ItaniumCXXABI.cpp revision 21fe45076c371e9a9f27e15c4e068e77a185fe62
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This provides C++ code generation targeting the Itanium C++ ABI. The class 11// in this file generates structures that follow the Itanium C++ ABI, which is 12// documented at: 13// http://www.codesourcery.com/public/cxx-abi/abi.html 14// http://www.codesourcery.com/public/cxx-abi/abi-eh.html 15// 16// It also supports the closely-related ARM ABI, documented at: 17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf 18// 19//===----------------------------------------------------------------------===// 20 21#include "CGCXXABI.h" 22#include "CGRecordLayout.h" 23#include "CGVTables.h" 24#include "CodeGenFunction.h" 25#include "CodeGenModule.h" 26#include "clang/AST/Mangle.h" 27#include "clang/AST/Type.h" 28#include "llvm/IR/DataLayout.h" 29#include "llvm/IR/Intrinsics.h" 30#include "llvm/IR/Value.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35namespace { 36class ItaniumCXXABI : public CodeGen::CGCXXABI { 37protected: 38 bool UseARMMethodPtrABI; 39 bool UseARMGuardVarABI; 40 41public: 42 ItaniumCXXABI(CodeGen::CodeGenModule &CGM, 43 bool UseARMMethodPtrABI = false, 44 bool UseARMGuardVarABI = false) : 45 CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), 46 UseARMGuardVarABI(UseARMGuardVarABI) { } 47 48 bool isReturnTypeIndirect(const CXXRecordDecl *RD) const { 49 // Structures with either a non-trivial destructor or a non-trivial 50 // copy constructor are always indirect. 51 return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor(); 52 } 53 54 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const { 55 // Structures with either a non-trivial destructor or a non-trivial 56 // copy constructor are always indirect. 57 if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) 58 return RAA_Indirect; 59 return RAA_Default; 60 } 61 62 bool isZeroInitializable(const MemberPointerType *MPT); 63 64 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); 65 66 llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 67 llvm::Value *&This, 68 llvm::Value *MemFnPtr, 69 const MemberPointerType *MPT); 70 71 llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, 72 llvm::Value *Base, 73 llvm::Value *MemPtr, 74 const MemberPointerType *MPT); 75 76 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 77 const CastExpr *E, 78 llvm::Value *Src); 79 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 80 llvm::Constant *Src); 81 82 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); 83 84 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); 85 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 86 CharUnits offset); 87 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT); 88 llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, 89 CharUnits ThisAdjustment); 90 91 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 92 llvm::Value *L, 93 llvm::Value *R, 94 const MemberPointerType *MPT, 95 bool Inequality); 96 97 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 98 llvm::Value *Addr, 99 const MemberPointerType *MPT); 100 101 llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, 102 llvm::Value *ptr, 103 QualType type); 104 105 llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF, 106 llvm::Value *This, 107 const CXXRecordDecl *ClassDecl, 108 const CXXRecordDecl *BaseClassDecl); 109 110 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 111 CXXCtorType T, 112 CanQualType &ResTy, 113 SmallVectorImpl<CanQualType> &ArgTys); 114 115 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 116 CXXDtorType T, 117 CanQualType &ResTy, 118 SmallVectorImpl<CanQualType> &ArgTys); 119 120 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 121 CXXDtorType DT) const { 122 // Itanium does not emit any destructor variant as an inline thunk. 123 // Delegating may occur as an optimization, but all variants are either 124 // emitted with external linkage or as linkonce if they are inline and used. 125 return false; 126 } 127 128 void EmitCXXDestructors(const CXXDestructorDecl *D); 129 130 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 131 QualType &ResTy, 132 FunctionArgList &Params); 133 134 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 135 136 void EmitConstructorCall(CodeGenFunction &CGF, 137 const CXXConstructorDecl *D, CXXCtorType Type, 138 bool ForVirtualBase, bool Delegating, 139 llvm::Value *This, 140 CallExpr::const_arg_iterator ArgBeg, 141 CallExpr::const_arg_iterator ArgEnd); 142 143 void EmitVirtualDestructorCall(CodeGenFunction &CGF, 144 const CXXDestructorDecl *Dtor, 145 CXXDtorType DtorType, SourceLocation CallLoc, 146 llvm::Value *This); 147 148 void EmitVirtualInheritanceTables(llvm::GlobalVariable::LinkageTypes Linkage, 149 const CXXRecordDecl *RD); 150 151 StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; } 152 StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; } 153 154 CharUnits getArrayCookieSizeImpl(QualType elementType); 155 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 156 llvm::Value *NewPtr, 157 llvm::Value *NumElements, 158 const CXXNewExpr *expr, 159 QualType ElementType); 160 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 161 llvm::Value *allocPtr, 162 CharUnits cookieSize); 163 164 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 165 llvm::GlobalVariable *DeclPtr, bool PerformInit); 166 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 167 llvm::Constant *dtor, llvm::Constant *addr); 168 169 llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, 170 llvm::GlobalVariable *Var); 171 void EmitThreadLocalInitFuncs( 172 llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls, 173 llvm::Function *InitFunc); 174 LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, 175 const DeclRefExpr *DRE); 176 177 bool NeedsVTTParameter(GlobalDecl GD); 178}; 179 180class ARMCXXABI : public ItaniumCXXABI { 181public: 182 ARMCXXABI(CodeGen::CodeGenModule &CGM) : 183 ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, 184 /* UseARMGuardVarABI = */ true) {} 185 186 bool HasThisReturn(GlobalDecl GD) const { 187 return (isa<CXXConstructorDecl>(GD.getDecl()) || ( 188 isa<CXXDestructorDecl>(GD.getDecl()) && 189 GD.getDtorType() != Dtor_Deleting)); 190 } 191 192 void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); 193 194 CharUnits getArrayCookieSizeImpl(QualType elementType); 195 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 196 llvm::Value *NewPtr, 197 llvm::Value *NumElements, 198 const CXXNewExpr *expr, 199 QualType ElementType); 200 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, 201 CharUnits cookieSize); 202}; 203} 204 205CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { 206 switch (CGM.getTarget().getCXXABI().getKind()) { 207 // For IR-generation purposes, there's no significant difference 208 // between the ARM and iOS ABIs. 209 case TargetCXXABI::GenericARM: 210 case TargetCXXABI::iOS: 211 return new ARMCXXABI(CGM); 212 213 // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't 214 // include the other 32-bit ARM oddities: constructor/destructor return values 215 // and array cookies. 216 case TargetCXXABI::GenericAArch64: 217 return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, 218 /* UseARMGuardVarABI = */ true); 219 220 case TargetCXXABI::GenericItanium: 221 if (CGM.getContext().getTargetInfo().getTriple().getArch() 222 == llvm::Triple::le32) { 223 // For PNaCl, use ARM-style method pointers so that PNaCl code 224 // does not assume anything about the alignment of function 225 // pointers. 226 return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, 227 /* UseARMGuardVarABI = */ false); 228 } 229 return new ItaniumCXXABI(CGM); 230 231 case TargetCXXABI::Microsoft: 232 llvm_unreachable("Microsoft ABI is not Itanium-based"); 233 } 234 llvm_unreachable("bad ABI kind"); 235} 236 237llvm::Type * 238ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 239 if (MPT->isMemberDataPointer()) 240 return CGM.PtrDiffTy; 241 return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL); 242} 243 244/// In the Itanium and ARM ABIs, method pointers have the form: 245/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; 246/// 247/// In the Itanium ABI: 248/// - method pointers are virtual if (memptr.ptr & 1) is nonzero 249/// - the this-adjustment is (memptr.adj) 250/// - the virtual offset is (memptr.ptr - 1) 251/// 252/// In the ARM ABI: 253/// - method pointers are virtual if (memptr.adj & 1) is nonzero 254/// - the this-adjustment is (memptr.adj >> 1) 255/// - the virtual offset is (memptr.ptr) 256/// ARM uses 'adj' for the virtual flag because Thumb functions 257/// may be only single-byte aligned. 258/// 259/// If the member is virtual, the adjusted 'this' pointer points 260/// to a vtable pointer from which the virtual offset is applied. 261/// 262/// If the member is non-virtual, memptr.ptr is the address of 263/// the function to call. 264llvm::Value * 265ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 266 llvm::Value *&This, 267 llvm::Value *MemFnPtr, 268 const MemberPointerType *MPT) { 269 CGBuilderTy &Builder = CGF.Builder; 270 271 const FunctionProtoType *FPT = 272 MPT->getPointeeType()->getAs<FunctionProtoType>(); 273 const CXXRecordDecl *RD = 274 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 275 276 llvm::FunctionType *FTy = 277 CGM.getTypes().GetFunctionType( 278 CGM.getTypes().arrangeCXXMethodType(RD, FPT)); 279 280 llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); 281 282 llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); 283 llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); 284 llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); 285 286 // Extract memptr.adj, which is in the second field. 287 llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); 288 289 // Compute the true adjustment. 290 llvm::Value *Adj = RawAdj; 291 if (UseARMMethodPtrABI) 292 Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); 293 294 // Apply the adjustment and cast back to the original struct type 295 // for consistency. 296 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); 297 Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); 298 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); 299 300 // Load the function pointer. 301 llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); 302 303 // If the LSB in the function pointer is 1, the function pointer points to 304 // a virtual function. 305 llvm::Value *IsVirtual; 306 if (UseARMMethodPtrABI) 307 IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); 308 else 309 IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); 310 IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); 311 Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); 312 313 // In the virtual path, the adjustment left 'This' pointing to the 314 // vtable of the correct base subobject. The "function pointer" is an 315 // offset within the vtable (+1 for the virtual flag on non-ARM). 316 CGF.EmitBlock(FnVirtual); 317 318 // Cast the adjusted this to a pointer to vtable pointer and load. 319 llvm::Type *VTableTy = Builder.getInt8PtrTy(); 320 llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); 321 VTable = Builder.CreateLoad(VTable, "memptr.vtable"); 322 323 // Apply the offset. 324 llvm::Value *VTableOffset = FnAsInt; 325 if (!UseARMMethodPtrABI) 326 VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); 327 VTable = Builder.CreateGEP(VTable, VTableOffset); 328 329 // Load the virtual function to call. 330 VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); 331 llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); 332 CGF.EmitBranch(FnEnd); 333 334 // In the non-virtual path, the function pointer is actually a 335 // function pointer. 336 CGF.EmitBlock(FnNonVirtual); 337 llvm::Value *NonVirtualFn = 338 Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); 339 340 // We're done. 341 CGF.EmitBlock(FnEnd); 342 llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); 343 Callee->addIncoming(VirtualFn, FnVirtual); 344 Callee->addIncoming(NonVirtualFn, FnNonVirtual); 345 return Callee; 346} 347 348/// Compute an l-value by applying the given pointer-to-member to a 349/// base object. 350llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, 351 llvm::Value *Base, 352 llvm::Value *MemPtr, 353 const MemberPointerType *MPT) { 354 assert(MemPtr->getType() == CGM.PtrDiffTy); 355 356 CGBuilderTy &Builder = CGF.Builder; 357 358 unsigned AS = Base->getType()->getPointerAddressSpace(); 359 360 // Cast to char*. 361 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); 362 363 // Apply the offset, which we assume is non-null. 364 llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); 365 366 // Cast the address to the appropriate pointer type, adopting the 367 // address space of the base pointer. 368 llvm::Type *PType 369 = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 370 return Builder.CreateBitCast(Addr, PType); 371} 372 373/// Perform a bitcast, derived-to-base, or base-to-derived member pointer 374/// conversion. 375/// 376/// Bitcast conversions are always a no-op under Itanium. 377/// 378/// Obligatory offset/adjustment diagram: 379/// <-- offset --> <-- adjustment --> 380/// |--------------------------|----------------------|--------------------| 381/// ^Derived address point ^Base address point ^Member address point 382/// 383/// So when converting a base member pointer to a derived member pointer, 384/// we add the offset to the adjustment because the address point has 385/// decreased; and conversely, when converting a derived MP to a base MP 386/// we subtract the offset from the adjustment because the address point 387/// has increased. 388/// 389/// The standard forbids (at compile time) conversion to and from 390/// virtual bases, which is why we don't have to consider them here. 391/// 392/// The standard forbids (at run time) casting a derived MP to a base 393/// MP when the derived MP does not point to a member of the base. 394/// This is why -1 is a reasonable choice for null data member 395/// pointers. 396llvm::Value * 397ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 398 const CastExpr *E, 399 llvm::Value *src) { 400 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 401 E->getCastKind() == CK_BaseToDerivedMemberPointer || 402 E->getCastKind() == CK_ReinterpretMemberPointer); 403 404 // Under Itanium, reinterprets don't require any additional processing. 405 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 406 407 // Use constant emission if we can. 408 if (isa<llvm::Constant>(src)) 409 return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); 410 411 llvm::Constant *adj = getMemberPointerAdjustment(E); 412 if (!adj) return src; 413 414 CGBuilderTy &Builder = CGF.Builder; 415 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 416 417 const MemberPointerType *destTy = 418 E->getType()->castAs<MemberPointerType>(); 419 420 // For member data pointers, this is just a matter of adding the 421 // offset if the source is non-null. 422 if (destTy->isMemberDataPointer()) { 423 llvm::Value *dst; 424 if (isDerivedToBase) 425 dst = Builder.CreateNSWSub(src, adj, "adj"); 426 else 427 dst = Builder.CreateNSWAdd(src, adj, "adj"); 428 429 // Null check. 430 llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); 431 llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); 432 return Builder.CreateSelect(isNull, src, dst); 433 } 434 435 // The this-adjustment is left-shifted by 1 on ARM. 436 if (UseARMMethodPtrABI) { 437 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 438 offset <<= 1; 439 adj = llvm::ConstantInt::get(adj->getType(), offset); 440 } 441 442 llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); 443 llvm::Value *dstAdj; 444 if (isDerivedToBase) 445 dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); 446 else 447 dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); 448 449 return Builder.CreateInsertValue(src, dstAdj, 1); 450} 451 452llvm::Constant * 453ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, 454 llvm::Constant *src) { 455 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 456 E->getCastKind() == CK_BaseToDerivedMemberPointer || 457 E->getCastKind() == CK_ReinterpretMemberPointer); 458 459 // Under Itanium, reinterprets don't require any additional processing. 460 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 461 462 // If the adjustment is trivial, we don't need to do anything. 463 llvm::Constant *adj = getMemberPointerAdjustment(E); 464 if (!adj) return src; 465 466 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 467 468 const MemberPointerType *destTy = 469 E->getType()->castAs<MemberPointerType>(); 470 471 // For member data pointers, this is just a matter of adding the 472 // offset if the source is non-null. 473 if (destTy->isMemberDataPointer()) { 474 // null maps to null. 475 if (src->isAllOnesValue()) return src; 476 477 if (isDerivedToBase) 478 return llvm::ConstantExpr::getNSWSub(src, adj); 479 else 480 return llvm::ConstantExpr::getNSWAdd(src, adj); 481 } 482 483 // The this-adjustment is left-shifted by 1 on ARM. 484 if (UseARMMethodPtrABI) { 485 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 486 offset <<= 1; 487 adj = llvm::ConstantInt::get(adj->getType(), offset); 488 } 489 490 llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); 491 llvm::Constant *dstAdj; 492 if (isDerivedToBase) 493 dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); 494 else 495 dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); 496 497 return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); 498} 499 500llvm::Constant * 501ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 502 // Itanium C++ ABI 2.3: 503 // A NULL pointer is represented as -1. 504 if (MPT->isMemberDataPointer()) 505 return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); 506 507 llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); 508 llvm::Constant *Values[2] = { Zero, Zero }; 509 return llvm::ConstantStruct::getAnon(Values); 510} 511 512llvm::Constant * 513ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 514 CharUnits offset) { 515 // Itanium C++ ABI 2.3: 516 // A pointer to data member is an offset from the base address of 517 // the class object containing it, represented as a ptrdiff_t 518 return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); 519} 520 521llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { 522 return BuildMemberPointer(MD, CharUnits::Zero()); 523} 524 525llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, 526 CharUnits ThisAdjustment) { 527 assert(MD->isInstance() && "Member function must not be static!"); 528 MD = MD->getCanonicalDecl(); 529 530 CodeGenTypes &Types = CGM.getTypes(); 531 532 // Get the function pointer (or index if this is a virtual function). 533 llvm::Constant *MemPtr[2]; 534 if (MD->isVirtual()) { 535 uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD); 536 537 const ASTContext &Context = getContext(); 538 CharUnits PointerWidth = 539 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 540 uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); 541 542 if (UseARMMethodPtrABI) { 543 // ARM C++ ABI 3.2.1: 544 // This ABI specifies that adj contains twice the this 545 // adjustment, plus 1 if the member function is virtual. The 546 // least significant bit of adj then makes exactly the same 547 // discrimination as the least significant bit of ptr does for 548 // Itanium. 549 MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); 550 MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, 551 2 * ThisAdjustment.getQuantity() + 1); 552 } else { 553 // Itanium C++ ABI 2.3: 554 // For a virtual function, [the pointer field] is 1 plus the 555 // virtual table offset (in bytes) of the function, 556 // represented as a ptrdiff_t. 557 MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); 558 MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, 559 ThisAdjustment.getQuantity()); 560 } 561 } else { 562 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 563 llvm::Type *Ty; 564 // Check whether the function has a computable LLVM signature. 565 if (Types.isFuncTypeConvertible(FPT)) { 566 // The function has a computable LLVM signature; use the correct type. 567 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 568 } else { 569 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 570 // function type is incomplete. 571 Ty = CGM.PtrDiffTy; 572 } 573 llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); 574 575 MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); 576 MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, 577 (UseARMMethodPtrABI ? 2 : 1) * 578 ThisAdjustment.getQuantity()); 579 } 580 581 return llvm::ConstantStruct::getAnon(MemPtr); 582} 583 584llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, 585 QualType MPType) { 586 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); 587 const ValueDecl *MPD = MP.getMemberPointerDecl(); 588 if (!MPD) 589 return EmitNullMemberPointer(MPT); 590 591 CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); 592 593 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) 594 return BuildMemberPointer(MD, ThisAdjustment); 595 596 CharUnits FieldOffset = 597 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); 598 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); 599} 600 601/// The comparison algorithm is pretty easy: the member pointers are 602/// the same if they're either bitwise identical *or* both null. 603/// 604/// ARM is different here only because null-ness is more complicated. 605llvm::Value * 606ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 607 llvm::Value *L, 608 llvm::Value *R, 609 const MemberPointerType *MPT, 610 bool Inequality) { 611 CGBuilderTy &Builder = CGF.Builder; 612 613 llvm::ICmpInst::Predicate Eq; 614 llvm::Instruction::BinaryOps And, Or; 615 if (Inequality) { 616 Eq = llvm::ICmpInst::ICMP_NE; 617 And = llvm::Instruction::Or; 618 Or = llvm::Instruction::And; 619 } else { 620 Eq = llvm::ICmpInst::ICMP_EQ; 621 And = llvm::Instruction::And; 622 Or = llvm::Instruction::Or; 623 } 624 625 // Member data pointers are easy because there's a unique null 626 // value, so it just comes down to bitwise equality. 627 if (MPT->isMemberDataPointer()) 628 return Builder.CreateICmp(Eq, L, R); 629 630 // For member function pointers, the tautologies are more complex. 631 // The Itanium tautology is: 632 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) 633 // The ARM tautology is: 634 // (L == R) <==> (L.ptr == R.ptr && 635 // (L.adj == R.adj || 636 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) 637 // The inequality tautologies have exactly the same structure, except 638 // applying De Morgan's laws. 639 640 llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); 641 llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); 642 643 // This condition tests whether L.ptr == R.ptr. This must always be 644 // true for equality to hold. 645 llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); 646 647 // This condition, together with the assumption that L.ptr == R.ptr, 648 // tests whether the pointers are both null. ARM imposes an extra 649 // condition. 650 llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); 651 llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); 652 653 // This condition tests whether L.adj == R.adj. If this isn't 654 // true, the pointers are unequal unless they're both null. 655 llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); 656 llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); 657 llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); 658 659 // Null member function pointers on ARM clear the low bit of Adj, 660 // so the zero condition has to check that neither low bit is set. 661 if (UseARMMethodPtrABI) { 662 llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); 663 664 // Compute (l.adj | r.adj) & 1 and test it against zero. 665 llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); 666 llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); 667 llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, 668 "cmp.or.adj"); 669 EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); 670 } 671 672 // Tie together all our conditions. 673 llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); 674 Result = Builder.CreateBinOp(And, PtrEq, Result, 675 Inequality ? "memptr.ne" : "memptr.eq"); 676 return Result; 677} 678 679llvm::Value * 680ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 681 llvm::Value *MemPtr, 682 const MemberPointerType *MPT) { 683 CGBuilderTy &Builder = CGF.Builder; 684 685 /// For member data pointers, this is just a check against -1. 686 if (MPT->isMemberDataPointer()) { 687 assert(MemPtr->getType() == CGM.PtrDiffTy); 688 llvm::Value *NegativeOne = 689 llvm::Constant::getAllOnesValue(MemPtr->getType()); 690 return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); 691 } 692 693 // In Itanium, a member function pointer is not null if 'ptr' is not null. 694 llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); 695 696 llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); 697 llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); 698 699 // On ARM, a member function pointer is also non-null if the low bit of 'adj' 700 // (the virtual bit) is set. 701 if (UseARMMethodPtrABI) { 702 llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); 703 llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); 704 llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); 705 llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, 706 "memptr.isvirtual"); 707 Result = Builder.CreateOr(Result, IsVirtual); 708 } 709 710 return Result; 711} 712 713/// The Itanium ABI requires non-zero initialization only for data 714/// member pointers, for which '0' is a valid offset. 715bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 716 return MPT->getPointeeType()->isFunctionType(); 717} 718 719/// The Itanium ABI always places an offset to the complete object 720/// at entry -2 in the vtable. 721llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, 722 llvm::Value *ptr, 723 QualType type) { 724 // Grab the vtable pointer as an intptr_t*. 725 llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo()); 726 727 // Track back to entry -2 and pull out the offset there. 728 llvm::Value *offsetPtr = 729 CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr"); 730 llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr); 731 offset->setAlignment(CGF.PointerAlignInBytes); 732 733 // Apply the offset. 734 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 735 return CGF.Builder.CreateInBoundsGEP(ptr, offset); 736} 737 738llvm::Value * 739ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, 740 llvm::Value *This, 741 const CXXRecordDecl *ClassDecl, 742 const CXXRecordDecl *BaseClassDecl) { 743 llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy); 744 CharUnits VBaseOffsetOffset = 745 CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl); 746 747 llvm::Value *VBaseOffsetPtr = 748 CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), 749 "vbase.offset.ptr"); 750 VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, 751 CGM.PtrDiffTy->getPointerTo()); 752 753 llvm::Value *VBaseOffset = 754 CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset"); 755 756 return VBaseOffset; 757} 758 759/// The generic ABI passes 'this', plus a VTT if it's initializing a 760/// base subobject. 761void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 762 CXXCtorType Type, 763 CanQualType &ResTy, 764 SmallVectorImpl<CanQualType> &ArgTys) { 765 ASTContext &Context = getContext(); 766 767 // 'this' parameter is already there, as well as 'this' return if 768 // HasThisReturn(GlobalDecl(Ctor, Type)) is true 769 770 // Check if we need to add a VTT parameter (which has type void **). 771 if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) 772 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 773} 774 775/// The generic ABI passes 'this', plus a VTT if it's destroying a 776/// base subobject. 777void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 778 CXXDtorType Type, 779 CanQualType &ResTy, 780 SmallVectorImpl<CanQualType> &ArgTys) { 781 ASTContext &Context = getContext(); 782 783 // 'this' parameter is already there, as well as 'this' return if 784 // HasThisReturn(GlobalDecl(Dtor, Type)) is true 785 786 // Check if we need to add a VTT parameter (which has type void **). 787 if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) 788 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 789} 790 791void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 792 // The destructor in a virtual table is always a 'deleting' 793 // destructor, which calls the complete destructor and then uses the 794 // appropriate operator delete. 795 if (D->isVirtual()) 796 CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); 797 798 // The destructor used for destructing this as a most-derived class; 799 // call the base destructor and then destructs any virtual bases. 800 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 801 802 // The destructor used for destructing this as a base class; ignores 803 // virtual bases. 804 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 805} 806 807void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 808 QualType &ResTy, 809 FunctionArgList &Params) { 810 /// Create the 'this' variable. 811 BuildThisParam(CGF, Params); 812 813 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 814 assert(MD->isInstance()); 815 816 // Check if we need a VTT parameter as well. 817 if (NeedsVTTParameter(CGF.CurGD)) { 818 ASTContext &Context = getContext(); 819 820 // FIXME: avoid the fake decl 821 QualType T = Context.getPointerType(Context.VoidPtrTy); 822 ImplicitParamDecl *VTTDecl 823 = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), 824 &Context.Idents.get("vtt"), T); 825 Params.push_back(VTTDecl); 826 getVTTDecl(CGF) = VTTDecl; 827 } 828} 829 830void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 831 /// Initialize the 'this' slot. 832 EmitThisParam(CGF); 833 834 /// Initialize the 'vtt' slot if needed. 835 if (getVTTDecl(CGF)) { 836 getVTTValue(CGF) 837 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), 838 "vtt"); 839 } 840 841 /// If this is a function that the ABI specifies returns 'this', initialize 842 /// the return slot to 'this' at the start of the function. 843 /// 844 /// Unlike the setting of return types, this is done within the ABI 845 /// implementation instead of by clients of CGCXXABI because: 846 /// 1) getThisValue is currently protected 847 /// 2) in theory, an ABI could implement 'this' returns some other way; 848 /// HasThisReturn only specifies a contract, not the implementation 849 if (HasThisReturn(CGF.CurGD)) 850 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 851} 852 853void ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF, 854 const CXXConstructorDecl *D, 855 CXXCtorType Type, 856 bool ForVirtualBase, bool Delegating, 857 llvm::Value *This, 858 CallExpr::const_arg_iterator ArgBeg, 859 CallExpr::const_arg_iterator ArgEnd) { 860 llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, 861 Delegating); 862 QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); 863 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type); 864 865 // FIXME: Provide a source location here. 866 CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), 867 This, VTT, VTTTy, ArgBeg, ArgEnd); 868} 869 870void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF, 871 const CXXDestructorDecl *Dtor, 872 CXXDtorType DtorType, 873 SourceLocation CallLoc, 874 llvm::Value *This) { 875 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 876 877 const CGFunctionInfo *FInfo 878 = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType); 879 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 880 llvm::Value *Callee 881 = CGF.BuildVirtualCall(GlobalDecl(Dtor, DtorType), This, Ty); 882 883 CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This, 884 /*ImplicitParam=*/0, QualType(), 0, 0); 885} 886 887void ItaniumCXXABI::EmitVirtualInheritanceTables( 888 llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { 889 CodeGenVTables &VTables = CGM.getVTables(); 890 llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); 891 VTables.EmitVTTDefinition(VTT, Linkage, RD); 892} 893 894void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, 895 RValue RV, QualType ResultType) { 896 if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) 897 return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); 898 899 // Destructor thunks in the ARM ABI have indeterminate results. 900 llvm::Type *T = 901 cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType(); 902 RValue Undef = RValue::get(llvm::UndefValue::get(T)); 903 return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); 904} 905 906/************************** Array allocation cookies **************************/ 907 908CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { 909 // The array cookie is a size_t; pad that up to the element alignment. 910 // The cookie is actually right-justified in that space. 911 return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), 912 CGM.getContext().getTypeAlignInChars(elementType)); 913} 914 915llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 916 llvm::Value *NewPtr, 917 llvm::Value *NumElements, 918 const CXXNewExpr *expr, 919 QualType ElementType) { 920 assert(requiresArrayCookie(expr)); 921 922 unsigned AS = NewPtr->getType()->getPointerAddressSpace(); 923 924 ASTContext &Ctx = getContext(); 925 QualType SizeTy = Ctx.getSizeType(); 926 CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); 927 928 // The size of the cookie. 929 CharUnits CookieSize = 930 std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); 931 assert(CookieSize == getArrayCookieSizeImpl(ElementType)); 932 933 // Compute an offset to the cookie. 934 llvm::Value *CookiePtr = NewPtr; 935 CharUnits CookieOffset = CookieSize - SizeSize; 936 if (!CookieOffset.isZero()) 937 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, 938 CookieOffset.getQuantity()); 939 940 // Write the number of elements into the appropriate slot. 941 llvm::Value *NumElementsPtr 942 = CGF.Builder.CreateBitCast(CookiePtr, 943 CGF.ConvertType(SizeTy)->getPointerTo(AS)); 944 CGF.Builder.CreateStore(NumElements, NumElementsPtr); 945 946 // Finally, compute a pointer to the actual data buffer by skipping 947 // over the cookie completely. 948 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 949 CookieSize.getQuantity()); 950} 951 952llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 953 llvm::Value *allocPtr, 954 CharUnits cookieSize) { 955 // The element size is right-justified in the cookie. 956 llvm::Value *numElementsPtr = allocPtr; 957 CharUnits numElementsOffset = 958 cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes); 959 if (!numElementsOffset.isZero()) 960 numElementsPtr = 961 CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr, 962 numElementsOffset.getQuantity()); 963 964 unsigned AS = allocPtr->getType()->getPointerAddressSpace(); 965 numElementsPtr = 966 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); 967 return CGF.Builder.CreateLoad(numElementsPtr); 968} 969 970CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { 971 // ARM says that the cookie is always: 972 // struct array_cookie { 973 // std::size_t element_size; // element_size != 0 974 // std::size_t element_count; 975 // }; 976 // But the base ABI doesn't give anything an alignment greater than 977 // 8, so we can dismiss this as typical ABI-author blindness to 978 // actual language complexity and round up to the element alignment. 979 return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), 980 CGM.getContext().getTypeAlignInChars(elementType)); 981} 982 983llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 984 llvm::Value *newPtr, 985 llvm::Value *numElements, 986 const CXXNewExpr *expr, 987 QualType elementType) { 988 assert(requiresArrayCookie(expr)); 989 990 // NewPtr is a char*, but we generalize to arbitrary addrspaces. 991 unsigned AS = newPtr->getType()->getPointerAddressSpace(); 992 993 // The cookie is always at the start of the buffer. 994 llvm::Value *cookie = newPtr; 995 996 // The first element is the element size. 997 cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS)); 998 llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, 999 getContext().getTypeSizeInChars(elementType).getQuantity()); 1000 CGF.Builder.CreateStore(elementSize, cookie); 1001 1002 // The second element is the element count. 1003 cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1); 1004 CGF.Builder.CreateStore(numElements, cookie); 1005 1006 // Finally, compute a pointer to the actual data buffer by skipping 1007 // over the cookie completely. 1008 CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); 1009 return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr, 1010 cookieSize.getQuantity()); 1011} 1012 1013llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 1014 llvm::Value *allocPtr, 1015 CharUnits cookieSize) { 1016 // The number of elements is at offset sizeof(size_t) relative to 1017 // the allocated pointer. 1018 llvm::Value *numElementsPtr 1019 = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes); 1020 1021 unsigned AS = allocPtr->getType()->getPointerAddressSpace(); 1022 numElementsPtr = 1023 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); 1024 return CGF.Builder.CreateLoad(numElementsPtr); 1025} 1026 1027/*********************** Static local initialization **************************/ 1028 1029static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, 1030 llvm::PointerType *GuardPtrTy) { 1031 // int __cxa_guard_acquire(__guard *guard_object); 1032 llvm::FunctionType *FTy = 1033 llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), 1034 GuardPtrTy, /*isVarArg=*/false); 1035 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire", 1036 llvm::AttributeSet::get(CGM.getLLVMContext(), 1037 llvm::AttributeSet::FunctionIndex, 1038 llvm::Attribute::NoUnwind)); 1039} 1040 1041static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, 1042 llvm::PointerType *GuardPtrTy) { 1043 // void __cxa_guard_release(__guard *guard_object); 1044 llvm::FunctionType *FTy = 1045 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 1046 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release", 1047 llvm::AttributeSet::get(CGM.getLLVMContext(), 1048 llvm::AttributeSet::FunctionIndex, 1049 llvm::Attribute::NoUnwind)); 1050} 1051 1052static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, 1053 llvm::PointerType *GuardPtrTy) { 1054 // void __cxa_guard_abort(__guard *guard_object); 1055 llvm::FunctionType *FTy = 1056 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 1057 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort", 1058 llvm::AttributeSet::get(CGM.getLLVMContext(), 1059 llvm::AttributeSet::FunctionIndex, 1060 llvm::Attribute::NoUnwind)); 1061} 1062 1063namespace { 1064 struct CallGuardAbort : EHScopeStack::Cleanup { 1065 llvm::GlobalVariable *Guard; 1066 CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} 1067 1068 void Emit(CodeGenFunction &CGF, Flags flags) { 1069 CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), 1070 Guard); 1071 } 1072 }; 1073} 1074 1075/// The ARM code here follows the Itanium code closely enough that we 1076/// just special-case it at particular places. 1077void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, 1078 const VarDecl &D, 1079 llvm::GlobalVariable *var, 1080 bool shouldPerformInit) { 1081 CGBuilderTy &Builder = CGF.Builder; 1082 1083 // We only need to use thread-safe statics for local non-TLS variables; 1084 // global initialization is always single-threaded. 1085 bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && 1086 D.isLocalVarDecl() && !D.getTLSKind(); 1087 1088 // If we have a global variable with internal linkage and thread-safe statics 1089 // are disabled, we can just let the guard variable be of type i8. 1090 bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); 1091 1092 llvm::IntegerType *guardTy; 1093 if (useInt8GuardVariable) { 1094 guardTy = CGF.Int8Ty; 1095 } else { 1096 // Guard variables are 64 bits in the generic ABI and size width on ARM 1097 // (i.e. 32-bit on AArch32, 64-bit on AArch64). 1098 guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty); 1099 } 1100 llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); 1101 1102 // Create the guard variable if we don't already have it (as we 1103 // might if we're double-emitting this function body). 1104 llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); 1105 if (!guard) { 1106 // Mangle the name for the guard. 1107 SmallString<256> guardName; 1108 { 1109 llvm::raw_svector_ostream out(guardName); 1110 getMangleContext().mangleItaniumGuardVariable(&D, out); 1111 out.flush(); 1112 } 1113 1114 // Create the guard variable with a zero-initializer. 1115 // Just absorb linkage and visibility from the guarded variable. 1116 guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, 1117 false, var->getLinkage(), 1118 llvm::ConstantInt::get(guardTy, 0), 1119 guardName.str()); 1120 guard->setVisibility(var->getVisibility()); 1121 // If the variable is thread-local, so is its guard variable. 1122 guard->setThreadLocalMode(var->getThreadLocalMode()); 1123 1124 CGM.setStaticLocalDeclGuardAddress(&D, guard); 1125 } 1126 1127 // Test whether the variable has completed initialization. 1128 llvm::Value *isInitialized; 1129 1130 // ARM C++ ABI 3.2.3.1: 1131 // To support the potential use of initialization guard variables 1132 // as semaphores that are the target of ARM SWP and LDREX/STREX 1133 // synchronizing instructions we define a static initialization 1134 // guard variable to be a 4-byte aligned, 4- byte word with the 1135 // following inline access protocol. 1136 // #define INITIALIZED 1 1137 // if ((obj_guard & INITIALIZED) != INITIALIZED) { 1138 // if (__cxa_guard_acquire(&obj_guard)) 1139 // ... 1140 // } 1141 if (UseARMGuardVarABI && !useInt8GuardVariable) { 1142 llvm::Value *V = Builder.CreateLoad(guard); 1143 llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1); 1144 V = Builder.CreateAnd(V, Test1); 1145 isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); 1146 1147 // Itanium C++ ABI 3.3.2: 1148 // The following is pseudo-code showing how these functions can be used: 1149 // if (obj_guard.first_byte == 0) { 1150 // if ( __cxa_guard_acquire (&obj_guard) ) { 1151 // try { 1152 // ... initialize the object ...; 1153 // } catch (...) { 1154 // __cxa_guard_abort (&obj_guard); 1155 // throw; 1156 // } 1157 // ... queue object destructor with __cxa_atexit() ...; 1158 // __cxa_guard_release (&obj_guard); 1159 // } 1160 // } 1161 } else { 1162 // Load the first byte of the guard variable. 1163 llvm::LoadInst *LI = 1164 Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy)); 1165 LI->setAlignment(1); 1166 1167 // Itanium ABI: 1168 // An implementation supporting thread-safety on multiprocessor 1169 // systems must also guarantee that references to the initialized 1170 // object do not occur before the load of the initialization flag. 1171 // 1172 // In LLVM, we do this by marking the load Acquire. 1173 if (threadsafe) 1174 LI->setAtomic(llvm::Acquire); 1175 1176 isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized"); 1177 } 1178 1179 llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); 1180 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 1181 1182 // Check if the first byte of the guard variable is zero. 1183 Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); 1184 1185 CGF.EmitBlock(InitCheckBlock); 1186 1187 // Variables used when coping with thread-safe statics and exceptions. 1188 if (threadsafe) { 1189 // Call __cxa_guard_acquire. 1190 llvm::Value *V 1191 = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); 1192 1193 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 1194 1195 Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), 1196 InitBlock, EndBlock); 1197 1198 // Call __cxa_guard_abort along the exceptional edge. 1199 CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); 1200 1201 CGF.EmitBlock(InitBlock); 1202 } 1203 1204 // Emit the initializer and add a global destructor if appropriate. 1205 CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); 1206 1207 if (threadsafe) { 1208 // Pop the guard-abort cleanup if we pushed one. 1209 CGF.PopCleanupBlock(); 1210 1211 // Call __cxa_guard_release. This cannot throw. 1212 CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard); 1213 } else { 1214 Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard); 1215 } 1216 1217 CGF.EmitBlock(EndBlock); 1218} 1219 1220/// Register a global destructor using __cxa_atexit. 1221static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, 1222 llvm::Constant *dtor, 1223 llvm::Constant *addr, 1224 bool TLS) { 1225 const char *Name = "__cxa_atexit"; 1226 if (TLS) { 1227 const llvm::Triple &T = CGF.getTarget().getTriple(); 1228 Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit"; 1229 } 1230 1231 // We're assuming that the destructor function is something we can 1232 // reasonably call with the default CC. Go ahead and cast it to the 1233 // right prototype. 1234 llvm::Type *dtorTy = 1235 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); 1236 1237 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); 1238 llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; 1239 llvm::FunctionType *atexitTy = 1240 llvm::FunctionType::get(CGF.IntTy, paramTys, false); 1241 1242 // Fetch the actual function. 1243 llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); 1244 if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit)) 1245 fn->setDoesNotThrow(); 1246 1247 // Create a variable that binds the atexit to this shared object. 1248 llvm::Constant *handle = 1249 CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); 1250 1251 llvm::Value *args[] = { 1252 llvm::ConstantExpr::getBitCast(dtor, dtorTy), 1253 llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), 1254 handle 1255 }; 1256 CGF.EmitNounwindRuntimeCall(atexit, args); 1257} 1258 1259/// Register a global destructor as best as we know how. 1260void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, 1261 const VarDecl &D, 1262 llvm::Constant *dtor, 1263 llvm::Constant *addr) { 1264 // Use __cxa_atexit if available. 1265 if (CGM.getCodeGenOpts().CXAAtExit) 1266 return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); 1267 1268 if (D.getTLSKind()) 1269 CGM.ErrorUnsupported(&D, "non-trivial TLS destruction"); 1270 1271 // In Apple kexts, we want to add a global destructor entry. 1272 // FIXME: shouldn't this be guarded by some variable? 1273 if (CGM.getLangOpts().AppleKext) { 1274 // Generate a global destructor entry. 1275 return CGM.AddCXXDtorEntry(dtor, addr); 1276 } 1277 1278 CGF.registerGlobalDtorWithAtExit(dtor, addr); 1279} 1280 1281/// Get the appropriate linkage for the wrapper function. This is essentially 1282/// the weak form of the variable's linkage; every translation unit which wneeds 1283/// the wrapper emits a copy, and we want the linker to merge them. 1284static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage( 1285 llvm::GlobalValue::LinkageTypes VarLinkage) { 1286 if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage)) 1287 return llvm::GlobalValue::LinkerPrivateWeakLinkage; 1288 // For internal linkage variables, we don't need an external or weak wrapper. 1289 if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) 1290 return VarLinkage; 1291 return llvm::GlobalValue::WeakODRLinkage; 1292} 1293 1294llvm::Function * 1295ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, 1296 llvm::GlobalVariable *Var) { 1297 // Mangle the name for the thread_local wrapper function. 1298 SmallString<256> WrapperName; 1299 { 1300 llvm::raw_svector_ostream Out(WrapperName); 1301 getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); 1302 Out.flush(); 1303 } 1304 1305 if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName)) 1306 return cast<llvm::Function>(V); 1307 1308 llvm::Type *RetTy = Var->getType(); 1309 if (VD->getType()->isReferenceType()) 1310 RetTy = RetTy->getPointerElementType(); 1311 1312 llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false); 1313 llvm::Function *Wrapper = llvm::Function::Create( 1314 FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(), 1315 &CGM.getModule()); 1316 // Always resolve references to the wrapper at link time. 1317 Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); 1318 return Wrapper; 1319} 1320 1321void ItaniumCXXABI::EmitThreadLocalInitFuncs( 1322 llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls, 1323 llvm::Function *InitFunc) { 1324 for (unsigned I = 0, N = Decls.size(); I != N; ++I) { 1325 const VarDecl *VD = Decls[I].first; 1326 llvm::GlobalVariable *Var = Decls[I].second; 1327 1328 // Mangle the name for the thread_local initialization function. 1329 SmallString<256> InitFnName; 1330 { 1331 llvm::raw_svector_ostream Out(InitFnName); 1332 getMangleContext().mangleItaniumThreadLocalInit(VD, Out); 1333 Out.flush(); 1334 } 1335 1336 // If we have a definition for the variable, emit the initialization 1337 // function as an alias to the global Init function (if any). Otherwise, 1338 // produce a declaration of the initialization function. 1339 llvm::GlobalValue *Init = 0; 1340 bool InitIsInitFunc = false; 1341 if (VD->hasDefinition()) { 1342 InitIsInitFunc = true; 1343 if (InitFunc) 1344 Init = 1345 new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(), 1346 InitFnName.str(), InitFunc, &CGM.getModule()); 1347 } else { 1348 // Emit a weak global function referring to the initialization function. 1349 // This function will not exist if the TU defining the thread_local 1350 // variable in question does not need any dynamic initialization for 1351 // its thread_local variables. 1352 llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false); 1353 Init = llvm::Function::Create( 1354 FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(), 1355 &CGM.getModule()); 1356 } 1357 1358 if (Init) 1359 Init->setVisibility(Var->getVisibility()); 1360 1361 llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var); 1362 llvm::LLVMContext &Context = CGM.getModule().getContext(); 1363 llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); 1364 CGBuilderTy Builder(Entry); 1365 if (InitIsInitFunc) { 1366 if (Init) 1367 Builder.CreateCall(Init); 1368 } else { 1369 // Don't know whether we have an init function. Call it if it exists. 1370 llvm::Value *Have = Builder.CreateIsNotNull(Init); 1371 llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); 1372 llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); 1373 Builder.CreateCondBr(Have, InitBB, ExitBB); 1374 1375 Builder.SetInsertPoint(InitBB); 1376 Builder.CreateCall(Init); 1377 Builder.CreateBr(ExitBB); 1378 1379 Builder.SetInsertPoint(ExitBB); 1380 } 1381 1382 // For a reference, the result of the wrapper function is a pointer to 1383 // the referenced object. 1384 llvm::Value *Val = Var; 1385 if (VD->getType()->isReferenceType()) { 1386 llvm::LoadInst *LI = Builder.CreateLoad(Val); 1387 LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity()); 1388 Val = LI; 1389 } 1390 1391 Builder.CreateRet(Val); 1392 } 1393} 1394 1395LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, 1396 const DeclRefExpr *DRE) { 1397 const VarDecl *VD = cast<VarDecl>(DRE->getDecl()); 1398 QualType T = VD->getType(); 1399 llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T); 1400 llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty); 1401 llvm::Function *Wrapper = 1402 getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val)); 1403 1404 Val = CGF.Builder.CreateCall(Wrapper); 1405 1406 LValue LV; 1407 if (VD->getType()->isReferenceType()) 1408 LV = CGF.MakeNaturalAlignAddrLValue(Val, T); 1409 else 1410 LV = CGF.MakeAddrLValue(Val, DRE->getType(), 1411 CGF.getContext().getDeclAlign(VD)); 1412 // FIXME: need setObjCGCLValueClass? 1413 return LV; 1414} 1415 1416/// Return whether the given global decl needs a VTT parameter, which it does 1417/// if it's a base constructor or destructor with virtual bases. 1418bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { 1419 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1420 1421 // We don't have any virtual bases, just return early. 1422 if (!MD->getParent()->getNumVBases()) 1423 return false; 1424 1425 // Check if we have a base constructor. 1426 if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) 1427 return true; 1428 1429 // Check if we have a base destructor. 1430 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1431 return true; 1432 1433 return false; 1434} 1435