CGException.cpp revision 4c7d9f1507d0f102bd4133bba63348636facd469
1//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with C++ exception related code generation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/StmtCXX.h"
15
16#include "llvm/Intrinsics.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Support/CallSite.h"
19
20#include "CGObjCRuntime.h"
21#include "CodeGenFunction.h"
22#include "CGException.h"
23#include "CGCleanup.h"
24#include "TargetInfo.h"
25
26using namespace clang;
27using namespace CodeGen;
28
29static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
30  // void *__cxa_allocate_exception(size_t thrown_size);
31
32  llvm::Type *ArgTys[] = { CGF.SizeTy };
33  const llvm::FunctionType *FTy =
34    llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false);
35
36  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
37}
38
39static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
40  // void __cxa_free_exception(void *thrown_exception);
41
42  llvm::Type *ArgTys[] = { CGF.Int8PtrTy };
43  const llvm::FunctionType *FTy =
44    llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false);
45
46  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
47}
48
49static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
50  // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
51  //                  void (*dest) (void *));
52
53  llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
54  const llvm::FunctionType *FTy =
55    llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false);
56
57  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
58}
59
60static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
61  // void __cxa_rethrow();
62
63  const llvm::FunctionType *FTy =
64    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
65
66  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
67}
68
69static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
70  // void *__cxa_get_exception_ptr(void*);
71
72  llvm::Type *ArgTys[] = { CGF.Int8PtrTy };
73  const llvm::FunctionType *FTy =
74    llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false);
75
76  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
77}
78
79static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
80  // void *__cxa_begin_catch(void*);
81
82  llvm::Type *ArgTys[] = { CGF.Int8PtrTy };
83  const llvm::FunctionType *FTy =
84    llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false);
85
86  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
87}
88
89static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
90  // void __cxa_end_catch();
91
92  const llvm::FunctionType *FTy =
93    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
94
95  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
96}
97
98static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
99  // void __cxa_call_unexepcted(void *thrown_exception);
100
101  llvm::Type *ArgTys[] = { CGF.Int8PtrTy };
102  const llvm::FunctionType *FTy =
103    llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false);
104
105  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
106}
107
108llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
109  llvm::Type *ArgTys[] = { Int8PtrTy };
110  const llvm::FunctionType *FTy =
111    llvm::FunctionType::get(VoidTy, ArgTys, /*IsVarArgs=*/false);
112
113  if (CGM.getLangOptions().SjLjExceptions)
114    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
115  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
116}
117
118llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
119  llvm::Type *ArgTys[] = { Int8PtrTy };
120  const llvm::FunctionType *FTy =
121    llvm::FunctionType::get(VoidTy, ArgTys, /*IsVarArgs=*/false);
122
123  if (CGM.getLangOptions().SjLjExceptions)
124    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
125  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
126}
127
128static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
129  // void __terminate();
130
131  const llvm::FunctionType *FTy =
132    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
133
134  llvm::StringRef name;
135
136  // In C++, use std::terminate().
137  if (CGF.getLangOptions().CPlusPlus)
138    name = "_ZSt9terminatev"; // FIXME: mangling!
139  else if (CGF.getLangOptions().ObjC1 &&
140           CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate)
141    name = "objc_terminate";
142  else
143    name = "abort";
144  return CGF.CGM.CreateRuntimeFunction(FTy, name);
145}
146
147static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
148                                            llvm::StringRef Name) {
149  llvm::Type *ArgTys[] = { CGF.Int8PtrTy };
150  const llvm::FunctionType *FTy =
151    llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false);
152
153  return CGF.CGM.CreateRuntimeFunction(FTy, Name);
154}
155
156const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0");
157const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0");
158const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0");
159const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0");
160const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0");
161const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0",
162                                            "objc_exception_throw");
163const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0");
164
165static const EHPersonality &getCPersonality(const LangOptions &L) {
166  if (L.SjLjExceptions)
167    return EHPersonality::GNU_C_SJLJ;
168  return EHPersonality::GNU_C;
169}
170
171static const EHPersonality &getObjCPersonality(const LangOptions &L) {
172  if (L.NeXTRuntime) {
173    if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
174    else return getCPersonality(L);
175  } else {
176    return EHPersonality::GNU_ObjC;
177  }
178}
179
180static const EHPersonality &getCXXPersonality(const LangOptions &L) {
181  if (L.SjLjExceptions)
182    return EHPersonality::GNU_CPlusPlus_SJLJ;
183  else
184    return EHPersonality::GNU_CPlusPlus;
185}
186
187/// Determines the personality function to use when both C++
188/// and Objective-C exceptions are being caught.
189static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
190  // The ObjC personality defers to the C++ personality for non-ObjC
191  // handlers.  Unlike the C++ case, we use the same personality
192  // function on targets using (backend-driven) SJLJ EH.
193  if (L.NeXTRuntime) {
194    if (L.ObjCNonFragileABI)
195      return EHPersonality::NeXT_ObjC;
196
197    // In the fragile ABI, just use C++ exception handling and hope
198    // they're not doing crazy exception mixing.
199    else
200      return getCXXPersonality(L);
201  }
202
203  // The GNU runtime's personality function inherently doesn't support
204  // mixed EH.  Use the C++ personality just to avoid returning null.
205  return EHPersonality::GNU_ObjCXX;
206}
207
208const EHPersonality &EHPersonality::get(const LangOptions &L) {
209  if (L.CPlusPlus && L.ObjC1)
210    return getObjCXXPersonality(L);
211  else if (L.CPlusPlus)
212    return getCXXPersonality(L);
213  else if (L.ObjC1)
214    return getObjCPersonality(L);
215  else
216    return getCPersonality(L);
217}
218
219static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
220                                        const EHPersonality &Personality) {
221  llvm::Constant *Fn =
222    CGM.CreateRuntimeFunction(llvm::FunctionType::get(
223                                llvm::Type::getInt32Ty(CGM.getLLVMContext()),
224                                true),
225                              Personality.getPersonalityFnName());
226  return Fn;
227}
228
229static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
230                                        const EHPersonality &Personality) {
231  llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
232  return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
233}
234
235/// Check whether a personality function could reasonably be swapped
236/// for a C++ personality function.
237static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
238  for (llvm::Constant::use_iterator
239         I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
240    llvm::User *User = *I;
241
242    // Conditionally white-list bitcasts.
243    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
244      if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
245      if (!PersonalityHasOnlyCXXUses(CE))
246        return false;
247      continue;
248    }
249
250    // Otherwise, it has to be a selector call.
251    if (!isa<llvm::EHSelectorInst>(User)) return false;
252
253    llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User);
254    for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) {
255      // Look for something that would've been returned by the ObjC
256      // runtime's GetEHType() method.
257      llvm::GlobalVariable *GV
258        = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I));
259      if (!GV) continue;
260
261      // ObjC EH selector entries are always global variables with
262      // names starting like this.
263      if (GV->getName().startswith("OBJC_EHTYPE"))
264        return false;
265    }
266  }
267
268  return true;
269}
270
271/// Try to use the C++ personality function in ObjC++.  Not doing this
272/// can cause some incompatibilities with gcc, which is more
273/// aggressive about only using the ObjC++ personality in a function
274/// when it really needs it.
275void CodeGenModule::SimplifyPersonality() {
276  // For now, this is really a Darwin-specific operation.
277  if (!Context.Target.getTriple().isOSDarwin())
278    return;
279
280  // If we're not in ObjC++ -fexceptions, there's nothing to do.
281  if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions)
282    return;
283
284  const EHPersonality &ObjCXX = EHPersonality::get(Features);
285  const EHPersonality &CXX = getCXXPersonality(Features);
286  if (&ObjCXX == &CXX ||
287      ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName())
288    return;
289
290  llvm::Function *Fn =
291    getModule().getFunction(ObjCXX.getPersonalityFnName());
292
293  // Nothing to do if it's unused.
294  if (!Fn || Fn->use_empty()) return;
295
296  // Can't do the optimization if it has non-C++ uses.
297  if (!PersonalityHasOnlyCXXUses(Fn)) return;
298
299  // Create the C++ personality function and kill off the old
300  // function.
301  llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
302
303  // This can happen if the user is screwing with us.
304  if (Fn->getType() != CXXFn->getType()) return;
305
306  Fn->replaceAllUsesWith(CXXFn);
307  Fn->eraseFromParent();
308}
309
310/// Returns the value to inject into a selector to indicate the
311/// presence of a catch-all.
312static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
313  // Possibly we should use @llvm.eh.catch.all.value here.
314  return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
315}
316
317/// Returns the value to inject into a selector to indicate the
318/// presence of a cleanup.
319static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) {
320  return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
321}
322
323namespace {
324  /// A cleanup to free the exception object if its initialization
325  /// throws.
326  struct FreeException : EHScopeStack::Cleanup {
327    llvm::Value *exn;
328    FreeException(llvm::Value *exn) : exn(exn) {}
329    void Emit(CodeGenFunction &CGF, Flags flags) {
330      CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
331        ->setDoesNotThrow();
332    }
333  };
334}
335
336// Emits an exception expression into the given location.  This
337// differs from EmitAnyExprToMem only in that, if a final copy-ctor
338// call is required, an exception within that copy ctor causes
339// std::terminate to be invoked.
340static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
341                             llvm::Value *addr) {
342  // Make sure the exception object is cleaned up if there's an
343  // exception during initialization.
344  CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
345  EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
346
347  // __cxa_allocate_exception returns a void*;  we need to cast this
348  // to the appropriate type for the object.
349  const llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
350  llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
351
352  // FIXME: this isn't quite right!  If there's a final unelided call
353  // to a copy constructor, then according to [except.terminate]p1 we
354  // must call std::terminate() if that constructor throws, because
355  // technically that copy occurs after the exception expression is
356  // evaluated but before the exception is caught.  But the best way
357  // to handle that is to teach EmitAggExpr to do the final copy
358  // differently if it can't be elided.
359  CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
360                       /*IsInit*/ true);
361
362  // Deactivate the cleanup block.
363  CGF.DeactivateCleanupBlock(cleanup);
364}
365
366llvm::Value *CodeGenFunction::getExceptionSlot() {
367  if (!ExceptionSlot)
368    ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
369  return ExceptionSlot;
370}
371
372llvm::Value *CodeGenFunction::getEHSelectorSlot() {
373  if (!EHSelectorSlot)
374    EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
375  return EHSelectorSlot;
376}
377
378void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
379  if (!E->getSubExpr()) {
380    if (getInvokeDest()) {
381      Builder.CreateInvoke(getReThrowFn(*this),
382                           getUnreachableBlock(),
383                           getInvokeDest())
384        ->setDoesNotReturn();
385    } else {
386      Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
387      Builder.CreateUnreachable();
388    }
389
390    // throw is an expression, and the expression emitters expect us
391    // to leave ourselves at a valid insertion point.
392    EmitBlock(createBasicBlock("throw.cont"));
393
394    return;
395  }
396
397  QualType ThrowType = E->getSubExpr()->getType();
398
399  // Now allocate the exception object.
400  const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
401  uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
402
403  llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
404  llvm::CallInst *ExceptionPtr =
405    Builder.CreateCall(AllocExceptionFn,
406                       llvm::ConstantInt::get(SizeTy, TypeSize),
407                       "exception");
408  ExceptionPtr->setDoesNotThrow();
409
410  EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
411
412  // Now throw the exception.
413  llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
414                                                         /*ForEH=*/true);
415
416  // The address of the destructor.  If the exception type has a
417  // trivial destructor (or isn't a record), we just pass null.
418  llvm::Constant *Dtor = 0;
419  if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
420    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
421    if (!Record->hasTrivialDestructor()) {
422      CXXDestructorDecl *DtorD = Record->getDestructor();
423      Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
424      Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
425    }
426  }
427  if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
428
429  if (getInvokeDest()) {
430    llvm::InvokeInst *ThrowCall =
431      Builder.CreateInvoke3(getThrowFn(*this),
432                            getUnreachableBlock(), getInvokeDest(),
433                            ExceptionPtr, TypeInfo, Dtor);
434    ThrowCall->setDoesNotReturn();
435  } else {
436    llvm::CallInst *ThrowCall =
437      Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
438    ThrowCall->setDoesNotReturn();
439    Builder.CreateUnreachable();
440  }
441
442  // throw is an expression, and the expression emitters expect us
443  // to leave ourselves at a valid insertion point.
444  EmitBlock(createBasicBlock("throw.cont"));
445}
446
447void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
448  if (!CGM.getLangOptions().CXXExceptions)
449    return;
450
451  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
452  if (FD == 0)
453    return;
454  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
455  if (Proto == 0)
456    return;
457
458  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
459  if (isNoexceptExceptionSpec(EST)) {
460    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
461      // noexcept functions are simple terminate scopes.
462      EHStack.pushTerminate();
463    }
464  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
465    unsigned NumExceptions = Proto->getNumExceptions();
466    EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
467
468    for (unsigned I = 0; I != NumExceptions; ++I) {
469      QualType Ty = Proto->getExceptionType(I);
470      QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
471      llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
472                                                        /*ForEH=*/true);
473      Filter->setFilter(I, EHType);
474    }
475  }
476}
477
478void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
479  if (!CGM.getLangOptions().CXXExceptions)
480    return;
481
482  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
483  if (FD == 0)
484    return;
485  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
486  if (Proto == 0)
487    return;
488
489  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
490  if (isNoexceptExceptionSpec(EST)) {
491    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
492      EHStack.popTerminate();
493    }
494  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
495    EHStack.popFilter();
496  }
497}
498
499void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
500  EnterCXXTryStmt(S);
501  EmitStmt(S.getTryBlock());
502  ExitCXXTryStmt(S);
503}
504
505void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
506  unsigned NumHandlers = S.getNumHandlers();
507  EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
508
509  for (unsigned I = 0; I != NumHandlers; ++I) {
510    const CXXCatchStmt *C = S.getHandler(I);
511
512    llvm::BasicBlock *Handler = createBasicBlock("catch");
513    if (C->getExceptionDecl()) {
514      // FIXME: Dropping the reference type on the type into makes it
515      // impossible to correctly implement catch-by-reference
516      // semantics for pointers.  Unfortunately, this is what all
517      // existing compilers do, and it's not clear that the standard
518      // personality routine is capable of doing this right.  See C++ DR 388:
519      //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
520      QualType CaughtType = C->getCaughtType();
521      CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
522
523      llvm::Value *TypeInfo = 0;
524      if (CaughtType->isObjCObjectPointerType())
525        TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
526      else
527        TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
528      CatchScope->setHandler(I, TypeInfo, Handler);
529    } else {
530      // No exception decl indicates '...', a catch-all.
531      CatchScope->setCatchAllHandler(I, Handler);
532    }
533  }
534}
535
536/// Check whether this is a non-EH scope, i.e. a scope which doesn't
537/// affect exception handling.  Currently, the only non-EH scopes are
538/// normal-only cleanup scopes.
539static bool isNonEHScope(const EHScope &S) {
540  switch (S.getKind()) {
541  case EHScope::Cleanup:
542    return !cast<EHCleanupScope>(S).isEHCleanup();
543  case EHScope::Filter:
544  case EHScope::Catch:
545  case EHScope::Terminate:
546    return false;
547  }
548
549  // Suppress warning.
550  return false;
551}
552
553llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
554  assert(EHStack.requiresLandingPad());
555  assert(!EHStack.empty());
556
557  if (!CGM.getLangOptions().Exceptions)
558    return 0;
559
560  // Check the innermost scope for a cached landing pad.  If this is
561  // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
562  llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
563  if (LP) return LP;
564
565  // Build the landing pad for this scope.
566  LP = EmitLandingPad();
567  assert(LP);
568
569  // Cache the landing pad on the innermost scope.  If this is a
570  // non-EH scope, cache the landing pad on the enclosing scope, too.
571  for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
572    ir->setCachedLandingPad(LP);
573    if (!isNonEHScope(*ir)) break;
574  }
575
576  return LP;
577}
578
579// This code contains a hack to work around a design flaw in
580// LLVM's EH IR which breaks semantics after inlining.  This same
581// hack is implemented in llvm-gcc.
582//
583// The LLVM EH abstraction is basically a thin veneer over the
584// traditional GCC zero-cost design: for each range of instructions
585// in the function, there is (at most) one "landing pad" with an
586// associated chain of EH actions.  A language-specific personality
587// function interprets this chain of actions and (1) decides whether
588// or not to resume execution at the landing pad and (2) if so,
589// provides an integer indicating why it's stopping.  In LLVM IR,
590// the association of a landing pad with a range of instructions is
591// achieved via an invoke instruction, the chain of actions becomes
592// the arguments to the @llvm.eh.selector call, and the selector
593// call returns the integer indicator.  Other than the required
594// presence of two intrinsic function calls in the landing pad,
595// the IR exactly describes the layout of the output code.
596//
597// A principal advantage of this design is that it is completely
598// language-agnostic; in theory, the LLVM optimizers can treat
599// landing pads neutrally, and targets need only know how to lower
600// the intrinsics to have a functioning exceptions system (assuming
601// that platform exceptions follow something approximately like the
602// GCC design).  Unfortunately, landing pads cannot be combined in a
603// language-agnostic way: given selectors A and B, there is no way
604// to make a single landing pad which faithfully represents the
605// semantics of propagating an exception first through A, then
606// through B, without knowing how the personality will interpret the
607// (lowered form of the) selectors.  This means that inlining has no
608// choice but to crudely chain invokes (i.e., to ignore invokes in
609// the inlined function, but to turn all unwindable calls into
610// invokes), which is only semantically valid if every unwind stops
611// at every landing pad.
612//
613// Therefore, the invoke-inline hack is to guarantee that every
614// landing pad has a catch-all.
615enum CleanupHackLevel_t {
616  /// A level of hack that requires that all landing pads have
617  /// catch-alls.
618  CHL_MandatoryCatchall,
619
620  /// A level of hack that requires that all landing pads handle
621  /// cleanups.
622  CHL_MandatoryCleanup,
623
624  /// No hacks at all;  ideal IR generation.
625  CHL_Ideal
626};
627const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
628
629llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
630  assert(EHStack.requiresLandingPad());
631
632  for (EHScopeStack::iterator ir = EHStack.begin(); ; ) {
633    assert(ir != EHStack.end() &&
634           "stack requiring landing pad is nothing but non-EH scopes?");
635
636    // If this is a terminate scope, just use the singleton terminate
637    // landing pad.
638    if (isa<EHTerminateScope>(*ir))
639      return getTerminateLandingPad();
640
641    // If this isn't an EH scope, iterate; otherwise break out.
642    if (!isNonEHScope(*ir)) break;
643    ++ir;
644
645    // We haven't checked this scope for a cached landing pad yet.
646    if (llvm::BasicBlock *LP = ir->getCachedLandingPad())
647      return LP;
648  }
649
650  // Save the current IR generation state.
651  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
652
653  const EHPersonality &Personality = EHPersonality::get(getLangOptions());
654
655  // Create and configure the landing pad.
656  llvm::BasicBlock *LP = createBasicBlock("lpad");
657  EmitBlock(LP);
658
659  // Save the exception pointer.  It's safe to use a single exception
660  // pointer per function because EH cleanups can never have nested
661  // try/catches.
662  llvm::CallInst *Exn =
663    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
664  Exn->setDoesNotThrow();
665  Builder.CreateStore(Exn, getExceptionSlot());
666
667  // Build the selector arguments.
668  llvm::SmallVector<llvm::Value*, 8> EHSelector;
669  EHSelector.push_back(Exn);
670  EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality));
671
672  // Accumulate all the handlers in scope.
673  llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers;
674  UnwindDest CatchAll;
675  bool HasEHCleanup = false;
676  bool HasEHFilter = false;
677  llvm::SmallVector<llvm::Value*, 8> EHFilters;
678  for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
679         I != E; ++I) {
680
681    switch (I->getKind()) {
682    case EHScope::Cleanup:
683      if (!HasEHCleanup)
684        HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup();
685      // We otherwise don't care about cleanups.
686      continue;
687
688    case EHScope::Filter: {
689      assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
690      assert(!CatchAll.isValid() && "EH filter reached after catch-all");
691
692      // Filter scopes get added to the selector in weird ways.
693      EHFilterScope &Filter = cast<EHFilterScope>(*I);
694      HasEHFilter = true;
695
696      // Add all the filter values which we aren't already explicitly
697      // catching.
698      for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) {
699        llvm::Value *FV = Filter.getFilter(I);
700        if (!EHHandlers.count(FV))
701          EHFilters.push_back(FV);
702      }
703      goto done;
704    }
705
706    case EHScope::Terminate:
707      // Terminate scopes are basically catch-alls.
708      assert(!CatchAll.isValid());
709      CatchAll = UnwindDest(getTerminateHandler(),
710                            EHStack.getEnclosingEHCleanup(I),
711                            cast<EHTerminateScope>(*I).getDestIndex());
712      goto done;
713
714    case EHScope::Catch:
715      break;
716    }
717
718    EHCatchScope &Catch = cast<EHCatchScope>(*I);
719    for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) {
720      EHCatchScope::Handler Handler = Catch.getHandler(HI);
721
722      // Catch-all.  We should only have one of these per catch.
723      if (!Handler.Type) {
724        assert(!CatchAll.isValid());
725        CatchAll = UnwindDest(Handler.Block,
726                              EHStack.getEnclosingEHCleanup(I),
727                              Handler.Index);
728        continue;
729      }
730
731      // Check whether we already have a handler for this type.
732      UnwindDest &Dest = EHHandlers[Handler.Type];
733      if (Dest.isValid()) continue;
734
735      EHSelector.push_back(Handler.Type);
736      Dest = UnwindDest(Handler.Block,
737                        EHStack.getEnclosingEHCleanup(I),
738                        Handler.Index);
739    }
740
741    // Stop if we found a catch-all.
742    if (CatchAll.isValid()) break;
743  }
744
745 done:
746  unsigned LastToEmitInLoop = EHSelector.size();
747
748  // If we have a catch-all, add null to the selector.
749  if (CatchAll.isValid()) {
750    EHSelector.push_back(getCatchAllValue(*this));
751
752  // If we have an EH filter, we need to add those handlers in the
753  // right place in the selector, which is to say, at the end.
754  } else if (HasEHFilter) {
755    // Create a filter expression: an integer constant saying how many
756    // filters there are (+1 to avoid ambiguity with 0 for cleanup),
757    // followed by the filter types.  The personality routine only
758    // lands here if the filter doesn't match.
759    EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(),
760                                                EHFilters.size() + 1));
761    EHSelector.append(EHFilters.begin(), EHFilters.end());
762
763    // Also check whether we need a cleanup.
764    if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup)
765      EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
766                           ? getCatchAllValue(*this)
767                           : getCleanupValue(*this));
768
769  // Otherwise, signal that we at least have cleanups.
770  } else if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) {
771    EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
772                         ? getCatchAllValue(*this)
773                         : getCleanupValue(*this));
774
775  // At the MandatoryCleanup hack level, we don't need to actually
776  // spuriously tell the unwinder that we have cleanups, but we do
777  // need to always be prepared to handle cleanups.
778  } else if (CleanupHackLevel == CHL_MandatoryCleanup) {
779    // Just don't decrement LastToEmitInLoop.
780
781  } else {
782    assert(LastToEmitInLoop > 2);
783    LastToEmitInLoop--;
784  }
785
786  assert(EHSelector.size() >= 3 && "selector call has only two arguments!");
787
788  // Tell the backend how to generate the landing pad.
789  llvm::CallInst *Selection =
790    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
791                       EHSelector, "eh.selector");
792  Selection->setDoesNotThrow();
793
794  // Save the selector value in mandatory-cleanup mode.
795  if (CleanupHackLevel == CHL_MandatoryCleanup)
796    Builder.CreateStore(Selection, getEHSelectorSlot());
797
798  // Select the right handler.
799  llvm::Value *llvm_eh_typeid_for =
800    CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
801
802  // The results of llvm_eh_typeid_for aren't reliable --- at least
803  // not locally --- so we basically have to do this as an 'if' chain.
804  // We walk through the first N-1 catch clauses, testing and chaining,
805  // and then fall into the final clause (which is either a cleanup, a
806  // filter (possibly with a cleanup), a catch-all, or another catch).
807  for (unsigned I = 2; I != LastToEmitInLoop; ++I) {
808    llvm::Value *Type = EHSelector[I];
809    UnwindDest Dest = EHHandlers[Type];
810    assert(Dest.isValid() && "no handler entry for value in selector?");
811
812    // Figure out where to branch on a match.  As a debug code-size
813    // optimization, if the scope depth matches the innermost cleanup,
814    // we branch directly to the catch handler.
815    llvm::BasicBlock *Match = Dest.getBlock();
816    bool MatchNeedsCleanup =
817      Dest.getScopeDepth() != EHStack.getInnermostEHCleanup();
818    if (MatchNeedsCleanup)
819      Match = createBasicBlock("eh.match");
820
821    llvm::BasicBlock *Next = createBasicBlock("eh.next");
822
823    // Check whether the exception matches.
824    llvm::CallInst *Id
825      = Builder.CreateCall(llvm_eh_typeid_for,
826                           Builder.CreateBitCast(Type, Int8PtrTy));
827    Id->setDoesNotThrow();
828    Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id),
829                         Match, Next);
830
831    // Emit match code if necessary.
832    if (MatchNeedsCleanup) {
833      EmitBlock(Match);
834      EmitBranchThroughEHCleanup(Dest);
835    }
836
837    // Continue to the next match.
838    EmitBlock(Next);
839  }
840
841  // Emit the final case in the selector.
842  // This might be a catch-all....
843  if (CatchAll.isValid()) {
844    assert(isa<llvm::ConstantPointerNull>(EHSelector.back()));
845    EmitBranchThroughEHCleanup(CatchAll);
846
847  // ...or an EH filter...
848  } else if (HasEHFilter) {
849    llvm::Value *SavedSelection = Selection;
850
851    // First, unwind out to the outermost scope if necessary.
852    if (EHStack.hasEHCleanups()) {
853      // The end here might not dominate the beginning, so we might need to
854      // save the selector if we need it.
855      llvm::AllocaInst *SelectorVar = 0;
856      if (HasEHCleanup) {
857        SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var");
858        Builder.CreateStore(Selection, SelectorVar);
859      }
860
861      llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont");
862      EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(),
863                                            EHStack.getNextEHDestIndex()));
864      EmitBlock(CleanupContBB);
865
866      if (HasEHCleanup)
867        SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector");
868    }
869
870    // If there was a cleanup, we'll need to actually check whether we
871    // landed here because the filter triggered.
872    if (CleanupHackLevel != CHL_Ideal || HasEHCleanup) {
873      llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected");
874
875      llvm::Constant *Zero = llvm::ConstantInt::get(Int32Ty, 0);
876      llvm::Value *FailsFilter =
877        Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails");
878      Builder.CreateCondBr(FailsFilter, UnexpectedBB, getRethrowDest().getBlock());
879
880      EmitBlock(UnexpectedBB);
881    }
882
883    // Call __cxa_call_unexpected.  This doesn't need to be an invoke
884    // because __cxa_call_unexpected magically filters exceptions
885    // according to the last landing pad the exception was thrown
886    // into.  Seriously.
887    Builder.CreateCall(getUnexpectedFn(*this),
888                       Builder.CreateLoad(getExceptionSlot()))
889      ->setDoesNotReturn();
890    Builder.CreateUnreachable();
891
892  // ...or a normal catch handler...
893  } else if (CleanupHackLevel == CHL_Ideal && !HasEHCleanup) {
894    llvm::Value *Type = EHSelector.back();
895    EmitBranchThroughEHCleanup(EHHandlers[Type]);
896
897  // ...or a cleanup.
898  } else {
899    EmitBranchThroughEHCleanup(getRethrowDest());
900  }
901
902  // Restore the old IR generation state.
903  Builder.restoreIP(SavedIP);
904
905  return LP;
906}
907
908namespace {
909  /// A cleanup to call __cxa_end_catch.  In many cases, the caught
910  /// exception type lets us state definitively that the thrown exception
911  /// type does not have a destructor.  In particular:
912  ///   - Catch-alls tell us nothing, so we have to conservatively
913  ///     assume that the thrown exception might have a destructor.
914  ///   - Catches by reference behave according to their base types.
915  ///   - Catches of non-record types will only trigger for exceptions
916  ///     of non-record types, which never have destructors.
917  ///   - Catches of record types can trigger for arbitrary subclasses
918  ///     of the caught type, so we have to assume the actual thrown
919  ///     exception type might have a throwing destructor, even if the
920  ///     caught type's destructor is trivial or nothrow.
921  struct CallEndCatch : EHScopeStack::Cleanup {
922    CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
923    bool MightThrow;
924
925    void Emit(CodeGenFunction &CGF, Flags flags) {
926      if (!MightThrow) {
927        CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
928        return;
929      }
930
931      CGF.EmitCallOrInvoke(getEndCatchFn(CGF));
932    }
933  };
934}
935
936/// Emits a call to __cxa_begin_catch and enters a cleanup to call
937/// __cxa_end_catch.
938///
939/// \param EndMightThrow - true if __cxa_end_catch might throw
940static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
941                                   llvm::Value *Exn,
942                                   bool EndMightThrow) {
943  llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
944  Call->setDoesNotThrow();
945
946  CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
947
948  return Call;
949}
950
951/// A "special initializer" callback for initializing a catch
952/// parameter during catch initialization.
953static void InitCatchParam(CodeGenFunction &CGF,
954                           const VarDecl &CatchParam,
955                           llvm::Value *ParamAddr) {
956  // Load the exception from where the landing pad saved it.
957  llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
958
959  CanQualType CatchType =
960    CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
961  const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
962
963  // If we're catching by reference, we can just cast the object
964  // pointer to the appropriate pointer.
965  if (isa<ReferenceType>(CatchType)) {
966    QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
967    bool EndCatchMightThrow = CaughtType->isRecordType();
968
969    // __cxa_begin_catch returns the adjusted object pointer.
970    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
971
972    // We have no way to tell the personality function that we're
973    // catching by reference, so if we're catching a pointer,
974    // __cxa_begin_catch will actually return that pointer by value.
975    if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
976      QualType PointeeType = PT->getPointeeType();
977
978      // When catching by reference, generally we should just ignore
979      // this by-value pointer and use the exception object instead.
980      if (!PointeeType->isRecordType()) {
981
982        // Exn points to the struct _Unwind_Exception header, which
983        // we have to skip past in order to reach the exception data.
984        unsigned HeaderSize =
985          CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
986        AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
987
988      // However, if we're catching a pointer-to-record type that won't
989      // work, because the personality function might have adjusted
990      // the pointer.  There's actually no way for us to fully satisfy
991      // the language/ABI contract here:  we can't use Exn because it
992      // might have the wrong adjustment, but we can't use the by-value
993      // pointer because it's off by a level of abstraction.
994      //
995      // The current solution is to dump the adjusted pointer into an
996      // alloca, which breaks language semantics (because changing the
997      // pointer doesn't change the exception) but at least works.
998      // The better solution would be to filter out non-exact matches
999      // and rethrow them, but this is tricky because the rethrow
1000      // really needs to be catchable by other sites at this landing
1001      // pad.  The best solution is to fix the personality function.
1002      } else {
1003        // Pull the pointer for the reference type off.
1004        const llvm::Type *PtrTy =
1005          cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
1006
1007        // Create the temporary and write the adjusted pointer into it.
1008        llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
1009        llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1010        CGF.Builder.CreateStore(Casted, ExnPtrTmp);
1011
1012        // Bind the reference to the temporary.
1013        AdjustedExn = ExnPtrTmp;
1014      }
1015    }
1016
1017    llvm::Value *ExnCast =
1018      CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
1019    CGF.Builder.CreateStore(ExnCast, ParamAddr);
1020    return;
1021  }
1022
1023  // Non-aggregates (plus complexes).
1024  bool IsComplex = false;
1025  if (!CGF.hasAggregateLLVMType(CatchType) ||
1026      (IsComplex = CatchType->isAnyComplexType())) {
1027    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
1028
1029    // If the catch type is a pointer type, __cxa_begin_catch returns
1030    // the pointer by value.
1031    if (CatchType->hasPointerRepresentation()) {
1032      llvm::Value *CastExn =
1033        CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
1034      CGF.Builder.CreateStore(CastExn, ParamAddr);
1035      return;
1036    }
1037
1038    // Otherwise, it returns a pointer into the exception object.
1039
1040    const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1041    llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1042
1043    if (IsComplex) {
1044      CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1045                             ParamAddr, /*volatile*/ false);
1046    } else {
1047      unsigned Alignment =
1048        CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1049      llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1050      CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1051                            CatchType);
1052    }
1053    return;
1054  }
1055
1056  assert(isa<RecordType>(CatchType) && "unexpected catch type!");
1057
1058  const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1059
1060  // Check for a copy expression.  If we don't have a copy expression,
1061  // that means a trivial copy is okay.
1062  const Expr *copyExpr = CatchParam.getInit();
1063  if (!copyExpr) {
1064    llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
1065    llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1066    CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
1067    return;
1068  }
1069
1070  // We have to call __cxa_get_exception_ptr to get the adjusted
1071  // pointer before copying.
1072  llvm::CallInst *rawAdjustedExn =
1073    CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1074  rawAdjustedExn->setDoesNotThrow();
1075
1076  // Cast that to the appropriate type.
1077  llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1078
1079  // The copy expression is defined in terms of an OpaqueValueExpr.
1080  // Find it and map it to the adjusted expression.
1081  CodeGenFunction::OpaqueValueMapping
1082    opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
1083           CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
1084
1085  // Call the copy ctor in a terminate scope.
1086  CGF.EHStack.pushTerminate();
1087
1088  // Perform the copy construction.
1089  CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, Qualifiers(),
1090                                                  false));
1091
1092  // Leave the terminate scope.
1093  CGF.EHStack.popTerminate();
1094
1095  // Undo the opaque value mapping.
1096  opaque.pop();
1097
1098  // Finally we can call __cxa_begin_catch.
1099  CallBeginCatch(CGF, Exn, true);
1100}
1101
1102/// Begins a catch statement by initializing the catch variable and
1103/// calling __cxa_begin_catch.
1104static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
1105  // We have to be very careful with the ordering of cleanups here:
1106  //   C++ [except.throw]p4:
1107  //     The destruction [of the exception temporary] occurs
1108  //     immediately after the destruction of the object declared in
1109  //     the exception-declaration in the handler.
1110  //
1111  // So the precise ordering is:
1112  //   1.  Construct catch variable.
1113  //   2.  __cxa_begin_catch
1114  //   3.  Enter __cxa_end_catch cleanup
1115  //   4.  Enter dtor cleanup
1116  //
1117  // We do this by using a slightly abnormal initialization process.
1118  // Delegation sequence:
1119  //   - ExitCXXTryStmt opens a RunCleanupsScope
1120  //     - EmitAutoVarAlloca creates the variable and debug info
1121  //       - InitCatchParam initializes the variable from the exception
1122  //       - CallBeginCatch calls __cxa_begin_catch
1123  //       - CallBeginCatch enters the __cxa_end_catch cleanup
1124  //     - EmitAutoVarCleanups enters the variable destructor cleanup
1125  //   - EmitCXXTryStmt emits the code for the catch body
1126  //   - EmitCXXTryStmt close the RunCleanupsScope
1127
1128  VarDecl *CatchParam = S->getExceptionDecl();
1129  if (!CatchParam) {
1130    llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
1131    CallBeginCatch(CGF, Exn, true);
1132    return;
1133  }
1134
1135  // Emit the local.
1136  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
1137  InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
1138  CGF.EmitAutoVarCleanups(var);
1139}
1140
1141namespace {
1142  struct CallRethrow : EHScopeStack::Cleanup {
1143    void Emit(CodeGenFunction &CGF, Flags flags) {
1144      CGF.EmitCallOrInvoke(getReThrowFn(CGF));
1145    }
1146  };
1147}
1148
1149void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1150  unsigned NumHandlers = S.getNumHandlers();
1151  EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1152  assert(CatchScope.getNumHandlers() == NumHandlers);
1153
1154  // Copy the handler blocks off before we pop the EH stack.  Emitting
1155  // the handlers might scribble on this memory.
1156  llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1157  memcpy(Handlers.data(), CatchScope.begin(),
1158         NumHandlers * sizeof(EHCatchScope::Handler));
1159  EHStack.popCatch();
1160
1161  // The fall-through block.
1162  llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1163
1164  // We just emitted the body of the try; jump to the continue block.
1165  if (HaveInsertPoint())
1166    Builder.CreateBr(ContBB);
1167
1168  // Determine if we need an implicit rethrow for all these catch handlers.
1169  bool ImplicitRethrow = false;
1170  if (IsFnTryBlock)
1171    ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1172                      isa<CXXConstructorDecl>(CurCodeDecl);
1173
1174  for (unsigned I = 0; I != NumHandlers; ++I) {
1175    llvm::BasicBlock *CatchBlock = Handlers[I].Block;
1176    EmitBlock(CatchBlock);
1177
1178    // Catch the exception if this isn't a catch-all.
1179    const CXXCatchStmt *C = S.getHandler(I);
1180
1181    // Enter a cleanup scope, including the catch variable and the
1182    // end-catch.
1183    RunCleanupsScope CatchScope(*this);
1184
1185    // Initialize the catch variable and set up the cleanups.
1186    BeginCatch(*this, C);
1187
1188    // If there's an implicit rethrow, push a normal "cleanup" to call
1189    // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
1190    // called, and so it is pushed after BeginCatch.
1191    if (ImplicitRethrow)
1192      EHStack.pushCleanup<CallRethrow>(NormalCleanup);
1193
1194    // Perform the body of the catch.
1195    EmitStmt(C->getHandlerBlock());
1196
1197    // Fall out through the catch cleanups.
1198    CatchScope.ForceCleanup();
1199
1200    // Branch out of the try.
1201    if (HaveInsertPoint())
1202      Builder.CreateBr(ContBB);
1203  }
1204
1205  EmitBlock(ContBB);
1206}
1207
1208namespace {
1209  struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1210    llvm::Value *ForEHVar;
1211    llvm::Value *EndCatchFn;
1212    CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1213      : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1214
1215    void Emit(CodeGenFunction &CGF, Flags flags) {
1216      llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1217      llvm::BasicBlock *CleanupContBB =
1218        CGF.createBasicBlock("finally.cleanup.cont");
1219
1220      llvm::Value *ShouldEndCatch =
1221        CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1222      CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1223      CGF.EmitBlock(EndCatchBB);
1224      CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw
1225      CGF.EmitBlock(CleanupContBB);
1226    }
1227  };
1228
1229  struct PerformFinally : EHScopeStack::Cleanup {
1230    const Stmt *Body;
1231    llvm::Value *ForEHVar;
1232    llvm::Value *EndCatchFn;
1233    llvm::Value *RethrowFn;
1234    llvm::Value *SavedExnVar;
1235
1236    PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1237                   llvm::Value *EndCatchFn,
1238                   llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1239      : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1240        RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1241
1242    void Emit(CodeGenFunction &CGF, Flags flags) {
1243      // Enter a cleanup to call the end-catch function if one was provided.
1244      if (EndCatchFn)
1245        CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1246                                                        ForEHVar, EndCatchFn);
1247
1248      // Save the current cleanup destination in case there are
1249      // cleanups in the finally block.
1250      llvm::Value *SavedCleanupDest =
1251        CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1252                               "cleanup.dest.saved");
1253
1254      // Emit the finally block.
1255      CGF.EmitStmt(Body);
1256
1257      // If the end of the finally is reachable, check whether this was
1258      // for EH.  If so, rethrow.
1259      if (CGF.HaveInsertPoint()) {
1260        llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1261        llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1262
1263        llvm::Value *ShouldRethrow =
1264          CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1265        CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1266
1267        CGF.EmitBlock(RethrowBB);
1268        if (SavedExnVar) {
1269          CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar));
1270        } else {
1271          CGF.EmitCallOrInvoke(RethrowFn);
1272        }
1273        CGF.Builder.CreateUnreachable();
1274
1275        CGF.EmitBlock(ContBB);
1276
1277        // Restore the cleanup destination.
1278        CGF.Builder.CreateStore(SavedCleanupDest,
1279                                CGF.getNormalCleanupDestSlot());
1280      }
1281
1282      // Leave the end-catch cleanup.  As an optimization, pretend that
1283      // the fallthrough path was inaccessible; we've dynamically proven
1284      // that we're not in the EH case along that path.
1285      if (EndCatchFn) {
1286        CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1287        CGF.PopCleanupBlock();
1288        CGF.Builder.restoreIP(SavedIP);
1289      }
1290
1291      // Now make sure we actually have an insertion point or the
1292      // cleanup gods will hate us.
1293      CGF.EnsureInsertPoint();
1294    }
1295  };
1296}
1297
1298/// Enters a finally block for an implementation using zero-cost
1299/// exceptions.  This is mostly general, but hard-codes some
1300/// language/ABI-specific behavior in the catch-all sections.
1301void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
1302                                         const Stmt *body,
1303                                         llvm::Constant *beginCatchFn,
1304                                         llvm::Constant *endCatchFn,
1305                                         llvm::Constant *rethrowFn) {
1306  assert((beginCatchFn != 0) == (endCatchFn != 0) &&
1307         "begin/end catch functions not paired");
1308  assert(rethrowFn && "rethrow function is required");
1309
1310  BeginCatchFn = beginCatchFn;
1311
1312  // The rethrow function has one of the following two types:
1313  //   void (*)()
1314  //   void (*)(void*)
1315  // In the latter case we need to pass it the exception object.
1316  // But we can't use the exception slot because the @finally might
1317  // have a landing pad (which would overwrite the exception slot).
1318  const llvm::FunctionType *rethrowFnTy =
1319    cast<llvm::FunctionType>(
1320      cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
1321  SavedExnVar = 0;
1322  if (rethrowFnTy->getNumParams())
1323    SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
1324
1325  // A finally block is a statement which must be executed on any edge
1326  // out of a given scope.  Unlike a cleanup, the finally block may
1327  // contain arbitrary control flow leading out of itself.  In
1328  // addition, finally blocks should always be executed, even if there
1329  // are no catch handlers higher on the stack.  Therefore, we
1330  // surround the protected scope with a combination of a normal
1331  // cleanup (to catch attempts to break out of the block via normal
1332  // control flow) and an EH catch-all (semantically "outside" any try
1333  // statement to which the finally block might have been attached).
1334  // The finally block itself is generated in the context of a cleanup
1335  // which conditionally leaves the catch-all.
1336
1337  // Jump destination for performing the finally block on an exception
1338  // edge.  We'll never actually reach this block, so unreachable is
1339  // fine.
1340  RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
1341
1342  // Whether the finally block is being executed for EH purposes.
1343  ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
1344  CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
1345
1346  // Enter a normal cleanup which will perform the @finally block.
1347  CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
1348                                          ForEHVar, endCatchFn,
1349                                          rethrowFn, SavedExnVar);
1350
1351  // Enter a catch-all scope.
1352  llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
1353  EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
1354  catchScope->setCatchAllHandler(0, catchBB);
1355}
1356
1357void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
1358  // Leave the finally catch-all.
1359  EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
1360  llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
1361  CGF.EHStack.popCatch();
1362
1363  // If there are any references to the catch-all block, emit it.
1364  if (catchBB->use_empty()) {
1365    delete catchBB;
1366  } else {
1367    CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
1368    CGF.EmitBlock(catchBB);
1369
1370    llvm::Value *exn = 0;
1371
1372    // If there's a begin-catch function, call it.
1373    if (BeginCatchFn) {
1374      exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot());
1375      CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow();
1376    }
1377
1378    // If we need to remember the exception pointer to rethrow later, do so.
1379    if (SavedExnVar) {
1380      if (!exn) exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot());
1381      CGF.Builder.CreateStore(exn, SavedExnVar);
1382    }
1383
1384    // Tell the cleanups in the finally block that we're do this for EH.
1385    CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
1386
1387    // Thread a jump through the finally cleanup.
1388    CGF.EmitBranchThroughCleanup(RethrowDest);
1389
1390    CGF.Builder.restoreIP(savedIP);
1391  }
1392
1393  // Finally, leave the @finally cleanup.
1394  CGF.PopCleanupBlock();
1395}
1396
1397llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1398  if (TerminateLandingPad)
1399    return TerminateLandingPad;
1400
1401  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1402
1403  // This will get inserted at the end of the function.
1404  TerminateLandingPad = createBasicBlock("terminate.lpad");
1405  Builder.SetInsertPoint(TerminateLandingPad);
1406
1407  // Tell the backend that this is a landing pad.
1408  llvm::CallInst *Exn =
1409    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
1410  Exn->setDoesNotThrow();
1411
1412  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1413
1414  // Tell the backend what the exception table should be:
1415  // nothing but a catch-all.
1416  llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality),
1417                           getCatchAllValue(*this) };
1418  Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
1419                     Args, "eh.selector")
1420    ->setDoesNotThrow();
1421
1422  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1423  TerminateCall->setDoesNotReturn();
1424  TerminateCall->setDoesNotThrow();
1425  Builder.CreateUnreachable();
1426
1427  // Restore the saved insertion state.
1428  Builder.restoreIP(SavedIP);
1429
1430  return TerminateLandingPad;
1431}
1432
1433llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1434  if (TerminateHandler)
1435    return TerminateHandler;
1436
1437  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1438
1439  // Set up the terminate handler.  This block is inserted at the very
1440  // end of the function by FinishFunction.
1441  TerminateHandler = createBasicBlock("terminate.handler");
1442  Builder.SetInsertPoint(TerminateHandler);
1443  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1444  TerminateCall->setDoesNotReturn();
1445  TerminateCall->setDoesNotThrow();
1446  Builder.CreateUnreachable();
1447
1448  // Restore the saved insertion state.
1449  Builder.restoreIP(SavedIP);
1450
1451  return TerminateHandler;
1452}
1453
1454CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() {
1455  if (RethrowBlock.isValid()) return RethrowBlock;
1456
1457  CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1458
1459  // We emit a jump to a notional label at the outermost unwind state.
1460  llvm::BasicBlock *Unwind = createBasicBlock("eh.resume");
1461  Builder.SetInsertPoint(Unwind);
1462
1463  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1464
1465  // This can always be a call because we necessarily didn't find
1466  // anything on the EH stack which needs our help.
1467  llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName();
1468  if (!RethrowName.empty()) {
1469    Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName),
1470                       Builder.CreateLoad(getExceptionSlot()))
1471      ->setDoesNotReturn();
1472  } else {
1473    llvm::Value *Exn = Builder.CreateLoad(getExceptionSlot());
1474
1475    switch (CleanupHackLevel) {
1476    case CHL_MandatoryCatchall:
1477      // In mandatory-catchall mode, we need to use
1478      // _Unwind_Resume_or_Rethrow, or whatever the personality's
1479      // equivalent is.
1480      Builder.CreateCall(getUnwindResumeOrRethrowFn(), Exn)
1481        ->setDoesNotReturn();
1482      break;
1483    case CHL_MandatoryCleanup: {
1484      // In mandatory-cleanup mode, we should use llvm.eh.resume.
1485      llvm::Value *Selector = Builder.CreateLoad(getEHSelectorSlot());
1486      Builder.CreateCall2(CGM.getIntrinsic(llvm::Intrinsic::eh_resume),
1487                          Exn, Selector)
1488        ->setDoesNotReturn();
1489      break;
1490    }
1491    case CHL_Ideal:
1492      // In an idealized mode where we don't have to worry about the
1493      // optimizer combining landing pads, we should just use
1494      // _Unwind_Resume (or the personality's equivalent).
1495      Builder.CreateCall(getUnwindResumeFn(), Exn)
1496        ->setDoesNotReturn();
1497      break;
1498    }
1499  }
1500
1501  Builder.CreateUnreachable();
1502
1503  Builder.restoreIP(SavedIP);
1504
1505  RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0);
1506  return RethrowBlock;
1507}
1508
1509