      break;
1226    case Decl::ParmVar:
1227      return LinkageInfo::none();
1228    case Decl::TemplateTemplateParm: // count these as external
1229    case Decl::NonTypeTemplateParm:
1230    case Decl::ObjCAtDefsField:
1231    case Decl::ObjCCategory:
1232    case Decl::ObjCCategoryImpl:
1233    case Decl::ObjCCompatibleAlias:
1234    case Decl::ObjCImplementation:
1235    case Decl::ObjCMethod:
1236    case Decl::ObjCProperty:
1237    case Decl::ObjCPropertyImpl:
1238    case Decl::ObjCProtocol:
1239      return LinkageInfo::external();
1240
1241    case Decl::CXXRecord: {
1242      const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1243      if (Record->isLambda()) {
1244        if (!Record->getLambdaManglingNumber()) {
1245          // This lambda has no mangling number, so it's internal.
1246          return LinkageInfo::internal();
1247        }
1248
1249        // This lambda has its linkage/visibility determined:
1250        //  - either by the outermost lambda if that lambda has no mangling
1251        //    number.
1252        //  - or by the parent of the outer most lambda
1253        // This prevents infinite recursion in settings such as nested lambdas
1254        // used in NSDMI's, for e.g.
1255        //  struct L {
1256        //    int t{};
1257        //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1258        //  };
1259        const CXXRecordDecl *OuterMostLambda =
1260            getOutermostEnclosingLambda(Record);
1261        if (!OuterMostLambda->getLambdaManglingNumber())
1262          return LinkageInfo::internal();
1263
1264        return getLVForClosure(
1265                  OuterMostLambda->getDeclContext()->getRedeclContext(),
1266                  OuterMostLambda->getLambdaContextDecl(), computation);
1267      }
1268
1269      break;
1270    }
1271  }
1272
1273  // Handle linkage for namespace-scope names.
1274  if (D->getDeclContext()->getRedeclContext()->isFileContext())
1275    return getLVForNamespaceScopeDecl(D, computation);
1276
1277  // C++ [basic.link]p5:
1278  //   In addition, a member function, static data member, a named
1279  //   class or enumeration of class scope, or an unnamed class or
1280  //   enumeration defined in a class-scope typedef declaration such
1281  //   that the class or enumeration has the typedef name for linkage
1282  //   purposes (7.1.3), has external linkage if the name of the class
1283  //   has external linkage.
1284  if (D->getDeclContext()->isRecord())
1285    return getLVForClassMember(D, computation);
1286
1287  // C++ [basic.link]p6:
1288  //   The name of a function declared in block scope and the name of
1289  //   an object declared by a block scope extern declaration have
1290  //   linkage. If there is a visible declaration of an entity with
1291  //   linkage having the same name and type, ignoring entities
1292  //   declared outside the innermost enclosing namespace scope, the
1293  //   block scope declaration declares that same entity and receives
1294  //   the linkage of the previous declaration. If there is more than
1295  //   one such matching entity, the program is ill-formed. Otherwise,
1296  //   if no matching entity is found, the block scope entity receives
1297  //   external linkage.
1298  if (D->getDeclContext()->isFunctionOrMethod())
1299    return getLVForLocalDecl(D, computation);
1300
1301  // C++ [basic.link]p6:
1302  //   Names not covered by these rules have no linkage.
1303  return LinkageInfo::none();
1304}
1305
1306namespace clang {
1307class LinkageComputer {
1308public:
1309  static LinkageInfo getLVForDecl(const NamedDecl *D,
1310                                  LVComputationKind computation) {
1311    if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1312      return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1313
1314    LinkageInfo LV = computeLVForDecl(D, computation);
1315    if (D->hasCachedLinkage())
1316      assert(D->getCachedLinkage() == LV.getLinkage());
1317
1318    D->setCachedLinkage(LV.getLinkage());
1319
1320#ifndef NDEBUG
1321    // In C (because of gnu inline) and in c++ with microsoft extensions an
1322    // static can follow an extern, so we can have two decls with different
1323    // linkages.
1324    const LangOptions &Opts = D->getASTContext().getLangOpts();
1325    if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1326      return LV;
1327
1328    // We have just computed the linkage for this decl. By induction we know
1329    // that all other computed linkages match, check that the one we just
1330    // computed also does.
1331    NamedDecl *Old = nullptr;
1332    for (auto I : D->redecls()) {
1333      NamedDecl *T = cast<NamedDecl>(I);
1334      if (T == D)
1335        continue;
1336      if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1337        Old = T;
1338        break;
1339      }
1340    }
1341    assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1342#endif
1343
1344    return LV;
1345  }
1346};
1347}
1348
1349static LinkageInfo getLVForDecl(const NamedDecl *D,
1350                                LVComputationKind computation) {
1351  return clang::LinkageComputer::getLVForDecl(D, computation);
1352}
1353
1354std::string NamedDecl::getQualifiedNameAsString() const {
1355  std::string QualName;
1356  llvm::raw_string_ostream OS(QualName);
1357  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1358  return OS.str();
1359}
1360
1361void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1362  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1363}
1364
1365void NamedDecl::printQualifiedName(raw_ostream &OS,
1366                                   const PrintingPolicy &P) const {
1367  const DeclContext *Ctx = getDeclContext();
1368
1369  if (Ctx->isFunctionOrMethod()) {
1370    printName(OS);
1371    return;
1372  }
1373
1374  typedef SmallVector<const DeclContext *, 8> ContextsTy;
1375  ContextsTy Contexts;
1376
1377  // Collect contexts.
1378  while (Ctx && isa<NamedDecl>(Ctx)) {
1379    Contexts.push_back(Ctx);
1380    Ctx = Ctx->getParent();
1381  }
1382
1383  for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1384       I != E; ++I) {
1385    if (const ClassTemplateSpecializationDecl *Spec
1386          = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1387      OS << Spec->getName();
1388      const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1389      TemplateSpecializationType::PrintTemplateArgumentList(OS,
1390                                                            TemplateArgs.data(),
1391                                                            TemplateArgs.size(),
1392                                                            P);
1393    } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1394      if (P.SuppressUnwrittenScope &&
1395          (ND->isAnonymousNamespace() || ND->isInline()))
1396        continue;
1397      if (ND->isAnonymousNamespace())
1398        OS << "(anonymous namespace)";
1399      else
1400        OS << *ND;
1401    } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1402      if (!RD->getIdentifier())
1403        OS << "(anonymous " << RD->getKindName() << ')';
1404      else
1405        OS << *RD;
1406    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1407      const FunctionProtoType *FT = nullptr;
1408      if (FD->hasWrittenPrototype())
1409        FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1410
1411      OS << *FD << '(';
1412      if (FT) {
1413        unsigned NumParams = FD->getNumParams();
1414        for (unsigned i = 0; i < NumParams; ++i) {
1415          if (i)
1416            OS << ", ";
1417          OS << FD->getParamDecl(i)->getType().stream(P);
1418        }
1419
1420        if (FT->isVariadic()) {
1421          if (NumParams > 0)
1422            OS << ", ";
1423          OS << "...";
1424        }
1425      }
1426      OS << ')';
1427    } else {
1428      OS << *cast<NamedDecl>(*I);
1429    }
1430    OS << "::";
1431  }
1432
1433  if (getDeclName())
1434    OS << *this;
1435  else
1436    OS << "(anonymous)";
1437}
1438
1439void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1440                                     const PrintingPolicy &Policy,
1441                                     bool Qualified) const {
1442  if (Qualified)
1443    printQualifiedName(OS, Policy);
1444  else
1445    printName(OS);
1446}
1447
1448static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
1449  // For method declarations, we never replace.
1450  if (ObjCMethodDecl::classofKind(NewK))
1451    return false;
1452
1453  if (OldK == NewK)
1454    return true;
1455
1456  // A compatibility alias for a class can be replaced by an interface.
1457  if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
1458      ObjCInterfaceDecl::classofKind(NewK))
1459    return true;
1460
1461  // A typedef-declaration, alias-declaration, or Objective-C class declaration
1462  // can replace another declaration of the same type. Semantic analysis checks
1463  // that we have matching types.
1464  if ((TypedefNameDecl::classofKind(OldK) ||
1465       ObjCInterfaceDecl::classofKind(OldK)) &&
1466      (TypedefNameDecl::classofKind(NewK) ||
1467       ObjCInterfaceDecl::classofKind(NewK)))
1468    return true;
1469
1470  // Otherwise, a kind mismatch implies that the declaration is not replaced.
1471  return false;
1472}
1473
1474template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1475  return true;
1476}
1477static bool isRedeclarableImpl(...) { return false; }
1478static bool isRedeclarable(Decl::Kind K) {
1479  switch (K) {
1480#define DECL(Type, Base) \
1481  case Decl::Type: \
1482    return isRedeclarableImpl((Type##Decl *)nullptr);
1483#define ABSTRACT_DECL(DECL)
1484#include "clang/AST/DeclNodes.inc"
1485  }
1486  llvm_unreachable("unknown decl kind");
1487}
1488
1489bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1490  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1491
1492  // Never replace one imported declaration with another; we need both results
1493  // when re-exporting.
1494  if (OldD->isFromASTFile() && isFromASTFile())
1495    return false;
1496
1497  if (!isKindReplaceableBy(OldD->getKind(), getKind()))
1498    return false;
1499
1500  // Inline namespaces can give us two declarations with the same
1501  // name and kind in the same scope but different contexts; we should
1502  // keep both declarations in this case.
1503  if (!this->getDeclContext()->getRedeclContext()->Equals(
1504          OldD->getDeclContext()->getRedeclContext()))
1505    return false;
1506
1507  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1508    // For function declarations, we keep track of redeclarations.
1509    // FIXME: This returns false for functions that should in fact be replaced.
1510    // Instead, perform some kind of type check?
1511    if (FD->getPreviousDecl() != OldD)
1512      return false;
1513
1514  // For function templates, the underlying function declarations are linked.
1515  if (const FunctionTemplateDecl *FunctionTemplate =
1516          dyn_cast<FunctionTemplateDecl>(this))
1517    return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
1518        cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
1519
1520  // Using shadow declarations can be overloaded on their target declarations
1521  // if they introduce functions.
1522  // FIXME: If our target replaces the old target, can we replace the old
1523  //        shadow declaration?
1524  if (auto *USD = dyn_cast<UsingShadowDecl>(this))
1525    if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
1526      return false;
1527
1528  // Using declarations can be overloaded if they introduce functions.
1529  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1530    ASTContext &Context = getASTContext();
1531    return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1532           Context.getCanonicalNestedNameSpecifier(
1533               cast<UsingDecl>(OldD)->getQualifier());
1534  }
1535  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1536    ASTContext &Context = getASTContext();
1537    return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1538           Context.getCanonicalNestedNameSpecifier(
1539                        cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1540  }
1541
1542  // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1543  // We want to keep it, unless it nominates same namespace.
1544  if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1545    return UD->getNominatedNamespace()->getOriginalNamespace() ==
1546           cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1547               ->getOriginalNamespace();
1548
1549  if (!IsKnownNewer && isRedeclarable(getKind())) {
1550    // Check whether this is actually newer than OldD. We want to keep the
1551    // newer declaration. This loop will usually only iterate once, because
1552    // OldD is usually the previous declaration.
1553    for (auto D : redecls()) {
1554      if (D == OldD)
1555        break;
1556
1557      // If we reach the canonical declaration, then OldD is not actually older
1558      // than this one.
1559      //
1560      // FIXME: In this case, we should not add this decl to the lookup table.
1561      if (D->isCanonicalDecl())
1562        return false;
1563    }
1564  }
1565
1566  // It's a newer declaration of the same kind of declaration in the same scope,
1567  // and not an overload: we want this decl instead of the existing one.
1568  return true;
1569}
1570
1571bool NamedDecl::hasLinkage() const {
1572  return getFormalLinkage() != NoLinkage;
1573}
1574
1575NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1576  NamedDecl *ND = this;
1577  while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1578    ND = UD->getTargetDecl();
1579
1580  if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1581    return AD->getClassInterface();
1582
1583  return ND;
1584}
1585
1586bool NamedDecl::isCXXInstanceMember() const {
1587  if (!isCXXClassMember())
1588    return false;
1589
1590  const NamedDecl *D = this;
1591  if (isa<UsingShadowDecl>(D))
1592    D = cast<UsingShadowDecl>(D)->getTargetDecl();
1593
1594  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1595    return true;
1596  if (const CXXMethodDecl *MD =
1597          dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1598    return MD->isInstance();
1599  return false;
1600}
1601
1602//===----------------------------------------------------------------------===//
1603// DeclaratorDecl Implementation
1604//===----------------------------------------------------------------------===//
1605
1606template <typename DeclT>
1607static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1608  if (decl->getNumTemplateParameterLists() > 0)
1609    return decl->getTemplateParameterList(0)->getTemplateLoc();
1610  else
1611    return decl->getInnerLocStart();
1612}
1613
1614SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1615  TypeSourceInfo *TSI = getTypeSourceInfo();
1616  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1617  return SourceLocation();
1618}
1619
1620void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1621  if (QualifierLoc) {
1622    // Make sure the extended decl info is allocated.
1623    if (!hasExtInfo()) {
1624      // Save (non-extended) type source info pointer.
1625      TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1626      // Allocate external info struct.
1627      DeclInfo = new (getASTContext()) ExtInfo;
1628      // Restore savedTInfo into (extended) decl info.
1629      getExtInfo()->TInfo = savedTInfo;
1630    }
1631    // Set qualifier info.
1632    getExtInfo()->QualifierLoc = QualifierLoc;
1633  } else {
1634    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1635    if (hasExtInfo()) {
1636      if (getExtInfo()->NumTemplParamLists == 0) {
1637        // Save type source info pointer.
1638        TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1639        // Deallocate the extended decl info.
1640        getASTContext().Deallocate(getExtInfo());
1641        // Restore savedTInfo into (non-extended) decl info.
1642        DeclInfo = savedTInfo;
1643      }
1644      else
1645        getExtInfo()->QualifierLoc = QualifierLoc;
1646    }
1647  }
1648}
1649
1650void
1651DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1652                                              unsigned NumTPLists,
1653                                              TemplateParameterList **TPLists) {
1654  assert(NumTPLists > 0);
1655  // Make sure the extended decl info is allocated.
1656  if (!hasExtInfo()) {
1657    // Save (non-extended) type source info pointer.
1658    TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1659    // Allocate external info struct.
1660    DeclInfo = new (getASTContext()) ExtInfo;
1661    // Restore savedTInfo into (extended) decl info.
1662    getExtInfo()->TInfo = savedTInfo;
1663  }
1664  // Set the template parameter lists info.
1665  getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1666}
1667
1668SourceLocation DeclaratorDecl::getOuterLocStart() const {
1669  return getTemplateOrInnerLocStart(this);
1670}
1671
1672namespace {
1673
1674// Helper function: returns true if QT is or contains a type
1675// having a postfix component.
1676bool typeIsPostfix(clang::QualType QT) {
1677  while (true) {
1678    const Type* T = QT.getTypePtr();
1679    switch (T->getTypeClass()) {
1680    default:
1681      return false;
1682    case Type::Pointer:
1683      QT = cast<PointerType>(T)->getPointeeType();
1684      break;
1685    case Type::BlockPointer:
1686      QT = cast<BlockPointerType>(T)->getPointeeType();
1687      break;
1688    case Type::MemberPointer:
1689      QT = cast<MemberPointerType>(T)->getPointeeType();
1690      break;
1691    case Type::LValueReference:
1692    case Type::RValueReference:
1693      QT = cast<ReferenceType>(T)->getPointeeType();
1694      break;
1695    case Type::PackExpansion:
1696      QT = cast<PackExpansionType>(T)->getPattern();
1697      break;
1698    case Type::Paren:
1699    case Type::ConstantArray:
1700    case Type::DependentSizedArray:
1701    case Type::IncompleteArray:
1702    case Type::VariableArray:
1703    case Type::FunctionProto:
1704    case Type::FunctionNoProto:
1705      return true;
1706    }
1707  }
1708}
1709
1710} // namespace
1711
1712SourceRange DeclaratorDecl::getSourceRange() const {
1713  SourceLocation RangeEnd = getLocation();
1714  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1715    // If the declaration has no name or the type extends past the name take the
1716    // end location of the type.
1717    if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1718      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1719  }
1720  return SourceRange(getOuterLocStart(), RangeEnd);
1721}
1722
1723void
1724QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1725                                             unsigned NumTPLists,
1726                                             TemplateParameterList **TPLists) {
1727  assert((NumTPLists == 0 || TPLists != nullptr) &&
1728         "Empty array of template parameters with positive size!");
1729
1730  // Free previous template parameters (if any).
1731  if (NumTemplParamLists > 0) {
1732    Context.Deallocate(TemplParamLists);
1733    TemplParamLists = nullptr;
1734    NumTemplParamLists = 0;
1735  }
1736  // Set info on matched template parameter lists (if any).
1737  if (NumTPLists > 0) {
1738    TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1739    NumTemplParamLists = NumTPLists;
1740    std::copy(TPLists, TPLists + NumTPLists, TemplParamLists);
1741  }
1742}
1743
1744//===----------------------------------------------------------------------===//
1745// VarDecl Implementation
1746//===----------------------------------------------------------------------===//
1747
1748const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1749  switch (SC) {
1750  case SC_None:                 break;
1751  case SC_Auto:                 return "auto";
1752  case SC_Extern:               return "extern";
1753  case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1754  case SC_PrivateExtern:        return "__private_extern__";
1755  case SC_Register:             return "register";
1756  case SC_Static:               return "static";
1757  }
1758
1759  llvm_unreachable("Invalid storage class");
1760}
1761
1762VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1763                 SourceLocation StartLoc, SourceLocation IdLoc,
1764                 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1765                 StorageClass SC)
1766    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1767      redeclarable_base(C), Init() {
1768  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1769                "VarDeclBitfields too large!");
1770  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1771                "ParmVarDeclBitfields too large!");
1772  AllBits = 0;
1773  VarDeclBits.SClass = SC;
1774  // Everything else is implicitly initialized to false.
1775}
1776
1777VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1778                         SourceLocation StartL, SourceLocation IdL,
1779                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1780                         StorageClass S) {
1781  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1782}
1783
1784VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1785  return new (C, ID)
1786      VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1787              QualType(), nullptr, SC_None);
1788}
1789
1790void VarDecl::setStorageClass(StorageClass SC) {
1791  assert(isLegalForVariable(SC));
1792  VarDeclBits.SClass = SC;
1793}
1794
1795VarDecl::TLSKind VarDecl::getTLSKind() const {
1796  switch (VarDeclBits.TSCSpec) {
1797  case TSCS_unspecified:
1798    if (hasAttr<ThreadAttr>())
1799      return TLS_Static;
1800    return TLS_None;
1801  case TSCS___thread: // Fall through.
1802  case TSCS__Thread_local:
1803      return TLS_Static;
1804  case TSCS_thread_local:
1805    return TLS_Dynamic;
1806  }
1807  llvm_unreachable("Unknown thread storage class specifier!");
1808}
1809
1810SourceRange VarDecl::getSourceRange() const {
1811  if (const Expr *Init = getInit()) {
1812    SourceLocation InitEnd = Init->getLocEnd();
1813    // If Init is implicit, ignore its source range and fallback on
1814    // DeclaratorDecl::getSourceRange() to handle postfix elements.
1815    if (InitEnd.isValid() && InitEnd != getLocation())
1816      return SourceRange(getOuterLocStart(), InitEnd);
1817  }
1818  return DeclaratorDecl::getSourceRange();
1819}
1820
1821template<typename T>
1822static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1823  // C++ [dcl.link]p1: All function types, function names with external linkage,
1824  // and variable names with external linkage have a language linkage.
1825  if (!D.hasExternalFormalLinkage())
1826    return NoLanguageLinkage;
1827
1828  // Language linkage is a C++ concept, but saying that everything else in C has
1829  // C language linkage fits the implementation nicely.
1830  ASTContext &Context = D.getASTContext();
1831  if (!Context.getLangOpts().CPlusPlus)
1832    return CLanguageLinkage;
1833
1834  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1835  // language linkage of the names of class members and the function type of
1836  // class member functions.
1837  const DeclContext *DC = D.getDeclContext();
1838  if (DC->isRecord())
1839    return CXXLanguageLinkage;
1840
1841  // If the first decl is in an extern "C" context, any other redeclaration
1842  // will have C language linkage. If the first one is not in an extern "C"
1843  // context, we would have reported an error for any other decl being in one.
1844  if (isFirstInExternCContext(&D))
1845    return CLanguageLinkage;
1846  return CXXLanguageLinkage;
1847}
1848
1849template<typename T>
1850static bool isDeclExternC(const T &D) {
1851  // Since the context is ignored for class members, they can only have C++
1852  // language linkage or no language linkage.
1853  const DeclContext *DC = D.getDeclContext();
1854  if (DC->isRecord()) {
1855    assert(D.getASTContext().getLangOpts().CPlusPlus);
1856    return false;
1857  }
1858
1859  return D.getLanguageLinkage() == CLanguageLinkage;
1860}
1861
1862LanguageLinkage VarDecl::getLanguageLinkage() const {
1863  return getDeclLanguageLinkage(*this);
1864}
1865
1866bool VarDecl::isExternC() const {
1867  return isDeclExternC(*this);
1868}
1869
1870bool VarDecl::isInExternCContext() const {
1871  return getLexicalDeclContext()->isExternCContext();
1872}
1873
1874bool VarDecl::isInExternCXXContext() const {
1875  return getLexicalDeclContext()->isExternCXXContext();
1876}
1877
1878VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1879
1880VarDecl::DefinitionKind
1881VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1882  // C++ [basic.def]p2:
1883  //   A declaration is a definition unless [...] it contains the 'extern'
1884  //   specifier or a linkage-specification and neither an initializer [...],
1885  //   it declares a static data member in a class declaration [...].
1886  // C++1y [temp.expl.spec]p15:
1887  //   An explicit specialization of a static data member or an explicit
1888  //   specialization of a static data member template is a definition if the
1889  //   declaration includes an initializer; otherwise, it is a declaration.
1890  //
1891  // FIXME: How do you declare (but not define) a partial specialization of
1892  // a static data member template outside the containing class?
1893  if (isStaticDataMember()) {
1894    if (isOutOfLine() &&
1895        (hasInit() ||
1896         // If the first declaration is out-of-line, this may be an
1897         // instantiation of an out-of-line partial specialization of a variable
1898         // template for which we have not yet instantiated the initializer.
1899         (getFirstDecl()->isOutOfLine()
1900              ? getTemplateSpecializationKind() == TSK_Undeclared
1901              : getTemplateSpecializationKind() !=
1902                    TSK_ExplicitSpecialization) ||
1903         isa<VarTemplatePartialSpecializationDecl>(this)))
1904      return Definition;
1905    else
1906      return DeclarationOnly;
1907  }
1908  // C99 6.7p5:
1909  //   A definition of an identifier is a declaration for that identifier that
1910  //   [...] causes storage to be reserved for that object.
1911  // Note: that applies for all non-file-scope objects.
1912  // C99 6.9.2p1:
1913  //   If the declaration of an identifier for an object has file scope and an
1914  //   initializer, the declaration is an external definition for the identifier
1915  if (hasInit())
1916    return Definition;
1917
1918  if (hasAttr<AliasAttr>() || hasAttr<SelectAnyAttr>())
1919    return Definition;
1920
1921  // A variable template specialization (other than a static data member
1922  // template or an explicit specialization) is a declaration until we
1923  // instantiate its initializer.
1924  if (isa<VarTemplateSpecializationDecl>(this) &&
1925      getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1926    return DeclarationOnly;
1927
1928  if (hasExternalStorage())
1929    return DeclarationOnly;
1930
1931  // [dcl.link] p7:
1932  //   A declaration directly contained in a linkage-specification is treated
1933  //   as if it contains the extern specifier for the purpose of determining
1934  //   the linkage of the declared name and whether it is a definition.
1935  if (isSingleLineLanguageLinkage(*this))
1936    return DeclarationOnly;
1937
1938  // C99 6.9.2p2:
1939  //   A declaration of an object that has file scope without an initializer,
1940  //   and without a storage class specifier or the scs 'static', constitutes
1941  //   a tentative definition.
1942  // No such thing in C++.
1943  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1944    return TentativeDefinition;
1945
1946  // What's left is (in C, block-scope) declarations without initializers or
1947  // external storage. These are definitions.
1948  return Definition;
1949}
1950
1951VarDecl *VarDecl::getActingDefinition() {
1952  DefinitionKind Kind = isThisDeclarationADefinition();
1953  if (Kind != TentativeDefinition)
1954    return nullptr;
1955
1956  VarDecl *LastTentative = nullptr;
1957  VarDecl *First = getFirstDecl();
1958  for (auto I : First->redecls()) {
1959    Kind = I->isThisDeclarationADefinition();
1960    if (Kind == Definition)
1961      return nullptr;
1962    else if (Kind == TentativeDefinition)
1963      LastTentative = I;
1964  }
1965  return LastTentative;
1966}
1967
1968VarDecl *VarDecl::getDefinition(ASTContext &C) {
1969  VarDecl *First = getFirstDecl();
1970  for (auto I : First->redecls()) {
1971    if (I->isThisDeclarationADefinition(C) == Definition)
1972      return I;
1973  }
1974  return nullptr;
1975}
1976
1977VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1978  DefinitionKind Kind = DeclarationOnly;
1979
1980  const VarDecl *First = getFirstDecl();
1981  for (auto I : First->redecls()) {
1982    Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1983    if (Kind == Definition)
1984      break;
1985  }
1986
1987  return Kind;
1988}
1989
1990const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1991  for (auto I : redecls()) {
1992    if (auto Expr = I->getInit()) {
1993      D = I;
1994      return Expr;
1995    }
1996  }
1997  return nullptr;
1998}
1999
2000bool VarDecl::isOutOfLine() const {
2001  if (Decl::isOutOfLine())
2002    return true;
2003
2004  if (!isStaticDataMember())
2005    return false;
2006
2007  // If this static data member was instantiated from a static data member of
2008  // a class template, check whether that static data member was defined
2009  // out-of-line.
2010  if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2011    return VD->isOutOfLine();
2012
2013  return false;
2014}
2015
2016VarDecl *VarDecl::getOutOfLineDefinition() {
2017  if (!isStaticDataMember())
2018    return nullptr;
2019
2020  for (auto RD : redecls()) {
2021    if (RD->getLexicalDeclContext()->isFileContext())
2022      return RD;
2023  }
2024
2025  return nullptr;
2026}
2027
2028void VarDecl::setInit(Expr *I) {
2029  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2030    Eval->~EvaluatedStmt();
2031    getASTContext().Deallocate(Eval);
2032  }
2033
2034  Init = I;
2035}
2036
2037bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2038  const LangOptions &Lang = C.getLangOpts();
2039
2040  if (!Lang.CPlusPlus)
2041    return false;
2042
2043  // In C++11, any variable of reference type can be used in a constant
2044  // expression if it is initialized by a constant expression.
2045  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2046    return true;
2047
2048  // Only const objects can be used in constant expressions in C++. C++98 does
2049  // not require the variable to be non-volatile, but we consider this to be a
2050  // defect.
2051  if (!getType().isConstQualified() || getType().isVolatileQualified())
2052    return false;
2053
2054  // In C++, const, non-volatile variables of integral or enumeration types
2055  // can be used in constant expressions.
2056  if (getType()->isIntegralOrEnumerationType())
2057    return true;
2058
2059  // Additionally, in C++11, non-volatile constexpr variables can be used in
2060  // constant expressions.
2061  return Lang.CPlusPlus11 && isConstexpr();
2062}
2063
2064/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2065/// form, which contains extra information on the evaluated value of the
2066/// initializer.
2067EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2068  EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
2069  if (!Eval) {
2070    Stmt *S = Init.get<Stmt *>();
2071    // Note: EvaluatedStmt contains an APValue, which usually holds
2072    // resources not allocated from the ASTContext.  We need to do some
2073    // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2074    // where we can detect whether there's anything to clean up or not.
2075    Eval = new (getASTContext()) EvaluatedStmt;
2076    Eval->Value = S;
2077    Init = Eval;
2078  }
2079  return Eval;
2080}
2081
2082APValue *VarDecl::evaluateValue() const {
2083  SmallVector<PartialDiagnosticAt, 8> Notes;
2084  return evaluateValue(Notes);
2085}
2086
2087namespace {
2088// Destroy an APValue that was allocated in an ASTContext.
2089void DestroyAPValue(void* UntypedValue) {
2090  static_cast<APValue*>(UntypedValue)->~APValue();
2091}
2092} // namespace
2093
2094APValue *VarDecl::evaluateValue(
2095    SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2096  EvaluatedStmt *Eval = ensureEvaluatedStmt();
2097
2098  // We only produce notes indicating why an initializer is non-constant the
2099  // first time it is evaluated. FIXME: The notes won't always be emitted the
2100  // first time we try evaluation, so might not be produced at all.
2101  if (Eval->WasEvaluated)
2102    return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2103
2104  const Expr *Init = cast<Expr>(Eval->Value);
2105  assert(!Init->isValueDependent());
2106
2107  if (Eval->IsEvaluating) {
2108    // FIXME: Produce a diagnostic for self-initialization.
2109    Eval->CheckedICE = true;
2110    Eval->IsICE = false;
2111    return nullptr;
2112  }
2113
2114  Eval->IsEvaluating = true;
2115
2116  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2117                                            this, Notes);
2118
2119  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2120  // or that it's empty (so that there's nothing to clean up) if evaluation
2121  // failed.
2122  if (!Result)
2123    Eval->Evaluated = APValue();
2124  else if (Eval->Evaluated.needsCleanup())
2125    getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2126
2127  Eval->IsEvaluating = false;
2128  Eval->WasEvaluated = true;
2129
2130  // In C++11, we have determined whether the initializer was a constant
2131  // expression as a side-effect.
2132  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2133    Eval->CheckedICE = true;
2134    Eval->IsICE = Result && Notes.empty();
2135  }
2136
2137  return Result ? &Eval->Evaluated : nullptr;
2138}
2139
2140bool VarDecl::checkInitIsICE() const {
2141  // Initializers of weak variables are never ICEs.
2142  if (isWeak())
2143    return false;
2144
2145  EvaluatedStmt *Eval = ensureEvaluatedStmt();
2146  if (Eval->CheckedICE)
2147    // We have already checked whether this subexpression is an
2148    // integral constant expression.
2149    return Eval->IsICE;
2150
2151  const Expr *Init = cast<Expr>(Eval->Value);
2152  assert(!Init->isValueDependent());
2153
2154  // In C++11, evaluate the initializer to check whether it's a constant
2155  // expression.
2156  if (getASTContext().getLangOpts().CPlusPlus11) {
2157    SmallVector<PartialDiagnosticAt, 8> Notes;
2158    evaluateValue(Notes);
2159    return Eval->IsICE;
2160  }
2161
2162  // It's an ICE whether or not the definition we found is
2163  // out-of-line.  See DR 721 and the discussion in Clang PR
2164  // 6206 for details.
2165
2166  if (Eval->CheckingICE)
2167    return false;
2168  Eval->CheckingICE = true;
2169
2170  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2171  Eval->CheckingICE = false;
2172  Eval->CheckedICE = true;
2173  return Eval->IsICE;
2174}
2175
2176VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2177  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2178    return cast<VarDecl>(MSI->getInstantiatedFrom());
2179
2180  return nullptr;
2181}
2182
2183TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2184  if (const VarTemplateSpecializationDecl *Spec =
2185          dyn_cast<VarTemplateSpecializationDecl>(this))
2186    return Spec->getSpecializationKind();
2187
2188  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2189    return MSI->getTemplateSpecializationKind();
2190
2191  return TSK_Undeclared;
2192}
2193
2194SourceLocation VarDecl::getPointOfInstantiation() const {
2195  if (const VarTemplateSpecializationDecl *Spec =
2196          dyn_cast<VarTemplateSpecializationDecl>(this))
2197    return Spec->getPointOfInstantiation();
2198
2199  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2200    return MSI->getPointOfInstantiation();
2201
2202  return SourceLocation();
2203}
2204
2205VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2206  return getASTContext().getTemplateOrSpecializationInfo(this)
2207      .dyn_cast<VarTemplateDecl *>();
2208}
2209
2210void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2211  getASTContext().setTemplateOrSpecializationInfo(this, Template);
2212}
2213
2214MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2215  if (isStaticDataMember())
2216    // FIXME: Remove ?
2217    // return getASTContext().getInstantiatedFromStaticDataMember(this);
2218    return getASTContext().getTemplateOrSpecializationInfo(this)
2219        .dyn_cast<MemberSpecializationInfo *>();
2220  return nullptr;
2221}
2222
2223void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2224                                         SourceLocation PointOfInstantiation) {
2225  assert((isa<VarTemplateSpecializationDecl>(this) ||
2226          getMemberSpecializationInfo()) &&
2227         "not a variable or static data member template specialization");
2228
2229  if (VarTemplateSpecializationDecl *Spec =
2230          dyn_cast<VarTemplateSpecializationDecl>(this)) {
2231    Spec->setSpecializationKind(TSK);
2232    if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2233        Spec->getPointOfInstantiation().isInvalid())
2234      Spec->setPointOfInstantiation(PointOfInstantiation);
2235  }
2236
2237  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2238    MSI->setTemplateSpecializationKind(TSK);
2239    if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2240        MSI->getPointOfInstantiation().isInvalid())
2241      MSI->setPointOfInstantiation(PointOfInstantiation);
2242  }
2243}
2244
2245void
2246VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2247                                            TemplateSpecializationKind TSK) {
2248  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2249         "Previous template or instantiation?");
2250  getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2251}
2252
2253//===----------------------------------------------------------------------===//
2254// ParmVarDecl Implementation
2255//===----------------------------------------------------------------------===//
2256
2257ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2258                                 SourceLocation StartLoc,
2259                                 SourceLocation IdLoc, IdentifierInfo *Id,
2260                                 QualType T, TypeSourceInfo *TInfo,
2261                                 StorageClass S, Expr *DefArg) {
2262  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2263                                 S, DefArg);
2264}
2265
2266QualType ParmVarDecl::getOriginalType() const {
2267  TypeSourceInfo *TSI = getTypeSourceInfo();
2268  QualType T = TSI ? TSI->getType() : getType();
2269  if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2270    return DT->getOriginalType();
2271  return T;
2272}
2273
2274ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2275  return new (C, ID)
2276      ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2277                  nullptr, QualType(), nullptr, SC_None, nullptr);
2278}
2279
2280SourceRange ParmVarDecl::getSourceRange() const {
2281  if (!hasInheritedDefaultArg()) {
2282    SourceRange ArgRange = getDefaultArgRange();
2283    if (ArgRange.isValid())
2284      return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2285  }
2286
2287  // DeclaratorDecl considers the range of postfix types as overlapping with the
2288  // declaration name, but this is not the case with parameters in ObjC methods.
2289  if (isa<ObjCMethodDecl>(getDeclContext()))
2290    return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2291
2292  return DeclaratorDecl::getSourceRange();
2293}
2294
2295Expr *ParmVarDecl::getDefaultArg() {
2296  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2297  assert(!hasUninstantiatedDefaultArg() &&
2298         "Default argument is not yet instantiated!");
2299
2300  Expr *Arg = getInit();
2301  if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2302    return E->getSubExpr();
2303
2304  return Arg;
2305}
2306
2307SourceRange ParmVarDecl::getDefaultArgRange() const {
2308  if (const Expr *E = getInit())
2309    return E->getSourceRange();
2310
2311  if (hasUninstantiatedDefaultArg())
2312    return getUninstantiatedDefaultArg()->getSourceRange();
2313
2314  return SourceRange();
2315}
2316
2317bool ParmVarDecl::isParameterPack() const {
2318  return isa<PackExpansionType>(getType());
2319}
2320
2321void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2322  getASTContext().setParameterIndex(this, parameterIndex);
2323  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2324}
2325
2326unsigned ParmVarDecl::getParameterIndexLarge() const {
2327  return getASTContext().getParameterIndex(this);
2328}
2329
2330//===----------------------------------------------------------------------===//
2331// FunctionDecl Implementation
2332//===----------------------------------------------------------------------===//
2333
2334void FunctionDecl::getNameForDiagnostic(
2335    raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2336  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2337  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2338  if (TemplateArgs)
2339    TemplateSpecializationType::PrintTemplateArgumentList(
2340        OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2341}
2342
2343bool FunctionDecl::isVariadic() const {
2344  if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2345    return FT->isVariadic();
2346  return false;
2347}
2348
2349bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2350  for (auto I : redecls()) {
2351    if (I->Body || I->IsLateTemplateParsed) {
2352      Definition = I;
2353      return true;
2354    }
2355  }
2356
2357  return false;
2358}
2359
2360bool FunctionDecl::hasTrivialBody() const
2361{
2362  Stmt *S = getBody();
2363  if (!S) {
2364    // Since we don't have a body for this function, we don't know if it's
2365    // trivial or not.
2366    return false;
2367  }
2368
2369  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2370    return true;
2371  return false;
2372}
2373
2374bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2375  for (auto I : redecls()) {
2376    if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2377        I->hasAttr<AliasAttr>()) {
2378      Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2379      return true;
2380    }
2381  }
2382
2383  return false;
2384}
2385
2386Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2387  if (!hasBody(Definition))
2388    return nullptr;
2389
2390  if (Definition->Body)
2391    return Definition->Body.get(getASTContext().getExternalSource());
2392
2393  return nullptr;
2394}
2395
2396void FunctionDecl::setBody(Stmt *B) {
2397  Body = B;
2398  if (B)
2399    EndRangeLoc = B->getLocEnd();
2400}
2401
2402void FunctionDecl::setPure(bool P) {
2403  IsPure = P;
2404  if (P)
2405    if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2406      Parent->markedVirtualFunctionPure();
2407}
2408
2409template<std::size_t Len>
2410static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2411  IdentifierInfo *II = ND->getIdentifier();
2412  return II && II->isStr(Str);
2413}
2414
2415bool FunctionDecl::isMain() const {
2416  const TranslationUnitDecl *tunit =
2417    dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2418  return tunit &&
2419         !tunit->getASTContext().getLangOpts().Freestanding &&
2420         isNamed(this, "main");
2421}
2422
2423bool FunctionDecl::isMSVCRTEntryPoint() const {
2424  const TranslationUnitDecl *TUnit =
2425      dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2426  if (!TUnit)
2427    return false;
2428
2429  // Even though we aren't really targeting MSVCRT if we are freestanding,
2430  // semantic analysis for these functions remains the same.
2431
2432  // MSVCRT entry points only exist on MSVCRT targets.
2433  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2434    return false;
2435
2436  // Nameless functions like constructors cannot be entry points.
2437  if (!getIdentifier())
2438    return false;
2439
2440  return llvm::StringSwitch<bool>(getName())
2441      .Cases("main",     // an ANSI console app
2442             "wmain",    // a Unicode console App
2443             "WinMain",  // an ANSI GUI app
2444             "wWinMain", // a Unicode GUI app
2445             "DllMain",  // a DLL
2446             true)
2447      .Default(false);
2448}
2449
2450bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2451  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2452  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2453         getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2454         getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2455         getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2456
2457  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2458    return false;
2459
2460  const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2461  if (proto->getNumParams() != 2 || proto->isVariadic())
2462    return false;
2463
2464  ASTContext &Context =
2465    cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2466      ->getASTContext();
2467
2468  // The result type and first argument type are constant across all
2469  // these operators.  The second argument must be exactly void*.
2470  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2471}
2472
2473bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2474  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2475    return false;
2476  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2477      getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2478      getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2479      getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2480    return false;
2481
2482  if (isa<CXXRecordDecl>(getDeclContext()))
2483    return false;
2484
2485  // This can only fail for an invalid 'operator new' declaration.
2486  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2487    return false;
2488
2489  const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2490  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2491    return false;
2492
2493  // If this is a single-parameter function, it must be a replaceable global
2494  // allocation or deallocation function.
2495  if (FPT->getNumParams() == 1)
2496    return true;
2497
2498  // Otherwise, we're looking for a second parameter whose type is
2499  // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2500  QualType Ty = FPT->getParamType(1);
2501  ASTContext &Ctx = getASTContext();
2502  if (Ctx.getLangOpts().SizedDeallocation &&
2503      Ctx.hasSameType(Ty, Ctx.getSizeType()))
2504    return true;
2505  if (!Ty->isReferenceType())
2506    return false;
2507  Ty = Ty->getPointeeType();
2508  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2509    return false;
2510  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2511  return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2512}
2513
2514LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2515  return getDeclLanguageLinkage(*this);
2516}
2517
2518bool FunctionDecl::isExternC() const {
2519  return isDeclExternC(*this);
2520}
2521
2522bool FunctionDecl::isInExternCContext() const {
2523  return getLexicalDeclContext()->isExternCContext();
2524}
2525
2526bool FunctionDecl::isInExternCXXContext() const {
2527  return getLexicalDeclContext()->isExternCXXContext();
2528}
2529
2530bool FunctionDecl::isGlobal() const {
2531  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2532    return Method->isStatic();
2533
2534  if (getCanonicalDecl()->getStorageClass() == SC_Static)
2535    return false;
2536
2537  for (const DeclContext *DC = getDeclContext();
2538       DC->isNamespace();
2539       DC = DC->getParent()) {
2540    if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2541      if (!Namespace->getDeclName())
2542        return false;
2543      break;
2544    }
2545  }
2546
2547  return true;
2548}
2549
2550bool FunctionDecl::isNoReturn() const {
2551  return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2552         hasAttr<C11NoReturnAttr>() ||
2553         getType()->getAs<FunctionType>()->getNoReturnAttr();
2554}
2555
2556void
2557FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2558  redeclarable_base::setPreviousDecl(PrevDecl);
2559
2560  if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2561    FunctionTemplateDecl *PrevFunTmpl
2562      = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2563    assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2564    FunTmpl->setPreviousDecl(PrevFunTmpl);
2565  }
2566
2567  if (PrevDecl && PrevDecl->IsInline)
2568    IsInline = true;
2569}
2570
2571const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2572  return getFirstDecl();
2573}
2574
2575FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2576
2577/// \brief Returns a value indicating whether this function
2578/// corresponds to a builtin function.
2579///
2580/// The function corresponds to a built-in function if it is
2581/// declared at translation scope or within an extern "C" block and
2582/// its name matches with the name of a builtin. The returned value
2583/// will be 0 for functions that do not correspond to a builtin, a
2584/// value of type \c Builtin::ID if in the target-independent range
2585/// \c [1,Builtin::First), or a target-specific builtin value.
2586unsigned FunctionDecl::getBuiltinID() const {
2587  if (!getIdentifier())
2588    return 0;
2589
2590  unsigned BuiltinID = getIdentifier()->getBuiltinID();
2591  if (!BuiltinID)
2592    return 0;
2593
2594  ASTContext &Context = getASTContext();
2595  if (Context.getLangOpts().CPlusPlus) {
2596    const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2597        getFirstDecl()->getDeclContext());
2598    // In C++, the first declaration of a builtin is always inside an implicit
2599    // extern "C".
2600    // FIXME: A recognised library function may not be directly in an extern "C"
2601    // declaration, for instance "extern "C" { namespace std { decl } }".
2602    if (!LinkageDecl) {
2603      if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2604          Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2605          isInStdNamespace())
2606        return Builtin::BI__GetExceptionInfo;
2607      return 0;
2608    }
2609    if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2610      return 0;
2611  }
2612
2613  // If the function is marked "overloadable", it has a different mangled name
2614  // and is not the C library function.
2615  if (hasAttr<OverloadableAttr>())
2616    return 0;
2617
2618  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2619    return BuiltinID;
2620
2621  // This function has the name of a known C library
2622  // function. Determine whether it actually refers to the C library
2623  // function or whether it just has the same name.
2624
2625  // If this is a static function, it's not a builtin.
2626  if (getStorageClass() == SC_Static)
2627    return 0;
2628
2629  return BuiltinID;
2630}
2631
2632
2633/// getNumParams - Return the number of parameters this function must have
2634/// based on its FunctionType.  This is the length of the ParamInfo array
2635/// after it has been created.
2636unsigned FunctionDecl::getNumParams() const {
2637  const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2638  return FPT ? FPT->getNumParams() : 0;
2639}
2640
2641void FunctionDecl::setParams(ASTContext &C,
2642                             ArrayRef<ParmVarDecl *> NewParamInfo) {
2643  assert(!ParamInfo && "Already has param info!");
2644  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2645
2646  // Zero params -> null pointer.
2647  if (!NewParamInfo.empty()) {
2648    ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2649    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2650  }
2651}
2652
2653void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2654  assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2655
2656  if (!NewDecls.empty()) {
2657    NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2658    std::copy(NewDecls.begin(), NewDecls.end(), A);
2659    DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2660    // Move declarations introduced in prototype to the function context.
2661    for (auto I : NewDecls) {
2662      DeclContext *DC = I->getDeclContext();
2663      // Forward-declared reference to an enumeration is not added to
2664      // declaration scope, so skip declaration that is absent from its
2665      // declaration contexts.
2666      if (DC->containsDecl(I)) {
2667          DC->removeDecl(I);
2668          I->setDeclContext(this);
2669          addDecl(I);
2670      }
2671    }
2672  }
2673}
2674
2675/// getMinRequiredArguments - Returns the minimum number of arguments
2676/// needed to call this function. This may be fewer than the number of
2677/// function parameters, if some of the parameters have default
2678/// arguments (in C++) or are parameter packs (C++11).
2679unsigned FunctionDecl::getMinRequiredArguments() const {
2680  if (!getASTContext().getLangOpts().CPlusPlus)
2681    return getNumParams();
2682
2683  unsigned NumRequiredArgs = 0;
2684  for (auto *Param : params())
2685    if (!Param->isParameterPack() && !Param->hasDefaultArg())
2686      ++NumRequiredArgs;
2687  return NumRequiredArgs;
2688}
2689
2690/// \brief The combination of the extern and inline keywords under MSVC forces
2691/// the function to be required.
2692///
2693/// Note: This function assumes that we will only get called when isInlined()
2694/// would return true for this FunctionDecl.
2695bool FunctionDecl::isMSExternInline() const {
2696  assert(isInlined() && "expected to get called on an inlined function!");
2697
2698  const ASTContext &Context = getASTContext();
2699  if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
2700    return false;
2701
2702  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2703       FD = FD->getPreviousDecl())
2704    if (FD->getStorageClass() == SC_Extern)
2705      return true;
2706
2707  return false;
2708}
2709
2710static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2711  if (Redecl->getStorageClass() != SC_Extern)
2712    return false;
2713
2714  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2715       FD = FD->getPreviousDecl())
2716    if (FD->getStorageClass() == SC_Extern)
2717      return false;
2718
2719  return true;
2720}
2721
2722static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2723  // Only consider file-scope declarations in this test.
2724  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2725    return false;
2726
2727  // Only consider explicit declarations; the presence of a builtin for a
2728  // libcall shouldn't affect whether a definition is externally visible.
2729  if (Redecl->isImplicit())
2730    return false;
2731
2732  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2733    return true; // Not an inline definition
2734
2735  return false;
2736}
2737
2738/// \brief For a function declaration in C or C++, determine whether this
2739/// declaration causes the definition to be externally visible.
2740///
2741/// For instance, this determines if adding the current declaration to the set
2742/// of redeclarations of the given functions causes
2743/// isInlineDefinitionExternallyVisible to change from false to true.
2744bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2745  assert(!doesThisDeclarationHaveABody() &&
2746         "Must have a declaration without a body.");
2747
2748  ASTContext &Context = getASTContext();
2749
2750  if (Context.getLangOpts().MSVCCompat) {
2751    const FunctionDecl *Definition;
2752    if (hasBody(Definition) && Definition->isInlined() &&
2753        redeclForcesDefMSVC(this))
2754      return true;
2755  }
2756
2757  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2758    // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2759    // an externally visible definition.
2760    //
2761    // FIXME: What happens if gnu_inline gets added on after the first
2762    // declaration?
2763    if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2764      return false;
2765
2766    const FunctionDecl *Prev = this;
2767    bool FoundBody = false;
2768    while ((Prev = Prev->getPreviousDecl())) {
2769      FoundBody |= Prev->Body.isValid();
2770
2771      if (Prev->Body) {
2772        // If it's not the case that both 'inline' and 'extern' are
2773        // specified on the definition, then it is always externally visible.
2774        if (!Prev->isInlineSpecified() ||
2775            Prev->getStorageClass() != SC_Extern)
2776          return false;
2777      } else if (Prev->isInlineSpecified() &&
2778                 Prev->getStorageClass() != SC_Extern) {
2779        return false;
2780      }
2781    }
2782    return FoundBody;
2783  }
2784
2785  if (Context.getLangOpts().CPlusPlus)
2786    return false;
2787
2788  // C99 6.7.4p6:
2789  //   [...] If all of the file scope declarations for a function in a
2790  //   translation unit include the inline function specifier without extern,
2791  //   then the definition in that translation unit is an inline definition.
2792  if (isInlineSpecified() && getStorageClass() != SC_Extern)
2793    return false;
2794  const FunctionDecl *Prev = this;
2795  bool FoundBody = false;
2796  while ((Prev = Prev->getPreviousDecl())) {
2797    FoundBody |= Prev->Body.isValid();
2798    if (RedeclForcesDefC99(Prev))
2799      return false;
2800  }
2801  return FoundBody;
2802}
2803
2804SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2805  const TypeSourceInfo *TSI = getTypeSourceInfo();
2806  if (!TSI)
2807    return SourceRange();
2808  FunctionTypeLoc FTL =
2809      TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2810  if (!FTL)
2811    return SourceRange();
2812
2813  // Skip self-referential return types.
2814  const SourceManager &SM = getASTContext().getSourceManager();
2815  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2816  SourceLocation Boundary = getNameInfo().getLocStart();
2817  if (RTRange.isInvalid() || Boundary.isInvalid() ||
2818      !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2819    return SourceRange();
2820
2821  return RTRange;
2822}
2823
2824bool FunctionDecl::hasUnusedResultAttr() const {
2825  QualType RetType = getReturnType();
2826  if (RetType->isRecordType()) {
2827    const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2828    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
2829    if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2830        !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2831      return true;
2832  }
2833  return hasAttr<WarnUnusedResultAttr>();
2834}
2835
2836/// \brief For an inline function definition in C, or for a gnu_inline function
2837/// in C++, determine whether the definition will be externally visible.
2838///
2839/// Inline function definitions are always available for inlining optimizations.
2840/// However, depending on the language dialect, declaration specifiers, and
2841/// attributes, the definition of an inline function may or may not be
2842/// "externally" visible to other translation units in the program.
2843///
2844/// In C99, inline definitions are not externally visible by default. However,
2845/// if even one of the global-scope declarations is marked "extern inline", the
2846/// inline definition becomes externally visible (C99 6.7.4p6).
2847///
2848/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2849/// definition, we use the GNU semantics for inline, which are nearly the
2850/// opposite of C99 semantics. In particular, "inline" by itself will create
2851/// an externally visible symbol, but "extern inline" will not create an
2852/// externally visible symbol.
2853bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2854  assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2855  assert(isInlined() && "Function must be inline");
2856  ASTContext &Context = getASTContext();
2857
2858  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2859    // Note: If you change the logic here, please change
2860    // doesDeclarationForceExternallyVisibleDefinition as well.
2861    //
2862    // If it's not the case that both 'inline' and 'extern' are
2863    // specified on the definition, then this inline definition is
2864    // externally visible.
2865    if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2866      return true;
2867
2868    // If any declaration is 'inline' but not 'extern', then this definition
2869    // is externally visible.
2870    for (auto Redecl : redecls()) {
2871      if (Redecl->isInlineSpecified() &&
2872          Redecl->getStorageClass() != SC_Extern)
2873        return true;
2874    }
2875
2876    return false;
2877  }
2878
2879  // The rest of this function is C-only.
2880  assert(!Context.getLangOpts().CPlusPlus &&
2881         "should not use C inline rules in C++");
2882
2883  // C99 6.7.4p6:
2884  //   [...] If all of the file scope declarations for a function in a
2885  //   translation unit include the inline function specifier without extern,
2886  //   then the definition in that translation unit is an inline definition.
2887  for (auto Redecl : redecls()) {
2888    if (RedeclForcesDefC99(Redecl))
2889      return true;
2890  }
2891
2892  // C99 6.7.4p6:
2893  //   An inline definition does not provide an external definition for the
2894  //   function, and does not forbid an external definition in another
2895  //   translation unit.
2896  return false;
2897}
2898
2899/// getOverloadedOperator - Which C++ overloaded operator this
2900/// function represents, if any.
2901OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2902  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2903    return getDeclName().getCXXOverloadedOperator();
2904  else
2905    return OO_None;
2906}
2907
2908/// getLiteralIdentifier - The literal suffix identifier this function
2909/// represents, if any.
2910const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2911  if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2912    return getDeclName().getCXXLiteralIdentifier();
2913  else
2914    return nullptr;
2915}
2916
2917FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2918  if (TemplateOrSpecialization.isNull())
2919    return TK_NonTemplate;
2920  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2921    return TK_FunctionTemplate;
2922  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2923    return TK_MemberSpecialization;
2924  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2925    return TK_FunctionTemplateSpecialization;
2926  if (TemplateOrSpecialization.is
2927                               <DependentFunctionTemplateSpecializationInfo*>())
2928    return TK_DependentFunctionTemplateSpecialization;
2929
2930  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2931}
2932
2933FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2934  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2935    return cast<FunctionDecl>(Info->getInstantiatedFrom());
2936
2937  return nullptr;
2938}
2939
2940void
2941FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2942                                               FunctionDecl *FD,
2943                                               TemplateSpecializationKind TSK) {
2944  assert(TemplateOrSpecialization.isNull() &&
2945         "Member function is already a specialization");
2946  MemberSpecializationInfo *Info
2947    = new (C) MemberSpecializationInfo(FD, TSK);
2948  TemplateOrSpecialization = Info;
2949}
2950
2951bool FunctionDecl::isImplicitlyInstantiable() const {
2952  // If the function is invalid, it can't be implicitly instantiated.
2953  if (isInvalidDecl())
2954    return false;
2955
2956  switch (getTemplateSpecializationKind()) {
2957  case TSK_Undeclared:
2958  case TSK_ExplicitInstantiationDefinition:
2959    return false;
2960
2961  case TSK_ImplicitInstantiation:
2962    return true;
2963
2964  // It is possible to instantiate TSK_ExplicitSpecialization kind
2965  // if the FunctionDecl has a class scope specialization pattern.
2966  case TSK_ExplicitSpecialization:
2967    return getClassScopeSpecializationPattern() != nullptr;
2968
2969  case TSK_ExplicitInstantiationDeclaration:
2970    // Handled below.
2971    break;
2972  }
2973
2974  // Find the actual template from which we will instantiate.
2975  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2976  bool HasPattern = false;
2977  if (PatternDecl)
2978    HasPattern = PatternDecl->hasBody(PatternDecl);
2979
2980  // C++0x [temp.explicit]p9:
2981  //   Except for inline functions, other explicit instantiation declarations
2982  //   have the effect of suppressing the implicit instantiation of the entity
2983  //   to which they refer.
2984  if (!HasPattern || !PatternDecl)
2985    return true;
2986
2987  return PatternDecl->isInlined();
2988}
2989
2990bool FunctionDecl::isTemplateInstantiation() const {
2991  switch (getTemplateSpecializationKind()) {
2992    case TSK_Undeclared:
2993    case TSK_ExplicitSpecialization:
2994      return false;
2995    case TSK_ImplicitInstantiation:
2996    case TSK_ExplicitInstantiationDeclaration:
2997    case TSK_ExplicitInstantiationDefinition:
2998      return true;
2999  }
3000  llvm_unreachable("All TSK values handled.");
3001}
3002
3003FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3004  // Handle class scope explicit specialization special case.
3005  if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3006    return getClassScopeSpecializationPattern();
3007
3008  // If this is a generic lambda call operator specialization, its
3009  // instantiation pattern is always its primary template's pattern
3010  // even if its primary template was instantiated from another
3011  // member template (which happens with nested generic lambdas).
3012  // Since a lambda's call operator's body is transformed eagerly,
3013  // we don't have to go hunting for a prototype definition template
3014  // (i.e. instantiated-from-member-template) to use as an instantiation
3015  // pattern.
3016
3017  if (isGenericLambdaCallOperatorSpecialization(
3018          dyn_cast<CXXMethodDecl>(this))) {
3019    assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3020                                   "generated from a primary call operator "
3021                                   "template");
3022    assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3023           "A generic lambda call operator template must always have a body - "
3024           "even if instantiated from a prototype (i.e. as written) member "
3025           "template");
3026    return getPrimaryTemplate()->getTemplatedDecl();
3027  }
3028
3029  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3030    while (Primary->getInstantiatedFromMemberTemplate()) {
3031      // If we have hit a point where the user provided a specialization of
3032      // this template, we're done looking.
3033      if (Primary->isMemberSpecialization())
3034        break;
3035      Primary = Primary->getInstantiatedFromMemberTemplate();
3036    }
3037
3038    return Primary->getTemplatedDecl();
3039  }
3040
3041  return getInstantiatedFromMemberFunction();
3042}
3043
3044FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3045  if (FunctionTemplateSpecializationInfo *Info
3046        = TemplateOrSpecialization
3047            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3048    return Info->Template.getPointer();
3049  }
3050  return nullptr;
3051}
3052
3053FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3054    return getASTContext().getClassScopeSpecializationPattern(this);
3055}
3056
3057const TemplateArgumentList *
3058FunctionDecl::getTemplateSpecializationArgs() const {
3059  if (FunctionTemplateSpecializationInfo *Info
3060        = TemplateOrSpecialization
3061            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3062    return Info->TemplateArguments;
3063  }
3064  return nullptr;
3065}
3066
3067const ASTTemplateArgumentListInfo *
3068FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3069  if (FunctionTemplateSpecializationInfo *Info
3070        = TemplateOrSpecialization
3071            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3072    return Info->TemplateArgumentsAsWritten;
3073  }
3074  return nullptr;
3075}
3076
3077void
3078FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3079                                                FunctionTemplateDecl *Template,
3080                                     const TemplateArgumentList *TemplateArgs,
3081                                                void *InsertPos,
3082                                                TemplateSpecializationKind TSK,
3083                        const TemplateArgumentListInfo *TemplateArgsAsWritten,
3084                                          SourceLocation PointOfInstantiation) {
3085  assert(TSK != TSK_Undeclared &&
3086         "Must specify the type of function template specialization");
3087  FunctionTemplateSpecializationInfo *Info
3088    = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3089  if (!Info)
3090    Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3091                                                      TemplateArgs,
3092                                                      TemplateArgsAsWritten,
3093                                                      PointOfInstantiation);
3094  TemplateOrSpecialization = Info;
3095  Template->addSpecialization(Info, InsertPos);
3096}
3097
3098void
3099FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3100                                    const UnresolvedSetImpl &Templates,
3101                             const TemplateArgumentListInfo &TemplateArgs) {
3102  assert(TemplateOrSpecialization.isNull());
3103  size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
3104  Size += Templates.size() * sizeof(FunctionTemplateDecl*);
3105  Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
3106  void *Buffer = Context.Allocate(Size);
3107  DependentFunctionTemplateSpecializationInfo *Info =
3108    new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
3109                                                             TemplateArgs);
3110  TemplateOrSpecialization = Info;
3111}
3112
3113DependentFunctionTemplateSpecializationInfo::
3114DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3115                                      const TemplateArgumentListInfo &TArgs)
3116  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3117  static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
3118                "Trailing data is unaligned!");
3119
3120  d.NumTemplates = Ts.size();
3121  d.NumArgs = TArgs.size();
3122
3123  FunctionTemplateDecl **TsArray =
3124    const_cast<FunctionTemplateDecl**>(getTemplates());
3125  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3126    TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3127
3128  TemplateArgumentLoc *ArgsArray =
3129    const_cast<TemplateArgumentLoc*>(getTemplateArgs());
3130  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3131    new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3132}
3133
3134TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3135  // For a function template specialization, query the specialization
3136  // information object.
3137  FunctionTemplateSpecializationInfo *FTSInfo
3138    = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3139  if (FTSInfo)
3140    return FTSInfo->getTemplateSpecializationKind();
3141
3142  MemberSpecializationInfo *MSInfo
3143    = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3144  if (MSInfo)
3145    return MSInfo->getTemplateSpecializationKind();
3146
3147  return TSK_Undeclared;
3148}
3149
3150void
3151FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3152                                          SourceLocation PointOfInstantiation) {
3153  if (FunctionTemplateSpecializationInfo *FTSInfo
3154        = TemplateOrSpecialization.dyn_cast<
3155                                    FunctionTemplateSpecializationInfo*>()) {
3156    FTSInfo->setTemplateSpecializationKind(TSK);
3157    if (TSK != TSK_ExplicitSpecialization &&
3158        PointOfInstantiation.isValid() &&
3159        FTSInfo->getPointOfInstantiation().isInvalid())
3160      FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3161  } else if (MemberSpecializationInfo *MSInfo
3162             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3163    MSInfo->setTemplateSpecializationKind(TSK);
3164    if (TSK != TSK_ExplicitSpecialization &&
3165        PointOfInstantiation.isValid() &&
3166        MSInfo->getPointOfInstantiation().isInvalid())
3167      MSInfo->setPointOfInstantiation(PointOfInstantiation);
3168  } else
3169    llvm_unreachable("Function cannot have a template specialization kind");
3170}
3171
3172SourceLocation FunctionDecl::getPointOfInstantiation() const {
3173  if (FunctionTemplateSpecializationInfo *FTSInfo
3174        = TemplateOrSpecialization.dyn_cast<
3175                                        FunctionTemplateSpecializationInfo*>())
3176    return FTSInfo->getPointOfInstantiation();
3177  else if (MemberSpecializationInfo *MSInfo
3178             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3179    return MSInfo->getPointOfInstantiation();
3180
3181  return SourceLocation();
3182}
3183
3184bool FunctionDecl::isOutOfLine() const {
3185  if (Decl::isOutOfLine())
3186    return true;
3187
3188  // If this function was instantiated from a member function of a
3189  // class template, check whether that member function was defined out-of-line.
3190  if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3191    const FunctionDecl *Definition;
3192    if (FD->hasBody(Definition))
3193      return Definition->isOutOfLine();
3194  }
3195
3196  // If this function was instantiated from a function template,
3197  // check whether that function template was defined out-of-line.
3198  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3199    const FunctionDecl *Definition;
3200    if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3201      return Definition->isOutOfLine();
3202  }
3203
3204  return false;
3205}
3206
3207SourceRange FunctionDecl::getSourceRange() const {
3208  return SourceRange(getOuterLocStart(), EndRangeLoc);
3209}
3210
3211unsigned FunctionDecl::getMemoryFunctionKind() const {
3212  IdentifierInfo *FnInfo = getIdentifier();
3213
3214  if (!FnInfo)
3215    return 0;
3216
3217  // Builtin handling.
3218  switch (getBuiltinID()) {
3219  case Builtin::BI__builtin_memset:
3220  case Builtin::BI__builtin___memset_chk:
3221  case Builtin::BImemset:
3222    return Builtin::BImemset;
3223
3224  case Builtin::BI__builtin_memcpy:
3225  case Builtin::BI__builtin___memcpy_chk:
3226  case Builtin::BImemcpy:
3227    return Builtin::BImemcpy;
3228
3229  case Builtin::BI__builtin_memmove:
3230  case Builtin::BI__builtin___memmove_chk:
3231  case Builtin::BImemmove:
3232    return Builtin::BImemmove;
3233
3234  case Builtin::BIstrlcpy:
3235  case Builtin::BI__builtin___strlcpy_chk:
3236    return Builtin::BIstrlcpy;
3237
3238  case Builtin::BIstrlcat:
3239  case Builtin::BI__builtin___strlcat_chk:
3240    return Builtin::BIstrlcat;
3241
3242  case Builtin::BI__builtin_memcmp:
3243  case Builtin::BImemcmp:
3244    return Builtin::BImemcmp;
3245
3246  case Builtin::BI__builtin_strncpy:
3247  case Builtin::BI__builtin___strncpy_chk:
3248  case Builtin::BIstrncpy:
3249    return Builtin::BIstrncpy;
3250
3251  case Builtin::BI__builtin_strncmp:
3252  case Builtin::BIstrncmp:
3253    return Builtin::BIstrncmp;
3254
3255  case Builtin::BI__builtin_strncasecmp:
3256  case Builtin::BIstrncasecmp:
3257    return Builtin::BIstrncasecmp;
3258
3259  case Builtin::BI__builtin_strncat:
3260  case Builtin::BI__builtin___strncat_chk:
3261  case Builtin::BIstrncat:
3262    return Builtin::BIstrncat;
3263
3264  case Builtin::BI__builtin_strndup:
3265  case Builtin::BIstrndup:
3266    return Builtin::BIstrndup;
3267
3268  case Builtin::BI__builtin_strlen:
3269  case Builtin::BIstrlen:
3270    return Builtin::BIstrlen;
3271
3272  default:
3273    if (isExternC()) {
3274      if (FnInfo->isStr("memset"))
3275        return Builtin::BImemset;
3276      else if (FnInfo->isStr("memcpy"))
3277        return Builtin::BImemcpy;
3278      else if (FnInfo->isStr("memmove"))
3279        return Builtin::BImemmove;
3280      else if (FnInfo->isStr("memcmp"))
3281        return Builtin::BImemcmp;
3282      else if (FnInfo->isStr("strncpy"))
3283        return Builtin::BIstrncpy;
3284      else if (FnInfo->isStr("strncmp"))
3285        return Builtin::BIstrncmp;
3286      else if (FnInfo->isStr("strncasecmp"))
3287        return Builtin::BIstrncasecmp;
3288      else if (FnInfo->isStr("strncat"))
3289        return Builtin::BIstrncat;
3290      else if (FnInfo->isStr("strndup"))
3291        return Builtin::BIstrndup;
3292      else if (FnInfo->isStr("strlen"))
3293        return Builtin::BIstrlen;
3294    }
3295    break;
3296  }
3297  return 0;
3298}
3299
3300//===----------------------------------------------------------------------===//
3301// FieldDecl Implementation
3302//===----------------------------------------------------------------------===//
3303
3304FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3305                             SourceLocation StartLoc, SourceLocation IdLoc,
3306                             IdentifierInfo *Id, QualType T,
3307                             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3308                             InClassInitStyle InitStyle) {
3309  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3310                               BW, Mutable, InitStyle);
3311}
3312
3313FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3314  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3315                               SourceLocation(), nullptr, QualType(), nullptr,
3316                               nullptr, false, ICIS_NoInit);
3317}
3318
3319bool FieldDecl::isAnonymousStructOrUnion() const {
3320  if (!isImplicit() || getDeclName())
3321    return false;
3322
3323  if (const RecordType *Record = getType()->getAs<RecordType>())
3324    return Record->getDecl()->isAnonymousStructOrUnion();
3325
3326  return false;
3327}
3328
3329unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3330  assert(isBitField() && "not a bitfield");
3331  Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3332  return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3333}
3334
3335unsigned FieldDecl::getFieldIndex() const {
3336  const FieldDecl *Canonical = getCanonicalDecl();
3337  if (Canonical != this)
3338    return Canonical->getFieldIndex();
3339
3340  if (CachedFieldIndex) return CachedFieldIndex - 1;
3341
3342  unsigned Index = 0;
3343  const RecordDecl *RD = getParent();
3344
3345  for (auto *Field : RD->fields()) {
3346    Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3347    ++Index;
3348  }
3349
3350  assert(CachedFieldIndex && "failed to find field in parent");
3351  return CachedFieldIndex - 1;
3352}
3353
3354SourceRange FieldDecl::getSourceRange() const {
3355  switch (InitStorage.getInt()) {
3356  // All three of these cases store an optional Expr*.
3357  case ISK_BitWidthOrNothing:
3358  case ISK_InClassCopyInit:
3359  case ISK_InClassListInit:
3360    if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
3361      return SourceRange(getInnerLocStart(), E->getLocEnd());
3362    // FALLTHROUGH
3363
3364  case ISK_CapturedVLAType:
3365    return DeclaratorDecl::getSourceRange();
3366  }
3367  llvm_unreachable("bad init storage kind");
3368}
3369
3370void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3371  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3372         "capturing type in non-lambda or captured record.");
3373  assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3374         InitStorage.getPointer() == nullptr &&
3375         "bit width, initializer or captured type already set");
3376  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3377                               ISK_CapturedVLAType);
3378}
3379
3380//===----------------------------------------------------------------------===//
3381// TagDecl Implementation
3382//===----------------------------------------------------------------------===//
3383
3384SourceLocation TagDecl::getOuterLocStart() const {
3385  return getTemplateOrInnerLocStart(this);
3386}
3387
3388SourceRange TagDecl::getSourceRange() const {
3389  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3390  return SourceRange(getOuterLocStart(), E);
3391}
3392
3393TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3394
3395void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3396  NamedDeclOrQualifier = TDD;
3397  if (const Type *T = getTypeForDecl()) {
3398    (void)T;
3399    assert(T->isLinkageValid());
3400  }
3401  assert(isLinkageValid());
3402}
3403
3404void TagDecl::startDefinition() {
3405  IsBeingDefined = true;
3406
3407  if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3408    struct CXXRecordDecl::DefinitionData *Data =
3409      new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3410    for (auto I : redecls())
3411      cast<CXXRecordDecl>(I)->DefinitionData = Data;
3412  }
3413}
3414
3415void TagDecl::completeDefinition() {
3416  assert((!isa<CXXRecordDecl>(this) ||
3417          cast<CXXRecordDecl>(this)->hasDefinition()) &&
3418         "definition completed but not started");
3419
3420  IsCompleteDefinition = true;
3421  IsBeingDefined = false;
3422
3423  if (ASTMutationListener *L = getASTMutationListener())
3424    L->CompletedTagDefinition(this);
3425}
3426
3427TagDecl *TagDecl::getDefinition() const {
3428  if (isCompleteDefinition())
3429    return const_cast<TagDecl *>(this);
3430
3431  // If it's possible for us to have an out-of-date definition, check now.
3432  if (MayHaveOutOfDateDef) {
3433    if (IdentifierInfo *II = getIdentifier()) {
3434      if (II->isOutOfDate()) {
3435        updateOutOfDate(*II);
3436      }
3437    }
3438  }
3439
3440  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3441    return CXXRD->getDefinition();
3442
3443  for (auto R : redecls())
3444    if (R->isCompleteDefinition())
3445      return R;
3446
3447  return nullptr;
3448}
3449
3450void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3451  if (QualifierLoc) {
3452    // Make sure the extended qualifier info is allocated.
3453    if (!hasExtInfo())
3454      NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3455    // Set qualifier info.
3456    getExtInfo()->QualifierLoc = QualifierLoc;
3457  } else {
3458    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3459    if (hasExtInfo()) {
3460      if (getExtInfo()->NumTemplParamLists == 0) {
3461        getASTContext().Deallocate(getExtInfo());
3462        NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
3463      }
3464      else
3465        getExtInfo()->QualifierLoc = QualifierLoc;
3466    }
3467  }
3468}
3469
3470void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3471                                            unsigned NumTPLists,
3472                                            TemplateParameterList **TPLists) {
3473  assert(NumTPLists > 0);
3474  // Make sure the extended decl info is allocated.
3475  if (!hasExtInfo())
3476    // Allocate external info struct.
3477    NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3478  // Set the template parameter lists info.
3479  getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3480}
3481
3482//===----------------------------------------------------------------------===//
3483// EnumDecl Implementation
3484//===----------------------------------------------------------------------===//
3485
3486void EnumDecl::anchor() { }
3487
3488EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3489                           SourceLocation StartLoc, SourceLocation IdLoc,
3490                           IdentifierInfo *Id,
3491                           EnumDecl *PrevDecl, bool IsScoped,
3492                           bool IsScopedUsingClassTag, bool IsFixed) {
3493  EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3494                                        IsScoped, IsScopedUsingClassTag,
3495                                        IsFixed);
3496  Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3497  C.getTypeDeclType(Enum, PrevDecl);
3498  return Enum;
3499}
3500
3501EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3502  EnumDecl *Enum =
3503      new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3504                           nullptr, nullptr, false, false, false);
3505  Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506  return Enum;
3507}
3508
3509SourceRange EnumDecl::getIntegerTypeRange() const {
3510  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3511    return TI->getTypeLoc().getSourceRange();
3512  return SourceRange();
3513}
3514
3515void EnumDecl::completeDefinition(QualType NewType,
3516                                  QualType NewPromotionType,
3517                                  unsigned NumPositiveBits,
3518                                  unsigned NumNegativeBits) {
3519  assert(!isCompleteDefinition() && "Cannot redefine enums!");
3520  if (!IntegerType)
3521    IntegerType = NewType.getTypePtr();
3522  PromotionType = NewPromotionType;
3523  setNumPositiveBits(NumPositiveBits);
3524  setNumNegativeBits(NumNegativeBits);
3525  TagDecl::completeDefinition();
3526}
3527
3528TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3529  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3530    return MSI->getTemplateSpecializationKind();
3531
3532  return TSK_Undeclared;
3533}
3534
3535void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3536                                         SourceLocation PointOfInstantiation) {
3537  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3538  assert(MSI && "Not an instantiated member enumeration?");
3539  MSI->setTemplateSpecializationKind(TSK);
3540  if (TSK != TSK_ExplicitSpecialization &&
3541      PointOfInstantiation.isValid() &&
3542      MSI->getPointOfInstantiation().isInvalid())
3543    MSI->setPointOfInstantiation(PointOfInstantiation);
3544}
3545
3546EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3547  if (SpecializationInfo)
3548    return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3549
3550  return nullptr;
3551}
3552
3553void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3554                                            TemplateSpecializationKind TSK) {
3555  assert(!SpecializationInfo && "Member enum is already a specialization");
3556  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3557}
3558
3559//===----------------------------------------------------------------------===//
3560// RecordDecl Implementation
3561//===----------------------------------------------------------------------===//
3562
3563RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3564                       DeclContext *DC, SourceLocation StartLoc,
3565                       SourceLocation IdLoc, IdentifierInfo *Id,
3566                       RecordDecl *PrevDecl)
3567    : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3568  HasFlexibleArrayMember = false;
3569  AnonymousStructOrUnion = false;
3570  HasObjectMember = false;
3571  HasVolatileMember = false;
3572  LoadedFieldsFromExternalStorage = false;
3573  assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3574}
3575
3576RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3577                               SourceLocation StartLoc, SourceLocation IdLoc,
3578                               IdentifierInfo *Id, RecordDecl* PrevDecl) {
3579  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3580                                         StartLoc, IdLoc, Id, PrevDecl);
3581  R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3582
3583  C.getTypeDeclType(R, PrevDecl);
3584  return R;
3585}
3586
3587RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3588  RecordDecl *R =
3589      new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3590                             SourceLocation(), nullptr, nullptr);
3591  R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3592  return R;
3593}
3594
3595bool RecordDecl::isInjectedClassName() const {
3596  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3597    cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3598}
3599
3600bool RecordDecl::isLambda() const {
3601  if (auto RD = dyn_cast<CXXRecordDecl>(this))
3602    return RD->isLambda();
3603  return false;
3604}
3605
3606bool RecordDecl::isCapturedRecord() const {
3607  return hasAttr<CapturedRecordAttr>();
3608}
3609
3610void RecordDecl::setCapturedRecord() {
3611  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3612}
3613
3614RecordDecl::field_iterator RecordDecl::field_begin() const {
3615  if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3616    LoadFieldsFromExternalStorage();
3617
3618  return field_iterator(decl_iterator(FirstDecl));
3619}
3620
3621/// completeDefinition - Notes that the definition of this type is now
3622/// complete.
3623void RecordDecl::completeDefinition() {
3624  assert(!isCompleteDefinition() && "Cannot redefine record!");
3625  TagDecl::completeDefinition();
3626}
3627
3628/// isMsStruct - Get whether or not this record uses ms_struct layout.
3629/// This which can be turned on with an attribute, pragma, or the
3630/// -mms-bitfields command-line option.
3631bool RecordDecl::isMsStruct(const ASTContext &C) const {
3632  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3633}
3634
3635static bool isFieldOrIndirectField(Decl::Kind K) {
3636  return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3637}
3638
3639void RecordDecl::LoadFieldsFromExternalStorage() const {
3640  ExternalASTSource *Source = getASTContext().getExternalSource();
3641  assert(hasExternalLexicalStorage() && Source && "No external storage?");
3642
3643  // Notify that we have a RecordDecl doing some initialization.
3644  ExternalASTSource::Deserializing TheFields(Source);
3645
3646  SmallVector<Decl*, 64> Decls;
3647  LoadedFieldsFromExternalStorage = true;
3648  switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3649                                           Decls)) {
3650  case ELR_Success:
3651    break;
3652
3653  case ELR_AlreadyLoaded:
3654  case ELR_Failure:
3655    return;
3656  }
3657
3658#ifndef NDEBUG
3659  // Check that all decls we got were FieldDecls.
3660  for (unsigned i=0, e=Decls.size(); i != e; ++i)
3661    assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3662#endif
3663
3664  if (Decls.empty())
3665    return;
3666
3667  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3668                                                 /*FieldsAlreadyLoaded=*/false);
3669}
3670
3671bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3672  ASTContext &Context = getASTContext();
3673  if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
3674      !Context.getLangOpts().SanitizeAddressFieldPadding)
3675    return false;
3676  const auto &Blacklist = Context.getSanitizerBlacklist();
3677  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
3678  // We may be able to relax some of these requirements.
3679  int ReasonToReject = -1;
3680  if (!CXXRD || CXXRD->isExternCContext())
3681    ReasonToReject = 0;  // is not C++.
3682  else if (CXXRD->hasAttr<PackedAttr>())
3683    ReasonToReject = 1;  // is packed.
3684  else if (CXXRD->isUnion())
3685    ReasonToReject = 2;  // is a union.
3686  else if (CXXRD->isTriviallyCopyable())
3687    ReasonToReject = 3;  // is trivially copyable.
3688  else if (CXXRD->hasTrivialDestructor())
3689    ReasonToReject = 4;  // has trivial destructor.
3690  else if (CXXRD->isStandardLayout())
3691    ReasonToReject = 5;  // is standard layout.
3692  else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3693    ReasonToReject = 6;  // is in a blacklisted file.
3694  else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3695                                       "field-padding"))
3696    ReasonToReject = 7;  // is blacklisted.
3697
3698  if (EmitRemark) {
3699    if (ReasonToReject >= 0)
3700      Context.getDiagnostics().Report(
3701          getLocation(),
3702          diag::remark_sanitize_address_insert_extra_padding_rejected)
3703          << getQualifiedNameAsString() << ReasonToReject;
3704    else
3705      Context.getDiagnostics().Report(
3706          getLocation(),
3707          diag::remark_sanitize_address_insert_extra_padding_accepted)
3708          << getQualifiedNameAsString();
3709  }
3710  return ReasonToReject < 0;
3711}
3712
3713const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3714  for (const auto *I : fields()) {
3715    if (I->getIdentifier())
3716      return I;
3717
3718    if (const RecordType *RT = I->getType()->getAs<RecordType>())
3719      if (const FieldDecl *NamedDataMember =
3720          RT->getDecl()->findFirstNamedDataMember())
3721        return NamedDataMember;
3722  }
3723
3724  // We didn't find a named data member.
3725  return nullptr;
3726}
3727
3728
3729//===----------------------------------------------------------------------===//
3730// BlockDecl Implementation
3731//===----------------------------------------------------------------------===//
3732
3733void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3734  assert(!ParamInfo && "Already has param info!");
3735
3736  // Zero params -> null pointer.
3737  if (!NewParamInfo.empty()) {
3738    NumParams = NewParamInfo.size();
3739    ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3740    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3741  }
3742}
3743
3744void BlockDecl::setCaptures(ASTContext &Context,
3745                            const Capture *begin,
3746                            const Capture *end,
3747                            bool capturesCXXThis) {
3748  CapturesCXXThis = capturesCXXThis;
3749
3750  if (begin == end) {
3751    NumCaptures = 0;
3752    Captures = nullptr;
3753    return;
3754  }
3755
3756  NumCaptures = end - begin;
3757
3758  // Avoid new Capture[] because we don't want to provide a default
3759  // constructor.
3760  size_t allocationSize = NumCaptures * sizeof(Capture);
3761  void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3762  memcpy(buffer, begin, allocationSize);
3763  Captures = static_cast<Capture*>(buffer);
3764}
3765
3766bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3767  for (const auto &I : captures())
3768    // Only auto vars can be captured, so no redeclaration worries.
3769    if (I.getVariable() == variable)
3770      return true;
3771
3772  return false;
3773}
3774
3775SourceRange BlockDecl::getSourceRange() const {
3776  return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3777}
3778
3779//===----------------------------------------------------------------------===//
3780// Other Decl Allocation/Deallocation Method Implementations
3781//===----------------------------------------------------------------------===//
3782
3783void TranslationUnitDecl::anchor() { }
3784
3785TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3786  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3787}
3788
3789void ExternCContextDecl::anchor() { }
3790
3791ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3792                                               TranslationUnitDecl *DC) {
3793  return new (C, DC) ExternCContextDecl(DC);
3794}
3795
3796void LabelDecl::anchor() { }
3797
3798LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3799                             SourceLocation IdentL, IdentifierInfo *II) {
3800  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3801}
3802
3803LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3804                             SourceLocation IdentL, IdentifierInfo *II,
3805                             SourceLocation GnuLabelL) {
3806  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3807  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3808}
3809
3810LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3811  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3812                               SourceLocation());
3813}
3814
3815void LabelDecl::setMSAsmLabel(StringRef Name) {
3816  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3817  memcpy(Buffer, Name.data(), Name.size());
3818  Buffer[Name.size()] = '\0';
3819  MSAsmName = Buffer;
3820}
3821
3822void ValueDecl::anchor() { }
3823
3824bool ValueDecl::isWeak() const {
3825  for (const auto *I : attrs())
3826    if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3827      return true;
3828
3829  return isWeakImported();
3830}
3831
3832void ImplicitParamDecl::anchor() { }
3833
3834ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3835                                             SourceLocation IdLoc,
3836                                             IdentifierInfo *Id,
3837                                             QualType Type) {
3838  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3839}
3840
3841ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3842                                                         unsigned ID) {
3843  return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3844                                       QualType());
3845}
3846
3847FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3848                                   SourceLocation StartLoc,
3849                                   const DeclarationNameInfo &NameInfo,
3850                                   QualType T, TypeSourceInfo *TInfo,
3851                                   StorageClass SC,
3852                                   bool isInlineSpecified,
3853                                   bool hasWrittenPrototype,
3854                                   bool isConstexprSpecified) {
3855  FunctionDecl *New =
3856      new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3857                               SC, isInlineSpecified, isConstexprSpecified);
3858  New->HasWrittenPrototype = hasWrittenPrototype;
3859  return New;
3860}
3861
3862FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3863  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3864                                  DeclarationNameInfo(), QualType(), nullptr,
3865                                  SC_None, false, false);
3866}
3867
3868BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3869  return new (C, DC) BlockDecl(DC, L);
3870}
3871
3872BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3873  return new (C, ID) BlockDecl(nullptr, SourceLocation());
3874}
3875
3876CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3877                                   unsigned NumParams) {
3878  return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
3879      CapturedDecl(DC, NumParams);
3880}
3881
3882CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3883                                               unsigned NumParams) {
3884  return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
3885      CapturedDecl(nullptr, NumParams);
3886}
3887
3888EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3889                                           SourceLocation L,
3890                                           IdentifierInfo *Id, QualType T,
3891                                           Expr *E, const llvm::APSInt &V) {
3892  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3893}
3894
3895EnumConstantDecl *
3896EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3897  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3898                                      QualType(), nullptr, llvm::APSInt());
3899}
3900
3901void IndirectFieldDecl::anchor() { }
3902
3903IndirectFieldDecl *
3904IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3905                          IdentifierInfo *Id, QualType T, NamedDecl **CH,
3906                          unsigned CHS) {
3907  return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3908}
3909
3910IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3911                                                         unsigned ID) {
3912  return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3913                                       DeclarationName(), QualType(), nullptr,
3914                                       0);
3915}
3916
3917SourceRange EnumConstantDecl::getSourceRange() const {
3918  SourceLocation End = getLocation();
3919  if (Init)
3920    End = Init->getLocEnd();
3921  return SourceRange(getLocation(), End);
3922}
3923
3924void TypeDecl::anchor() { }
3925
3926TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3927                                 SourceLocation StartLoc, SourceLocation IdLoc,
3928                                 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3929  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3930}
3931
3932void TypedefNameDecl::anchor() { }
3933
3934TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName() const {
3935  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>())
3936    if (TT->getDecl()->getTypedefNameForAnonDecl() == this)
3937      return TT->getDecl();
3938
3939  return nullptr;
3940}
3941
3942TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3943  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3944                                 nullptr, nullptr);
3945}
3946
3947TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3948                                     SourceLocation StartLoc,
3949                                     SourceLocation IdLoc, IdentifierInfo *Id,
3950                                     TypeSourceInfo *TInfo) {
3951  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3952}
3953
3954TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3955  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3956                                   SourceLocation(), nullptr, nullptr);
3957}
3958
3959SourceRange TypedefDecl::getSourceRange() const {
3960  SourceLocation RangeEnd = getLocation();
3961  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3962    if (typeIsPostfix(TInfo->getType()))
3963      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3964  }
3965  return SourceRange(getLocStart(), RangeEnd);
3966}
3967
3968SourceRange TypeAliasDecl::getSourceRange() const {
3969  SourceLocation RangeEnd = getLocStart();
3970  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3971    RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3972  return SourceRange(getLocStart(), RangeEnd);
3973}
3974
3975void FileScopeAsmDecl::anchor() { }
3976
3977FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3978                                           StringLiteral *Str,
3979                                           SourceLocation AsmLoc,
3980                                           SourceLocation RParenLoc) {
3981  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3982}
3983
3984FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3985                                                       unsigned ID) {
3986  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3987                                      SourceLocation());
3988}
3989
3990void EmptyDecl::anchor() {}
3991
3992EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3993  return new (C, DC) EmptyDecl(DC, L);
3994}
3995
3996EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3997  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3998}
3999
4000//===----------------------------------------------------------------------===//
4001// ImportDecl Implementation
4002//===----------------------------------------------------------------------===//
4003
4004/// \brief Retrieve the number of module identifiers needed to name the given
4005/// module.
4006static unsigned getNumModuleIdentifiers(Module *Mod) {
4007  unsigned Result = 1;
4008  while (Mod->Parent) {
4009    Mod = Mod->Parent;
4010    ++Result;
4011  }
4012  return Result;
4013}
4014
4015ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4016                       Module *Imported,
4017                       ArrayRef<SourceLocation> IdentifierLocs)
4018  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4019    NextLocalImport()
4020{
4021  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4022  SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
4023  memcpy(StoredLocs, IdentifierLocs.data(),
4024         IdentifierLocs.size() * sizeof(SourceLocation));
4025}
4026
4027ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4028                       Module *Imported, SourceLocation EndLoc)
4029  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4030    NextLocalImport()
4031{
4032  *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
4033}
4034
4035ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4036                               SourceLocation StartLoc, Module *Imported,
4037                               ArrayRef<SourceLocation> IdentifierLocs) {
4038  return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
4039      ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4040}
4041
4042ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4043                                       SourceLocation StartLoc,
4044                                       Module *Imported,
4045                                       SourceLocation EndLoc) {
4046  ImportDecl *Import =
4047      new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
4048                                                     Imported, EndLoc);
4049  Import->setImplicit();
4050  return Import;
4051}
4052
4053ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4054                                           unsigned NumLocations) {
4055  return new (C, ID, NumLocations * sizeof(SourceLocation))
4056      ImportDecl(EmptyShell());
4057}
4058
4059ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4060  if (!ImportedAndComplete.getInt())
4061    return None;
4062
4063  const SourceLocation *StoredLocs
4064    = reinterpret_cast<const SourceLocation *>(this + 1);
4065  return llvm::makeArrayRef(StoredLocs,
4066                            getNumModuleIdentifiers(getImportedModule()));
4067}
4068
4069SourceRange ImportDecl::getSourceRange() const {
4070  if (!ImportedAndComplete.getInt())
4071    return SourceRange(getLocation(),
4072                       *reinterpret_cast<const SourceLocation *>(this + 1));
4073
4074  return SourceRange(getLocation(), getIdentifierLocs().back());
4075}
4076