1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Module.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  bool FPContractable;
49  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50};
51
52static bool MustVisitNullValue(const Expr *E) {
53  // If a null pointer expression's type is the C++0x nullptr_t, then
54  // it's not necessarily a simple constant and it must be evaluated
55  // for its potential side effects.
56  return E->getType()->isNullPtrType();
57}
58
59class ScalarExprEmitter
60  : public StmtVisitor<ScalarExprEmitter, Value*> {
61  CodeGenFunction &CGF;
62  CGBuilderTy &Builder;
63  bool IgnoreResultAssign;
64  llvm::LLVMContext &VMContext;
65public:
66
67  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69      VMContext(cgf.getLLVMContext()) {
70  }
71
72  //===--------------------------------------------------------------------===//
73  //                               Utilities
74  //===--------------------------------------------------------------------===//
75
76  bool TestAndClearIgnoreResultAssign() {
77    bool I = IgnoreResultAssign;
78    IgnoreResultAssign = false;
79    return I;
80  }
81
82  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85    return CGF.EmitCheckedLValue(E, TCK);
86  }
87
88  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks,
89                      const BinOpInfo &Info);
90
91  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
92    return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
93  }
94
95  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
96    const AlignValueAttr *AVAttr = nullptr;
97    if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
98      const ValueDecl *VD = DRE->getDecl();
99
100      if (VD->getType()->isReferenceType()) {
101        if (const auto *TTy =
102            dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
103          AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
104      } else {
105        // Assumptions for function parameters are emitted at the start of the
106        // function, so there is no need to repeat that here.
107        if (isa<ParmVarDecl>(VD))
108          return;
109
110        AVAttr = VD->getAttr<AlignValueAttr>();
111      }
112    }
113
114    if (!AVAttr)
115      if (const auto *TTy =
116          dyn_cast<TypedefType>(E->getType()))
117        AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
118
119    if (!AVAttr)
120      return;
121
122    Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
123    llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
124    CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
125  }
126
127  /// EmitLoadOfLValue - Given an expression with complex type that represents a
128  /// value l-value, this method emits the address of the l-value, then loads
129  /// and returns the result.
130  Value *EmitLoadOfLValue(const Expr *E) {
131    Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
132                                E->getExprLoc());
133
134    EmitLValueAlignmentAssumption(E, V);
135    return V;
136  }
137
138  /// EmitConversionToBool - Convert the specified expression value to a
139  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
140  Value *EmitConversionToBool(Value *Src, QualType DstTy);
141
142  /// \brief Emit a check that a conversion to or from a floating-point type
143  /// does not overflow.
144  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
145                                Value *Src, QualType SrcType,
146                                QualType DstType, llvm::Type *DstTy);
147
148  /// EmitScalarConversion - Emit a conversion from the specified type to the
149  /// specified destination type, both of which are LLVM scalar types.
150  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
151
152  /// EmitComplexToScalarConversion - Emit a conversion from the specified
153  /// complex type to the specified destination type, where the destination type
154  /// is an LLVM scalar type.
155  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
156                                       QualType SrcTy, QualType DstTy);
157
158  /// EmitNullValue - Emit a value that corresponds to null for the given type.
159  Value *EmitNullValue(QualType Ty);
160
161  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
162  Value *EmitFloatToBoolConversion(Value *V) {
163    // Compare against 0.0 for fp scalars.
164    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
165    return Builder.CreateFCmpUNE(V, Zero, "tobool");
166  }
167
168  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
169  Value *EmitPointerToBoolConversion(Value *V) {
170    Value *Zero = llvm::ConstantPointerNull::get(
171                                      cast<llvm::PointerType>(V->getType()));
172    return Builder.CreateICmpNE(V, Zero, "tobool");
173  }
174
175  Value *EmitIntToBoolConversion(Value *V) {
176    // Because of the type rules of C, we often end up computing a
177    // logical value, then zero extending it to int, then wanting it
178    // as a logical value again.  Optimize this common case.
179    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
180      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
181        Value *Result = ZI->getOperand(0);
182        // If there aren't any more uses, zap the instruction to save space.
183        // Note that there can be more uses, for example if this
184        // is the result of an assignment.
185        if (ZI->use_empty())
186          ZI->eraseFromParent();
187        return Result;
188      }
189    }
190
191    return Builder.CreateIsNotNull(V, "tobool");
192  }
193
194  //===--------------------------------------------------------------------===//
195  //                            Visitor Methods
196  //===--------------------------------------------------------------------===//
197
198  Value *Visit(Expr *E) {
199    ApplyDebugLocation DL(CGF, E);
200    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
201  }
202
203  Value *VisitStmt(Stmt *S) {
204    S->dump(CGF.getContext().getSourceManager());
205    llvm_unreachable("Stmt can't have complex result type!");
206  }
207  Value *VisitExpr(Expr *S);
208
209  Value *VisitParenExpr(ParenExpr *PE) {
210    return Visit(PE->getSubExpr());
211  }
212  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
213    return Visit(E->getReplacement());
214  }
215  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
216    return Visit(GE->getResultExpr());
217  }
218
219  // Leaves.
220  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
221    return Builder.getInt(E->getValue());
222  }
223  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
224    return llvm::ConstantFP::get(VMContext, E->getValue());
225  }
226  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
227    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
228  }
229  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
230    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
231  }
232  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
233    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234  }
235  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
236    return EmitNullValue(E->getType());
237  }
238  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
239    return EmitNullValue(E->getType());
240  }
241  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
242  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
243  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
244    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
245    return Builder.CreateBitCast(V, ConvertType(E->getType()));
246  }
247
248  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
249    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
250  }
251
252  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
253    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
254  }
255
256  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
257    if (E->isGLValue())
258      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
259
260    // Otherwise, assume the mapping is the scalar directly.
261    return CGF.getOpaqueRValueMapping(E).getScalarVal();
262  }
263
264  // l-values.
265  Value *VisitDeclRefExpr(DeclRefExpr *E) {
266    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
267      if (result.isReference())
268        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
269                                E->getExprLoc());
270      return result.getValue();
271    }
272    return EmitLoadOfLValue(E);
273  }
274
275  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
276    return CGF.EmitObjCSelectorExpr(E);
277  }
278  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
279    return CGF.EmitObjCProtocolExpr(E);
280  }
281  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
282    return EmitLoadOfLValue(E);
283  }
284  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
285    if (E->getMethodDecl() &&
286        E->getMethodDecl()->getReturnType()->isReferenceType())
287      return EmitLoadOfLValue(E);
288    return CGF.EmitObjCMessageExpr(E).getScalarVal();
289  }
290
291  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
292    LValue LV = CGF.EmitObjCIsaExpr(E);
293    Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
294    return V;
295  }
296
297  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
298  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
299  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
300  Value *VisitMemberExpr(MemberExpr *E);
301  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
302  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
303    return EmitLoadOfLValue(E);
304  }
305
306  Value *VisitInitListExpr(InitListExpr *E);
307
308  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
309    return EmitNullValue(E->getType());
310  }
311  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
312    if (E->getType()->isVariablyModifiedType())
313      CGF.EmitVariablyModifiedType(E->getType());
314
315    if (CGDebugInfo *DI = CGF.getDebugInfo())
316      DI->EmitExplicitCastType(E->getType());
317
318    return VisitCastExpr(E);
319  }
320  Value *VisitCastExpr(CastExpr *E);
321
322  Value *VisitCallExpr(const CallExpr *E) {
323    if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324      return EmitLoadOfLValue(E);
325
326    Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328    EmitLValueAlignmentAssumption(E, V);
329    return V;
330  }
331
332  Value *VisitStmtExpr(const StmtExpr *E);
333
334  // Unary Operators.
335  Value *VisitUnaryPostDec(const UnaryOperator *E) {
336    LValue LV = EmitLValue(E->getSubExpr());
337    return EmitScalarPrePostIncDec(E, LV, false, false);
338  }
339  Value *VisitUnaryPostInc(const UnaryOperator *E) {
340    LValue LV = EmitLValue(E->getSubExpr());
341    return EmitScalarPrePostIncDec(E, LV, true, false);
342  }
343  Value *VisitUnaryPreDec(const UnaryOperator *E) {
344    LValue LV = EmitLValue(E->getSubExpr());
345    return EmitScalarPrePostIncDec(E, LV, false, true);
346  }
347  Value *VisitUnaryPreInc(const UnaryOperator *E) {
348    LValue LV = EmitLValue(E->getSubExpr());
349    return EmitScalarPrePostIncDec(E, LV, true, true);
350  }
351
352  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
353                                               llvm::Value *InVal,
354                                               llvm::Value *NextVal,
355                                               bool IsInc);
356
357  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358                                       bool isInc, bool isPre);
359
360
361  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362    if (isa<MemberPointerType>(E->getType())) // never sugared
363      return CGF.CGM.getMemberPointerConstant(E);
364
365    return EmitLValue(E->getSubExpr()).getAddress();
366  }
367  Value *VisitUnaryDeref(const UnaryOperator *E) {
368    if (E->getType()->isVoidType())
369      return Visit(E->getSubExpr()); // the actual value should be unused
370    return EmitLoadOfLValue(E);
371  }
372  Value *VisitUnaryPlus(const UnaryOperator *E) {
373    // This differs from gcc, though, most likely due to a bug in gcc.
374    TestAndClearIgnoreResultAssign();
375    return Visit(E->getSubExpr());
376  }
377  Value *VisitUnaryMinus    (const UnaryOperator *E);
378  Value *VisitUnaryNot      (const UnaryOperator *E);
379  Value *VisitUnaryLNot     (const UnaryOperator *E);
380  Value *VisitUnaryReal     (const UnaryOperator *E);
381  Value *VisitUnaryImag     (const UnaryOperator *E);
382  Value *VisitUnaryExtension(const UnaryOperator *E) {
383    return Visit(E->getSubExpr());
384  }
385
386  // C++
387  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388    return EmitLoadOfLValue(E);
389  }
390
391  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392    return Visit(DAE->getExpr());
393  }
394  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396    return Visit(DIE->getExpr());
397  }
398  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399    return CGF.LoadCXXThis();
400  }
401
402  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403    CGF.enterFullExpression(E);
404    CodeGenFunction::RunCleanupsScope Scope(CGF);
405    return Visit(E->getSubExpr());
406  }
407  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408    return CGF.EmitCXXNewExpr(E);
409  }
410  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411    CGF.EmitCXXDeleteExpr(E);
412    return nullptr;
413  }
414
415  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417  }
418
419  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421  }
422
423  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425  }
426
427  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428    // C++ [expr.pseudo]p1:
429    //   The result shall only be used as the operand for the function call
430    //   operator (), and the result of such a call has type void. The only
431    //   effect is the evaluation of the postfix-expression before the dot or
432    //   arrow.
433    CGF.EmitScalarExpr(E->getBase());
434    return nullptr;
435  }
436
437  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438    return EmitNullValue(E->getType());
439  }
440
441  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442    CGF.EmitCXXThrowExpr(E);
443    return nullptr;
444  }
445
446  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447    return Builder.getInt1(E->getValue());
448  }
449
450  // Binary Operators.
451  Value *EmitMul(const BinOpInfo &Ops) {
452    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454      case LangOptions::SOB_Defined:
455        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456      case LangOptions::SOB_Undefined:
457        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459        // Fall through.
460      case LangOptions::SOB_Trapping:
461        return EmitOverflowCheckedBinOp(Ops);
462      }
463    }
464
465    if (Ops.Ty->isUnsignedIntegerType() &&
466        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467      return EmitOverflowCheckedBinOp(Ops);
468
469    if (Ops.LHS->getType()->isFPOrFPVectorTy())
470      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472  }
473  /// Create a binary op that checks for overflow.
474  /// Currently only supports +, - and *.
475  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476
477  // Check for undefined division and modulus behaviors.
478  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479                                                  llvm::Value *Zero,bool isDiv);
480  // Common helper for getting how wide LHS of shift is.
481  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482  Value *EmitDiv(const BinOpInfo &Ops);
483  Value *EmitRem(const BinOpInfo &Ops);
484  Value *EmitAdd(const BinOpInfo &Ops);
485  Value *EmitSub(const BinOpInfo &Ops);
486  Value *EmitShl(const BinOpInfo &Ops);
487  Value *EmitShr(const BinOpInfo &Ops);
488  Value *EmitAnd(const BinOpInfo &Ops) {
489    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490  }
491  Value *EmitXor(const BinOpInfo &Ops) {
492    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493  }
494  Value *EmitOr (const BinOpInfo &Ops) {
495    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496  }
497
498  BinOpInfo EmitBinOps(const BinaryOperator *E);
499  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501                                  Value *&Result);
502
503  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505
506  // Binary operators and binary compound assignment operators.
507#define HANDLEBINOP(OP) \
508  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
509    return Emit ## OP(EmitBinOps(E));                                      \
510  }                                                                        \
511  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
512    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
513  }
514  HANDLEBINOP(Mul)
515  HANDLEBINOP(Div)
516  HANDLEBINOP(Rem)
517  HANDLEBINOP(Add)
518  HANDLEBINOP(Sub)
519  HANDLEBINOP(Shl)
520  HANDLEBINOP(Shr)
521  HANDLEBINOP(And)
522  HANDLEBINOP(Xor)
523  HANDLEBINOP(Or)
524#undef HANDLEBINOP
525
526  // Comparisons.
527  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
528                     unsigned SICmpOpc, unsigned FCmpOpc);
529#define VISITCOMP(CODE, UI, SI, FP) \
530    Value *VisitBin##CODE(const BinaryOperator *E) { \
531      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                         llvm::FCmpInst::FP); }
533  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539#undef VISITCOMP
540
541  Value *VisitBinAssign     (const BinaryOperator *E);
542
543  Value *VisitBinLAnd       (const BinaryOperator *E);
544  Value *VisitBinLOr        (const BinaryOperator *E);
545  Value *VisitBinComma      (const BinaryOperator *E);
546
547  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550  // Other Operators.
551  Value *VisitBlockExpr(const BlockExpr *BE);
552  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553  Value *VisitChooseExpr(ChooseExpr *CE);
554  Value *VisitVAArgExpr(VAArgExpr *VE);
555  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556    return CGF.EmitObjCStringLiteral(E);
557  }
558  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559    return CGF.EmitObjCBoxedExpr(E);
560  }
561  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562    return CGF.EmitObjCArrayLiteral(E);
563  }
564  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565    return CGF.EmitObjCDictionaryLiteral(E);
566  }
567  Value *VisitAsTypeExpr(AsTypeExpr *CE);
568  Value *VisitAtomicExpr(AtomicExpr *AE);
569};
570}  // end anonymous namespace.
571
572//===----------------------------------------------------------------------===//
573//                                Utilities
574//===----------------------------------------------------------------------===//
575
576/// EmitConversionToBool - Convert the specified expression value to a
577/// boolean (i1) truth value.  This is equivalent to "Val != 0".
578Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581  if (SrcType->isRealFloatingType())
582    return EmitFloatToBoolConversion(Src);
583
584  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588         "Unknown scalar type to convert");
589
590  if (isa<llvm::IntegerType>(Src->getType()))
591    return EmitIntToBoolConversion(Src);
592
593  assert(isa<llvm::PointerType>(Src->getType()));
594  return EmitPointerToBoolConversion(Src);
595}
596
597void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
598                                                 QualType OrigSrcType,
599                                                 Value *Src, QualType SrcType,
600                                                 QualType DstType,
601                                                 llvm::Type *DstTy) {
602  CodeGenFunction::SanitizerScope SanScope(&CGF);
603  using llvm::APFloat;
604  using llvm::APSInt;
605
606  llvm::Type *SrcTy = Src->getType();
607
608  llvm::Value *Check = nullptr;
609  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
610    // Integer to floating-point. This can fail for unsigned short -> __half
611    // or unsigned __int128 -> float.
612    assert(DstType->isFloatingType());
613    bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
614
615    APFloat LargestFloat =
616      APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
617    APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
618
619    bool IsExact;
620    if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
621                                      &IsExact) != APFloat::opOK)
622      // The range of representable values of this floating point type includes
623      // all values of this integer type. Don't need an overflow check.
624      return;
625
626    llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
627    if (SrcIsUnsigned)
628      Check = Builder.CreateICmpULE(Src, Max);
629    else {
630      llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
631      llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
632      llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
633      Check = Builder.CreateAnd(GE, LE);
634    }
635  } else {
636    const llvm::fltSemantics &SrcSema =
637      CGF.getContext().getFloatTypeSemantics(OrigSrcType);
638    if (isa<llvm::IntegerType>(DstTy)) {
639      // Floating-point to integer. This has undefined behavior if the source is
640      // +-Inf, NaN, or doesn't fit into the destination type (after truncation
641      // to an integer).
642      unsigned Width = CGF.getContext().getIntWidth(DstType);
643      bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
644
645      APSInt Min = APSInt::getMinValue(Width, Unsigned);
646      APFloat MinSrc(SrcSema, APFloat::uninitialized);
647      if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
648          APFloat::opOverflow)
649        // Don't need an overflow check for lower bound. Just check for
650        // -Inf/NaN.
651        MinSrc = APFloat::getInf(SrcSema, true);
652      else
653        // Find the largest value which is too small to represent (before
654        // truncation toward zero).
655        MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
656
657      APSInt Max = APSInt::getMaxValue(Width, Unsigned);
658      APFloat MaxSrc(SrcSema, APFloat::uninitialized);
659      if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
660          APFloat::opOverflow)
661        // Don't need an overflow check for upper bound. Just check for
662        // +Inf/NaN.
663        MaxSrc = APFloat::getInf(SrcSema, false);
664      else
665        // Find the smallest value which is too large to represent (before
666        // truncation toward zero).
667        MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
668
669      // If we're converting from __half, convert the range to float to match
670      // the type of src.
671      if (OrigSrcType->isHalfType()) {
672        const llvm::fltSemantics &Sema =
673          CGF.getContext().getFloatTypeSemantics(SrcType);
674        bool IsInexact;
675        MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676        MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
677      }
678
679      llvm::Value *GE =
680        Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
681      llvm::Value *LE =
682        Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
683      Check = Builder.CreateAnd(GE, LE);
684    } else {
685      // FIXME: Maybe split this sanitizer out from float-cast-overflow.
686      //
687      // Floating-point to floating-point. This has undefined behavior if the
688      // source is not in the range of representable values of the destination
689      // type. The C and C++ standards are spectacularly unclear here. We
690      // diagnose finite out-of-range conversions, but allow infinities and NaNs
691      // to convert to the corresponding value in the smaller type.
692      //
693      // C11 Annex F gives all such conversions defined behavior for IEC 60559
694      // conforming implementations. Unfortunately, LLVM's fptrunc instruction
695      // does not.
696
697      // Converting from a lower rank to a higher rank can never have
698      // undefined behavior, since higher-rank types must have a superset
699      // of values of lower-rank types.
700      if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
701        return;
702
703      assert(!OrigSrcType->isHalfType() &&
704             "should not check conversion from __half, it has the lowest rank");
705
706      const llvm::fltSemantics &DstSema =
707        CGF.getContext().getFloatTypeSemantics(DstType);
708      APFloat MinBad = APFloat::getLargest(DstSema, false);
709      APFloat MaxBad = APFloat::getInf(DstSema, false);
710
711      bool IsInexact;
712      MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713      MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
714
715      Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
716        CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
717      llvm::Value *GE =
718        Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
719      llvm::Value *LE =
720        Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
721      Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
722    }
723  }
724
725  // FIXME: Provide a SourceLocation.
726  llvm::Constant *StaticArgs[] = {
727    CGF.EmitCheckTypeDescriptor(OrigSrcType),
728    CGF.EmitCheckTypeDescriptor(DstType)
729  };
730  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731                "float_cast_overflow", StaticArgs, OrigSrc);
732}
733
734/// EmitScalarConversion - Emit a conversion from the specified type to the
735/// specified destination type, both of which are LLVM scalar types.
736Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737                                               QualType DstType) {
738  SrcType = CGF.getContext().getCanonicalType(SrcType);
739  DstType = CGF.getContext().getCanonicalType(DstType);
740  if (SrcType == DstType) return Src;
741
742  if (DstType->isVoidType()) return nullptr;
743
744  llvm::Value *OrigSrc = Src;
745  QualType OrigSrcType = SrcType;
746  llvm::Type *SrcTy = Src->getType();
747
748  // Handle conversions to bool first, they are special: comparisons against 0.
749  if (DstType->isBooleanType())
750    return EmitConversionToBool(Src, SrcType);
751
752  llvm::Type *DstTy = ConvertType(DstType);
753
754  // Cast from half through float if half isn't a native type.
755  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
756    // Cast to FP using the intrinsic if the half type itself isn't supported.
757    if (DstTy->isFloatingPointTy()) {
758      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
759        return Builder.CreateCall(
760            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
761            Src);
762    } else {
763      // Cast to other types through float, using either the intrinsic or FPExt,
764      // depending on whether the half type itself is supported
765      // (as opposed to operations on half, available with NativeHalfType).
766      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
767        Src = Builder.CreateCall(
768            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
769                                 CGF.CGM.FloatTy),
770            Src);
771      } else {
772        Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
773      }
774      SrcType = CGF.getContext().FloatTy;
775      SrcTy = CGF.FloatTy;
776    }
777  }
778
779  // Ignore conversions like int -> uint.
780  if (SrcTy == DstTy)
781    return Src;
782
783  // Handle pointer conversions next: pointers can only be converted to/from
784  // other pointers and integers. Check for pointer types in terms of LLVM, as
785  // some native types (like Obj-C id) may map to a pointer type.
786  if (isa<llvm::PointerType>(DstTy)) {
787    // The source value may be an integer, or a pointer.
788    if (isa<llvm::PointerType>(SrcTy))
789      return Builder.CreateBitCast(Src, DstTy, "conv");
790
791    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
792    // First, convert to the correct width so that we control the kind of
793    // extension.
794    llvm::Type *MiddleTy = CGF.IntPtrTy;
795    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
796    llvm::Value* IntResult =
797        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
798    // Then, cast to pointer.
799    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
800  }
801
802  if (isa<llvm::PointerType>(SrcTy)) {
803    // Must be an ptr to int cast.
804    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
805    return Builder.CreatePtrToInt(Src, DstTy, "conv");
806  }
807
808  // A scalar can be splatted to an extended vector of the same element type
809  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
810    // Cast the scalar to element type
811    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
812    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
813
814    // Splat the element across to all elements
815    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
816    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
817  }
818
819  // Allow bitcast from vector to integer/fp of the same size.
820  if (isa<llvm::VectorType>(SrcTy) ||
821      isa<llvm::VectorType>(DstTy))
822    return Builder.CreateBitCast(Src, DstTy, "conv");
823
824  // Finally, we have the arithmetic types: real int/float.
825  Value *Res = nullptr;
826  llvm::Type *ResTy = DstTy;
827
828  // An overflowing conversion has undefined behavior if either the source type
829  // or the destination type is a floating-point type.
830  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
831      (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
832    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
833                             DstTy);
834
835  // Cast to half through float if half isn't a native type.
836  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
837    // Make sure we cast in a single step if from another FP type.
838    if (SrcTy->isFloatingPointTy()) {
839      // Use the intrinsic if the half type itself isn't supported
840      // (as opposed to operations on half, available with NativeHalfType).
841      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842        return Builder.CreateCall(
843            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
844      // If the half type is supported, just use an fptrunc.
845      return Builder.CreateFPTrunc(Src, DstTy);
846    }
847    DstTy = CGF.FloatTy;
848  }
849
850  if (isa<llvm::IntegerType>(SrcTy)) {
851    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
852    if (isa<llvm::IntegerType>(DstTy))
853      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
854    else if (InputSigned)
855      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
856    else
857      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
858  } else if (isa<llvm::IntegerType>(DstTy)) {
859    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
860    if (DstType->isSignedIntegerOrEnumerationType())
861      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
862    else
863      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
864  } else {
865    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
866           "Unknown real conversion");
867    if (DstTy->getTypeID() < SrcTy->getTypeID())
868      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
869    else
870      Res = Builder.CreateFPExt(Src, DstTy, "conv");
871  }
872
873  if (DstTy != ResTy) {
874    if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
875      assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
876      Res = Builder.CreateCall(
877        CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
878        Res);
879    } else {
880      Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
881    }
882  }
883
884  return Res;
885}
886
887/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
888/// type to the specified destination type, where the destination type is an
889/// LLVM scalar type.
890Value *ScalarExprEmitter::
891EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
892                              QualType SrcTy, QualType DstTy) {
893  // Get the source element type.
894  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
895
896  // Handle conversions to bool first, they are special: comparisons against 0.
897  if (DstTy->isBooleanType()) {
898    //  Complex != 0  -> (Real != 0) | (Imag != 0)
899    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
900    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
901    return Builder.CreateOr(Src.first, Src.second, "tobool");
902  }
903
904  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
905  // the imaginary part of the complex value is discarded and the value of the
906  // real part is converted according to the conversion rules for the
907  // corresponding real type.
908  return EmitScalarConversion(Src.first, SrcTy, DstTy);
909}
910
911Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
912  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
913}
914
915/// \brief Emit a sanitization check for the given "binary" operation (which
916/// might actually be a unary increment which has been lowered to a binary
917/// operation). The check passes if all values in \p Checks (which are \c i1),
918/// are \c true.
919void ScalarExprEmitter::EmitBinOpCheck(
920    ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) {
921  assert(CGF.IsSanitizerScope);
922  StringRef CheckName;
923  SmallVector<llvm::Constant *, 4> StaticData;
924  SmallVector<llvm::Value *, 2> DynamicData;
925
926  BinaryOperatorKind Opcode = Info.Opcode;
927  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
928    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
929
930  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
931  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
932  if (UO && UO->getOpcode() == UO_Minus) {
933    CheckName = "negate_overflow";
934    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
935    DynamicData.push_back(Info.RHS);
936  } else {
937    if (BinaryOperator::isShiftOp(Opcode)) {
938      // Shift LHS negative or too large, or RHS out of bounds.
939      CheckName = "shift_out_of_bounds";
940      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
941      StaticData.push_back(
942        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
943      StaticData.push_back(
944        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
945    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
946      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
947      CheckName = "divrem_overflow";
948      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
949    } else {
950      // Arithmetic overflow (+, -, *).
951      switch (Opcode) {
952      case BO_Add: CheckName = "add_overflow"; break;
953      case BO_Sub: CheckName = "sub_overflow"; break;
954      case BO_Mul: CheckName = "mul_overflow"; break;
955      default: llvm_unreachable("unexpected opcode for bin op check");
956      }
957      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958    }
959    DynamicData.push_back(Info.LHS);
960    DynamicData.push_back(Info.RHS);
961  }
962
963  CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
964}
965
966//===----------------------------------------------------------------------===//
967//                            Visitor Methods
968//===----------------------------------------------------------------------===//
969
970Value *ScalarExprEmitter::VisitExpr(Expr *E) {
971  CGF.ErrorUnsupported(E, "scalar expression");
972  if (E->getType()->isVoidType())
973    return nullptr;
974  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
975}
976
977Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
978  // Vector Mask Case
979  if (E->getNumSubExprs() == 2 ||
980      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
981    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
982    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
983    Value *Mask;
984
985    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
986    unsigned LHSElts = LTy->getNumElements();
987
988    if (E->getNumSubExprs() == 3) {
989      Mask = CGF.EmitScalarExpr(E->getExpr(2));
990
991      // Shuffle LHS & RHS into one input vector.
992      SmallVector<llvm::Constant*, 32> concat;
993      for (unsigned i = 0; i != LHSElts; ++i) {
994        concat.push_back(Builder.getInt32(2*i));
995        concat.push_back(Builder.getInt32(2*i+1));
996      }
997
998      Value* CV = llvm::ConstantVector::get(concat);
999      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1000      LHSElts *= 2;
1001    } else {
1002      Mask = RHS;
1003    }
1004
1005    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1006    llvm::Constant* EltMask;
1007
1008    EltMask = llvm::ConstantInt::get(MTy->getElementType(),
1009                                     llvm::NextPowerOf2(LHSElts-1)-1);
1010
1011    // Mask off the high bits of each shuffle index.
1012    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
1013                                                     EltMask);
1014    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1015
1016    // newv = undef
1017    // mask = mask & maskbits
1018    // for each elt
1019    //   n = extract mask i
1020    //   x = extract val n
1021    //   newv = insert newv, x, i
1022    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1023                                                  MTy->getNumElements());
1024    Value* NewV = llvm::UndefValue::get(RTy);
1025    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1026      Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1027      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1028
1029      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1030      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1031    }
1032    return NewV;
1033  }
1034
1035  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1036  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1037
1038  SmallVector<llvm::Constant*, 32> indices;
1039  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1040    llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1041    // Check for -1 and output it as undef in the IR.
1042    if (Idx.isSigned() && Idx.isAllOnesValue())
1043      indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1044    else
1045      indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1046  }
1047
1048  Value *SV = llvm::ConstantVector::get(indices);
1049  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1050}
1051
1052Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1053  QualType SrcType = E->getSrcExpr()->getType(),
1054           DstType = E->getType();
1055
1056  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1057
1058  SrcType = CGF.getContext().getCanonicalType(SrcType);
1059  DstType = CGF.getContext().getCanonicalType(DstType);
1060  if (SrcType == DstType) return Src;
1061
1062  assert(SrcType->isVectorType() &&
1063         "ConvertVector source type must be a vector");
1064  assert(DstType->isVectorType() &&
1065         "ConvertVector destination type must be a vector");
1066
1067  llvm::Type *SrcTy = Src->getType();
1068  llvm::Type *DstTy = ConvertType(DstType);
1069
1070  // Ignore conversions like int -> uint.
1071  if (SrcTy == DstTy)
1072    return Src;
1073
1074  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1075           DstEltType = DstType->getAs<VectorType>()->getElementType();
1076
1077  assert(SrcTy->isVectorTy() &&
1078         "ConvertVector source IR type must be a vector");
1079  assert(DstTy->isVectorTy() &&
1080         "ConvertVector destination IR type must be a vector");
1081
1082  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1083             *DstEltTy = DstTy->getVectorElementType();
1084
1085  if (DstEltType->isBooleanType()) {
1086    assert((SrcEltTy->isFloatingPointTy() ||
1087            isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1088
1089    llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1090    if (SrcEltTy->isFloatingPointTy()) {
1091      return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1092    } else {
1093      return Builder.CreateICmpNE(Src, Zero, "tobool");
1094    }
1095  }
1096
1097  // We have the arithmetic types: real int/float.
1098  Value *Res = nullptr;
1099
1100  if (isa<llvm::IntegerType>(SrcEltTy)) {
1101    bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1102    if (isa<llvm::IntegerType>(DstEltTy))
1103      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1104    else if (InputSigned)
1105      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1106    else
1107      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1108  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1109    assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1110    if (DstEltType->isSignedIntegerOrEnumerationType())
1111      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1112    else
1113      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1114  } else {
1115    assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1116           "Unknown real conversion");
1117    if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1118      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1119    else
1120      Res = Builder.CreateFPExt(Src, DstTy, "conv");
1121  }
1122
1123  return Res;
1124}
1125
1126Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1127  llvm::APSInt Value;
1128  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1129    if (E->isArrow())
1130      CGF.EmitScalarExpr(E->getBase());
1131    else
1132      EmitLValue(E->getBase());
1133    return Builder.getInt(Value);
1134  }
1135
1136  return EmitLoadOfLValue(E);
1137}
1138
1139Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1140  TestAndClearIgnoreResultAssign();
1141
1142  // Emit subscript expressions in rvalue context's.  For most cases, this just
1143  // loads the lvalue formed by the subscript expr.  However, we have to be
1144  // careful, because the base of a vector subscript is occasionally an rvalue,
1145  // so we can't get it as an lvalue.
1146  if (!E->getBase()->getType()->isVectorType())
1147    return EmitLoadOfLValue(E);
1148
1149  // Handle the vector case.  The base must be a vector, the index must be an
1150  // integer value.
1151  Value *Base = Visit(E->getBase());
1152  Value *Idx  = Visit(E->getIdx());
1153  QualType IdxTy = E->getIdx()->getType();
1154
1155  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1156    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1157
1158  return Builder.CreateExtractElement(Base, Idx, "vecext");
1159}
1160
1161static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1162                                  unsigned Off, llvm::Type *I32Ty) {
1163  int MV = SVI->getMaskValue(Idx);
1164  if (MV == -1)
1165    return llvm::UndefValue::get(I32Ty);
1166  return llvm::ConstantInt::get(I32Ty, Off+MV);
1167}
1168
1169Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1170  bool Ignore = TestAndClearIgnoreResultAssign();
1171  (void)Ignore;
1172  assert (Ignore == false && "init list ignored");
1173  unsigned NumInitElements = E->getNumInits();
1174
1175  if (E->hadArrayRangeDesignator())
1176    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1177
1178  llvm::VectorType *VType =
1179    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1180
1181  if (!VType) {
1182    if (NumInitElements == 0) {
1183      // C++11 value-initialization for the scalar.
1184      return EmitNullValue(E->getType());
1185    }
1186    // We have a scalar in braces. Just use the first element.
1187    return Visit(E->getInit(0));
1188  }
1189
1190  unsigned ResElts = VType->getNumElements();
1191
1192  // Loop over initializers collecting the Value for each, and remembering
1193  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1194  // us to fold the shuffle for the swizzle into the shuffle for the vector
1195  // initializer, since LLVM optimizers generally do not want to touch
1196  // shuffles.
1197  unsigned CurIdx = 0;
1198  bool VIsUndefShuffle = false;
1199  llvm::Value *V = llvm::UndefValue::get(VType);
1200  for (unsigned i = 0; i != NumInitElements; ++i) {
1201    Expr *IE = E->getInit(i);
1202    Value *Init = Visit(IE);
1203    SmallVector<llvm::Constant*, 16> Args;
1204
1205    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1206
1207    // Handle scalar elements.  If the scalar initializer is actually one
1208    // element of a different vector of the same width, use shuffle instead of
1209    // extract+insert.
1210    if (!VVT) {
1211      if (isa<ExtVectorElementExpr>(IE)) {
1212        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1213
1214        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1215          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1216          Value *LHS = nullptr, *RHS = nullptr;
1217          if (CurIdx == 0) {
1218            // insert into undef -> shuffle (src, undef)
1219            Args.push_back(C);
1220            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221
1222            LHS = EI->getVectorOperand();
1223            RHS = V;
1224            VIsUndefShuffle = true;
1225          } else if (VIsUndefShuffle) {
1226            // insert into undefshuffle && size match -> shuffle (v, src)
1227            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1228            for (unsigned j = 0; j != CurIdx; ++j)
1229              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1230            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1231            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1232
1233            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1234            RHS = EI->getVectorOperand();
1235            VIsUndefShuffle = false;
1236          }
1237          if (!Args.empty()) {
1238            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1239            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1240            ++CurIdx;
1241            continue;
1242          }
1243        }
1244      }
1245      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1246                                      "vecinit");
1247      VIsUndefShuffle = false;
1248      ++CurIdx;
1249      continue;
1250    }
1251
1252    unsigned InitElts = VVT->getNumElements();
1253
1254    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1255    // input is the same width as the vector being constructed, generate an
1256    // optimized shuffle of the swizzle input into the result.
1257    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1258    if (isa<ExtVectorElementExpr>(IE)) {
1259      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1260      Value *SVOp = SVI->getOperand(0);
1261      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1262
1263      if (OpTy->getNumElements() == ResElts) {
1264        for (unsigned j = 0; j != CurIdx; ++j) {
1265          // If the current vector initializer is a shuffle with undef, merge
1266          // this shuffle directly into it.
1267          if (VIsUndefShuffle) {
1268            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1269                                      CGF.Int32Ty));
1270          } else {
1271            Args.push_back(Builder.getInt32(j));
1272          }
1273        }
1274        for (unsigned j = 0, je = InitElts; j != je; ++j)
1275          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1276        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1277
1278        if (VIsUndefShuffle)
1279          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1280
1281        Init = SVOp;
1282      }
1283    }
1284
1285    // Extend init to result vector length, and then shuffle its contribution
1286    // to the vector initializer into V.
1287    if (Args.empty()) {
1288      for (unsigned j = 0; j != InitElts; ++j)
1289        Args.push_back(Builder.getInt32(j));
1290      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1292      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1293                                         Mask, "vext");
1294
1295      Args.clear();
1296      for (unsigned j = 0; j != CurIdx; ++j)
1297        Args.push_back(Builder.getInt32(j));
1298      for (unsigned j = 0; j != InitElts; ++j)
1299        Args.push_back(Builder.getInt32(j+Offset));
1300      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1301    }
1302
1303    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1304    // merging subsequent shuffles into this one.
1305    if (CurIdx == 0)
1306      std::swap(V, Init);
1307    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1308    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1309    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1310    CurIdx += InitElts;
1311  }
1312
1313  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1314  // Emit remaining default initializers.
1315  llvm::Type *EltTy = VType->getElementType();
1316
1317  // Emit remaining default initializers
1318  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1319    Value *Idx = Builder.getInt32(CurIdx);
1320    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1321    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1322  }
1323  return V;
1324}
1325
1326static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1327  const Expr *E = CE->getSubExpr();
1328
1329  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1330    return false;
1331
1332  if (isa<CXXThisExpr>(E)) {
1333    // We always assume that 'this' is never null.
1334    return false;
1335  }
1336
1337  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1338    // And that glvalue casts are never null.
1339    if (ICE->getValueKind() != VK_RValue)
1340      return false;
1341  }
1342
1343  return true;
1344}
1345
1346// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1347// have to handle a more broad range of conversions than explicit casts, as they
1348// handle things like function to ptr-to-function decay etc.
1349Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1350  Expr *E = CE->getSubExpr();
1351  QualType DestTy = CE->getType();
1352  CastKind Kind = CE->getCastKind();
1353
1354  if (!DestTy->isVoidType())
1355    TestAndClearIgnoreResultAssign();
1356
1357  // Since almost all cast kinds apply to scalars, this switch doesn't have
1358  // a default case, so the compiler will warn on a missing case.  The cases
1359  // are in the same order as in the CastKind enum.
1360  switch (Kind) {
1361  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362  case CK_BuiltinFnToFnPtr:
1363    llvm_unreachable("builtin functions are handled elsewhere");
1364
1365  case CK_LValueBitCast:
1366  case CK_ObjCObjectLValueCast: {
1367    Value *V = EmitLValue(E).getAddress();
1368    V = Builder.CreateBitCast(V,
1369                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1370    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1371                            CE->getExprLoc());
1372  }
1373
1374  case CK_CPointerToObjCPointerCast:
1375  case CK_BlockPointerToObjCPointerCast:
1376  case CK_AnyPointerToBlockPointerCast:
1377  case CK_BitCast: {
1378    Value *Src = Visit(const_cast<Expr*>(E));
1379    llvm::Type *SrcTy = Src->getType();
1380    llvm::Type *DstTy = ConvertType(DestTy);
1381    if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1382        SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1383      llvm_unreachable("wrong cast for pointers in different address spaces"
1384                       "(must be an address space cast)!");
1385    }
1386
1387    if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1388      if (auto PT = DestTy->getAs<PointerType>())
1389        CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1390                                      /*MayBeNull=*/true);
1391    }
1392
1393    return Builder.CreateBitCast(Src, DstTy);
1394  }
1395  case CK_AddressSpaceConversion: {
1396    Value *Src = Visit(const_cast<Expr*>(E));
1397    return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1398  }
1399  case CK_AtomicToNonAtomic:
1400  case CK_NonAtomicToAtomic:
1401  case CK_NoOp:
1402  case CK_UserDefinedConversion:
1403    return Visit(const_cast<Expr*>(E));
1404
1405  case CK_BaseToDerived: {
1406    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1407    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1408
1409    llvm::Value *V = Visit(E);
1410
1411    llvm::Value *Derived =
1412      CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1413                                   CE->path_begin(), CE->path_end(),
1414                                   ShouldNullCheckClassCastValue(CE));
1415
1416    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1417    // performed and the object is not of the derived type.
1418    if (CGF.sanitizePerformTypeCheck())
1419      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1420                        Derived, DestTy->getPointeeType());
1421
1422    if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1423      CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1424                                    /*MayBeNull=*/true);
1425
1426    return Derived;
1427  }
1428  case CK_UncheckedDerivedToBase:
1429  case CK_DerivedToBase: {
1430    const CXXRecordDecl *DerivedClassDecl =
1431      E->getType()->getPointeeCXXRecordDecl();
1432    assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1433
1434    return CGF.GetAddressOfBaseClass(
1435        Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1436        ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1437  }
1438  case CK_Dynamic: {
1439    Value *V = Visit(const_cast<Expr*>(E));
1440    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1441    return CGF.EmitDynamicCast(V, DCE);
1442  }
1443
1444  case CK_ArrayToPointerDecay: {
1445    assert(E->getType()->isArrayType() &&
1446           "Array to pointer decay must have array source type!");
1447
1448    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1449
1450    // Note that VLA pointers are always decayed, so we don't need to do
1451    // anything here.
1452    if (!E->getType()->isVariableArrayType()) {
1453      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1454      llvm::Type *NewTy = ConvertType(E->getType());
1455      V = CGF.Builder.CreatePointerCast(
1456          V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1457
1458      assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1459             "Expected pointer to array");
1460      V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1461    }
1462
1463    // Make sure the array decay ends up being the right type.  This matters if
1464    // the array type was of an incomplete type.
1465    return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1466  }
1467  case CK_FunctionToPointerDecay:
1468    return EmitLValue(E).getAddress();
1469
1470  case CK_NullToPointer:
1471    if (MustVisitNullValue(E))
1472      (void) Visit(E);
1473
1474    return llvm::ConstantPointerNull::get(
1475                               cast<llvm::PointerType>(ConvertType(DestTy)));
1476
1477  case CK_NullToMemberPointer: {
1478    if (MustVisitNullValue(E))
1479      (void) Visit(E);
1480
1481    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1482    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1483  }
1484
1485  case CK_ReinterpretMemberPointer:
1486  case CK_BaseToDerivedMemberPointer:
1487  case CK_DerivedToBaseMemberPointer: {
1488    Value *Src = Visit(E);
1489
1490    // Note that the AST doesn't distinguish between checked and
1491    // unchecked member pointer conversions, so we always have to
1492    // implement checked conversions here.  This is inefficient when
1493    // actual control flow may be required in order to perform the
1494    // check, which it is for data member pointers (but not member
1495    // function pointers on Itanium and ARM).
1496    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1497  }
1498
1499  case CK_ARCProduceObject:
1500    return CGF.EmitARCRetainScalarExpr(E);
1501  case CK_ARCConsumeObject:
1502    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1503  case CK_ARCReclaimReturnedObject: {
1504    llvm::Value *value = Visit(E);
1505    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1506    return CGF.EmitObjCConsumeObject(E->getType(), value);
1507  }
1508  case CK_ARCExtendBlockObject:
1509    return CGF.EmitARCExtendBlockObject(E);
1510
1511  case CK_CopyAndAutoreleaseBlockObject:
1512    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1513
1514  case CK_FloatingRealToComplex:
1515  case CK_FloatingComplexCast:
1516  case CK_IntegralRealToComplex:
1517  case CK_IntegralComplexCast:
1518  case CK_IntegralComplexToFloatingComplex:
1519  case CK_FloatingComplexToIntegralComplex:
1520  case CK_ConstructorConversion:
1521  case CK_ToUnion:
1522    llvm_unreachable("scalar cast to non-scalar value");
1523
1524  case CK_LValueToRValue:
1525    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1526    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1527    return Visit(const_cast<Expr*>(E));
1528
1529  case CK_IntegralToPointer: {
1530    Value *Src = Visit(const_cast<Expr*>(E));
1531
1532    // First, convert to the correct width so that we control the kind of
1533    // extension.
1534    llvm::Type *MiddleTy = CGF.IntPtrTy;
1535    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1536    llvm::Value* IntResult =
1537      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1538
1539    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1540  }
1541  case CK_PointerToIntegral:
1542    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1543    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1544
1545  case CK_ToVoid: {
1546    CGF.EmitIgnoredExpr(E);
1547    return nullptr;
1548  }
1549  case CK_VectorSplat: {
1550    llvm::Type *DstTy = ConvertType(DestTy);
1551    Value *Elt = Visit(const_cast<Expr*>(E));
1552    Elt = EmitScalarConversion(Elt, E->getType(),
1553                               DestTy->getAs<VectorType>()->getElementType());
1554
1555    // Splat the element across to all elements
1556    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1557    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1558  }
1559
1560  case CK_IntegralCast:
1561  case CK_IntegralToFloating:
1562  case CK_FloatingToIntegral:
1563  case CK_FloatingCast:
1564    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1565  case CK_IntegralToBoolean:
1566    return EmitIntToBoolConversion(Visit(E));
1567  case CK_PointerToBoolean:
1568    return EmitPointerToBoolConversion(Visit(E));
1569  case CK_FloatingToBoolean:
1570    return EmitFloatToBoolConversion(Visit(E));
1571  case CK_MemberPointerToBoolean: {
1572    llvm::Value *MemPtr = Visit(E);
1573    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1574    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1575  }
1576
1577  case CK_FloatingComplexToReal:
1578  case CK_IntegralComplexToReal:
1579    return CGF.EmitComplexExpr(E, false, true).first;
1580
1581  case CK_FloatingComplexToBoolean:
1582  case CK_IntegralComplexToBoolean: {
1583    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1584
1585    // TODO: kill this function off, inline appropriate case here
1586    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1587  }
1588
1589  case CK_ZeroToOCLEvent: {
1590    assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591    return llvm::Constant::getNullValue(ConvertType(DestTy));
1592  }
1593
1594  }
1595
1596  llvm_unreachable("unknown scalar cast");
1597}
1598
1599Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600  CodeGenFunction::StmtExprEvaluation eval(CGF);
1601  llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602                                                !E->getType()->isVoidType());
1603  if (!RetAlloca)
1604    return nullptr;
1605  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606                              E->getExprLoc());
1607}
1608
1609//===----------------------------------------------------------------------===//
1610//                             Unary Operators
1611//===----------------------------------------------------------------------===//
1612
1613llvm::Value *ScalarExprEmitter::
1614EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1615                                llvm::Value *InVal,
1616                                llvm::Value *NextVal, bool IsInc) {
1617  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1618  case LangOptions::SOB_Defined:
1619    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1620  case LangOptions::SOB_Undefined:
1621    if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1622      return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1623    // Fall through.
1624  case LangOptions::SOB_Trapping:
1625    BinOpInfo BinOp;
1626    BinOp.LHS = InVal;
1627    BinOp.RHS = NextVal;
1628    BinOp.Ty = E->getType();
1629    BinOp.Opcode = BO_Add;
1630    BinOp.FPContractable = false;
1631    BinOp.E = E;
1632    return EmitOverflowCheckedBinOp(BinOp);
1633  }
1634  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1635}
1636
1637llvm::Value *
1638ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1639                                           bool isInc, bool isPre) {
1640
1641  QualType type = E->getSubExpr()->getType();
1642  llvm::PHINode *atomicPHI = nullptr;
1643  llvm::Value *value;
1644  llvm::Value *input;
1645
1646  int amount = (isInc ? 1 : -1);
1647
1648  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1649    type = atomicTy->getValueType();
1650    if (isInc && type->isBooleanType()) {
1651      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1652      if (isPre) {
1653        Builder.Insert(new llvm::StoreInst(True,
1654              LV.getAddress(), LV.isVolatileQualified(),
1655              LV.getAlignment().getQuantity(),
1656              llvm::SequentiallyConsistent));
1657        return Builder.getTrue();
1658      }
1659      // For atomic bool increment, we just store true and return it for
1660      // preincrement, do an atomic swap with true for postincrement
1661        return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1662            LV.getAddress(), True, llvm::SequentiallyConsistent);
1663    }
1664    // Special case for atomic increment / decrement on integers, emit
1665    // atomicrmw instructions.  We skip this if we want to be doing overflow
1666    // checking, and fall into the slow path with the atomic cmpxchg loop.
1667    if (!type->isBooleanType() && type->isIntegerType() &&
1668        !(type->isUnsignedIntegerType() &&
1669          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1670        CGF.getLangOpts().getSignedOverflowBehavior() !=
1671            LangOptions::SOB_Trapping) {
1672      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1673        llvm::AtomicRMWInst::Sub;
1674      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1675        llvm::Instruction::Sub;
1676      llvm::Value *amt = CGF.EmitToMemory(
1677          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1678      llvm::Value *old = Builder.CreateAtomicRMW(aop,
1679          LV.getAddress(), amt, llvm::SequentiallyConsistent);
1680      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1681    }
1682    value = EmitLoadOfLValue(LV, E->getExprLoc());
1683    input = value;
1684    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1685    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1686    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1687    value = CGF.EmitToMemory(value, type);
1688    Builder.CreateBr(opBB);
1689    Builder.SetInsertPoint(opBB);
1690    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1691    atomicPHI->addIncoming(value, startBB);
1692    value = atomicPHI;
1693  } else {
1694    value = EmitLoadOfLValue(LV, E->getExprLoc());
1695    input = value;
1696  }
1697
1698  // Special case of integer increment that we have to check first: bool++.
1699  // Due to promotion rules, we get:
1700  //   bool++ -> bool = bool + 1
1701  //          -> bool = (int)bool + 1
1702  //          -> bool = ((int)bool + 1 != 0)
1703  // An interesting aspect of this is that increment is always true.
1704  // Decrement does not have this property.
1705  if (isInc && type->isBooleanType()) {
1706    value = Builder.getTrue();
1707
1708  // Most common case by far: integer increment.
1709  } else if (type->isIntegerType()) {
1710
1711    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1712
1713    // Note that signed integer inc/dec with width less than int can't
1714    // overflow because of promotion rules; we're just eliding a few steps here.
1715    bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1716                       CGF.IntTy->getIntegerBitWidth();
1717    if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1718      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1719    } else if (CanOverflow && type->isUnsignedIntegerType() &&
1720               CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1721      BinOpInfo BinOp;
1722      BinOp.LHS = value;
1723      BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1724      BinOp.Ty = E->getType();
1725      BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1726      BinOp.FPContractable = false;
1727      BinOp.E = E;
1728      value = EmitOverflowCheckedBinOp(BinOp);
1729    } else
1730      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1731
1732  // Next most common: pointer increment.
1733  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1734    QualType type = ptr->getPointeeType();
1735
1736    // VLA types don't have constant size.
1737    if (const VariableArrayType *vla
1738          = CGF.getContext().getAsVariableArrayType(type)) {
1739      llvm::Value *numElts = CGF.getVLASize(vla).first;
1740      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1741      if (CGF.getLangOpts().isSignedOverflowDefined())
1742        value = Builder.CreateGEP(value, numElts, "vla.inc");
1743      else
1744        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1745
1746    // Arithmetic on function pointers (!) is just +-1.
1747    } else if (type->isFunctionType()) {
1748      llvm::Value *amt = Builder.getInt32(amount);
1749
1750      value = CGF.EmitCastToVoidPtr(value);
1751      if (CGF.getLangOpts().isSignedOverflowDefined())
1752        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1753      else
1754        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1755      value = Builder.CreateBitCast(value, input->getType());
1756
1757    // For everything else, we can just do a simple increment.
1758    } else {
1759      llvm::Value *amt = Builder.getInt32(amount);
1760      if (CGF.getLangOpts().isSignedOverflowDefined())
1761        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1762      else
1763        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1764    }
1765
1766  // Vector increment/decrement.
1767  } else if (type->isVectorType()) {
1768    if (type->hasIntegerRepresentation()) {
1769      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1770
1771      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1772    } else {
1773      value = Builder.CreateFAdd(
1774                  value,
1775                  llvm::ConstantFP::get(value->getType(), amount),
1776                  isInc ? "inc" : "dec");
1777    }
1778
1779  // Floating point.
1780  } else if (type->isRealFloatingType()) {
1781    // Add the inc/dec to the real part.
1782    llvm::Value *amt;
1783
1784    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1785      // Another special case: half FP increment should be done via float
1786      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1787        value = Builder.CreateCall(
1788            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1789                                 CGF.CGM.FloatTy),
1790            input, "incdec.conv");
1791      } else {
1792        value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1793      }
1794    }
1795
1796    if (value->getType()->isFloatTy())
1797      amt = llvm::ConstantFP::get(VMContext,
1798                                  llvm::APFloat(static_cast<float>(amount)));
1799    else if (value->getType()->isDoubleTy())
1800      amt = llvm::ConstantFP::get(VMContext,
1801                                  llvm::APFloat(static_cast<double>(amount)));
1802    else {
1803      // Remaining types are either Half or LongDouble.  Convert from float.
1804      llvm::APFloat F(static_cast<float>(amount));
1805      bool ignored;
1806      // Don't use getFloatTypeSemantics because Half isn't
1807      // necessarily represented using the "half" LLVM type.
1808      F.convert(value->getType()->isHalfTy()
1809                    ? CGF.getTarget().getHalfFormat()
1810                    : CGF.getTarget().getLongDoubleFormat(),
1811                llvm::APFloat::rmTowardZero, &ignored);
1812      amt = llvm::ConstantFP::get(VMContext, F);
1813    }
1814    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1815
1816    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1817      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1818        value = Builder.CreateCall(
1819            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1820                                 CGF.CGM.FloatTy),
1821            value, "incdec.conv");
1822      } else {
1823        value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1824      }
1825    }
1826
1827  // Objective-C pointer types.
1828  } else {
1829    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1830    value = CGF.EmitCastToVoidPtr(value);
1831
1832    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1833    if (!isInc) size = -size;
1834    llvm::Value *sizeValue =
1835      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1836
1837    if (CGF.getLangOpts().isSignedOverflowDefined())
1838      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1839    else
1840      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1841    value = Builder.CreateBitCast(value, input->getType());
1842  }
1843
1844  if (atomicPHI) {
1845    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1846    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1847    auto Pair = CGF.EmitAtomicCompareExchange(
1848        LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1849    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1850    llvm::Value *success = Pair.second;
1851    atomicPHI->addIncoming(old, opBB);
1852    Builder.CreateCondBr(success, contBB, opBB);
1853    Builder.SetInsertPoint(contBB);
1854    return isPre ? value : input;
1855  }
1856
1857  // Store the updated result through the lvalue.
1858  if (LV.isBitField())
1859    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1860  else
1861    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1862
1863  // If this is a postinc, return the value read from memory, otherwise use the
1864  // updated value.
1865  return isPre ? value : input;
1866}
1867
1868
1869
1870Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1871  TestAndClearIgnoreResultAssign();
1872  // Emit unary minus with EmitSub so we handle overflow cases etc.
1873  BinOpInfo BinOp;
1874  BinOp.RHS = Visit(E->getSubExpr());
1875
1876  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1877    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1878  else
1879    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1880  BinOp.Ty = E->getType();
1881  BinOp.Opcode = BO_Sub;
1882  BinOp.FPContractable = false;
1883  BinOp.E = E;
1884  return EmitSub(BinOp);
1885}
1886
1887Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1888  TestAndClearIgnoreResultAssign();
1889  Value *Op = Visit(E->getSubExpr());
1890  return Builder.CreateNot(Op, "neg");
1891}
1892
1893Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1894  // Perform vector logical not on comparison with zero vector.
1895  if (E->getType()->isExtVectorType()) {
1896    Value *Oper = Visit(E->getSubExpr());
1897    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1898    Value *Result;
1899    if (Oper->getType()->isFPOrFPVectorTy())
1900      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1901    else
1902      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1903    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1904  }
1905
1906  // Compare operand to zero.
1907  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1908
1909  // Invert value.
1910  // TODO: Could dynamically modify easy computations here.  For example, if
1911  // the operand is an icmp ne, turn into icmp eq.
1912  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1913
1914  // ZExt result to the expr type.
1915  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1916}
1917
1918Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1919  // Try folding the offsetof to a constant.
1920  llvm::APSInt Value;
1921  if (E->EvaluateAsInt(Value, CGF.getContext()))
1922    return Builder.getInt(Value);
1923
1924  // Loop over the components of the offsetof to compute the value.
1925  unsigned n = E->getNumComponents();
1926  llvm::Type* ResultType = ConvertType(E->getType());
1927  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1928  QualType CurrentType = E->getTypeSourceInfo()->getType();
1929  for (unsigned i = 0; i != n; ++i) {
1930    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1931    llvm::Value *Offset = nullptr;
1932    switch (ON.getKind()) {
1933    case OffsetOfExpr::OffsetOfNode::Array: {
1934      // Compute the index
1935      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1936      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1937      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1938      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1939
1940      // Save the element type
1941      CurrentType =
1942          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1943
1944      // Compute the element size
1945      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1946          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1947
1948      // Multiply out to compute the result
1949      Offset = Builder.CreateMul(Idx, ElemSize);
1950      break;
1951    }
1952
1953    case OffsetOfExpr::OffsetOfNode::Field: {
1954      FieldDecl *MemberDecl = ON.getField();
1955      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1956      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1957
1958      // Compute the index of the field in its parent.
1959      unsigned i = 0;
1960      // FIXME: It would be nice if we didn't have to loop here!
1961      for (RecordDecl::field_iterator Field = RD->field_begin(),
1962                                      FieldEnd = RD->field_end();
1963           Field != FieldEnd; ++Field, ++i) {
1964        if (*Field == MemberDecl)
1965          break;
1966      }
1967      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1968
1969      // Compute the offset to the field
1970      int64_t OffsetInt = RL.getFieldOffset(i) /
1971                          CGF.getContext().getCharWidth();
1972      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1973
1974      // Save the element type.
1975      CurrentType = MemberDecl->getType();
1976      break;
1977    }
1978
1979    case OffsetOfExpr::OffsetOfNode::Identifier:
1980      llvm_unreachable("dependent __builtin_offsetof");
1981
1982    case OffsetOfExpr::OffsetOfNode::Base: {
1983      if (ON.getBase()->isVirtual()) {
1984        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1985        continue;
1986      }
1987
1988      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1989      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1990
1991      // Save the element type.
1992      CurrentType = ON.getBase()->getType();
1993
1994      // Compute the offset to the base.
1995      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1996      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1997      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1998      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1999      break;
2000    }
2001    }
2002    Result = Builder.CreateAdd(Result, Offset);
2003  }
2004  return Result;
2005}
2006
2007/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2008/// argument of the sizeof expression as an integer.
2009Value *
2010ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2011                              const UnaryExprOrTypeTraitExpr *E) {
2012  QualType TypeToSize = E->getTypeOfArgument();
2013  if (E->getKind() == UETT_SizeOf) {
2014    if (const VariableArrayType *VAT =
2015          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2016      if (E->isArgumentType()) {
2017        // sizeof(type) - make sure to emit the VLA size.
2018        CGF.EmitVariablyModifiedType(TypeToSize);
2019      } else {
2020        // C99 6.5.3.4p2: If the argument is an expression of type
2021        // VLA, it is evaluated.
2022        CGF.EmitIgnoredExpr(E->getArgumentExpr());
2023      }
2024
2025      QualType eltType;
2026      llvm::Value *numElts;
2027      std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2028
2029      llvm::Value *size = numElts;
2030
2031      // Scale the number of non-VLA elements by the non-VLA element size.
2032      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2033      if (!eltSize.isOne())
2034        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2035
2036      return size;
2037    }
2038  }
2039
2040  // If this isn't sizeof(vla), the result must be constant; use the constant
2041  // folding logic so we don't have to duplicate it here.
2042  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2043}
2044
2045Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2046  Expr *Op = E->getSubExpr();
2047  if (Op->getType()->isAnyComplexType()) {
2048    // If it's an l-value, load through the appropriate subobject l-value.
2049    // Note that we have to ask E because Op might be an l-value that
2050    // this won't work for, e.g. an Obj-C property.
2051    if (E->isGLValue())
2052      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2053                                  E->getExprLoc()).getScalarVal();
2054
2055    // Otherwise, calculate and project.
2056    return CGF.EmitComplexExpr(Op, false, true).first;
2057  }
2058
2059  return Visit(Op);
2060}
2061
2062Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2063  Expr *Op = E->getSubExpr();
2064  if (Op->getType()->isAnyComplexType()) {
2065    // If it's an l-value, load through the appropriate subobject l-value.
2066    // Note that we have to ask E because Op might be an l-value that
2067    // this won't work for, e.g. an Obj-C property.
2068    if (Op->isGLValue())
2069      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2070                                  E->getExprLoc()).getScalarVal();
2071
2072    // Otherwise, calculate and project.
2073    return CGF.EmitComplexExpr(Op, true, false).second;
2074  }
2075
2076  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2077  // effects are evaluated, but not the actual value.
2078  if (Op->isGLValue())
2079    CGF.EmitLValue(Op);
2080  else
2081    CGF.EmitScalarExpr(Op, true);
2082  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2083}
2084
2085//===----------------------------------------------------------------------===//
2086//                           Binary Operators
2087//===----------------------------------------------------------------------===//
2088
2089BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2090  TestAndClearIgnoreResultAssign();
2091  BinOpInfo Result;
2092  Result.LHS = Visit(E->getLHS());
2093  Result.RHS = Visit(E->getRHS());
2094  Result.Ty  = E->getType();
2095  Result.Opcode = E->getOpcode();
2096  Result.FPContractable = E->isFPContractable();
2097  Result.E = E;
2098  return Result;
2099}
2100
2101LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2102                                              const CompoundAssignOperator *E,
2103                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2104                                                   Value *&Result) {
2105  QualType LHSTy = E->getLHS()->getType();
2106  BinOpInfo OpInfo;
2107
2108  if (E->getComputationResultType()->isAnyComplexType())
2109    return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2110
2111  // Emit the RHS first.  __block variables need to have the rhs evaluated
2112  // first, plus this should improve codegen a little.
2113  OpInfo.RHS = Visit(E->getRHS());
2114  OpInfo.Ty = E->getComputationResultType();
2115  OpInfo.Opcode = E->getOpcode();
2116  OpInfo.FPContractable = false;
2117  OpInfo.E = E;
2118  // Load/convert the LHS.
2119  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2120
2121  llvm::PHINode *atomicPHI = nullptr;
2122  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2123    QualType type = atomicTy->getValueType();
2124    if (!type->isBooleanType() && type->isIntegerType() &&
2125        !(type->isUnsignedIntegerType() &&
2126          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2127        CGF.getLangOpts().getSignedOverflowBehavior() !=
2128            LangOptions::SOB_Trapping) {
2129      llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2130      switch (OpInfo.Opcode) {
2131        // We don't have atomicrmw operands for *, %, /, <<, >>
2132        case BO_MulAssign: case BO_DivAssign:
2133        case BO_RemAssign:
2134        case BO_ShlAssign:
2135        case BO_ShrAssign:
2136          break;
2137        case BO_AddAssign:
2138          aop = llvm::AtomicRMWInst::Add;
2139          break;
2140        case BO_SubAssign:
2141          aop = llvm::AtomicRMWInst::Sub;
2142          break;
2143        case BO_AndAssign:
2144          aop = llvm::AtomicRMWInst::And;
2145          break;
2146        case BO_XorAssign:
2147          aop = llvm::AtomicRMWInst::Xor;
2148          break;
2149        case BO_OrAssign:
2150          aop = llvm::AtomicRMWInst::Or;
2151          break;
2152        default:
2153          llvm_unreachable("Invalid compound assignment type");
2154      }
2155      if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2156        llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2157              E->getRHS()->getType(), LHSTy), LHSTy);
2158        Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2159            llvm::SequentiallyConsistent);
2160        return LHSLV;
2161      }
2162    }
2163    // FIXME: For floating point types, we should be saving and restoring the
2164    // floating point environment in the loop.
2165    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2166    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2167    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2168    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2169    Builder.CreateBr(opBB);
2170    Builder.SetInsertPoint(opBB);
2171    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2172    atomicPHI->addIncoming(OpInfo.LHS, startBB);
2173    OpInfo.LHS = atomicPHI;
2174  }
2175  else
2176    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2177
2178  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2179                                    E->getComputationLHSType());
2180
2181  // Expand the binary operator.
2182  Result = (this->*Func)(OpInfo);
2183
2184  // Convert the result back to the LHS type.
2185  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2186
2187  if (atomicPHI) {
2188    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2189    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2190    auto Pair = CGF.EmitAtomicCompareExchange(
2191        LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2192    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2193    llvm::Value *success = Pair.second;
2194    atomicPHI->addIncoming(old, opBB);
2195    Builder.CreateCondBr(success, contBB, opBB);
2196    Builder.SetInsertPoint(contBB);
2197    return LHSLV;
2198  }
2199
2200  // Store the result value into the LHS lvalue. Bit-fields are handled
2201  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2202  // 'An assignment expression has the value of the left operand after the
2203  // assignment...'.
2204  if (LHSLV.isBitField())
2205    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2206  else
2207    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2208
2209  return LHSLV;
2210}
2211
2212Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2213                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2214  bool Ignore = TestAndClearIgnoreResultAssign();
2215  Value *RHS;
2216  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2217
2218  // If the result is clearly ignored, return now.
2219  if (Ignore)
2220    return nullptr;
2221
2222  // The result of an assignment in C is the assigned r-value.
2223  if (!CGF.getLangOpts().CPlusPlus)
2224    return RHS;
2225
2226  // If the lvalue is non-volatile, return the computed value of the assignment.
2227  if (!LHS.isVolatileQualified())
2228    return RHS;
2229
2230  // Otherwise, reload the value.
2231  return EmitLoadOfLValue(LHS, E->getExprLoc());
2232}
2233
2234void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2235    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2236  SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks;
2237
2238  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2239    Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2240                                    SanitizerKind::IntegerDivideByZero));
2241  }
2242
2243  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2244      Ops.Ty->hasSignedIntegerRepresentation()) {
2245    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2246
2247    llvm::Value *IntMin =
2248      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2249    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2250
2251    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2252    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2253    llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2254    Checks.push_back(
2255        std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2256  }
2257
2258  if (Checks.size() > 0)
2259    EmitBinOpCheck(Checks, Ops);
2260}
2261
2262Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2263  {
2264    CodeGenFunction::SanitizerScope SanScope(&CGF);
2265    if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2266         CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2267        Ops.Ty->isIntegerType()) {
2268      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2269      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2270    } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2271               Ops.Ty->isRealFloatingType()) {
2272      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2273      llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2274      EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2275                     Ops);
2276    }
2277  }
2278
2279  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2280    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2281    if (CGF.getLangOpts().OpenCL) {
2282      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2283      llvm::Type *ValTy = Val->getType();
2284      if (ValTy->isFloatTy() ||
2285          (isa<llvm::VectorType>(ValTy) &&
2286           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2287        CGF.SetFPAccuracy(Val, 2.5);
2288    }
2289    return Val;
2290  }
2291  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2292    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2293  else
2294    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2295}
2296
2297Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2298  // Rem in C can't be a floating point type: C99 6.5.5p2.
2299  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2300    CodeGenFunction::SanitizerScope SanScope(&CGF);
2301    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2302
2303    if (Ops.Ty->isIntegerType())
2304      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2305  }
2306
2307  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2308    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2309  else
2310    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2311}
2312
2313Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2314  unsigned IID;
2315  unsigned OpID = 0;
2316
2317  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2318  switch (Ops.Opcode) {
2319  case BO_Add:
2320  case BO_AddAssign:
2321    OpID = 1;
2322    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2323                     llvm::Intrinsic::uadd_with_overflow;
2324    break;
2325  case BO_Sub:
2326  case BO_SubAssign:
2327    OpID = 2;
2328    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2329                     llvm::Intrinsic::usub_with_overflow;
2330    break;
2331  case BO_Mul:
2332  case BO_MulAssign:
2333    OpID = 3;
2334    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2335                     llvm::Intrinsic::umul_with_overflow;
2336    break;
2337  default:
2338    llvm_unreachable("Unsupported operation for overflow detection");
2339  }
2340  OpID <<= 1;
2341  if (isSigned)
2342    OpID |= 1;
2343
2344  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2345
2346  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2347
2348  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2349  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2350  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2351
2352  // Handle overflow with llvm.trap if no custom handler has been specified.
2353  const std::string *handlerName =
2354    &CGF.getLangOpts().OverflowHandler;
2355  if (handlerName->empty()) {
2356    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2357    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2358    if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2359      CodeGenFunction::SanitizerScope SanScope(&CGF);
2360      llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2361      SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2362                              : SanitizerKind::UnsignedIntegerOverflow;
2363      EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2364    } else
2365      CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2366    return result;
2367  }
2368
2369  // Branch in case of overflow.
2370  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2371  llvm::Function::iterator insertPt = initialBB;
2372  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2373                                                      std::next(insertPt));
2374  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2375
2376  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2377
2378  // If an overflow handler is set, then we want to call it and then use its
2379  // result, if it returns.
2380  Builder.SetInsertPoint(overflowBB);
2381
2382  // Get the overflow handler.
2383  llvm::Type *Int8Ty = CGF.Int8Ty;
2384  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2385  llvm::FunctionType *handlerTy =
2386      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2387  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2388
2389  // Sign extend the args to 64-bit, so that we can use the same handler for
2390  // all types of overflow.
2391  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2392  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2393
2394  // Call the handler with the two arguments, the operation, and the size of
2395  // the result.
2396  llvm::Value *handlerArgs[] = {
2397    lhs,
2398    rhs,
2399    Builder.getInt8(OpID),
2400    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2401  };
2402  llvm::Value *handlerResult =
2403    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2404
2405  // Truncate the result back to the desired size.
2406  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2407  Builder.CreateBr(continueBB);
2408
2409  Builder.SetInsertPoint(continueBB);
2410  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2411  phi->addIncoming(result, initialBB);
2412  phi->addIncoming(handlerResult, overflowBB);
2413
2414  return phi;
2415}
2416
2417/// Emit pointer + index arithmetic.
2418static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2419                                    const BinOpInfo &op,
2420                                    bool isSubtraction) {
2421  // Must have binary (not unary) expr here.  Unary pointer
2422  // increment/decrement doesn't use this path.
2423  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2424
2425  Value *pointer = op.LHS;
2426  Expr *pointerOperand = expr->getLHS();
2427  Value *index = op.RHS;
2428  Expr *indexOperand = expr->getRHS();
2429
2430  // In a subtraction, the LHS is always the pointer.
2431  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2432    std::swap(pointer, index);
2433    std::swap(pointerOperand, indexOperand);
2434  }
2435
2436  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2437  if (width != CGF.PointerWidthInBits) {
2438    // Zero-extend or sign-extend the pointer value according to
2439    // whether the index is signed or not.
2440    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2441    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2442                                      "idx.ext");
2443  }
2444
2445  // If this is subtraction, negate the index.
2446  if (isSubtraction)
2447    index = CGF.Builder.CreateNeg(index, "idx.neg");
2448
2449  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2450    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2451                        /*Accessed*/ false);
2452
2453  const PointerType *pointerType
2454    = pointerOperand->getType()->getAs<PointerType>();
2455  if (!pointerType) {
2456    QualType objectType = pointerOperand->getType()
2457                                        ->castAs<ObjCObjectPointerType>()
2458                                        ->getPointeeType();
2459    llvm::Value *objectSize
2460      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2461
2462    index = CGF.Builder.CreateMul(index, objectSize);
2463
2464    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2465    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2466    return CGF.Builder.CreateBitCast(result, pointer->getType());
2467  }
2468
2469  QualType elementType = pointerType->getPointeeType();
2470  if (const VariableArrayType *vla
2471        = CGF.getContext().getAsVariableArrayType(elementType)) {
2472    // The element count here is the total number of non-VLA elements.
2473    llvm::Value *numElements = CGF.getVLASize(vla).first;
2474
2475    // Effectively, the multiply by the VLA size is part of the GEP.
2476    // GEP indexes are signed, and scaling an index isn't permitted to
2477    // signed-overflow, so we use the same semantics for our explicit
2478    // multiply.  We suppress this if overflow is not undefined behavior.
2479    if (CGF.getLangOpts().isSignedOverflowDefined()) {
2480      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2481      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2482    } else {
2483      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2484      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2485    }
2486    return pointer;
2487  }
2488
2489  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2490  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2491  // future proof.
2492  if (elementType->isVoidType() || elementType->isFunctionType()) {
2493    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2494    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2495    return CGF.Builder.CreateBitCast(result, pointer->getType());
2496  }
2497
2498  if (CGF.getLangOpts().isSignedOverflowDefined())
2499    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2500
2501  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2502}
2503
2504// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2505// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2506// the add operand respectively. This allows fmuladd to represent a*b-c, or
2507// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2508// efficient operations.
2509static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2510                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
2511                           bool negMul, bool negAdd) {
2512  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2513
2514  Value *MulOp0 = MulOp->getOperand(0);
2515  Value *MulOp1 = MulOp->getOperand(1);
2516  if (negMul) {
2517    MulOp0 =
2518      Builder.CreateFSub(
2519        llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2520        "neg");
2521  } else if (negAdd) {
2522    Addend =
2523      Builder.CreateFSub(
2524        llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2525        "neg");
2526  }
2527
2528  Value *FMulAdd =
2529    Builder.CreateCall3(
2530      CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2531                           MulOp0, MulOp1, Addend);
2532   MulOp->eraseFromParent();
2533
2534   return FMulAdd;
2535}
2536
2537// Check whether it would be legal to emit an fmuladd intrinsic call to
2538// represent op and if so, build the fmuladd.
2539//
2540// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2541// Does NOT check the type of the operation - it's assumed that this function
2542// will be called from contexts where it's known that the type is contractable.
2543static Value* tryEmitFMulAdd(const BinOpInfo &op,
2544                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
2545                         bool isSub=false) {
2546
2547  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2548          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2549         "Only fadd/fsub can be the root of an fmuladd.");
2550
2551  // Check whether this op is marked as fusable.
2552  if (!op.FPContractable)
2553    return nullptr;
2554
2555  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2556  // either disabled, or handled entirely by the LLVM backend).
2557  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2558    return nullptr;
2559
2560  // We have a potentially fusable op. Look for a mul on one of the operands.
2561  if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2562    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2563      assert(LHSBinOp->getNumUses() == 0 &&
2564             "Operations with multiple uses shouldn't be contracted.");
2565      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2566    }
2567  } else if (llvm::BinaryOperator* RHSBinOp =
2568               dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2569    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2570      assert(RHSBinOp->getNumUses() == 0 &&
2571             "Operations with multiple uses shouldn't be contracted.");
2572      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2573    }
2574  }
2575
2576  return nullptr;
2577}
2578
2579Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2580  if (op.LHS->getType()->isPointerTy() ||
2581      op.RHS->getType()->isPointerTy())
2582    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2583
2584  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2585    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2586    case LangOptions::SOB_Defined:
2587      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2588    case LangOptions::SOB_Undefined:
2589      if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2590        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2591      // Fall through.
2592    case LangOptions::SOB_Trapping:
2593      return EmitOverflowCheckedBinOp(op);
2594    }
2595  }
2596
2597  if (op.Ty->isUnsignedIntegerType() &&
2598      CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2599    return EmitOverflowCheckedBinOp(op);
2600
2601  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2602    // Try to form an fmuladd.
2603    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2604      return FMulAdd;
2605
2606    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2607  }
2608
2609  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2610}
2611
2612Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2613  // The LHS is always a pointer if either side is.
2614  if (!op.LHS->getType()->isPointerTy()) {
2615    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2616      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2617      case LangOptions::SOB_Defined:
2618        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2619      case LangOptions::SOB_Undefined:
2620        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2621          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2622        // Fall through.
2623      case LangOptions::SOB_Trapping:
2624        return EmitOverflowCheckedBinOp(op);
2625      }
2626    }
2627
2628    if (op.Ty->isUnsignedIntegerType() &&
2629        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2630      return EmitOverflowCheckedBinOp(op);
2631
2632    if (op.LHS->getType()->isFPOrFPVectorTy()) {
2633      // Try to form an fmuladd.
2634      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2635        return FMulAdd;
2636      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2637    }
2638
2639    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2640  }
2641
2642  // If the RHS is not a pointer, then we have normal pointer
2643  // arithmetic.
2644  if (!op.RHS->getType()->isPointerTy())
2645    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2646
2647  // Otherwise, this is a pointer subtraction.
2648
2649  // Do the raw subtraction part.
2650  llvm::Value *LHS
2651    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2652  llvm::Value *RHS
2653    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2654  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2655
2656  // Okay, figure out the element size.
2657  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2658  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2659
2660  llvm::Value *divisor = nullptr;
2661
2662  // For a variable-length array, this is going to be non-constant.
2663  if (const VariableArrayType *vla
2664        = CGF.getContext().getAsVariableArrayType(elementType)) {
2665    llvm::Value *numElements;
2666    std::tie(numElements, elementType) = CGF.getVLASize(vla);
2667
2668    divisor = numElements;
2669
2670    // Scale the number of non-VLA elements by the non-VLA element size.
2671    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2672    if (!eltSize.isOne())
2673      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2674
2675  // For everything elese, we can just compute it, safe in the
2676  // assumption that Sema won't let anything through that we can't
2677  // safely compute the size of.
2678  } else {
2679    CharUnits elementSize;
2680    // Handle GCC extension for pointer arithmetic on void* and
2681    // function pointer types.
2682    if (elementType->isVoidType() || elementType->isFunctionType())
2683      elementSize = CharUnits::One();
2684    else
2685      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2686
2687    // Don't even emit the divide for element size of 1.
2688    if (elementSize.isOne())
2689      return diffInChars;
2690
2691    divisor = CGF.CGM.getSize(elementSize);
2692  }
2693
2694  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2695  // pointer difference in C is only defined in the case where both operands
2696  // are pointing to elements of an array.
2697  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2698}
2699
2700Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2701  llvm::IntegerType *Ty;
2702  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2703    Ty = cast<llvm::IntegerType>(VT->getElementType());
2704  else
2705    Ty = cast<llvm::IntegerType>(LHS->getType());
2706  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2707}
2708
2709Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2710  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2711  // RHS to the same size as the LHS.
2712  Value *RHS = Ops.RHS;
2713  if (Ops.LHS->getType() != RHS->getType())
2714    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2715
2716  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2717                      Ops.Ty->hasSignedIntegerRepresentation();
2718  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2719  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2720  if (CGF.getLangOpts().OpenCL)
2721    RHS =
2722        Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2723  else if ((SanitizeBase || SanitizeExponent) &&
2724           isa<llvm::IntegerType>(Ops.LHS->getType())) {
2725    CodeGenFunction::SanitizerScope SanScope(&CGF);
2726    SmallVector<std::pair<Value *, SanitizerKind>, 2> Checks;
2727    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2728    llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2729
2730    if (SanitizeExponent) {
2731      Checks.push_back(
2732          std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2733    }
2734
2735    if (SanitizeBase) {
2736      // Check whether we are shifting any non-zero bits off the top of the
2737      // integer. We only emit this check if exponent is valid - otherwise
2738      // instructions below will have undefined behavior themselves.
2739      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2740      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2741      llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2742      Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2743      CGF.EmitBlock(CheckShiftBase);
2744      llvm::Value *BitsShiftedOff =
2745        Builder.CreateLShr(Ops.LHS,
2746                           Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2747                                             /*NUW*/true, /*NSW*/true),
2748                           "shl.check");
2749      if (CGF.getLangOpts().CPlusPlus) {
2750        // In C99, we are not permitted to shift a 1 bit into the sign bit.
2751        // Under C++11's rules, shifting a 1 bit into the sign bit is
2752        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2753        // define signed left shifts, so we use the C99 and C++11 rules there).
2754        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2755        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2756      }
2757      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2758      llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2759      CGF.EmitBlock(Cont);
2760      llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2761      BaseCheck->addIncoming(Builder.getTrue(), Orig);
2762      BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2763      Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2764    }
2765
2766    assert(!Checks.empty());
2767    EmitBinOpCheck(Checks, Ops);
2768  }
2769
2770  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2771}
2772
2773Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2774  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2775  // RHS to the same size as the LHS.
2776  Value *RHS = Ops.RHS;
2777  if (Ops.LHS->getType() != RHS->getType())
2778    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2779
2780  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2781  if (CGF.getLangOpts().OpenCL)
2782    RHS =
2783        Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2784  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2785           isa<llvm::IntegerType>(Ops.LHS->getType())) {
2786    CodeGenFunction::SanitizerScope SanScope(&CGF);
2787    llvm::Value *Valid =
2788        Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2789    EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2790  }
2791
2792  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2793    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2794  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2795}
2796
2797enum IntrinsicType { VCMPEQ, VCMPGT };
2798// return corresponding comparison intrinsic for given vector type
2799static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2800                                        BuiltinType::Kind ElemKind) {
2801  switch (ElemKind) {
2802  default: llvm_unreachable("unexpected element type");
2803  case BuiltinType::Char_U:
2804  case BuiltinType::UChar:
2805    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2806                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2807  case BuiltinType::Char_S:
2808  case BuiltinType::SChar:
2809    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2810                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2811  case BuiltinType::UShort:
2812    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2813                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2814  case BuiltinType::Short:
2815    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2816                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2817  case BuiltinType::UInt:
2818  case BuiltinType::ULong:
2819    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2820                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2821  case BuiltinType::Int:
2822  case BuiltinType::Long:
2823    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2824                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2825  case BuiltinType::Float:
2826    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2827                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2828  }
2829}
2830
2831Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2832                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2833  TestAndClearIgnoreResultAssign();
2834  Value *Result;
2835  QualType LHSTy = E->getLHS()->getType();
2836  QualType RHSTy = E->getRHS()->getType();
2837  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2838    assert(E->getOpcode() == BO_EQ ||
2839           E->getOpcode() == BO_NE);
2840    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2841    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2842    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2843                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2844  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2845    Value *LHS = Visit(E->getLHS());
2846    Value *RHS = Visit(E->getRHS());
2847
2848    // If AltiVec, the comparison results in a numeric type, so we use
2849    // intrinsics comparing vectors and giving 0 or 1 as a result
2850    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2851      // constants for mapping CR6 register bits to predicate result
2852      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2853
2854      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2855
2856      // in several cases vector arguments order will be reversed
2857      Value *FirstVecArg = LHS,
2858            *SecondVecArg = RHS;
2859
2860      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2861      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2862      BuiltinType::Kind ElementKind = BTy->getKind();
2863
2864      switch(E->getOpcode()) {
2865      default: llvm_unreachable("is not a comparison operation");
2866      case BO_EQ:
2867        CR6 = CR6_LT;
2868        ID = GetIntrinsic(VCMPEQ, ElementKind);
2869        break;
2870      case BO_NE:
2871        CR6 = CR6_EQ;
2872        ID = GetIntrinsic(VCMPEQ, ElementKind);
2873        break;
2874      case BO_LT:
2875        CR6 = CR6_LT;
2876        ID = GetIntrinsic(VCMPGT, ElementKind);
2877        std::swap(FirstVecArg, SecondVecArg);
2878        break;
2879      case BO_GT:
2880        CR6 = CR6_LT;
2881        ID = GetIntrinsic(VCMPGT, ElementKind);
2882        break;
2883      case BO_LE:
2884        if (ElementKind == BuiltinType::Float) {
2885          CR6 = CR6_LT;
2886          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2887          std::swap(FirstVecArg, SecondVecArg);
2888        }
2889        else {
2890          CR6 = CR6_EQ;
2891          ID = GetIntrinsic(VCMPGT, ElementKind);
2892        }
2893        break;
2894      case BO_GE:
2895        if (ElementKind == BuiltinType::Float) {
2896          CR6 = CR6_LT;
2897          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2898        }
2899        else {
2900          CR6 = CR6_EQ;
2901          ID = GetIntrinsic(VCMPGT, ElementKind);
2902          std::swap(FirstVecArg, SecondVecArg);
2903        }
2904        break;
2905      }
2906
2907      Value *CR6Param = Builder.getInt32(CR6);
2908      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2909      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2910      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2911    }
2912
2913    if (LHS->getType()->isFPOrFPVectorTy()) {
2914      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2915                                  LHS, RHS, "cmp");
2916    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2917      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2918                                  LHS, RHS, "cmp");
2919    } else {
2920      // Unsigned integers and pointers.
2921      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2922                                  LHS, RHS, "cmp");
2923    }
2924
2925    // If this is a vector comparison, sign extend the result to the appropriate
2926    // vector integer type and return it (don't convert to bool).
2927    if (LHSTy->isVectorType())
2928      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2929
2930  } else {
2931    // Complex Comparison: can only be an equality comparison.
2932    CodeGenFunction::ComplexPairTy LHS, RHS;
2933    QualType CETy;
2934    if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2935      LHS = CGF.EmitComplexExpr(E->getLHS());
2936      CETy = CTy->getElementType();
2937    } else {
2938      LHS.first = Visit(E->getLHS());
2939      LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2940      CETy = LHSTy;
2941    }
2942    if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2943      RHS = CGF.EmitComplexExpr(E->getRHS());
2944      assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2945                                                     CTy->getElementType()) &&
2946             "The element types must always match.");
2947      (void)CTy;
2948    } else {
2949      RHS.first = Visit(E->getRHS());
2950      RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2951      assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2952             "The element types must always match.");
2953    }
2954
2955    Value *ResultR, *ResultI;
2956    if (CETy->isRealFloatingType()) {
2957      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2958                                   LHS.first, RHS.first, "cmp.r");
2959      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2960                                   LHS.second, RHS.second, "cmp.i");
2961    } else {
2962      // Complex comparisons can only be equality comparisons.  As such, signed
2963      // and unsigned opcodes are the same.
2964      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2965                                   LHS.first, RHS.first, "cmp.r");
2966      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2967                                   LHS.second, RHS.second, "cmp.i");
2968    }
2969
2970    if (E->getOpcode() == BO_EQ) {
2971      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2972    } else {
2973      assert(E->getOpcode() == BO_NE &&
2974             "Complex comparison other than == or != ?");
2975      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2976    }
2977  }
2978
2979  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2980}
2981
2982Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2983  bool Ignore = TestAndClearIgnoreResultAssign();
2984
2985  Value *RHS;
2986  LValue LHS;
2987
2988  switch (E->getLHS()->getType().getObjCLifetime()) {
2989  case Qualifiers::OCL_Strong:
2990    std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2991    break;
2992
2993  case Qualifiers::OCL_Autoreleasing:
2994    std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2995    break;
2996
2997  case Qualifiers::OCL_Weak:
2998    RHS = Visit(E->getRHS());
2999    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3000    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3001    break;
3002
3003  // No reason to do any of these differently.
3004  case Qualifiers::OCL_None:
3005  case Qualifiers::OCL_ExplicitNone:
3006    // __block variables need to have the rhs evaluated first, plus
3007    // this should improve codegen just a little.
3008    RHS = Visit(E->getRHS());
3009    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3010
3011    // Store the value into the LHS.  Bit-fields are handled specially
3012    // because the result is altered by the store, i.e., [C99 6.5.16p1]
3013    // 'An assignment expression has the value of the left operand after
3014    // the assignment...'.
3015    if (LHS.isBitField())
3016      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3017    else
3018      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3019  }
3020
3021  // If the result is clearly ignored, return now.
3022  if (Ignore)
3023    return nullptr;
3024
3025  // The result of an assignment in C is the assigned r-value.
3026  if (!CGF.getLangOpts().CPlusPlus)
3027    return RHS;
3028
3029  // If the lvalue is non-volatile, return the computed value of the assignment.
3030  if (!LHS.isVolatileQualified())
3031    return RHS;
3032
3033  // Otherwise, reload the value.
3034  return EmitLoadOfLValue(LHS, E->getExprLoc());
3035}
3036
3037Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3038  RegionCounter Cnt = CGF.getPGORegionCounter(E);
3039
3040  // Perform vector logical and on comparisons with zero vectors.
3041  if (E->getType()->isVectorType()) {
3042    Cnt.beginRegion(Builder);
3043
3044    Value *LHS = Visit(E->getLHS());
3045    Value *RHS = Visit(E->getRHS());
3046    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047    if (LHS->getType()->isFPOrFPVectorTy()) {
3048      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050    } else {
3051      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053    }
3054    Value *And = Builder.CreateAnd(LHS, RHS);
3055    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056  }
3057
3058  llvm::Type *ResTy = ConvertType(E->getType());
3059
3060  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061  // If we have 1 && X, just emit X without inserting the control flow.
3062  bool LHSCondVal;
3063  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064    if (LHSCondVal) { // If we have 1 && X, just emit X.
3065      Cnt.beginRegion(Builder);
3066
3067      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068      // ZExt result to int or bool.
3069      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070    }
3071
3072    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073    if (!CGF.ContainsLabel(E->getRHS()))
3074      return llvm::Constant::getNullValue(ResTy);
3075  }
3076
3077  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3079
3080  CodeGenFunction::ConditionalEvaluation eval(CGF);
3081
3082  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3083  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
3084
3085  // Any edges into the ContBlock are now from an (indeterminate number of)
3086  // edges from this first condition.  All of these values will be false.  Start
3087  // setting up the PHI node in the Cont Block for this.
3088  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3089                                            "", ContBlock);
3090  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3091       PI != PE; ++PI)
3092    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3093
3094  eval.begin(CGF);
3095  CGF.EmitBlock(RHSBlock);
3096  Cnt.beginRegion(Builder);
3097  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3098  eval.end(CGF);
3099
3100  // Reaquire the RHS block, as there may be subblocks inserted.
3101  RHSBlock = Builder.GetInsertBlock();
3102
3103  // Emit an unconditional branch from this block to ContBlock.
3104  {
3105    // There is no need to emit line number for unconditional branch.
3106    auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3107    CGF.EmitBlock(ContBlock);
3108  }
3109  // Insert an entry into the phi node for the edge with the value of RHSCond.
3110  PN->addIncoming(RHSCond, RHSBlock);
3111
3112  // ZExt result to int.
3113  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3114}
3115
3116Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3117  RegionCounter Cnt = CGF.getPGORegionCounter(E);
3118
3119  // Perform vector logical or on comparisons with zero vectors.
3120  if (E->getType()->isVectorType()) {
3121    Cnt.beginRegion(Builder);
3122
3123    Value *LHS = Visit(E->getLHS());
3124    Value *RHS = Visit(E->getRHS());
3125    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3126    if (LHS->getType()->isFPOrFPVectorTy()) {
3127      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3128      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3129    } else {
3130      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3131      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3132    }
3133    Value *Or = Builder.CreateOr(LHS, RHS);
3134    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3135  }
3136
3137  llvm::Type *ResTy = ConvertType(E->getType());
3138
3139  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3140  // If we have 0 || X, just emit X without inserting the control flow.
3141  bool LHSCondVal;
3142  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3143    if (!LHSCondVal) { // If we have 0 || X, just emit X.
3144      Cnt.beginRegion(Builder);
3145
3146      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3147      // ZExt result to int or bool.
3148      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3149    }
3150
3151    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3152    if (!CGF.ContainsLabel(E->getRHS()))
3153      return llvm::ConstantInt::get(ResTy, 1);
3154  }
3155
3156  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3157  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3158
3159  CodeGenFunction::ConditionalEvaluation eval(CGF);
3160
3161  // Branch on the LHS first.  If it is true, go to the success (cont) block.
3162  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3163                           Cnt.getParentCount() - Cnt.getCount());
3164
3165  // Any edges into the ContBlock are now from an (indeterminate number of)
3166  // edges from this first condition.  All of these values will be true.  Start
3167  // setting up the PHI node in the Cont Block for this.
3168  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169                                            "", ContBlock);
3170  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171       PI != PE; ++PI)
3172    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173
3174  eval.begin(CGF);
3175
3176  // Emit the RHS condition as a bool value.
3177  CGF.EmitBlock(RHSBlock);
3178  Cnt.beginRegion(Builder);
3179  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180
3181  eval.end(CGF);
3182
3183  // Reaquire the RHS block, as there may be subblocks inserted.
3184  RHSBlock = Builder.GetInsertBlock();
3185
3186  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3187  // into the phi node for the edge with the value of RHSCond.
3188  CGF.EmitBlock(ContBlock);
3189  PN->addIncoming(RHSCond, RHSBlock);
3190
3191  // ZExt result to int.
3192  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193}
3194
3195Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196  CGF.EmitIgnoredExpr(E->getLHS());
3197  CGF.EnsureInsertPoint();
3198  return Visit(E->getRHS());
3199}
3200
3201//===----------------------------------------------------------------------===//
3202//                             Other Operators
3203//===----------------------------------------------------------------------===//
3204
3205/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206/// expression is cheap enough and side-effect-free enough to evaluate
3207/// unconditionally instead of conditionally.  This is used to convert control
3208/// flow into selects in some cases.
3209static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210                                                   CodeGenFunction &CGF) {
3211  // Anything that is an integer or floating point constant is fine.
3212  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213
3214  // Even non-volatile automatic variables can't be evaluated unconditionally.
3215  // Referencing a thread_local may cause non-trivial initialization work to
3216  // occur. If we're inside a lambda and one of the variables is from the scope
3217  // outside the lambda, that function may have returned already. Reading its
3218  // locals is a bad idea. Also, these reads may introduce races there didn't
3219  // exist in the source-level program.
3220}
3221
3222
3223Value *ScalarExprEmitter::
3224VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225  TestAndClearIgnoreResultAssign();
3226
3227  // Bind the common expression if necessary.
3228  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229  RegionCounter Cnt = CGF.getPGORegionCounter(E);
3230
3231  Expr *condExpr = E->getCond();
3232  Expr *lhsExpr = E->getTrueExpr();
3233  Expr *rhsExpr = E->getFalseExpr();
3234
3235  // If the condition constant folds and can be elided, try to avoid emitting
3236  // the condition and the dead arm.
3237  bool CondExprBool;
3238  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3239    Expr *live = lhsExpr, *dead = rhsExpr;
3240    if (!CondExprBool) std::swap(live, dead);
3241
3242    // If the dead side doesn't have labels we need, just emit the Live part.
3243    if (!CGF.ContainsLabel(dead)) {
3244      if (CondExprBool)
3245        Cnt.beginRegion(Builder);
3246      Value *Result = Visit(live);
3247
3248      // If the live part is a throw expression, it acts like it has a void
3249      // type, so evaluating it returns a null Value*.  However, a conditional
3250      // with non-void type must return a non-null Value*.
3251      if (!Result && !E->getType()->isVoidType())
3252        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3253
3254      return Result;
3255    }
3256  }
3257
3258  // OpenCL: If the condition is a vector, we can treat this condition like
3259  // the select function.
3260  if (CGF.getLangOpts().OpenCL
3261      && condExpr->getType()->isVectorType()) {
3262    Cnt.beginRegion(Builder);
3263
3264    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3265    llvm::Value *LHS = Visit(lhsExpr);
3266    llvm::Value *RHS = Visit(rhsExpr);
3267
3268    llvm::Type *condType = ConvertType(condExpr->getType());
3269    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3270
3271    unsigned numElem = vecTy->getNumElements();
3272    llvm::Type *elemType = vecTy->getElementType();
3273
3274    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3275    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3276    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3277                                          llvm::VectorType::get(elemType,
3278                                                                numElem),
3279                                          "sext");
3280    llvm::Value *tmp2 = Builder.CreateNot(tmp);
3281
3282    // Cast float to int to perform ANDs if necessary.
3283    llvm::Value *RHSTmp = RHS;
3284    llvm::Value *LHSTmp = LHS;
3285    bool wasCast = false;
3286    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3287    if (rhsVTy->getElementType()->isFloatingPointTy()) {
3288      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3289      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3290      wasCast = true;
3291    }
3292
3293    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3294    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3295    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3296    if (wasCast)
3297      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3298
3299    return tmp5;
3300  }
3301
3302  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3303  // select instead of as control flow.  We can only do this if it is cheap and
3304  // safe to evaluate the LHS and RHS unconditionally.
3305  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3306      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3307    Cnt.beginRegion(Builder);
3308
3309    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3310    llvm::Value *LHS = Visit(lhsExpr);
3311    llvm::Value *RHS = Visit(rhsExpr);
3312    if (!LHS) {
3313      // If the conditional has void type, make sure we return a null Value*.
3314      assert(!RHS && "LHS and RHS types must match");
3315      return nullptr;
3316    }
3317    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3318  }
3319
3320  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3321  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3322  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3323
3324  CodeGenFunction::ConditionalEvaluation eval(CGF);
3325  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3326
3327  CGF.EmitBlock(LHSBlock);
3328  Cnt.beginRegion(Builder);
3329  eval.begin(CGF);
3330  Value *LHS = Visit(lhsExpr);
3331  eval.end(CGF);
3332
3333  LHSBlock = Builder.GetInsertBlock();
3334  Builder.CreateBr(ContBlock);
3335
3336  CGF.EmitBlock(RHSBlock);
3337  eval.begin(CGF);
3338  Value *RHS = Visit(rhsExpr);
3339  eval.end(CGF);
3340
3341  RHSBlock = Builder.GetInsertBlock();
3342  CGF.EmitBlock(ContBlock);
3343
3344  // If the LHS or RHS is a throw expression, it will be legitimately null.
3345  if (!LHS)
3346    return RHS;
3347  if (!RHS)
3348    return LHS;
3349
3350  // Create a PHI node for the real part.
3351  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352  PN->addIncoming(LHS, LHSBlock);
3353  PN->addIncoming(RHS, RHSBlock);
3354  return PN;
3355}
3356
3357Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358  return Visit(E->getChosenSubExpr());
3359}
3360
3361Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362  QualType Ty = VE->getType();
3363
3364  if (Ty->isVariablyModifiedType())
3365    CGF.EmitVariablyModifiedType(Ty);
3366
3367  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3368  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3369  llvm::Type *ArgTy = ConvertType(VE->getType());
3370
3371  // If EmitVAArg fails, we fall back to the LLVM instruction.
3372  if (!ArgPtr)
3373    return Builder.CreateVAArg(ArgValue, ArgTy);
3374
3375  // FIXME Volatility.
3376  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3377
3378  // If EmitVAArg promoted the type, we must truncate it.
3379  if (ArgTy != Val->getType()) {
3380    if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3381      Val = Builder.CreateIntToPtr(Val, ArgTy);
3382    else
3383      Val = Builder.CreateTrunc(Val, ArgTy);
3384  }
3385
3386  return Val;
3387}
3388
3389Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3390  return CGF.EmitBlockLiteral(block);
3391}
3392
3393Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3394  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3395  llvm::Type *DstTy = ConvertType(E->getType());
3396
3397  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3398  // a shuffle vector instead of a bitcast.
3399  llvm::Type *SrcTy = Src->getType();
3400  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3401    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3402    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3403    if ((numElementsDst == 3 && numElementsSrc == 4)
3404        || (numElementsDst == 4 && numElementsSrc == 3)) {
3405
3406
3407      // In the case of going from int4->float3, a bitcast is needed before
3408      // doing a shuffle.
3409      llvm::Type *srcElemTy =
3410      cast<llvm::VectorType>(SrcTy)->getElementType();
3411      llvm::Type *dstElemTy =
3412      cast<llvm::VectorType>(DstTy)->getElementType();
3413
3414      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3415          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3416        // Create a float type of the same size as the source or destination.
3417        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3418                                                                 numElementsSrc);
3419
3420        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3421      }
3422
3423      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3424
3425      SmallVector<llvm::Constant*, 3> Args;
3426      Args.push_back(Builder.getInt32(0));
3427      Args.push_back(Builder.getInt32(1));
3428      Args.push_back(Builder.getInt32(2));
3429
3430      if (numElementsDst == 4)
3431        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3432
3433      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3434
3435      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3436    }
3437  }
3438
3439  return Builder.CreateBitCast(Src, DstTy, "astype");
3440}
3441
3442Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3443  return CGF.EmitAtomicExpr(E).getScalarVal();
3444}
3445
3446//===----------------------------------------------------------------------===//
3447//                         Entry Point into this File
3448//===----------------------------------------------------------------------===//
3449
3450/// EmitScalarExpr - Emit the computation of the specified expression of scalar
3451/// type, ignoring the result.
3452Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3453  assert(E && hasScalarEvaluationKind(E->getType()) &&
3454         "Invalid scalar expression to emit");
3455
3456  return ScalarExprEmitter(*this, IgnoreResultAssign)
3457      .Visit(const_cast<Expr *>(E));
3458}
3459
3460/// EmitScalarConversion - Emit a conversion from the specified type to the
3461/// specified destination type, both of which are LLVM scalar types.
3462Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3463                                             QualType DstTy) {
3464  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3465         "Invalid scalar expression to emit");
3466  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3467}
3468
3469/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3470/// type to the specified destination type, where the destination type is an
3471/// LLVM scalar type.
3472Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3473                                                      QualType SrcTy,
3474                                                      QualType DstTy) {
3475  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3476         "Invalid complex -> scalar conversion");
3477  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3478                                                                DstTy);
3479}
3480
3481
3482llvm::Value *CodeGenFunction::
3483EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3484                        bool isInc, bool isPre) {
3485  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3486}
3487
3488LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3489  llvm::Value *V;
3490  // object->isa or (*object).isa
3491  // Generate code as for: *(Class*)object
3492  // build Class* type
3493  llvm::Type *ClassPtrTy = ConvertType(E->getType());
3494
3495  Expr *BaseExpr = E->getBase();
3496  if (BaseExpr->isRValue()) {
3497    V = CreateMemTemp(E->getType(), "resval");
3498    llvm::Value *Src = EmitScalarExpr(BaseExpr);
3499    Builder.CreateStore(Src, V);
3500    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3501      MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3502  } else {
3503    if (E->isArrow())
3504      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3505    else
3506      V = EmitLValue(BaseExpr).getAddress();
3507  }
3508
3509  // build Class* type
3510  ClassPtrTy = ClassPtrTy->getPointerTo();
3511  V = Builder.CreateBitCast(V, ClassPtrTy);
3512  return MakeNaturalAlignAddrLValue(V, E->getType());
3513}
3514
3515
3516LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3517                                            const CompoundAssignOperator *E) {
3518  ScalarExprEmitter Scalar(*this);
3519  Value *Result = nullptr;
3520  switch (E->getOpcode()) {
3521#define COMPOUND_OP(Op)                                                       \
3522    case BO_##Op##Assign:                                                     \
3523      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3524                                             Result)
3525  COMPOUND_OP(Mul);
3526  COMPOUND_OP(Div);
3527  COMPOUND_OP(Rem);
3528  COMPOUND_OP(Add);
3529  COMPOUND_OP(Sub);
3530  COMPOUND_OP(Shl);
3531  COMPOUND_OP(Shr);
3532  COMPOUND_OP(And);
3533  COMPOUND_OP(Xor);
3534  COMPOUND_OP(Or);
3535#undef COMPOUND_OP
3536
3537  case BO_PtrMemD:
3538  case BO_PtrMemI:
3539  case BO_Mul:
3540  case BO_Div:
3541  case BO_Rem:
3542  case BO_Add:
3543  case BO_Sub:
3544  case BO_Shl:
3545  case BO_Shr:
3546  case BO_LT:
3547  case BO_GT:
3548  case BO_LE:
3549  case BO_GE:
3550  case BO_EQ:
3551  case BO_NE:
3552  case BO_And:
3553  case BO_Xor:
3554  case BO_Or:
3555  case BO_LAnd:
3556  case BO_LOr:
3557  case BO_Assign:
3558  case BO_Comma:
3559    llvm_unreachable("Not valid compound assignment operators");
3560  }
3561
3562  llvm_unreachable("Unhandled compound assignment operator");
3563}
3564