ItaniumCXXABI.cpp revision 0502a224984a26087ea4d64e8e5d2dd4dca432f6
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CodeGenFunction.h"
24#include "CodeGenModule.h"
25#include <clang/AST/Mangle.h>
26#include <clang/AST/Type.h>
27#include <llvm/Intrinsics.h>
28#include <llvm/Target/TargetData.h>
29#include <llvm/Value.h>
30
31using namespace clang;
32using namespace CodeGen;
33
34namespace {
35class ItaniumCXXABI : public CodeGen::CGCXXABI {
36private:
37  const llvm::IntegerType *PtrDiffTy;
38protected:
39  bool IsARM;
40
41  // It's a little silly for us to cache this.
42  const llvm::IntegerType *getPtrDiffTy() {
43    if (!PtrDiffTy) {
44      QualType T = getContext().getPointerDiffType();
45      const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T);
46      PtrDiffTy = cast<llvm::IntegerType>(Ty);
47    }
48    return PtrDiffTy;
49  }
50
51  bool NeedsArrayCookie(const CXXNewExpr *expr);
52  bool NeedsArrayCookie(const CXXDeleteExpr *expr,
53                        QualType elementType);
54
55public:
56  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
57    CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
58
59  bool isZeroInitializable(const MemberPointerType *MPT);
60
61  const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
62
63  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
64                                               llvm::Value *&This,
65                                               llvm::Value *MemFnPtr,
66                                               const MemberPointerType *MPT);
67
68  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
69                                            llvm::Value *Base,
70                                            llvm::Value *MemPtr,
71                                            const MemberPointerType *MPT);
72
73  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
74                                           const CastExpr *E,
75                                           llvm::Value *Src);
76
77  llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
78                                              const CastExpr *E);
79
80  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
81
82  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
83  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
84                                        CharUnits offset);
85
86  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
87                                           llvm::Value *L,
88                                           llvm::Value *R,
89                                           const MemberPointerType *MPT,
90                                           bool Inequality);
91
92  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
93                                          llvm::Value *Addr,
94                                          const MemberPointerType *MPT);
95
96  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
97                                 CXXCtorType T,
98                                 CanQualType &ResTy,
99                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
100
101  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
102                                CXXDtorType T,
103                                CanQualType &ResTy,
104                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
105
106  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
107                                   QualType &ResTy,
108                                   FunctionArgList &Params);
109
110  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
111
112  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
113  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
114                                     llvm::Value *NewPtr,
115                                     llvm::Value *NumElements,
116                                     const CXXNewExpr *expr,
117                                     QualType ElementType);
118  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
119                       const CXXDeleteExpr *expr,
120                       QualType ElementType, llvm::Value *&NumElements,
121                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
122
123  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
124                       llvm::GlobalVariable *DeclPtr);
125};
126
127class ARMCXXABI : public ItaniumCXXABI {
128public:
129  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
130
131  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
132                                 CXXCtorType T,
133                                 CanQualType &ResTy,
134                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
135
136  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
137                                CXXDtorType T,
138                                CanQualType &ResTy,
139                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
140
141  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
142                                   QualType &ResTy,
143                                   FunctionArgList &Params);
144
145  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
146
147  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
148
149  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
150  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
151                                     llvm::Value *NewPtr,
152                                     llvm::Value *NumElements,
153                                     const CXXNewExpr *expr,
154                                     QualType ElementType);
155  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
156                       const CXXDeleteExpr *expr,
157                       QualType ElementType, llvm::Value *&NumElements,
158                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
159
160private:
161  /// \brief Returns true if the given instance method is one of the
162  /// kinds that the ARM ABI says returns 'this'.
163  static bool HasThisReturn(GlobalDecl GD) {
164    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
165    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
166            (isa<CXXConstructorDecl>(MD)));
167  }
168};
169}
170
171CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
172  return new ItaniumCXXABI(CGM);
173}
174
175CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
176  return new ARMCXXABI(CGM);
177}
178
179const llvm::Type *
180ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
181  if (MPT->isMemberDataPointer())
182    return getPtrDiffTy();
183  else
184    return llvm::StructType::get(CGM.getLLVMContext(),
185                                 getPtrDiffTy(), getPtrDiffTy(), NULL);
186}
187
188/// In the Itanium and ARM ABIs, method pointers have the form:
189///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
190///
191/// In the Itanium ABI:
192///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
193///  - the this-adjustment is (memptr.adj)
194///  - the virtual offset is (memptr.ptr - 1)
195///
196/// In the ARM ABI:
197///  - method pointers are virtual if (memptr.adj & 1) is nonzero
198///  - the this-adjustment is (memptr.adj >> 1)
199///  - the virtual offset is (memptr.ptr)
200/// ARM uses 'adj' for the virtual flag because Thumb functions
201/// may be only single-byte aligned.
202///
203/// If the member is virtual, the adjusted 'this' pointer points
204/// to a vtable pointer from which the virtual offset is applied.
205///
206/// If the member is non-virtual, memptr.ptr is the address of
207/// the function to call.
208llvm::Value *
209ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
210                                               llvm::Value *&This,
211                                               llvm::Value *MemFnPtr,
212                                               const MemberPointerType *MPT) {
213  CGBuilderTy &Builder = CGF.Builder;
214
215  const FunctionProtoType *FPT =
216    MPT->getPointeeType()->getAs<FunctionProtoType>();
217  const CXXRecordDecl *RD =
218    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
219
220  const llvm::FunctionType *FTy =
221    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
222                                   FPT->isVariadic());
223
224  const llvm::IntegerType *ptrdiff = getPtrDiffTy();
225  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
226
227  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
228  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
229  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
230
231  // Extract memptr.adj, which is in the second field.
232  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
233
234  // Compute the true adjustment.
235  llvm::Value *Adj = RawAdj;
236  if (IsARM)
237    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
238
239  // Apply the adjustment and cast back to the original struct type
240  // for consistency.
241  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
242  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
243  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
244
245  // Load the function pointer.
246  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
247
248  // If the LSB in the function pointer is 1, the function pointer points to
249  // a virtual function.
250  llvm::Value *IsVirtual;
251  if (IsARM)
252    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
253  else
254    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
255  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
256  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
257
258  // In the virtual path, the adjustment left 'This' pointing to the
259  // vtable of the correct base subobject.  The "function pointer" is an
260  // offset within the vtable (+1 for the virtual flag on non-ARM).
261  CGF.EmitBlock(FnVirtual);
262
263  // Cast the adjusted this to a pointer to vtable pointer and load.
264  const llvm::Type *VTableTy = Builder.getInt8PtrTy();
265  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
266  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
267
268  // Apply the offset.
269  llvm::Value *VTableOffset = FnAsInt;
270  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
271  VTable = Builder.CreateGEP(VTable, VTableOffset);
272
273  // Load the virtual function to call.
274  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
275  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
276  CGF.EmitBranch(FnEnd);
277
278  // In the non-virtual path, the function pointer is actually a
279  // function pointer.
280  CGF.EmitBlock(FnNonVirtual);
281  llvm::Value *NonVirtualFn =
282    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
283
284  // We're done.
285  CGF.EmitBlock(FnEnd);
286  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
287  Callee->addIncoming(VirtualFn, FnVirtual);
288  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
289  return Callee;
290}
291
292/// Compute an l-value by applying the given pointer-to-member to a
293/// base object.
294llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
295                                                         llvm::Value *Base,
296                                                         llvm::Value *MemPtr,
297                                           const MemberPointerType *MPT) {
298  assert(MemPtr->getType() == getPtrDiffTy());
299
300  CGBuilderTy &Builder = CGF.Builder;
301
302  unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
303
304  // Cast to char*.
305  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
306
307  // Apply the offset, which we assume is non-null.
308  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
309
310  // Cast the address to the appropriate pointer type, adopting the
311  // address space of the base pointer.
312  const llvm::Type *PType
313    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
314  return Builder.CreateBitCast(Addr, PType);
315}
316
317/// Perform a derived-to-base or base-to-derived member pointer conversion.
318///
319/// Obligatory offset/adjustment diagram:
320///         <-- offset -->          <-- adjustment -->
321///   |--------------------------|----------------------|--------------------|
322///   ^Derived address point     ^Base address point    ^Member address point
323///
324/// So when converting a base member pointer to a derived member pointer,
325/// we add the offset to the adjustment because the address point has
326/// decreased;  and conversely, when converting a derived MP to a base MP
327/// we subtract the offset from the adjustment because the address point
328/// has increased.
329///
330/// The standard forbids (at compile time) conversion to and from
331/// virtual bases, which is why we don't have to consider them here.
332///
333/// The standard forbids (at run time) casting a derived MP to a base
334/// MP when the derived MP does not point to a member of the base.
335/// This is why -1 is a reasonable choice for null data member
336/// pointers.
337llvm::Value *
338ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
339                                           const CastExpr *E,
340                                           llvm::Value *Src) {
341  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
342         E->getCastKind() == CK_BaseToDerivedMemberPointer);
343
344  if (isa<llvm::Constant>(Src))
345    return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
346
347  CGBuilderTy &Builder = CGF.Builder;
348
349  const MemberPointerType *SrcTy =
350    E->getSubExpr()->getType()->getAs<MemberPointerType>();
351  const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
352
353  const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
354  const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
355
356  bool DerivedToBase =
357    E->getCastKind() == CK_DerivedToBaseMemberPointer;
358
359  const CXXRecordDecl *DerivedDecl;
360  if (DerivedToBase)
361    DerivedDecl = SrcDecl;
362  else
363    DerivedDecl = DestDecl;
364
365  llvm::Constant *Adj =
366    CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
367                                         E->path_begin(),
368                                         E->path_end());
369  if (!Adj) return Src;
370
371  // For member data pointers, this is just a matter of adding the
372  // offset if the source is non-null.
373  if (SrcTy->isMemberDataPointer()) {
374    llvm::Value *Dst;
375    if (DerivedToBase)
376      Dst = Builder.CreateNSWSub(Src, Adj, "adj");
377    else
378      Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
379
380    // Null check.
381    llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
382    llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
383    return Builder.CreateSelect(IsNull, Src, Dst);
384  }
385
386  // The this-adjustment is left-shifted by 1 on ARM.
387  if (IsARM) {
388    uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
389    Offset <<= 1;
390    Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
391  }
392
393  llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
394  llvm::Value *DstAdj;
395  if (DerivedToBase)
396    DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
397  else
398    DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
399
400  return Builder.CreateInsertValue(Src, DstAdj, 1);
401}
402
403llvm::Constant *
404ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
405                                           const CastExpr *E) {
406  const MemberPointerType *SrcTy =
407    E->getSubExpr()->getType()->getAs<MemberPointerType>();
408  const MemberPointerType *DestTy =
409    E->getType()->getAs<MemberPointerType>();
410
411  bool DerivedToBase =
412    E->getCastKind() == CK_DerivedToBaseMemberPointer;
413
414  const CXXRecordDecl *DerivedDecl;
415  if (DerivedToBase)
416    DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
417  else
418    DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
419
420  // Calculate the offset to the base class.
421  llvm::Constant *Offset =
422    CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
423                                     E->path_begin(),
424                                     E->path_end());
425  // If there's no offset, we're done.
426  if (!Offset) return C;
427
428  // If the source is a member data pointer, we have to do a null
429  // check and then add the offset.  In the common case, we can fold
430  // away the offset.
431  if (SrcTy->isMemberDataPointer()) {
432    assert(C->getType() == getPtrDiffTy());
433
434    // If it's a constant int, just create a new constant int.
435    if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
436      int64_t Src = CI->getSExtValue();
437
438      // Null converts to null.
439      if (Src == -1) return CI;
440
441      // Otherwise, just add the offset.
442      int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
443      int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
444      return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
445    }
446
447    // Otherwise, we have to form a constant select expression.
448    llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
449
450    llvm::Constant *IsNull =
451      llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
452
453    llvm::Constant *Dst;
454    if (DerivedToBase)
455      Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
456    else
457      Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
458
459    return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
460  }
461
462  // The this-adjustment is left-shifted by 1 on ARM.
463  if (IsARM) {
464    int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
465    OffsetV <<= 1;
466    Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
467  }
468
469  llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
470
471  llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
472  if (DerivedToBase)
473    Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
474  else
475    Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
476
477  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
478                                   /*Packed=*/false);
479}
480
481
482llvm::Constant *
483ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
484  const llvm::Type *ptrdiff_t = getPtrDiffTy();
485
486  // Itanium C++ ABI 2.3:
487  //   A NULL pointer is represented as -1.
488  if (MPT->isMemberDataPointer())
489    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
490
491  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
492  llvm::Constant *Values[2] = { Zero, Zero };
493  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
494                                   /*Packed=*/false);
495}
496
497llvm::Constant *
498ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
499                                     CharUnits offset) {
500  // Itanium C++ ABI 2.3:
501  //   A pointer to data member is an offset from the base address of
502  //   the class object containing it, represented as a ptrdiff_t
503  return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
504}
505
506llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
507  assert(MD->isInstance() && "Member function must not be static!");
508  MD = MD->getCanonicalDecl();
509
510  CodeGenTypes &Types = CGM.getTypes();
511  const llvm::Type *ptrdiff_t = getPtrDiffTy();
512
513  // Get the function pointer (or index if this is a virtual function).
514  llvm::Constant *MemPtr[2];
515  if (MD->isVirtual()) {
516    uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD);
517
518    const ASTContext &Context = getContext();
519    CharUnits PointerWidth =
520      Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
521    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
522
523    if (IsARM) {
524      // ARM C++ ABI 3.2.1:
525      //   This ABI specifies that adj contains twice the this
526      //   adjustment, plus 1 if the member function is virtual. The
527      //   least significant bit of adj then makes exactly the same
528      //   discrimination as the least significant bit of ptr does for
529      //   Itanium.
530      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
531      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
532    } else {
533      // Itanium C++ ABI 2.3:
534      //   For a virtual function, [the pointer field] is 1 plus the
535      //   virtual table offset (in bytes) of the function,
536      //   represented as a ptrdiff_t.
537      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
538      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
539    }
540  } else {
541    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
542    const llvm::Type *Ty;
543    // Check whether the function has a computable LLVM signature.
544    if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) {
545      // The function has a computable LLVM signature; use the correct type.
546      Ty = Types.GetFunctionType(Types.getFunctionInfo(MD),
547                                 FPT->isVariadic());
548    } else {
549      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
550      // function type is incomplete.
551      Ty = ptrdiff_t;
552    }
553    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
554
555    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
556    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
557  }
558
559  return llvm::ConstantStruct::get(CGM.getLLVMContext(),
560                                   MemPtr, 2, /*Packed=*/false);
561}
562
563/// The comparison algorithm is pretty easy: the member pointers are
564/// the same if they're either bitwise identical *or* both null.
565///
566/// ARM is different here only because null-ness is more complicated.
567llvm::Value *
568ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
569                                           llvm::Value *L,
570                                           llvm::Value *R,
571                                           const MemberPointerType *MPT,
572                                           bool Inequality) {
573  CGBuilderTy &Builder = CGF.Builder;
574
575  llvm::ICmpInst::Predicate Eq;
576  llvm::Instruction::BinaryOps And, Or;
577  if (Inequality) {
578    Eq = llvm::ICmpInst::ICMP_NE;
579    And = llvm::Instruction::Or;
580    Or = llvm::Instruction::And;
581  } else {
582    Eq = llvm::ICmpInst::ICMP_EQ;
583    And = llvm::Instruction::And;
584    Or = llvm::Instruction::Or;
585  }
586
587  // Member data pointers are easy because there's a unique null
588  // value, so it just comes down to bitwise equality.
589  if (MPT->isMemberDataPointer())
590    return Builder.CreateICmp(Eq, L, R);
591
592  // For member function pointers, the tautologies are more complex.
593  // The Itanium tautology is:
594  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
595  // The ARM tautology is:
596  //   (L == R) <==> (L.ptr == R.ptr &&
597  //                  (L.adj == R.adj ||
598  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
599  // The inequality tautologies have exactly the same structure, except
600  // applying De Morgan's laws.
601
602  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
603  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
604
605  // This condition tests whether L.ptr == R.ptr.  This must always be
606  // true for equality to hold.
607  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
608
609  // This condition, together with the assumption that L.ptr == R.ptr,
610  // tests whether the pointers are both null.  ARM imposes an extra
611  // condition.
612  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
613  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
614
615  // This condition tests whether L.adj == R.adj.  If this isn't
616  // true, the pointers are unequal unless they're both null.
617  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
618  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
619  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
620
621  // Null member function pointers on ARM clear the low bit of Adj,
622  // so the zero condition has to check that neither low bit is set.
623  if (IsARM) {
624    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
625
626    // Compute (l.adj | r.adj) & 1 and test it against zero.
627    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
628    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
629    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
630                                                      "cmp.or.adj");
631    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
632  }
633
634  // Tie together all our conditions.
635  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
636  Result = Builder.CreateBinOp(And, PtrEq, Result,
637                               Inequality ? "memptr.ne" : "memptr.eq");
638  return Result;
639}
640
641llvm::Value *
642ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
643                                          llvm::Value *MemPtr,
644                                          const MemberPointerType *MPT) {
645  CGBuilderTy &Builder = CGF.Builder;
646
647  /// For member data pointers, this is just a check against -1.
648  if (MPT->isMemberDataPointer()) {
649    assert(MemPtr->getType() == getPtrDiffTy());
650    llvm::Value *NegativeOne =
651      llvm::Constant::getAllOnesValue(MemPtr->getType());
652    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
653  }
654
655  // In Itanium, a member function pointer is not null if 'ptr' is not null.
656  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
657
658  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
659  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
660
661  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
662  // (the virtual bit) is set.
663  if (IsARM) {
664    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
665    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
666    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
667    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
668                                                  "memptr.isvirtual");
669    Result = Builder.CreateOr(Result, IsVirtual);
670  }
671
672  return Result;
673}
674
675/// The Itanium ABI requires non-zero initialization only for data
676/// member pointers, for which '0' is a valid offset.
677bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
678  return MPT->getPointeeType()->isFunctionType();
679}
680
681/// The generic ABI passes 'this', plus a VTT if it's initializing a
682/// base subobject.
683void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
684                                              CXXCtorType Type,
685                                              CanQualType &ResTy,
686                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
687  ASTContext &Context = getContext();
688
689  // 'this' is already there.
690
691  // Check if we need to add a VTT parameter (which has type void **).
692  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
693    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
694}
695
696/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
697void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
698                                          CXXCtorType Type,
699                                          CanQualType &ResTy,
700                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
701  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
702  ResTy = ArgTys[0];
703}
704
705/// The generic ABI passes 'this', plus a VTT if it's destroying a
706/// base subobject.
707void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
708                                             CXXDtorType Type,
709                                             CanQualType &ResTy,
710                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
711  ASTContext &Context = getContext();
712
713  // 'this' is already there.
714
715  // Check if we need to add a VTT parameter (which has type void **).
716  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
717    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
718}
719
720/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
721/// for non-deleting destructors.
722void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
723                                         CXXDtorType Type,
724                                         CanQualType &ResTy,
725                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
726  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
727
728  if (Type != Dtor_Deleting)
729    ResTy = ArgTys[0];
730}
731
732void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
733                                                QualType &ResTy,
734                                                FunctionArgList &Params) {
735  /// Create the 'this' variable.
736  BuildThisParam(CGF, Params);
737
738  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
739  assert(MD->isInstance());
740
741  // Check if we need a VTT parameter as well.
742  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
743    ASTContext &Context = getContext();
744
745    // FIXME: avoid the fake decl
746    QualType T = Context.getPointerType(Context.VoidPtrTy);
747    ImplicitParamDecl *VTTDecl
748      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
749                                  &Context.Idents.get("vtt"), T);
750    Params.push_back(VTTDecl);
751    getVTTDecl(CGF) = VTTDecl;
752  }
753}
754
755void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
756                                            QualType &ResTy,
757                                            FunctionArgList &Params) {
758  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
759
760  // Return 'this' from certain constructors and destructors.
761  if (HasThisReturn(CGF.CurGD))
762    ResTy = Params[0]->getType();
763}
764
765void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
766  /// Initialize the 'this' slot.
767  EmitThisParam(CGF);
768
769  /// Initialize the 'vtt' slot if needed.
770  if (getVTTDecl(CGF)) {
771    getVTTValue(CGF)
772      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
773                               "vtt");
774  }
775}
776
777void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
778  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
779
780  /// Initialize the return slot to 'this' at the start of the
781  /// function.
782  if (HasThisReturn(CGF.CurGD))
783    CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
784}
785
786void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
787                                    RValue RV, QualType ResultType) {
788  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
789    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
790
791  // Destructor thunks in the ARM ABI have indeterminate results.
792  const llvm::Type *T =
793    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
794  RValue Undef = RValue::get(llvm::UndefValue::get(T));
795  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
796}
797
798/************************** Array allocation cookies **************************/
799
800bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
801  // If the class's usual deallocation function takes two arguments,
802  // it needs a cookie.
803  if (expr->doesUsualArrayDeleteWantSize())
804    return true;
805
806  // Automatic Reference Counting:
807  //   We need an array cookie for pointers with strong or weak lifetime.
808  QualType AllocatedType = expr->getAllocatedType();
809  if (getContext().getLangOptions().ObjCAutoRefCount &&
810      AllocatedType->isObjCLifetimeType()) {
811    switch (AllocatedType.getObjCLifetime()) {
812    case Qualifiers::OCL_None:
813    case Qualifiers::OCL_ExplicitNone:
814    case Qualifiers::OCL_Autoreleasing:
815      return false;
816
817    case Qualifiers::OCL_Strong:
818    case Qualifiers::OCL_Weak:
819      return true;
820    }
821  }
822
823  // Otherwise, if the class has a non-trivial destructor, it always
824  // needs a cookie.
825  const CXXRecordDecl *record =
826    AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
827  return (record && !record->hasTrivialDestructor());
828}
829
830bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
831                                     QualType elementType) {
832  // If the class's usual deallocation function takes two arguments,
833  // it needs a cookie.
834  if (expr->doesUsualArrayDeleteWantSize())
835    return true;
836
837  // Automatic Reference Counting:
838  //   We need an array cookie for pointers with strong or weak lifetime.
839  if (getContext().getLangOptions().ObjCAutoRefCount &&
840      elementType->isObjCLifetimeType()) {
841    switch (elementType.getObjCLifetime()) {
842    case Qualifiers::OCL_None:
843    case Qualifiers::OCL_ExplicitNone:
844    case Qualifiers::OCL_Autoreleasing:
845      return false;
846
847    case Qualifiers::OCL_Strong:
848    case Qualifiers::OCL_Weak:
849      return true;
850    }
851  }
852
853  // Otherwise, if the class has a non-trivial destructor, it always
854  // needs a cookie.
855  const CXXRecordDecl *record =
856    elementType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
857  return (record && !record->hasTrivialDestructor());
858}
859
860CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
861  if (!NeedsArrayCookie(expr))
862    return CharUnits::Zero();
863
864  // Padding is the maximum of sizeof(size_t) and alignof(elementType)
865  ASTContext &Ctx = getContext();
866  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
867                  Ctx.getTypeAlignInChars(expr->getAllocatedType()));
868}
869
870llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
871                                                  llvm::Value *NewPtr,
872                                                  llvm::Value *NumElements,
873                                                  const CXXNewExpr *expr,
874                                                  QualType ElementType) {
875  assert(NeedsArrayCookie(expr));
876
877  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
878
879  ASTContext &Ctx = getContext();
880  QualType SizeTy = Ctx.getSizeType();
881  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
882
883  // The size of the cookie.
884  CharUnits CookieSize =
885    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
886
887  // Compute an offset to the cookie.
888  llvm::Value *CookiePtr = NewPtr;
889  CharUnits CookieOffset = CookieSize - SizeSize;
890  if (!CookieOffset.isZero())
891    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
892                                                 CookieOffset.getQuantity());
893
894  // Write the number of elements into the appropriate slot.
895  llvm::Value *NumElementsPtr
896    = CGF.Builder.CreateBitCast(CookiePtr,
897                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
898  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
899
900  // Finally, compute a pointer to the actual data buffer by skipping
901  // over the cookie completely.
902  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
903                                                CookieSize.getQuantity());
904}
905
906void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
907                                    llvm::Value *Ptr,
908                                    const CXXDeleteExpr *expr,
909                                    QualType ElementType,
910                                    llvm::Value *&NumElements,
911                                    llvm::Value *&AllocPtr,
912                                    CharUnits &CookieSize) {
913  // Derive a char* in the same address space as the pointer.
914  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
915  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
916
917  // If we don't need an array cookie, bail out early.
918  if (!NeedsArrayCookie(expr, ElementType)) {
919    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
920    NumElements = 0;
921    CookieSize = CharUnits::Zero();
922    return;
923  }
924
925  QualType SizeTy = getContext().getSizeType();
926  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
927  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
928
929  CookieSize
930    = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
931
932  CharUnits NumElementsOffset = CookieSize - SizeSize;
933
934  // Compute the allocated pointer.
935  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
936  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
937                                                    -CookieSize.getQuantity());
938
939  llvm::Value *NumElementsPtr = AllocPtr;
940  if (!NumElementsOffset.isZero())
941    NumElementsPtr =
942      CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
943                                             NumElementsOffset.getQuantity());
944  NumElementsPtr =
945    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
946  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
947}
948
949CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
950  if (!NeedsArrayCookie(expr))
951    return CharUnits::Zero();
952
953  // On ARM, the cookie is always:
954  //   struct array_cookie {
955  //     std::size_t element_size; // element_size != 0
956  //     std::size_t element_count;
957  //   };
958  // TODO: what should we do if the allocated type actually wants
959  // greater alignment?
960  return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
961}
962
963llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
964                                              llvm::Value *NewPtr,
965                                              llvm::Value *NumElements,
966                                              const CXXNewExpr *expr,
967                                              QualType ElementType) {
968  assert(NeedsArrayCookie(expr));
969
970  // NewPtr is a char*.
971
972  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
973
974  ASTContext &Ctx = getContext();
975  CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
976  const llvm::IntegerType *SizeTy =
977    cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
978
979  // The cookie is always at the start of the buffer.
980  llvm::Value *CookiePtr = NewPtr;
981
982  // The first element is the element size.
983  CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
984  llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
985                          Ctx.getTypeSizeInChars(ElementType).getQuantity());
986  CGF.Builder.CreateStore(ElementSize, CookiePtr);
987
988  // The second element is the element count.
989  CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
990  CGF.Builder.CreateStore(NumElements, CookiePtr);
991
992  // Finally, compute a pointer to the actual data buffer by skipping
993  // over the cookie completely.
994  CharUnits CookieSize = 2 * SizeSize;
995  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
996                                                CookieSize.getQuantity());
997}
998
999void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
1000                                llvm::Value *Ptr,
1001                                const CXXDeleteExpr *expr,
1002                                QualType ElementType,
1003                                llvm::Value *&NumElements,
1004                                llvm::Value *&AllocPtr,
1005                                CharUnits &CookieSize) {
1006  // Derive a char* in the same address space as the pointer.
1007  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1008  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
1009
1010  // If we don't need an array cookie, bail out early.
1011  if (!NeedsArrayCookie(expr, ElementType)) {
1012    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1013    NumElements = 0;
1014    CookieSize = CharUnits::Zero();
1015    return;
1016  }
1017
1018  QualType SizeTy = getContext().getSizeType();
1019  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
1020  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
1021
1022  // The cookie size is always 2 * sizeof(size_t).
1023  CookieSize = 2 * SizeSize;
1024
1025  // The allocated pointer is the input ptr, minus that amount.
1026  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1027  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1028                                               -CookieSize.getQuantity());
1029
1030  // The number of elements is at offset sizeof(size_t) relative to that.
1031  llvm::Value *NumElementsPtr
1032    = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1033                                             SizeSize.getQuantity());
1034  NumElementsPtr =
1035    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1036  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1037}
1038
1039/*********************** Static local initialization **************************/
1040
1041static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1042                                         const llvm::PointerType *GuardPtrTy) {
1043  // int __cxa_guard_acquire(__guard *guard_object);
1044  const llvm::FunctionType *FTy =
1045    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1046                            GuardPtrTy, /*isVarArg=*/false);
1047
1048  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
1049}
1050
1051static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1052                                         const llvm::PointerType *GuardPtrTy) {
1053  // void __cxa_guard_release(__guard *guard_object);
1054  const llvm::FunctionType *FTy =
1055    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1056                            GuardPtrTy, /*isVarArg=*/false);
1057
1058  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
1059}
1060
1061static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1062                                       const llvm::PointerType *GuardPtrTy) {
1063  // void __cxa_guard_abort(__guard *guard_object);
1064  const llvm::FunctionType *FTy =
1065    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1066                            GuardPtrTy, /*isVarArg=*/false);
1067
1068  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
1069}
1070
1071namespace {
1072  struct CallGuardAbort : EHScopeStack::Cleanup {
1073    llvm::GlobalVariable *Guard;
1074    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1075
1076    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1077      CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1078        ->setDoesNotThrow();
1079    }
1080  };
1081}
1082
1083/// The ARM code here follows the Itanium code closely enough that we
1084/// just special-case it at particular places.
1085void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1086                                    const VarDecl &D,
1087                                    llvm::GlobalVariable *GV) {
1088  CGBuilderTy &Builder = CGF.Builder;
1089
1090  // We only need to use thread-safe statics for local variables;
1091  // global initialization is always single-threaded.
1092  bool threadsafe =
1093    (getContext().getLangOptions().ThreadsafeStatics && D.isLocalVarDecl());
1094
1095  const llvm::IntegerType *GuardTy;
1096
1097  // If we have a global variable with internal linkage and thread-safe statics
1098  // are disabled, we can just let the guard variable be of type i8.
1099  bool useInt8GuardVariable = !threadsafe && GV->hasInternalLinkage();
1100  if (useInt8GuardVariable) {
1101    GuardTy = CGF.Int8Ty;
1102  } else {
1103    // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1104    GuardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
1105  }
1106  const llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
1107
1108  // Create the guard variable.
1109  llvm::SmallString<256> GuardVName;
1110  llvm::raw_svector_ostream Out(GuardVName);
1111  getMangleContext().mangleItaniumGuardVariable(&D, Out);
1112  Out.flush();
1113
1114  // Just absorb linkage and visibility from the variable.
1115  llvm::GlobalVariable *GuardVariable =
1116    new llvm::GlobalVariable(CGM.getModule(), GuardTy,
1117                             false, GV->getLinkage(),
1118                             llvm::ConstantInt::get(GuardTy, 0),
1119                             GuardVName.str());
1120  GuardVariable->setVisibility(GV->getVisibility());
1121
1122  // Test whether the variable has completed initialization.
1123  llvm::Value *IsInitialized;
1124
1125  // ARM C++ ABI 3.2.3.1:
1126  //   To support the potential use of initialization guard variables
1127  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1128  //   synchronizing instructions we define a static initialization
1129  //   guard variable to be a 4-byte aligned, 4- byte word with the
1130  //   following inline access protocol.
1131  //     #define INITIALIZED 1
1132  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1133  //       if (__cxa_guard_acquire(&obj_guard))
1134  //         ...
1135  //     }
1136  if (IsARM && !useInt8GuardVariable) {
1137    llvm::Value *V = Builder.CreateLoad(GuardVariable);
1138    V = Builder.CreateAnd(V, Builder.getInt32(1));
1139    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1140
1141  // Itanium C++ ABI 3.3.2:
1142  //   The following is pseudo-code showing how these functions can be used:
1143  //     if (obj_guard.first_byte == 0) {
1144  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1145  //         try {
1146  //           ... initialize the object ...;
1147  //         } catch (...) {
1148  //            __cxa_guard_abort (&obj_guard);
1149  //            throw;
1150  //         }
1151  //         ... queue object destructor with __cxa_atexit() ...;
1152  //         __cxa_guard_release (&obj_guard);
1153  //       }
1154  //     }
1155  } else {
1156    // Load the first byte of the guard variable.
1157    const llvm::Type *PtrTy = Builder.getInt8PtrTy();
1158    llvm::Value *V =
1159      Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy), "tmp");
1160
1161    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1162  }
1163
1164  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1165  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1166
1167  llvm::BasicBlock *NoCheckBlock = EndBlock;
1168  if (threadsafe) NoCheckBlock = CGF.createBasicBlock("init.barrier");
1169
1170  // Check if the first byte of the guard variable is zero.
1171  Builder.CreateCondBr(IsInitialized, InitCheckBlock, NoCheckBlock);
1172
1173  CGF.EmitBlock(InitCheckBlock);
1174
1175  // Variables used when coping with thread-safe statics and exceptions.
1176  if (threadsafe) {
1177    // Call __cxa_guard_acquire.
1178    llvm::Value *V
1179      = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
1180
1181    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1182
1183    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1184                         InitBlock, EndBlock);
1185
1186    // Call __cxa_guard_abort along the exceptional edge.
1187    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
1188
1189    CGF.EmitBlock(InitBlock);
1190  }
1191
1192  // Emit the initializer and add a global destructor if appropriate.
1193  CGF.EmitCXXGlobalVarDeclInit(D, GV);
1194
1195  if (threadsafe) {
1196    // Pop the guard-abort cleanup if we pushed one.
1197    CGF.PopCleanupBlock();
1198
1199    // Call __cxa_guard_release.  This cannot throw.
1200    Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
1201  } else {
1202    Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
1203  }
1204
1205  // Emit an acquire memory barrier if using thread-safe statics:
1206  // Itanium ABI:
1207  //   An implementation supporting thread-safety on multiprocessor
1208  //   systems must also guarantee that references to the initialized
1209  //   object do not occur before the load of the initialization flag.
1210  if (threadsafe) {
1211    Builder.CreateBr(EndBlock);
1212    CGF.EmitBlock(NoCheckBlock);
1213
1214    llvm::Value *_false = Builder.getFalse();
1215    llvm::Value *_true = Builder.getTrue();
1216
1217    Builder.CreateCall5(CGM.getIntrinsic(llvm::Intrinsic::memory_barrier),
1218                        /* load-load, load-store */ _true, _true,
1219                        /* store-load, store-store */ _false, _false,
1220                        /* device or I/O */ _false);
1221  }
1222
1223  CGF.EmitBlock(EndBlock);
1224}
1225