CodeGenModule.cpp revision dbd3c85825ad59896292ac7d326fe1985768f1e3
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This coordinates the per-module state used while generating code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenModule.h" 15#include "CGDebugInfo.h" 16#include "CodeGenFunction.h" 17#include "CodeGenTBAA.h" 18#include "CGCall.h" 19#include "CGCXXABI.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/Frontend/CodeGenOptions.h" 23#include "clang/AST/ASTContext.h" 24#include "clang/AST/CharUnits.h" 25#include "clang/AST/DeclObjC.h" 26#include "clang/AST/DeclCXX.h" 27#include "clang/AST/DeclTemplate.h" 28#include "clang/AST/Mangle.h" 29#include "clang/AST/RecordLayout.h" 30#include "clang/Basic/Builtins.h" 31#include "clang/Basic/Diagnostic.h" 32#include "clang/Basic/SourceManager.h" 33#include "clang/Basic/TargetInfo.h" 34#include "clang/Basic/ConvertUTF.h" 35#include "llvm/CallingConv.h" 36#include "llvm/Module.h" 37#include "llvm/Intrinsics.h" 38#include "llvm/LLVMContext.h" 39#include "llvm/ADT/Triple.h" 40#include "llvm/Target/Mangler.h" 41#include "llvm/Target/TargetData.h" 42#include "llvm/Support/CallSite.h" 43#include "llvm/Support/ErrorHandling.h" 44using namespace clang; 45using namespace CodeGen; 46 47static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56} 57 58 59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 66 TBAA(0), 67 VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info or coverage generation is enabled, create the CGDebugInfo 84 // object. 85 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 86 CodeGenOpts.EmitGcovNotes) 87 DebugInfo = new CGDebugInfo(*this); 88 89 Block.GlobalUniqueCount = 0; 90 91 if (C.getLangOptions().ObjCAutoRefCount) 92 ARCData = new ARCEntrypoints(); 93 RRData = new RREntrypoints(); 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 PointerWidthInBits = C.Target.getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108} 109 110CodeGenModule::~CodeGenModule() { 111 delete Runtime; 112 delete &ABI; 113 delete TBAA; 114 delete DebugInfo; 115 delete ARCData; 116 delete RRData; 117} 118 119void CodeGenModule::createObjCRuntime() { 120 if (!Features.NeXTRuntime) 121 Runtime = CreateGNUObjCRuntime(*this); 122 else 123 Runtime = CreateMacObjCRuntime(*this); 124} 125 126void CodeGenModule::Release() { 127 EmitDeferred(); 128 EmitCXXGlobalInitFunc(); 129 EmitCXXGlobalDtorFunc(); 130 if (Runtime) 131 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 132 AddGlobalCtor(ObjCInitFunction); 133 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 134 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 135 EmitAnnotations(); 136 EmitLLVMUsed(); 137 138 SimplifyPersonality(); 139 140 if (getCodeGenOpts().EmitDeclMetadata) 141 EmitDeclMetadata(); 142 143 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 144 EmitCoverageFile(); 145} 146 147void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 148 // Make sure that this type is translated. 149 Types.UpdateCompletedType(TD); 150 if (DebugInfo) 151 DebugInfo->UpdateCompletedType(TD); 152} 153 154llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 155 if (!TBAA) 156 return 0; 157 return TBAA->getTBAAInfo(QTy); 158} 159 160void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 161 llvm::MDNode *TBAAInfo) { 162 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 163} 164 165bool CodeGenModule::isTargetDarwin() const { 166 return getContext().Target.getTriple().isOSDarwin(); 167} 168 169void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 170 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 171 getDiags().Report(Context.getFullLoc(loc), diagID); 172} 173 174/// ErrorUnsupported - Print out an error that codegen doesn't support the 175/// specified stmt yet. 176void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 177 bool OmitOnError) { 178 if (OmitOnError && getDiags().hasErrorOccurred()) 179 return; 180 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 181 "cannot compile this %0 yet"); 182 std::string Msg = Type; 183 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 184 << Msg << S->getSourceRange(); 185} 186 187/// ErrorUnsupported - Print out an error that codegen doesn't support the 188/// specified decl yet. 189void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 190 bool OmitOnError) { 191 if (OmitOnError && getDiags().hasErrorOccurred()) 192 return; 193 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 194 "cannot compile this %0 yet"); 195 std::string Msg = Type; 196 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 197} 198 199llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 200 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 201} 202 203void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 204 const NamedDecl *D) const { 205 // Internal definitions always have default visibility. 206 if (GV->hasLocalLinkage()) { 207 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 208 return; 209 } 210 211 // Set visibility for definitions. 212 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 213 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 214 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 215} 216 217/// Set the symbol visibility of type information (vtable and RTTI) 218/// associated with the given type. 219void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 220 const CXXRecordDecl *RD, 221 TypeVisibilityKind TVK) const { 222 setGlobalVisibility(GV, RD); 223 224 if (!CodeGenOpts.HiddenWeakVTables) 225 return; 226 227 // We never want to drop the visibility for RTTI names. 228 if (TVK == TVK_ForRTTIName) 229 return; 230 231 // We want to drop the visibility to hidden for weak type symbols. 232 // This isn't possible if there might be unresolved references 233 // elsewhere that rely on this symbol being visible. 234 235 // This should be kept roughly in sync with setThunkVisibility 236 // in CGVTables.cpp. 237 238 // Preconditions. 239 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 240 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 241 return; 242 243 // Don't override an explicit visibility attribute. 244 if (RD->getExplicitVisibility()) 245 return; 246 247 switch (RD->getTemplateSpecializationKind()) { 248 // We have to disable the optimization if this is an EI definition 249 // because there might be EI declarations in other shared objects. 250 case TSK_ExplicitInstantiationDefinition: 251 case TSK_ExplicitInstantiationDeclaration: 252 return; 253 254 // Every use of a non-template class's type information has to emit it. 255 case TSK_Undeclared: 256 break; 257 258 // In theory, implicit instantiations can ignore the possibility of 259 // an explicit instantiation declaration because there necessarily 260 // must be an EI definition somewhere with default visibility. In 261 // practice, it's possible to have an explicit instantiation for 262 // an arbitrary template class, and linkers aren't necessarily able 263 // to deal with mixed-visibility symbols. 264 case TSK_ExplicitSpecialization: 265 case TSK_ImplicitInstantiation: 266 if (!CodeGenOpts.HiddenWeakTemplateVTables) 267 return; 268 break; 269 } 270 271 // If there's a key function, there may be translation units 272 // that don't have the key function's definition. But ignore 273 // this if we're emitting RTTI under -fno-rtti. 274 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 275 if (Context.getKeyFunction(RD)) 276 return; 277 } 278 279 // Otherwise, drop the visibility to hidden. 280 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 281 GV->setUnnamedAddr(true); 282} 283 284llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 285 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 286 287 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 288 if (!Str.empty()) 289 return Str; 290 291 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 292 IdentifierInfo *II = ND->getIdentifier(); 293 assert(II && "Attempt to mangle unnamed decl."); 294 295 Str = II->getName(); 296 return Str; 297 } 298 299 llvm::SmallString<256> Buffer; 300 llvm::raw_svector_ostream Out(Buffer); 301 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 302 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 303 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 304 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 305 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 306 getCXXABI().getMangleContext().mangleBlock(BD, Out); 307 else 308 getCXXABI().getMangleContext().mangleName(ND, Out); 309 310 // Allocate space for the mangled name. 311 Out.flush(); 312 size_t Length = Buffer.size(); 313 char *Name = MangledNamesAllocator.Allocate<char>(Length); 314 std::copy(Buffer.begin(), Buffer.end(), Name); 315 316 Str = llvm::StringRef(Name, Length); 317 318 return Str; 319} 320 321void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 322 const BlockDecl *BD) { 323 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 324 const Decl *D = GD.getDecl(); 325 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 326 if (D == 0) 327 MangleCtx.mangleGlobalBlock(BD, Out); 328 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 329 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 330 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 331 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 332 else 333 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 334} 335 336llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 337 return getModule().getNamedValue(Name); 338} 339 340/// AddGlobalCtor - Add a function to the list that will be called before 341/// main() runs. 342void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 343 // FIXME: Type coercion of void()* types. 344 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 345} 346 347/// AddGlobalDtor - Add a function to the list that will be called 348/// when the module is unloaded. 349void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 350 // FIXME: Type coercion of void()* types. 351 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 352} 353 354void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 355 // Ctor function type is void()*. 356 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 357 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 358 359 // Get the type of a ctor entry, { i32, void ()* }. 360 llvm::StructType *CtorStructTy = 361 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 362 llvm::PointerType::getUnqual(CtorFTy), NULL); 363 364 // Construct the constructor and destructor arrays. 365 std::vector<llvm::Constant*> Ctors; 366 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 367 std::vector<llvm::Constant*> S; 368 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 369 I->second, false)); 370 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 371 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 372 } 373 374 if (!Ctors.empty()) { 375 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 376 new llvm::GlobalVariable(TheModule, AT, false, 377 llvm::GlobalValue::AppendingLinkage, 378 llvm::ConstantArray::get(AT, Ctors), 379 GlobalName); 380 } 381} 382 383void CodeGenModule::EmitAnnotations() { 384 if (Annotations.empty()) 385 return; 386 387 // Create a new global variable for the ConstantStruct in the Module. 388 llvm::Constant *Array = 389 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 390 Annotations.size()), 391 Annotations); 392 llvm::GlobalValue *gv = 393 new llvm::GlobalVariable(TheModule, Array->getType(), false, 394 llvm::GlobalValue::AppendingLinkage, Array, 395 "llvm.global.annotations"); 396 gv->setSection("llvm.metadata"); 397} 398 399llvm::GlobalValue::LinkageTypes 400CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 401 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 402 403 if (Linkage == GVA_Internal) 404 return llvm::Function::InternalLinkage; 405 406 if (D->hasAttr<DLLExportAttr>()) 407 return llvm::Function::DLLExportLinkage; 408 409 if (D->hasAttr<WeakAttr>()) 410 return llvm::Function::WeakAnyLinkage; 411 412 // In C99 mode, 'inline' functions are guaranteed to have a strong 413 // definition somewhere else, so we can use available_externally linkage. 414 if (Linkage == GVA_C99Inline) 415 return llvm::Function::AvailableExternallyLinkage; 416 417 // In C++, the compiler has to emit a definition in every translation unit 418 // that references the function. We should use linkonce_odr because 419 // a) if all references in this translation unit are optimized away, we 420 // don't need to codegen it. b) if the function persists, it needs to be 421 // merged with other definitions. c) C++ has the ODR, so we know the 422 // definition is dependable. 423 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 424 return !Context.getLangOptions().AppleKext 425 ? llvm::Function::LinkOnceODRLinkage 426 : llvm::Function::InternalLinkage; 427 428 // An explicit instantiation of a template has weak linkage, since 429 // explicit instantiations can occur in multiple translation units 430 // and must all be equivalent. However, we are not allowed to 431 // throw away these explicit instantiations. 432 if (Linkage == GVA_ExplicitTemplateInstantiation) 433 return !Context.getLangOptions().AppleKext 434 ? llvm::Function::WeakODRLinkage 435 : llvm::Function::InternalLinkage; 436 437 // Otherwise, we have strong external linkage. 438 assert(Linkage == GVA_StrongExternal); 439 return llvm::Function::ExternalLinkage; 440} 441 442 443/// SetFunctionDefinitionAttributes - Set attributes for a global. 444/// 445/// FIXME: This is currently only done for aliases and functions, but not for 446/// variables (these details are set in EmitGlobalVarDefinition for variables). 447void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 448 llvm::GlobalValue *GV) { 449 SetCommonAttributes(D, GV); 450} 451 452void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 453 const CGFunctionInfo &Info, 454 llvm::Function *F) { 455 unsigned CallingConv; 456 AttributeListType AttributeList; 457 ConstructAttributeList(Info, D, AttributeList, CallingConv); 458 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 459 AttributeList.size())); 460 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 461} 462 463void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 464 llvm::Function *F) { 465 if (CodeGenOpts.UnwindTables) 466 F->setHasUWTable(); 467 468 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 469 F->addFnAttr(llvm::Attribute::NoUnwind); 470 471 if (D->hasAttr<AlwaysInlineAttr>()) 472 F->addFnAttr(llvm::Attribute::AlwaysInline); 473 474 if (D->hasAttr<NakedAttr>()) 475 F->addFnAttr(llvm::Attribute::Naked); 476 477 if (D->hasAttr<NoInlineAttr>()) 478 F->addFnAttr(llvm::Attribute::NoInline); 479 480 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 481 F->setUnnamedAddr(true); 482 483 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 484 F->addFnAttr(llvm::Attribute::StackProtect); 485 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 486 F->addFnAttr(llvm::Attribute::StackProtectReq); 487 488 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 489 if (alignment) 490 F->setAlignment(alignment); 491 492 // C++ ABI requires 2-byte alignment for member functions. 493 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 494 F->setAlignment(2); 495} 496 497void CodeGenModule::SetCommonAttributes(const Decl *D, 498 llvm::GlobalValue *GV) { 499 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 500 setGlobalVisibility(GV, ND); 501 else 502 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 503 504 if (D->hasAttr<UsedAttr>()) 505 AddUsedGlobal(GV); 506 507 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 508 GV->setSection(SA->getName()); 509 510 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 511} 512 513void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 514 llvm::Function *F, 515 const CGFunctionInfo &FI) { 516 SetLLVMFunctionAttributes(D, FI, F); 517 SetLLVMFunctionAttributesForDefinition(D, F); 518 519 F->setLinkage(llvm::Function::InternalLinkage); 520 521 SetCommonAttributes(D, F); 522} 523 524void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 525 llvm::Function *F, 526 bool IsIncompleteFunction) { 527 if (unsigned IID = F->getIntrinsicID()) { 528 // If this is an intrinsic function, set the function's attributes 529 // to the intrinsic's attributes. 530 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 531 return; 532 } 533 534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 535 536 if (!IsIncompleteFunction) 537 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 538 539 // Only a few attributes are set on declarations; these may later be 540 // overridden by a definition. 541 542 if (FD->hasAttr<DLLImportAttr>()) { 543 F->setLinkage(llvm::Function::DLLImportLinkage); 544 } else if (FD->hasAttr<WeakAttr>() || 545 FD->isWeakImported()) { 546 // "extern_weak" is overloaded in LLVM; we probably should have 547 // separate linkage types for this. 548 F->setLinkage(llvm::Function::ExternalWeakLinkage); 549 } else { 550 F->setLinkage(llvm::Function::ExternalLinkage); 551 552 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 553 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 554 F->setVisibility(GetLLVMVisibility(LV.visibility())); 555 } 556 } 557 558 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 559 F->setSection(SA->getName()); 560} 561 562void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 563 assert(!GV->isDeclaration() && 564 "Only globals with definition can force usage."); 565 LLVMUsed.push_back(GV); 566} 567 568void CodeGenModule::EmitLLVMUsed() { 569 // Don't create llvm.used if there is no need. 570 if (LLVMUsed.empty()) 571 return; 572 573 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 574 575 // Convert LLVMUsed to what ConstantArray needs. 576 std::vector<llvm::Constant*> UsedArray; 577 UsedArray.resize(LLVMUsed.size()); 578 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 579 UsedArray[i] = 580 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 581 i8PTy); 582 } 583 584 if (UsedArray.empty()) 585 return; 586 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 587 588 llvm::GlobalVariable *GV = 589 new llvm::GlobalVariable(getModule(), ATy, false, 590 llvm::GlobalValue::AppendingLinkage, 591 llvm::ConstantArray::get(ATy, UsedArray), 592 "llvm.used"); 593 594 GV->setSection("llvm.metadata"); 595} 596 597void CodeGenModule::EmitDeferred() { 598 // Emit code for any potentially referenced deferred decls. Since a 599 // previously unused static decl may become used during the generation of code 600 // for a static function, iterate until no changes are made. 601 602 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 603 if (!DeferredVTables.empty()) { 604 const CXXRecordDecl *RD = DeferredVTables.back(); 605 DeferredVTables.pop_back(); 606 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 607 continue; 608 } 609 610 GlobalDecl D = DeferredDeclsToEmit.back(); 611 DeferredDeclsToEmit.pop_back(); 612 613 // Check to see if we've already emitted this. This is necessary 614 // for a couple of reasons: first, decls can end up in the 615 // deferred-decls queue multiple times, and second, decls can end 616 // up with definitions in unusual ways (e.g. by an extern inline 617 // function acquiring a strong function redefinition). Just 618 // ignore these cases. 619 // 620 // TODO: That said, looking this up multiple times is very wasteful. 621 llvm::StringRef Name = getMangledName(D); 622 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 623 assert(CGRef && "Deferred decl wasn't referenced?"); 624 625 if (!CGRef->isDeclaration()) 626 continue; 627 628 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 629 // purposes an alias counts as a definition. 630 if (isa<llvm::GlobalAlias>(CGRef)) 631 continue; 632 633 // Otherwise, emit the definition and move on to the next one. 634 EmitGlobalDefinition(D); 635 } 636} 637 638/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 639/// annotation information for a given GlobalValue. The annotation struct is 640/// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 641/// GlobalValue being annotated. The second field is the constant string 642/// created from the AnnotateAttr's annotation. The third field is a constant 643/// string containing the name of the translation unit. The fourth field is 644/// the line number in the file of the annotated value declaration. 645/// 646/// FIXME: this does not unique the annotation string constants, as llvm-gcc 647/// appears to. 648/// 649llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 650 const AnnotateAttr *AA, 651 unsigned LineNo) { 652 llvm::Module *M = &getModule(); 653 654 // get [N x i8] constants for the annotation string, and the filename string 655 // which are the 2nd and 3rd elements of the global annotation structure. 656 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 657 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 658 AA->getAnnotation(), true); 659 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 660 M->getModuleIdentifier(), 661 true); 662 663 // Get the two global values corresponding to the ConstantArrays we just 664 // created to hold the bytes of the strings. 665 llvm::GlobalValue *annoGV = 666 new llvm::GlobalVariable(*M, anno->getType(), false, 667 llvm::GlobalValue::PrivateLinkage, anno, 668 GV->getName()); 669 // translation unit name string, emitted into the llvm.metadata section. 670 llvm::GlobalValue *unitGV = 671 new llvm::GlobalVariable(*M, unit->getType(), false, 672 llvm::GlobalValue::PrivateLinkage, unit, 673 ".str"); 674 unitGV->setUnnamedAddr(true); 675 676 // Create the ConstantStruct for the global annotation. 677 llvm::Constant *Fields[4] = { 678 llvm::ConstantExpr::getBitCast(GV, SBP), 679 llvm::ConstantExpr::getBitCast(annoGV, SBP), 680 llvm::ConstantExpr::getBitCast(unitGV, SBP), 681 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 682 }; 683 return llvm::ConstantStruct::getAnon(Fields); 684} 685 686bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 687 // Never defer when EmitAllDecls is specified. 688 if (Features.EmitAllDecls) 689 return false; 690 691 return !getContext().DeclMustBeEmitted(Global); 692} 693 694llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 695 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 696 assert(AA && "No alias?"); 697 698 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 699 700 // See if there is already something with the target's name in the module. 701 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 702 703 llvm::Constant *Aliasee; 704 if (isa<llvm::FunctionType>(DeclTy)) 705 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 706 /*ForVTable=*/false); 707 else 708 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 709 llvm::PointerType::getUnqual(DeclTy), 0); 710 if (!Entry) { 711 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 712 F->setLinkage(llvm::Function::ExternalWeakLinkage); 713 WeakRefReferences.insert(F); 714 } 715 716 return Aliasee; 717} 718 719void CodeGenModule::EmitGlobal(GlobalDecl GD) { 720 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 721 722 // Weak references don't produce any output by themselves. 723 if (Global->hasAttr<WeakRefAttr>()) 724 return; 725 726 // If this is an alias definition (which otherwise looks like a declaration) 727 // emit it now. 728 if (Global->hasAttr<AliasAttr>()) 729 return EmitAliasDefinition(GD); 730 731 // Ignore declarations, they will be emitted on their first use. 732 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 733 if (FD->getIdentifier()) { 734 llvm::StringRef Name = FD->getName(); 735 if (Name == "_Block_object_assign") { 736 BlockObjectAssignDecl = FD; 737 } else if (Name == "_Block_object_dispose") { 738 BlockObjectDisposeDecl = FD; 739 } 740 } 741 742 // Forward declarations are emitted lazily on first use. 743 if (!FD->doesThisDeclarationHaveABody()) 744 return; 745 } else { 746 const VarDecl *VD = cast<VarDecl>(Global); 747 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 748 749 if (VD->getIdentifier()) { 750 llvm::StringRef Name = VD->getName(); 751 if (Name == "_NSConcreteGlobalBlock") { 752 NSConcreteGlobalBlockDecl = VD; 753 } else if (Name == "_NSConcreteStackBlock") { 754 NSConcreteStackBlockDecl = VD; 755 } 756 } 757 758 759 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 760 return; 761 } 762 763 // Defer code generation when possible if this is a static definition, inline 764 // function etc. These we only want to emit if they are used. 765 if (!MayDeferGeneration(Global)) { 766 // Emit the definition if it can't be deferred. 767 EmitGlobalDefinition(GD); 768 return; 769 } 770 771 // If we're deferring emission of a C++ variable with an 772 // initializer, remember the order in which it appeared in the file. 773 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 774 cast<VarDecl>(Global)->hasInit()) { 775 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 776 CXXGlobalInits.push_back(0); 777 } 778 779 // If the value has already been used, add it directly to the 780 // DeferredDeclsToEmit list. 781 llvm::StringRef MangledName = getMangledName(GD); 782 if (GetGlobalValue(MangledName)) 783 DeferredDeclsToEmit.push_back(GD); 784 else { 785 // Otherwise, remember that we saw a deferred decl with this name. The 786 // first use of the mangled name will cause it to move into 787 // DeferredDeclsToEmit. 788 DeferredDecls[MangledName] = GD; 789 } 790} 791 792void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 793 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 794 795 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 796 Context.getSourceManager(), 797 "Generating code for declaration"); 798 799 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 800 // At -O0, don't generate IR for functions with available_externally 801 // linkage. 802 if (CodeGenOpts.OptimizationLevel == 0 && 803 !Function->hasAttr<AlwaysInlineAttr>() && 804 getFunctionLinkage(Function) 805 == llvm::Function::AvailableExternallyLinkage) 806 return; 807 808 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 809 // Make sure to emit the definition(s) before we emit the thunks. 810 // This is necessary for the generation of certain thunks. 811 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 812 EmitCXXConstructor(CD, GD.getCtorType()); 813 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 814 EmitCXXDestructor(DD, GD.getDtorType()); 815 else 816 EmitGlobalFunctionDefinition(GD); 817 818 if (Method->isVirtual()) 819 getVTables().EmitThunks(GD); 820 821 return; 822 } 823 824 return EmitGlobalFunctionDefinition(GD); 825 } 826 827 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 828 return EmitGlobalVarDefinition(VD); 829 830 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 831} 832 833/// GetOrCreateLLVMFunction - If the specified mangled name is not in the 834/// module, create and return an llvm Function with the specified type. If there 835/// is something in the module with the specified name, return it potentially 836/// bitcasted to the right type. 837/// 838/// If D is non-null, it specifies a decl that correspond to this. This is used 839/// to set the attributes on the function when it is first created. 840llvm::Constant * 841CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 842 const llvm::Type *Ty, 843 GlobalDecl D, bool ForVTable, 844 llvm::Attributes ExtraAttrs) { 845 // Lookup the entry, lazily creating it if necessary. 846 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 847 if (Entry) { 848 if (WeakRefReferences.count(Entry)) { 849 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 850 if (FD && !FD->hasAttr<WeakAttr>()) 851 Entry->setLinkage(llvm::Function::ExternalLinkage); 852 853 WeakRefReferences.erase(Entry); 854 } 855 856 if (Entry->getType()->getElementType() == Ty) 857 return Entry; 858 859 // Make sure the result is of the correct type. 860 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 861 return llvm::ConstantExpr::getBitCast(Entry, PTy); 862 } 863 864 // This function doesn't have a complete type (for example, the return 865 // type is an incomplete struct). Use a fake type instead, and make 866 // sure not to try to set attributes. 867 bool IsIncompleteFunction = false; 868 869 const llvm::FunctionType *FTy; 870 if (isa<llvm::FunctionType>(Ty)) { 871 FTy = cast<llvm::FunctionType>(Ty); 872 } else { 873 FTy = llvm::FunctionType::get(VoidTy, false); 874 IsIncompleteFunction = true; 875 } 876 877 llvm::Function *F = llvm::Function::Create(FTy, 878 llvm::Function::ExternalLinkage, 879 MangledName, &getModule()); 880 assert(F->getName() == MangledName && "name was uniqued!"); 881 if (D.getDecl()) 882 SetFunctionAttributes(D, F, IsIncompleteFunction); 883 if (ExtraAttrs != llvm::Attribute::None) 884 F->addFnAttr(ExtraAttrs); 885 886 // This is the first use or definition of a mangled name. If there is a 887 // deferred decl with this name, remember that we need to emit it at the end 888 // of the file. 889 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 890 if (DDI != DeferredDecls.end()) { 891 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 892 // list, and remove it from DeferredDecls (since we don't need it anymore). 893 DeferredDeclsToEmit.push_back(DDI->second); 894 DeferredDecls.erase(DDI); 895 896 // Otherwise, there are cases we have to worry about where we're 897 // using a declaration for which we must emit a definition but where 898 // we might not find a top-level definition: 899 // - member functions defined inline in their classes 900 // - friend functions defined inline in some class 901 // - special member functions with implicit definitions 902 // If we ever change our AST traversal to walk into class methods, 903 // this will be unnecessary. 904 // 905 // We also don't emit a definition for a function if it's going to be an entry 906 // in a vtable, unless it's already marked as used. 907 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 908 // Look for a declaration that's lexically in a record. 909 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 910 do { 911 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 912 if (FD->isImplicit() && !ForVTable) { 913 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 914 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 915 break; 916 } else if (FD->doesThisDeclarationHaveABody()) { 917 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 918 break; 919 } 920 } 921 FD = FD->getPreviousDeclaration(); 922 } while (FD); 923 } 924 925 // Make sure the result is of the requested type. 926 if (!IsIncompleteFunction) { 927 assert(F->getType()->getElementType() == Ty); 928 return F; 929 } 930 931 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 932 return llvm::ConstantExpr::getBitCast(F, PTy); 933} 934 935/// GetAddrOfFunction - Return the address of the given function. If Ty is 936/// non-null, then this function will use the specified type if it has to 937/// create it (this occurs when we see a definition of the function). 938llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 939 const llvm::Type *Ty, 940 bool ForVTable) { 941 // If there was no specific requested type, just convert it now. 942 if (!Ty) 943 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 944 945 llvm::StringRef MangledName = getMangledName(GD); 946 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 947} 948 949/// CreateRuntimeFunction - Create a new runtime function with the specified 950/// type and name. 951llvm::Constant * 952CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 953 llvm::StringRef Name, 954 llvm::Attributes ExtraAttrs) { 955 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 956 ExtraAttrs); 957} 958 959static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 960 bool ConstantInit) { 961 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 962 return false; 963 964 if (Context.getLangOptions().CPlusPlus) { 965 if (const RecordType *Record 966 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 967 return ConstantInit && 968 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 969 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 970 } 971 972 return true; 973} 974 975/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 976/// create and return an llvm GlobalVariable with the specified type. If there 977/// is something in the module with the specified name, return it potentially 978/// bitcasted to the right type. 979/// 980/// If D is non-null, it specifies a decl that correspond to this. This is used 981/// to set the attributes on the global when it is first created. 982llvm::Constant * 983CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 984 const llvm::PointerType *Ty, 985 const VarDecl *D, 986 bool UnnamedAddr) { 987 // Lookup the entry, lazily creating it if necessary. 988 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 989 if (Entry) { 990 if (WeakRefReferences.count(Entry)) { 991 if (D && !D->hasAttr<WeakAttr>()) 992 Entry->setLinkage(llvm::Function::ExternalLinkage); 993 994 WeakRefReferences.erase(Entry); 995 } 996 997 if (UnnamedAddr) 998 Entry->setUnnamedAddr(true); 999 1000 if (Entry->getType() == Ty) 1001 return Entry; 1002 1003 // Make sure the result is of the correct type. 1004 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1005 } 1006 1007 // This is the first use or definition of a mangled name. If there is a 1008 // deferred decl with this name, remember that we need to emit it at the end 1009 // of the file. 1010 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1011 if (DDI != DeferredDecls.end()) { 1012 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1013 // list, and remove it from DeferredDecls (since we don't need it anymore). 1014 DeferredDeclsToEmit.push_back(DDI->second); 1015 DeferredDecls.erase(DDI); 1016 } 1017 1018 llvm::GlobalVariable *GV = 1019 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1020 llvm::GlobalValue::ExternalLinkage, 1021 0, MangledName, 0, 1022 false, Ty->getAddressSpace()); 1023 1024 // Handle things which are present even on external declarations. 1025 if (D) { 1026 // FIXME: This code is overly simple and should be merged with other global 1027 // handling. 1028 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1029 1030 // Set linkage and visibility in case we never see a definition. 1031 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1032 if (LV.linkage() != ExternalLinkage) { 1033 // Don't set internal linkage on declarations. 1034 } else { 1035 if (D->hasAttr<DLLImportAttr>()) 1036 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1037 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1038 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1039 1040 // Set visibility on a declaration only if it's explicit. 1041 if (LV.visibilityExplicit()) 1042 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1043 } 1044 1045 GV->setThreadLocal(D->isThreadSpecified()); 1046 } 1047 1048 return GV; 1049} 1050 1051 1052llvm::GlobalVariable * 1053CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1054 const llvm::Type *Ty, 1055 llvm::GlobalValue::LinkageTypes Linkage) { 1056 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1057 llvm::GlobalVariable *OldGV = 0; 1058 1059 1060 if (GV) { 1061 // Check if the variable has the right type. 1062 if (GV->getType()->getElementType() == Ty) 1063 return GV; 1064 1065 // Because C++ name mangling, the only way we can end up with an already 1066 // existing global with the same name is if it has been declared extern "C". 1067 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1068 OldGV = GV; 1069 } 1070 1071 // Create a new variable. 1072 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1073 Linkage, 0, Name); 1074 1075 if (OldGV) { 1076 // Replace occurrences of the old variable if needed. 1077 GV->takeName(OldGV); 1078 1079 if (!OldGV->use_empty()) { 1080 llvm::Constant *NewPtrForOldDecl = 1081 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1082 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1083 } 1084 1085 OldGV->eraseFromParent(); 1086 } 1087 1088 return GV; 1089} 1090 1091/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1092/// given global variable. If Ty is non-null and if the global doesn't exist, 1093/// then it will be greated with the specified type instead of whatever the 1094/// normal requested type would be. 1095llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1096 const llvm::Type *Ty) { 1097 assert(D->hasGlobalStorage() && "Not a global variable"); 1098 QualType ASTTy = D->getType(); 1099 if (Ty == 0) 1100 Ty = getTypes().ConvertTypeForMem(ASTTy); 1101 1102 const llvm::PointerType *PTy = 1103 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1104 1105 llvm::StringRef MangledName = getMangledName(D); 1106 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1107} 1108 1109/// CreateRuntimeVariable - Create a new runtime global variable with the 1110/// specified type and name. 1111llvm::Constant * 1112CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1113 llvm::StringRef Name) { 1114 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1115 true); 1116} 1117 1118void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1119 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1120 1121 if (MayDeferGeneration(D)) { 1122 // If we have not seen a reference to this variable yet, place it 1123 // into the deferred declarations table to be emitted if needed 1124 // later. 1125 llvm::StringRef MangledName = getMangledName(D); 1126 if (!GetGlobalValue(MangledName)) { 1127 DeferredDecls[MangledName] = D; 1128 return; 1129 } 1130 } 1131 1132 // The tentative definition is the only definition. 1133 EmitGlobalVarDefinition(D); 1134} 1135 1136void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1137 if (DefinitionRequired) 1138 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1139} 1140 1141llvm::GlobalVariable::LinkageTypes 1142CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1143 if (RD->getLinkage() != ExternalLinkage) 1144 return llvm::GlobalVariable::InternalLinkage; 1145 1146 if (const CXXMethodDecl *KeyFunction 1147 = RD->getASTContext().getKeyFunction(RD)) { 1148 // If this class has a key function, use that to determine the linkage of 1149 // the vtable. 1150 const FunctionDecl *Def = 0; 1151 if (KeyFunction->hasBody(Def)) 1152 KeyFunction = cast<CXXMethodDecl>(Def); 1153 1154 switch (KeyFunction->getTemplateSpecializationKind()) { 1155 case TSK_Undeclared: 1156 case TSK_ExplicitSpecialization: 1157 // When compiling with optimizations turned on, we emit all vtables, 1158 // even if the key function is not defined in the current translation 1159 // unit. If this is the case, use available_externally linkage. 1160 if (!Def && CodeGenOpts.OptimizationLevel) 1161 return llvm::GlobalVariable::AvailableExternallyLinkage; 1162 1163 if (KeyFunction->isInlined()) 1164 return !Context.getLangOptions().AppleKext ? 1165 llvm::GlobalVariable::LinkOnceODRLinkage : 1166 llvm::Function::InternalLinkage; 1167 1168 return llvm::GlobalVariable::ExternalLinkage; 1169 1170 case TSK_ImplicitInstantiation: 1171 return !Context.getLangOptions().AppleKext ? 1172 llvm::GlobalVariable::LinkOnceODRLinkage : 1173 llvm::Function::InternalLinkage; 1174 1175 case TSK_ExplicitInstantiationDefinition: 1176 return !Context.getLangOptions().AppleKext ? 1177 llvm::GlobalVariable::WeakODRLinkage : 1178 llvm::Function::InternalLinkage; 1179 1180 case TSK_ExplicitInstantiationDeclaration: 1181 // FIXME: Use available_externally linkage. However, this currently 1182 // breaks LLVM's build due to undefined symbols. 1183 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1184 return !Context.getLangOptions().AppleKext ? 1185 llvm::GlobalVariable::LinkOnceODRLinkage : 1186 llvm::Function::InternalLinkage; 1187 } 1188 } 1189 1190 if (Context.getLangOptions().AppleKext) 1191 return llvm::Function::InternalLinkage; 1192 1193 switch (RD->getTemplateSpecializationKind()) { 1194 case TSK_Undeclared: 1195 case TSK_ExplicitSpecialization: 1196 case TSK_ImplicitInstantiation: 1197 // FIXME: Use available_externally linkage. However, this currently 1198 // breaks LLVM's build due to undefined symbols. 1199 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1200 case TSK_ExplicitInstantiationDeclaration: 1201 return llvm::GlobalVariable::LinkOnceODRLinkage; 1202 1203 case TSK_ExplicitInstantiationDefinition: 1204 return llvm::GlobalVariable::WeakODRLinkage; 1205 } 1206 1207 // Silence GCC warning. 1208 return llvm::GlobalVariable::LinkOnceODRLinkage; 1209} 1210 1211CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1212 return Context.toCharUnitsFromBits( 1213 TheTargetData.getTypeStoreSizeInBits(Ty)); 1214} 1215 1216void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1217 llvm::Constant *Init = 0; 1218 QualType ASTTy = D->getType(); 1219 bool NonConstInit = false; 1220 1221 const Expr *InitExpr = D->getAnyInitializer(); 1222 1223 if (!InitExpr) { 1224 // This is a tentative definition; tentative definitions are 1225 // implicitly initialized with { 0 }. 1226 // 1227 // Note that tentative definitions are only emitted at the end of 1228 // a translation unit, so they should never have incomplete 1229 // type. In addition, EmitTentativeDefinition makes sure that we 1230 // never attempt to emit a tentative definition if a real one 1231 // exists. A use may still exists, however, so we still may need 1232 // to do a RAUW. 1233 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1234 Init = EmitNullConstant(D->getType()); 1235 } else { 1236 Init = EmitConstantExpr(InitExpr, D->getType()); 1237 if (!Init) { 1238 QualType T = InitExpr->getType(); 1239 if (D->getType()->isReferenceType()) 1240 T = D->getType(); 1241 1242 if (getLangOptions().CPlusPlus) { 1243 Init = EmitNullConstant(T); 1244 NonConstInit = true; 1245 } else { 1246 ErrorUnsupported(D, "static initializer"); 1247 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1248 } 1249 } else { 1250 // We don't need an initializer, so remove the entry for the delayed 1251 // initializer position (just in case this entry was delayed). 1252 if (getLangOptions().CPlusPlus) 1253 DelayedCXXInitPosition.erase(D); 1254 } 1255 } 1256 1257 const llvm::Type* InitType = Init->getType(); 1258 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1259 1260 // Strip off a bitcast if we got one back. 1261 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1262 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1263 // all zero index gep. 1264 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1265 Entry = CE->getOperand(0); 1266 } 1267 1268 // Entry is now either a Function or GlobalVariable. 1269 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1270 1271 // We have a definition after a declaration with the wrong type. 1272 // We must make a new GlobalVariable* and update everything that used OldGV 1273 // (a declaration or tentative definition) with the new GlobalVariable* 1274 // (which will be a definition). 1275 // 1276 // This happens if there is a prototype for a global (e.g. 1277 // "extern int x[];") and then a definition of a different type (e.g. 1278 // "int x[10];"). This also happens when an initializer has a different type 1279 // from the type of the global (this happens with unions). 1280 if (GV == 0 || 1281 GV->getType()->getElementType() != InitType || 1282 GV->getType()->getAddressSpace() != 1283 getContext().getTargetAddressSpace(ASTTy)) { 1284 1285 // Move the old entry aside so that we'll create a new one. 1286 Entry->setName(llvm::StringRef()); 1287 1288 // Make a new global with the correct type, this is now guaranteed to work. 1289 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1290 1291 // Replace all uses of the old global with the new global 1292 llvm::Constant *NewPtrForOldDecl = 1293 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1294 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1295 1296 // Erase the old global, since it is no longer used. 1297 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1298 } 1299 1300 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1301 SourceManager &SM = Context.getSourceManager(); 1302 AddAnnotation(EmitAnnotateAttr(GV, AA, 1303 SM.getInstantiationLineNumber(D->getLocation()))); 1304 } 1305 1306 GV->setInitializer(Init); 1307 1308 // If it is safe to mark the global 'constant', do so now. 1309 GV->setConstant(false); 1310 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1311 GV->setConstant(true); 1312 1313 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1314 1315 // Set the llvm linkage type as appropriate. 1316 llvm::GlobalValue::LinkageTypes Linkage = 1317 GetLLVMLinkageVarDefinition(D, GV); 1318 GV->setLinkage(Linkage); 1319 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1320 // common vars aren't constant even if declared const. 1321 GV->setConstant(false); 1322 1323 SetCommonAttributes(D, GV); 1324 1325 // Emit the initializer function if necessary. 1326 if (NonConstInit) 1327 EmitCXXGlobalVarDeclInitFunc(D, GV); 1328 1329 // Emit global variable debug information. 1330 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1331 DI->setLocation(D->getLocation()); 1332 DI->EmitGlobalVariable(GV, D); 1333 } 1334} 1335 1336llvm::GlobalValue::LinkageTypes 1337CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1338 llvm::GlobalVariable *GV) { 1339 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1340 if (Linkage == GVA_Internal) 1341 return llvm::Function::InternalLinkage; 1342 else if (D->hasAttr<DLLImportAttr>()) 1343 return llvm::Function::DLLImportLinkage; 1344 else if (D->hasAttr<DLLExportAttr>()) 1345 return llvm::Function::DLLExportLinkage; 1346 else if (D->hasAttr<WeakAttr>()) { 1347 if (GV->isConstant()) 1348 return llvm::GlobalVariable::WeakODRLinkage; 1349 else 1350 return llvm::GlobalVariable::WeakAnyLinkage; 1351 } else if (Linkage == GVA_TemplateInstantiation || 1352 Linkage == GVA_ExplicitTemplateInstantiation) 1353 return llvm::GlobalVariable::WeakODRLinkage; 1354 else if (!getLangOptions().CPlusPlus && 1355 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1356 D->getAttr<CommonAttr>()) && 1357 !D->hasExternalStorage() && !D->getInit() && 1358 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1359 !D->getAttr<WeakImportAttr>()) { 1360 // Thread local vars aren't considered common linkage. 1361 return llvm::GlobalVariable::CommonLinkage; 1362 } 1363 return llvm::GlobalVariable::ExternalLinkage; 1364} 1365 1366/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1367/// implement a function with no prototype, e.g. "int foo() {}". If there are 1368/// existing call uses of the old function in the module, this adjusts them to 1369/// call the new function directly. 1370/// 1371/// This is not just a cleanup: the always_inline pass requires direct calls to 1372/// functions to be able to inline them. If there is a bitcast in the way, it 1373/// won't inline them. Instcombine normally deletes these calls, but it isn't 1374/// run at -O0. 1375static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1376 llvm::Function *NewFn) { 1377 // If we're redefining a global as a function, don't transform it. 1378 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1379 if (OldFn == 0) return; 1380 1381 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1382 llvm::SmallVector<llvm::Value*, 4> ArgList; 1383 1384 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1385 UI != E; ) { 1386 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1387 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1388 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1389 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1390 llvm::CallSite CS(CI); 1391 if (!CI || !CS.isCallee(I)) continue; 1392 1393 // If the return types don't match exactly, and if the call isn't dead, then 1394 // we can't transform this call. 1395 if (CI->getType() != NewRetTy && !CI->use_empty()) 1396 continue; 1397 1398 // If the function was passed too few arguments, don't transform. If extra 1399 // arguments were passed, we silently drop them. If any of the types 1400 // mismatch, we don't transform. 1401 unsigned ArgNo = 0; 1402 bool DontTransform = false; 1403 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1404 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1405 if (CS.arg_size() == ArgNo || 1406 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1407 DontTransform = true; 1408 break; 1409 } 1410 } 1411 if (DontTransform) 1412 continue; 1413 1414 // Okay, we can transform this. Create the new call instruction and copy 1415 // over the required information. 1416 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1417 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1418 ArgList.end(), "", CI); 1419 ArgList.clear(); 1420 if (!NewCall->getType()->isVoidTy()) 1421 NewCall->takeName(CI); 1422 NewCall->setAttributes(CI->getAttributes()); 1423 NewCall->setCallingConv(CI->getCallingConv()); 1424 1425 // Finally, remove the old call, replacing any uses with the new one. 1426 if (!CI->use_empty()) 1427 CI->replaceAllUsesWith(NewCall); 1428 1429 // Copy debug location attached to CI. 1430 if (!CI->getDebugLoc().isUnknown()) 1431 NewCall->setDebugLoc(CI->getDebugLoc()); 1432 CI->eraseFromParent(); 1433 } 1434} 1435 1436 1437void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1438 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1439 1440 // Compute the function info and LLVM type. 1441 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1442 bool variadic = false; 1443 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1444 variadic = fpt->isVariadic(); 1445 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1446 1447 // Get or create the prototype for the function. 1448 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1449 1450 // Strip off a bitcast if we got one back. 1451 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1452 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1453 Entry = CE->getOperand(0); 1454 } 1455 1456 1457 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1458 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1459 1460 // If the types mismatch then we have to rewrite the definition. 1461 assert(OldFn->isDeclaration() && 1462 "Shouldn't replace non-declaration"); 1463 1464 // F is the Function* for the one with the wrong type, we must make a new 1465 // Function* and update everything that used F (a declaration) with the new 1466 // Function* (which will be a definition). 1467 // 1468 // This happens if there is a prototype for a function 1469 // (e.g. "int f()") and then a definition of a different type 1470 // (e.g. "int f(int x)"). Move the old function aside so that it 1471 // doesn't interfere with GetAddrOfFunction. 1472 OldFn->setName(llvm::StringRef()); 1473 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1474 1475 // If this is an implementation of a function without a prototype, try to 1476 // replace any existing uses of the function (which may be calls) with uses 1477 // of the new function 1478 if (D->getType()->isFunctionNoProtoType()) { 1479 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1480 OldFn->removeDeadConstantUsers(); 1481 } 1482 1483 // Replace uses of F with the Function we will endow with a body. 1484 if (!Entry->use_empty()) { 1485 llvm::Constant *NewPtrForOldDecl = 1486 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1487 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1488 } 1489 1490 // Ok, delete the old function now, which is dead. 1491 OldFn->eraseFromParent(); 1492 1493 Entry = NewFn; 1494 } 1495 1496 // We need to set linkage and visibility on the function before 1497 // generating code for it because various parts of IR generation 1498 // want to propagate this information down (e.g. to local static 1499 // declarations). 1500 llvm::Function *Fn = cast<llvm::Function>(Entry); 1501 setFunctionLinkage(D, Fn); 1502 1503 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1504 setGlobalVisibility(Fn, D); 1505 1506 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1507 1508 SetFunctionDefinitionAttributes(D, Fn); 1509 SetLLVMFunctionAttributesForDefinition(D, Fn); 1510 1511 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1512 AddGlobalCtor(Fn, CA->getPriority()); 1513 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1514 AddGlobalDtor(Fn, DA->getPriority()); 1515} 1516 1517void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1518 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1519 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1520 assert(AA && "Not an alias?"); 1521 1522 llvm::StringRef MangledName = getMangledName(GD); 1523 1524 // If there is a definition in the module, then it wins over the alias. 1525 // This is dubious, but allow it to be safe. Just ignore the alias. 1526 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1527 if (Entry && !Entry->isDeclaration()) 1528 return; 1529 1530 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1531 1532 // Create a reference to the named value. This ensures that it is emitted 1533 // if a deferred decl. 1534 llvm::Constant *Aliasee; 1535 if (isa<llvm::FunctionType>(DeclTy)) 1536 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1537 /*ForVTable=*/false); 1538 else 1539 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1540 llvm::PointerType::getUnqual(DeclTy), 0); 1541 1542 // Create the new alias itself, but don't set a name yet. 1543 llvm::GlobalValue *GA = 1544 new llvm::GlobalAlias(Aliasee->getType(), 1545 llvm::Function::ExternalLinkage, 1546 "", Aliasee, &getModule()); 1547 1548 if (Entry) { 1549 assert(Entry->isDeclaration()); 1550 1551 // If there is a declaration in the module, then we had an extern followed 1552 // by the alias, as in: 1553 // extern int test6(); 1554 // ... 1555 // int test6() __attribute__((alias("test7"))); 1556 // 1557 // Remove it and replace uses of it with the alias. 1558 GA->takeName(Entry); 1559 1560 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1561 Entry->getType())); 1562 Entry->eraseFromParent(); 1563 } else { 1564 GA->setName(MangledName); 1565 } 1566 1567 // Set attributes which are particular to an alias; this is a 1568 // specialization of the attributes which may be set on a global 1569 // variable/function. 1570 if (D->hasAttr<DLLExportAttr>()) { 1571 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1572 // The dllexport attribute is ignored for undefined symbols. 1573 if (FD->hasBody()) 1574 GA->setLinkage(llvm::Function::DLLExportLinkage); 1575 } else { 1576 GA->setLinkage(llvm::Function::DLLExportLinkage); 1577 } 1578 } else if (D->hasAttr<WeakAttr>() || 1579 D->hasAttr<WeakRefAttr>() || 1580 D->isWeakImported()) { 1581 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1582 } 1583 1584 SetCommonAttributes(D, GA); 1585} 1586 1587/// getBuiltinLibFunction - Given a builtin id for a function like 1588/// "__builtin_fabsf", return a Function* for "fabsf". 1589llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1590 unsigned BuiltinID) { 1591 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1592 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1593 "isn't a lib fn"); 1594 1595 // Get the name, skip over the __builtin_ prefix (if necessary). 1596 llvm::StringRef Name; 1597 GlobalDecl D(FD); 1598 1599 // If the builtin has been declared explicitly with an assembler label, 1600 // use the mangled name. This differs from the plain label on platforms 1601 // that prefix labels. 1602 if (FD->hasAttr<AsmLabelAttr>()) 1603 Name = getMangledName(D); 1604 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1605 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1606 else 1607 Name = Context.BuiltinInfo.GetName(BuiltinID); 1608 1609 1610 const llvm::FunctionType *Ty = 1611 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1612 1613 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1614} 1615 1616llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1617 unsigned NumTys) { 1618 return llvm::Intrinsic::getDeclaration(&getModule(), 1619 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1620} 1621 1622static llvm::StringMapEntry<llvm::Constant*> & 1623GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1624 const StringLiteral *Literal, 1625 bool TargetIsLSB, 1626 bool &IsUTF16, 1627 unsigned &StringLength) { 1628 llvm::StringRef String = Literal->getString(); 1629 unsigned NumBytes = String.size(); 1630 1631 // Check for simple case. 1632 if (!Literal->containsNonAsciiOrNull()) { 1633 StringLength = NumBytes; 1634 return Map.GetOrCreateValue(String); 1635 } 1636 1637 // Otherwise, convert the UTF8 literals into a byte string. 1638 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1639 const UTF8 *FromPtr = (UTF8 *)String.data(); 1640 UTF16 *ToPtr = &ToBuf[0]; 1641 1642 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1643 &ToPtr, ToPtr + NumBytes, 1644 strictConversion); 1645 1646 // ConvertUTF8toUTF16 returns the length in ToPtr. 1647 StringLength = ToPtr - &ToBuf[0]; 1648 1649 // Render the UTF-16 string into a byte array and convert to the target byte 1650 // order. 1651 // 1652 // FIXME: This isn't something we should need to do here. 1653 llvm::SmallString<128> AsBytes; 1654 AsBytes.reserve(StringLength * 2); 1655 for (unsigned i = 0; i != StringLength; ++i) { 1656 unsigned short Val = ToBuf[i]; 1657 if (TargetIsLSB) { 1658 AsBytes.push_back(Val & 0xFF); 1659 AsBytes.push_back(Val >> 8); 1660 } else { 1661 AsBytes.push_back(Val >> 8); 1662 AsBytes.push_back(Val & 0xFF); 1663 } 1664 } 1665 // Append one extra null character, the second is automatically added by our 1666 // caller. 1667 AsBytes.push_back(0); 1668 1669 IsUTF16 = true; 1670 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1671} 1672 1673static llvm::StringMapEntry<llvm::Constant*> & 1674GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1675 const StringLiteral *Literal, 1676 unsigned &StringLength) 1677{ 1678 llvm::StringRef String = Literal->getString(); 1679 StringLength = String.size(); 1680 return Map.GetOrCreateValue(String); 1681} 1682 1683llvm::Constant * 1684CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1685 unsigned StringLength = 0; 1686 bool isUTF16 = false; 1687 llvm::StringMapEntry<llvm::Constant*> &Entry = 1688 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1689 getTargetData().isLittleEndian(), 1690 isUTF16, StringLength); 1691 1692 if (llvm::Constant *C = Entry.getValue()) 1693 return C; 1694 1695 llvm::Constant *Zero = 1696 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1697 llvm::Constant *Zeros[] = { Zero, Zero }; 1698 1699 // If we don't already have it, get __CFConstantStringClassReference. 1700 if (!CFConstantStringClassRef) { 1701 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1702 Ty = llvm::ArrayType::get(Ty, 0); 1703 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1704 "__CFConstantStringClassReference"); 1705 // Decay array -> ptr 1706 CFConstantStringClassRef = 1707 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1708 } 1709 1710 QualType CFTy = getContext().getCFConstantStringType(); 1711 1712 const llvm::StructType *STy = 1713 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1714 1715 std::vector<llvm::Constant*> Fields(4); 1716 1717 // Class pointer. 1718 Fields[0] = CFConstantStringClassRef; 1719 1720 // Flags. 1721 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1722 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1723 llvm::ConstantInt::get(Ty, 0x07C8); 1724 1725 // String pointer. 1726 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1727 1728 llvm::GlobalValue::LinkageTypes Linkage; 1729 bool isConstant; 1730 if (isUTF16) { 1731 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1732 Linkage = llvm::GlobalValue::InternalLinkage; 1733 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1734 // does make plain ascii ones writable. 1735 isConstant = true; 1736 } else { 1737 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1738 // when using private linkage. It is not clear if this is a bug in ld 1739 // or a reasonable new restriction. 1740 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1741 isConstant = !Features.WritableStrings; 1742 } 1743 1744 llvm::GlobalVariable *GV = 1745 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1746 ".str"); 1747 GV->setUnnamedAddr(true); 1748 if (isUTF16) { 1749 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1750 GV->setAlignment(Align.getQuantity()); 1751 } else { 1752 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1753 GV->setAlignment(Align.getQuantity()); 1754 } 1755 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1756 1757 // String length. 1758 Ty = getTypes().ConvertType(getContext().LongTy); 1759 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1760 1761 // The struct. 1762 C = llvm::ConstantStruct::get(STy, Fields); 1763 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1764 llvm::GlobalVariable::PrivateLinkage, C, 1765 "_unnamed_cfstring_"); 1766 if (const char *Sect = getContext().Target.getCFStringSection()) 1767 GV->setSection(Sect); 1768 Entry.setValue(GV); 1769 1770 return GV; 1771} 1772 1773llvm::Constant * 1774CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1775 unsigned StringLength = 0; 1776 llvm::StringMapEntry<llvm::Constant*> &Entry = 1777 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1778 1779 if (llvm::Constant *C = Entry.getValue()) 1780 return C; 1781 1782 llvm::Constant *Zero = 1783 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1784 llvm::Constant *Zeros[] = { Zero, Zero }; 1785 1786 // If we don't already have it, get _NSConstantStringClassReference. 1787 if (!ConstantStringClassRef) { 1788 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1789 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1790 llvm::Constant *GV; 1791 if (Features.ObjCNonFragileABI) { 1792 std::string str = 1793 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1794 : "OBJC_CLASS_$_" + StringClass; 1795 GV = getObjCRuntime().GetClassGlobal(str); 1796 // Make sure the result is of the correct type. 1797 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1798 ConstantStringClassRef = 1799 llvm::ConstantExpr::getBitCast(GV, PTy); 1800 } else { 1801 std::string str = 1802 StringClass.empty() ? "_NSConstantStringClassReference" 1803 : "_" + StringClass + "ClassReference"; 1804 const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1805 GV = CreateRuntimeVariable(PTy, str); 1806 // Decay array -> ptr 1807 ConstantStringClassRef = 1808 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1809 } 1810 } 1811 1812 QualType NSTy = getContext().getNSConstantStringType(); 1813 1814 const llvm::StructType *STy = 1815 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1816 1817 std::vector<llvm::Constant*> Fields(3); 1818 1819 // Class pointer. 1820 Fields[0] = ConstantStringClassRef; 1821 1822 // String pointer. 1823 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1824 1825 llvm::GlobalValue::LinkageTypes Linkage; 1826 bool isConstant; 1827 Linkage = llvm::GlobalValue::PrivateLinkage; 1828 isConstant = !Features.WritableStrings; 1829 1830 llvm::GlobalVariable *GV = 1831 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1832 ".str"); 1833 GV->setUnnamedAddr(true); 1834 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1835 GV->setAlignment(Align.getQuantity()); 1836 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1837 1838 // String length. 1839 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1840 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1841 1842 // The struct. 1843 C = llvm::ConstantStruct::get(STy, Fields); 1844 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1845 llvm::GlobalVariable::PrivateLinkage, C, 1846 "_unnamed_nsstring_"); 1847 // FIXME. Fix section. 1848 if (const char *Sect = 1849 Features.ObjCNonFragileABI 1850 ? getContext().Target.getNSStringNonFragileABISection() 1851 : getContext().Target.getNSStringSection()) 1852 GV->setSection(Sect); 1853 Entry.setValue(GV); 1854 1855 return GV; 1856} 1857 1858/// GetStringForStringLiteral - Return the appropriate bytes for a 1859/// string literal, properly padded to match the literal type. 1860std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1861 const ASTContext &Context = getContext(); 1862 const ConstantArrayType *CAT = 1863 Context.getAsConstantArrayType(E->getType()); 1864 assert(CAT && "String isn't pointer or array!"); 1865 1866 // Resize the string to the right size. 1867 uint64_t RealLen = CAT->getSize().getZExtValue(); 1868 1869 if (E->isWide()) 1870 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1871 1872 std::string Str = E->getString().str(); 1873 Str.resize(RealLen, '\0'); 1874 1875 return Str; 1876} 1877 1878/// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1879/// constant array for the given string literal. 1880llvm::Constant * 1881CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1882 // FIXME: This can be more efficient. 1883 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1884 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1885 if (S->isWide()) { 1886 llvm::Type *DestTy = 1887 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1888 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1889 } 1890 return C; 1891} 1892 1893/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1894/// array for the given ObjCEncodeExpr node. 1895llvm::Constant * 1896CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1897 std::string Str; 1898 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1899 1900 return GetAddrOfConstantCString(Str); 1901} 1902 1903 1904/// GenerateWritableString -- Creates storage for a string literal. 1905static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1906 bool constant, 1907 CodeGenModule &CGM, 1908 const char *GlobalName) { 1909 // Create Constant for this string literal. Don't add a '\0'. 1910 llvm::Constant *C = 1911 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1912 1913 // Create a global variable for this string 1914 llvm::GlobalVariable *GV = 1915 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1916 llvm::GlobalValue::PrivateLinkage, 1917 C, GlobalName); 1918 GV->setAlignment(1); 1919 GV->setUnnamedAddr(true); 1920 return GV; 1921} 1922 1923/// GetAddrOfConstantString - Returns a pointer to a character array 1924/// containing the literal. This contents are exactly that of the 1925/// given string, i.e. it will not be null terminated automatically; 1926/// see GetAddrOfConstantCString. Note that whether the result is 1927/// actually a pointer to an LLVM constant depends on 1928/// Feature.WriteableStrings. 1929/// 1930/// The result has pointer to array type. 1931llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1932 const char *GlobalName) { 1933 bool IsConstant = !Features.WritableStrings; 1934 1935 // Get the default prefix if a name wasn't specified. 1936 if (!GlobalName) 1937 GlobalName = ".str"; 1938 1939 // Don't share any string literals if strings aren't constant. 1940 if (!IsConstant) 1941 return GenerateStringLiteral(Str, false, *this, GlobalName); 1942 1943 llvm::StringMapEntry<llvm::Constant *> &Entry = 1944 ConstantStringMap.GetOrCreateValue(Str); 1945 1946 if (Entry.getValue()) 1947 return Entry.getValue(); 1948 1949 // Create a global variable for this. 1950 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1951 Entry.setValue(C); 1952 return C; 1953} 1954 1955/// GetAddrOfConstantCString - Returns a pointer to a character 1956/// array containing the literal and a terminating '\0' 1957/// character. The result has pointer to array type. 1958llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1959 const char *GlobalName){ 1960 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1961 return GetAddrOfConstantString(StrWithNull, GlobalName); 1962} 1963 1964/// EmitObjCPropertyImplementations - Emit information for synthesized 1965/// properties for an implementation. 1966void CodeGenModule::EmitObjCPropertyImplementations(const 1967 ObjCImplementationDecl *D) { 1968 for (ObjCImplementationDecl::propimpl_iterator 1969 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1970 ObjCPropertyImplDecl *PID = *i; 1971 1972 // Dynamic is just for type-checking. 1973 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1974 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1975 1976 // Determine which methods need to be implemented, some may have 1977 // been overridden. Note that ::isSynthesized is not the method 1978 // we want, that just indicates if the decl came from a 1979 // property. What we want to know is if the method is defined in 1980 // this implementation. 1981 if (!D->getInstanceMethod(PD->getGetterName())) 1982 CodeGenFunction(*this).GenerateObjCGetter( 1983 const_cast<ObjCImplementationDecl *>(D), PID); 1984 if (!PD->isReadOnly() && 1985 !D->getInstanceMethod(PD->getSetterName())) 1986 CodeGenFunction(*this).GenerateObjCSetter( 1987 const_cast<ObjCImplementationDecl *>(D), PID); 1988 } 1989 } 1990} 1991 1992static bool needsDestructMethod(ObjCImplementationDecl *impl) { 1993 ObjCInterfaceDecl *iface 1994 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 1995 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1996 ivar; ivar = ivar->getNextIvar()) 1997 if (ivar->getType().isDestructedType()) 1998 return true; 1999 2000 return false; 2001} 2002 2003/// EmitObjCIvarInitializations - Emit information for ivar initialization 2004/// for an implementation. 2005void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2006 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2007 if (needsDestructMethod(D)) { 2008 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2009 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2010 ObjCMethodDecl *DTORMethod = 2011 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2012 cxxSelector, getContext().VoidTy, 0, D, true, 2013 false, true, false, ObjCMethodDecl::Required); 2014 D->addInstanceMethod(DTORMethod); 2015 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2016 D->setHasCXXStructors(true); 2017 } 2018 2019 // If the implementation doesn't have any ivar initializers, we don't need 2020 // a .cxx_construct. 2021 if (D->getNumIvarInitializers() == 0) 2022 return; 2023 2024 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2025 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2026 // The constructor returns 'self'. 2027 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2028 D->getLocation(), 2029 D->getLocation(), cxxSelector, 2030 getContext().getObjCIdType(), 0, 2031 D, true, false, true, false, 2032 ObjCMethodDecl::Required); 2033 D->addInstanceMethod(CTORMethod); 2034 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2035 D->setHasCXXStructors(true); 2036} 2037 2038/// EmitNamespace - Emit all declarations in a namespace. 2039void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2040 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2041 I != E; ++I) 2042 EmitTopLevelDecl(*I); 2043} 2044 2045// EmitLinkageSpec - Emit all declarations in a linkage spec. 2046void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2047 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2048 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2049 ErrorUnsupported(LSD, "linkage spec"); 2050 return; 2051 } 2052 2053 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2054 I != E; ++I) 2055 EmitTopLevelDecl(*I); 2056} 2057 2058/// EmitTopLevelDecl - Emit code for a single top level declaration. 2059void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2060 // If an error has occurred, stop code generation, but continue 2061 // parsing and semantic analysis (to ensure all warnings and errors 2062 // are emitted). 2063 if (Diags.hasErrorOccurred()) 2064 return; 2065 2066 // Ignore dependent declarations. 2067 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2068 return; 2069 2070 switch (D->getKind()) { 2071 case Decl::CXXConversion: 2072 case Decl::CXXMethod: 2073 case Decl::Function: 2074 // Skip function templates 2075 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2076 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2077 return; 2078 2079 EmitGlobal(cast<FunctionDecl>(D)); 2080 break; 2081 2082 case Decl::Var: 2083 EmitGlobal(cast<VarDecl>(D)); 2084 break; 2085 2086 // Indirect fields from global anonymous structs and unions can be 2087 // ignored; only the actual variable requires IR gen support. 2088 case Decl::IndirectField: 2089 break; 2090 2091 // C++ Decls 2092 case Decl::Namespace: 2093 EmitNamespace(cast<NamespaceDecl>(D)); 2094 break; 2095 // No code generation needed. 2096 case Decl::UsingShadow: 2097 case Decl::Using: 2098 case Decl::UsingDirective: 2099 case Decl::ClassTemplate: 2100 case Decl::FunctionTemplate: 2101 case Decl::TypeAliasTemplate: 2102 case Decl::NamespaceAlias: 2103 case Decl::Block: 2104 break; 2105 case Decl::CXXConstructor: 2106 // Skip function templates 2107 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2108 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2109 return; 2110 2111 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2112 break; 2113 case Decl::CXXDestructor: 2114 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2115 return; 2116 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2117 break; 2118 2119 case Decl::StaticAssert: 2120 // Nothing to do. 2121 break; 2122 2123 // Objective-C Decls 2124 2125 // Forward declarations, no (immediate) code generation. 2126 case Decl::ObjCClass: 2127 case Decl::ObjCForwardProtocol: 2128 case Decl::ObjCInterface: 2129 break; 2130 2131 case Decl::ObjCCategory: { 2132 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2133 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2134 Context.ResetObjCLayout(CD->getClassInterface()); 2135 break; 2136 } 2137 2138 case Decl::ObjCProtocol: 2139 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2140 break; 2141 2142 case Decl::ObjCCategoryImpl: 2143 // Categories have properties but don't support synthesize so we 2144 // can ignore them here. 2145 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2146 break; 2147 2148 case Decl::ObjCImplementation: { 2149 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2150 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2151 Context.ResetObjCLayout(OMD->getClassInterface()); 2152 EmitObjCPropertyImplementations(OMD); 2153 EmitObjCIvarInitializations(OMD); 2154 Runtime->GenerateClass(OMD); 2155 break; 2156 } 2157 case Decl::ObjCMethod: { 2158 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2159 // If this is not a prototype, emit the body. 2160 if (OMD->getBody()) 2161 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2162 break; 2163 } 2164 case Decl::ObjCCompatibleAlias: 2165 // compatibility-alias is a directive and has no code gen. 2166 break; 2167 2168 case Decl::LinkageSpec: 2169 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2170 break; 2171 2172 case Decl::FileScopeAsm: { 2173 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2174 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2175 2176 const std::string &S = getModule().getModuleInlineAsm(); 2177 if (S.empty()) 2178 getModule().setModuleInlineAsm(AsmString); 2179 else 2180 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2181 break; 2182 } 2183 2184 default: 2185 // Make sure we handled everything we should, every other kind is a 2186 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2187 // function. Need to recode Decl::Kind to do that easily. 2188 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2189 } 2190} 2191 2192/// Turns the given pointer into a constant. 2193static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2194 const void *Ptr) { 2195 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2196 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2197 return llvm::ConstantInt::get(i64, PtrInt); 2198} 2199 2200static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2201 llvm::NamedMDNode *&GlobalMetadata, 2202 GlobalDecl D, 2203 llvm::GlobalValue *Addr) { 2204 if (!GlobalMetadata) 2205 GlobalMetadata = 2206 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2207 2208 // TODO: should we report variant information for ctors/dtors? 2209 llvm::Value *Ops[] = { 2210 Addr, 2211 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2212 }; 2213 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2214} 2215 2216/// Emits metadata nodes associating all the global values in the 2217/// current module with the Decls they came from. This is useful for 2218/// projects using IR gen as a subroutine. 2219/// 2220/// Since there's currently no way to associate an MDNode directly 2221/// with an llvm::GlobalValue, we create a global named metadata 2222/// with the name 'clang.global.decl.ptrs'. 2223void CodeGenModule::EmitDeclMetadata() { 2224 llvm::NamedMDNode *GlobalMetadata = 0; 2225 2226 // StaticLocalDeclMap 2227 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2228 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2229 I != E; ++I) { 2230 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2231 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2232 } 2233} 2234 2235/// Emits metadata nodes for all the local variables in the current 2236/// function. 2237void CodeGenFunction::EmitDeclMetadata() { 2238 if (LocalDeclMap.empty()) return; 2239 2240 llvm::LLVMContext &Context = getLLVMContext(); 2241 2242 // Find the unique metadata ID for this name. 2243 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2244 2245 llvm::NamedMDNode *GlobalMetadata = 0; 2246 2247 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2248 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2249 const Decl *D = I->first; 2250 llvm::Value *Addr = I->second; 2251 2252 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2253 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2254 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2255 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2256 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2257 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2258 } 2259 } 2260} 2261 2262void CodeGenModule::EmitCoverageFile() { 2263 if (!getCodeGenOpts().CoverageFile.empty()) { 2264 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2265 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2266 llvm::LLVMContext &Ctx = TheModule.getContext(); 2267 llvm::MDString *CoverageFile = 2268 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2269 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2270 llvm::MDNode *CU = CUNode->getOperand(i); 2271 llvm::Value *node[] = { CoverageFile, CU }; 2272 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2273 GCov->addOperand(N); 2274 } 2275 } 2276 } 2277} 2278 2279///@name Custom Runtime Function Interfaces 2280///@{ 2281// 2282// FIXME: These can be eliminated once we can have clients just get the required 2283// AST nodes from the builtin tables. 2284 2285llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2286 if (BlockObjectDispose) 2287 return BlockObjectDispose; 2288 2289 // If we saw an explicit decl, use that. 2290 if (BlockObjectDisposeDecl) { 2291 return BlockObjectDispose = GetAddrOfFunction( 2292 BlockObjectDisposeDecl, 2293 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2294 } 2295 2296 // Otherwise construct the function by hand. 2297 const llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2298 const llvm::FunctionType *fty 2299 = llvm::FunctionType::get(VoidTy, args, false); 2300 return BlockObjectDispose = 2301 CreateRuntimeFunction(fty, "_Block_object_dispose"); 2302} 2303 2304llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2305 if (BlockObjectAssign) 2306 return BlockObjectAssign; 2307 2308 // If we saw an explicit decl, use that. 2309 if (BlockObjectAssignDecl) { 2310 return BlockObjectAssign = GetAddrOfFunction( 2311 BlockObjectAssignDecl, 2312 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2313 } 2314 2315 // Otherwise construct the function by hand. 2316 const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2317 const llvm::FunctionType *fty 2318 = llvm::FunctionType::get(VoidTy, args, false); 2319 return BlockObjectAssign = 2320 CreateRuntimeFunction(fty, "_Block_object_assign"); 2321} 2322 2323llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2324 if (NSConcreteGlobalBlock) 2325 return NSConcreteGlobalBlock; 2326 2327 // If we saw an explicit decl, use that. 2328 if (NSConcreteGlobalBlockDecl) { 2329 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2330 NSConcreteGlobalBlockDecl, 2331 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2332 } 2333 2334 // Otherwise construct the variable by hand. 2335 return NSConcreteGlobalBlock = 2336 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2337} 2338 2339llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2340 if (NSConcreteStackBlock) 2341 return NSConcreteStackBlock; 2342 2343 // If we saw an explicit decl, use that. 2344 if (NSConcreteStackBlockDecl) { 2345 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2346 NSConcreteStackBlockDecl, 2347 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2348 } 2349 2350 // Otherwise construct the variable by hand. 2351 return NSConcreteStackBlock = 2352 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2353} 2354 2355///@} 2356