ItaniumCXXABI.cpp revision 50e6b18f99c45b31e6216ab221f6b3911b24fa1f
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This provides C++ code generation targeting the Itanium C++ ABI. The class 11// in this file generates structures that follow the Itanium C++ ABI, which is 12// documented at: 13// http://www.codesourcery.com/public/cxx-abi/abi.html 14// http://www.codesourcery.com/public/cxx-abi/abi-eh.html 15// 16// It also supports the closely-related ARM ABI, documented at: 17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf 18// 19//===----------------------------------------------------------------------===// 20 21#include "CGCXXABI.h" 22#include "CGRecordLayout.h" 23#include "CGVTables.h" 24#include "CodeGenFunction.h" 25#include "CodeGenModule.h" 26#include "clang/AST/Mangle.h" 27#include "clang/AST/Type.h" 28#include "llvm/Intrinsics.h" 29#include "llvm/DataLayout.h" 30#include "llvm/Value.h" 31 32using namespace clang; 33using namespace CodeGen; 34 35namespace { 36class ItaniumCXXABI : public CodeGen::CGCXXABI { 37private: 38 llvm::IntegerType *PtrDiffTy; 39protected: 40 bool IsARM; 41 42 // It's a little silly for us to cache this. 43 llvm::IntegerType *getPtrDiffTy() { 44 if (!PtrDiffTy) { 45 QualType T = getContext().getPointerDiffType(); 46 llvm::Type *Ty = CGM.getTypes().ConvertType(T); 47 PtrDiffTy = cast<llvm::IntegerType>(Ty); 48 } 49 return PtrDiffTy; 50 } 51 52public: 53 ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) : 54 CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { } 55 56 bool isZeroInitializable(const MemberPointerType *MPT); 57 58 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); 59 60 llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 61 llvm::Value *&This, 62 llvm::Value *MemFnPtr, 63 const MemberPointerType *MPT); 64 65 llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, 66 llvm::Value *Base, 67 llvm::Value *MemPtr, 68 const MemberPointerType *MPT); 69 70 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 71 const CastExpr *E, 72 llvm::Value *Src); 73 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 74 llvm::Constant *Src); 75 76 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); 77 78 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); 79 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 80 CharUnits offset); 81 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT); 82 llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, 83 CharUnits ThisAdjustment); 84 85 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 86 llvm::Value *L, 87 llvm::Value *R, 88 const MemberPointerType *MPT, 89 bool Inequality); 90 91 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 92 llvm::Value *Addr, 93 const MemberPointerType *MPT); 94 95 llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, 96 llvm::Value *ptr, 97 QualType type); 98 99 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 100 CXXCtorType T, 101 CanQualType &ResTy, 102 SmallVectorImpl<CanQualType> &ArgTys); 103 104 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 105 CXXDtorType T, 106 CanQualType &ResTy, 107 SmallVectorImpl<CanQualType> &ArgTys); 108 109 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 110 QualType &ResTy, 111 FunctionArgList &Params); 112 113 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 114 115 StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; } 116 117 CharUnits getArrayCookieSizeImpl(QualType elementType); 118 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 119 llvm::Value *NewPtr, 120 llvm::Value *NumElements, 121 const CXXNewExpr *expr, 122 QualType ElementType); 123 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 124 llvm::Value *allocPtr, 125 CharUnits cookieSize); 126 127 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 128 llvm::GlobalVariable *DeclPtr, bool PerformInit); 129 void registerGlobalDtor(CodeGenFunction &CGF, llvm::Constant *dtor, 130 llvm::Constant *addr); 131 132 void EmitVTables(const CXXRecordDecl *Class); 133}; 134 135class ARMCXXABI : public ItaniumCXXABI { 136public: 137 ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {} 138 139 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 140 CXXCtorType T, 141 CanQualType &ResTy, 142 SmallVectorImpl<CanQualType> &ArgTys); 143 144 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 145 CXXDtorType T, 146 CanQualType &ResTy, 147 SmallVectorImpl<CanQualType> &ArgTys); 148 149 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 150 QualType &ResTy, 151 FunctionArgList &Params); 152 153 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 154 155 void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); 156 157 CharUnits getArrayCookieSizeImpl(QualType elementType); 158 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 159 llvm::Value *NewPtr, 160 llvm::Value *NumElements, 161 const CXXNewExpr *expr, 162 QualType ElementType); 163 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, 164 CharUnits cookieSize); 165 166private: 167 /// \brief Returns true if the given instance method is one of the 168 /// kinds that the ARM ABI says returns 'this'. 169 static bool HasThisReturn(GlobalDecl GD) { 170 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 171 return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) || 172 (isa<CXXConstructorDecl>(MD))); 173 } 174}; 175} 176 177CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { 178 return new ItaniumCXXABI(CGM); 179} 180 181CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) { 182 return new ARMCXXABI(CGM); 183} 184 185llvm::Type * 186ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 187 if (MPT->isMemberDataPointer()) 188 return getPtrDiffTy(); 189 return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL); 190} 191 192/// In the Itanium and ARM ABIs, method pointers have the form: 193/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; 194/// 195/// In the Itanium ABI: 196/// - method pointers are virtual if (memptr.ptr & 1) is nonzero 197/// - the this-adjustment is (memptr.adj) 198/// - the virtual offset is (memptr.ptr - 1) 199/// 200/// In the ARM ABI: 201/// - method pointers are virtual if (memptr.adj & 1) is nonzero 202/// - the this-adjustment is (memptr.adj >> 1) 203/// - the virtual offset is (memptr.ptr) 204/// ARM uses 'adj' for the virtual flag because Thumb functions 205/// may be only single-byte aligned. 206/// 207/// If the member is virtual, the adjusted 'this' pointer points 208/// to a vtable pointer from which the virtual offset is applied. 209/// 210/// If the member is non-virtual, memptr.ptr is the address of 211/// the function to call. 212llvm::Value * 213ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 214 llvm::Value *&This, 215 llvm::Value *MemFnPtr, 216 const MemberPointerType *MPT) { 217 CGBuilderTy &Builder = CGF.Builder; 218 219 const FunctionProtoType *FPT = 220 MPT->getPointeeType()->getAs<FunctionProtoType>(); 221 const CXXRecordDecl *RD = 222 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 223 224 llvm::FunctionType *FTy = 225 CGM.getTypes().GetFunctionType( 226 CGM.getTypes().arrangeCXXMethodType(RD, FPT)); 227 228 llvm::IntegerType *ptrdiff = getPtrDiffTy(); 229 llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1); 230 231 llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); 232 llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); 233 llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); 234 235 // Extract memptr.adj, which is in the second field. 236 llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); 237 238 // Compute the true adjustment. 239 llvm::Value *Adj = RawAdj; 240 if (IsARM) 241 Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); 242 243 // Apply the adjustment and cast back to the original struct type 244 // for consistency. 245 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); 246 Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); 247 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); 248 249 // Load the function pointer. 250 llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); 251 252 // If the LSB in the function pointer is 1, the function pointer points to 253 // a virtual function. 254 llvm::Value *IsVirtual; 255 if (IsARM) 256 IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); 257 else 258 IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); 259 IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); 260 Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); 261 262 // In the virtual path, the adjustment left 'This' pointing to the 263 // vtable of the correct base subobject. The "function pointer" is an 264 // offset within the vtable (+1 for the virtual flag on non-ARM). 265 CGF.EmitBlock(FnVirtual); 266 267 // Cast the adjusted this to a pointer to vtable pointer and load. 268 llvm::Type *VTableTy = Builder.getInt8PtrTy(); 269 llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); 270 VTable = Builder.CreateLoad(VTable, "memptr.vtable"); 271 272 // Apply the offset. 273 llvm::Value *VTableOffset = FnAsInt; 274 if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); 275 VTable = Builder.CreateGEP(VTable, VTableOffset); 276 277 // Load the virtual function to call. 278 VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); 279 llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); 280 CGF.EmitBranch(FnEnd); 281 282 // In the non-virtual path, the function pointer is actually a 283 // function pointer. 284 CGF.EmitBlock(FnNonVirtual); 285 llvm::Value *NonVirtualFn = 286 Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); 287 288 // We're done. 289 CGF.EmitBlock(FnEnd); 290 llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); 291 Callee->addIncoming(VirtualFn, FnVirtual); 292 Callee->addIncoming(NonVirtualFn, FnNonVirtual); 293 return Callee; 294} 295 296/// Compute an l-value by applying the given pointer-to-member to a 297/// base object. 298llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, 299 llvm::Value *Base, 300 llvm::Value *MemPtr, 301 const MemberPointerType *MPT) { 302 assert(MemPtr->getType() == getPtrDiffTy()); 303 304 CGBuilderTy &Builder = CGF.Builder; 305 306 unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace(); 307 308 // Cast to char*. 309 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); 310 311 // Apply the offset, which we assume is non-null. 312 llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); 313 314 // Cast the address to the appropriate pointer type, adopting the 315 // address space of the base pointer. 316 llvm::Type *PType 317 = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 318 return Builder.CreateBitCast(Addr, PType); 319} 320 321/// Perform a bitcast, derived-to-base, or base-to-derived member pointer 322/// conversion. 323/// 324/// Bitcast conversions are always a no-op under Itanium. 325/// 326/// Obligatory offset/adjustment diagram: 327/// <-- offset --> <-- adjustment --> 328/// |--------------------------|----------------------|--------------------| 329/// ^Derived address point ^Base address point ^Member address point 330/// 331/// So when converting a base member pointer to a derived member pointer, 332/// we add the offset to the adjustment because the address point has 333/// decreased; and conversely, when converting a derived MP to a base MP 334/// we subtract the offset from the adjustment because the address point 335/// has increased. 336/// 337/// The standard forbids (at compile time) conversion to and from 338/// virtual bases, which is why we don't have to consider them here. 339/// 340/// The standard forbids (at run time) casting a derived MP to a base 341/// MP when the derived MP does not point to a member of the base. 342/// This is why -1 is a reasonable choice for null data member 343/// pointers. 344llvm::Value * 345ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 346 const CastExpr *E, 347 llvm::Value *src) { 348 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 349 E->getCastKind() == CK_BaseToDerivedMemberPointer || 350 E->getCastKind() == CK_ReinterpretMemberPointer); 351 352 // Under Itanium, reinterprets don't require any additional processing. 353 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 354 355 // Use constant emission if we can. 356 if (isa<llvm::Constant>(src)) 357 return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); 358 359 llvm::Constant *adj = getMemberPointerAdjustment(E); 360 if (!adj) return src; 361 362 CGBuilderTy &Builder = CGF.Builder; 363 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 364 365 const MemberPointerType *destTy = 366 E->getType()->castAs<MemberPointerType>(); 367 368 // For member data pointers, this is just a matter of adding the 369 // offset if the source is non-null. 370 if (destTy->isMemberDataPointer()) { 371 llvm::Value *dst; 372 if (isDerivedToBase) 373 dst = Builder.CreateNSWSub(src, adj, "adj"); 374 else 375 dst = Builder.CreateNSWAdd(src, adj, "adj"); 376 377 // Null check. 378 llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); 379 llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); 380 return Builder.CreateSelect(isNull, src, dst); 381 } 382 383 // The this-adjustment is left-shifted by 1 on ARM. 384 if (IsARM) { 385 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 386 offset <<= 1; 387 adj = llvm::ConstantInt::get(adj->getType(), offset); 388 } 389 390 llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); 391 llvm::Value *dstAdj; 392 if (isDerivedToBase) 393 dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); 394 else 395 dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); 396 397 return Builder.CreateInsertValue(src, dstAdj, 1); 398} 399 400llvm::Constant * 401ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, 402 llvm::Constant *src) { 403 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 404 E->getCastKind() == CK_BaseToDerivedMemberPointer || 405 E->getCastKind() == CK_ReinterpretMemberPointer); 406 407 // Under Itanium, reinterprets don't require any additional processing. 408 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 409 410 // If the adjustment is trivial, we don't need to do anything. 411 llvm::Constant *adj = getMemberPointerAdjustment(E); 412 if (!adj) return src; 413 414 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 415 416 const MemberPointerType *destTy = 417 E->getType()->castAs<MemberPointerType>(); 418 419 // For member data pointers, this is just a matter of adding the 420 // offset if the source is non-null. 421 if (destTy->isMemberDataPointer()) { 422 // null maps to null. 423 if (src->isAllOnesValue()) return src; 424 425 if (isDerivedToBase) 426 return llvm::ConstantExpr::getNSWSub(src, adj); 427 else 428 return llvm::ConstantExpr::getNSWAdd(src, adj); 429 } 430 431 // The this-adjustment is left-shifted by 1 on ARM. 432 if (IsARM) { 433 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 434 offset <<= 1; 435 adj = llvm::ConstantInt::get(adj->getType(), offset); 436 } 437 438 llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); 439 llvm::Constant *dstAdj; 440 if (isDerivedToBase) 441 dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); 442 else 443 dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); 444 445 return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); 446} 447 448llvm::Constant * 449ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 450 llvm::Type *ptrdiff_t = getPtrDiffTy(); 451 452 // Itanium C++ ABI 2.3: 453 // A NULL pointer is represented as -1. 454 if (MPT->isMemberDataPointer()) 455 return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true); 456 457 llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0); 458 llvm::Constant *Values[2] = { Zero, Zero }; 459 return llvm::ConstantStruct::getAnon(Values); 460} 461 462llvm::Constant * 463ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 464 CharUnits offset) { 465 // Itanium C++ ABI 2.3: 466 // A pointer to data member is an offset from the base address of 467 // the class object containing it, represented as a ptrdiff_t 468 return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity()); 469} 470 471llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { 472 return BuildMemberPointer(MD, CharUnits::Zero()); 473} 474 475llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, 476 CharUnits ThisAdjustment) { 477 assert(MD->isInstance() && "Member function must not be static!"); 478 MD = MD->getCanonicalDecl(); 479 480 CodeGenTypes &Types = CGM.getTypes(); 481 llvm::Type *ptrdiff_t = getPtrDiffTy(); 482 483 // Get the function pointer (or index if this is a virtual function). 484 llvm::Constant *MemPtr[2]; 485 if (MD->isVirtual()) { 486 uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD); 487 488 const ASTContext &Context = getContext(); 489 CharUnits PointerWidth = 490 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 491 uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); 492 493 if (IsARM) { 494 // ARM C++ ABI 3.2.1: 495 // This ABI specifies that adj contains twice the this 496 // adjustment, plus 1 if the member function is virtual. The 497 // least significant bit of adj then makes exactly the same 498 // discrimination as the least significant bit of ptr does for 499 // Itanium. 500 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset); 501 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 502 2 * ThisAdjustment.getQuantity() + 1); 503 } else { 504 // Itanium C++ ABI 2.3: 505 // For a virtual function, [the pointer field] is 1 plus the 506 // virtual table offset (in bytes) of the function, 507 // represented as a ptrdiff_t. 508 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1); 509 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 510 ThisAdjustment.getQuantity()); 511 } 512 } else { 513 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 514 llvm::Type *Ty; 515 // Check whether the function has a computable LLVM signature. 516 if (Types.isFuncTypeConvertible(FPT)) { 517 // The function has a computable LLVM signature; use the correct type. 518 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 519 } else { 520 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 521 // function type is incomplete. 522 Ty = ptrdiff_t; 523 } 524 llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); 525 526 MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t); 527 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) * 528 ThisAdjustment.getQuantity()); 529 } 530 531 return llvm::ConstantStruct::getAnon(MemPtr); 532} 533 534llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, 535 QualType MPType) { 536 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); 537 const ValueDecl *MPD = MP.getMemberPointerDecl(); 538 if (!MPD) 539 return EmitNullMemberPointer(MPT); 540 541 // Compute the this-adjustment. 542 CharUnits ThisAdjustment = CharUnits::Zero(); 543 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); 544 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 545 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); 546 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 547 const CXXRecordDecl *Base = RD; 548 const CXXRecordDecl *Derived = Path[I]; 549 if (DerivedMember) 550 std::swap(Base, Derived); 551 ThisAdjustment += 552 getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base); 553 RD = Path[I]; 554 } 555 if (DerivedMember) 556 ThisAdjustment = -ThisAdjustment; 557 558 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) 559 return BuildMemberPointer(MD, ThisAdjustment); 560 561 CharUnits FieldOffset = 562 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); 563 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); 564} 565 566/// The comparison algorithm is pretty easy: the member pointers are 567/// the same if they're either bitwise identical *or* both null. 568/// 569/// ARM is different here only because null-ness is more complicated. 570llvm::Value * 571ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 572 llvm::Value *L, 573 llvm::Value *R, 574 const MemberPointerType *MPT, 575 bool Inequality) { 576 CGBuilderTy &Builder = CGF.Builder; 577 578 llvm::ICmpInst::Predicate Eq; 579 llvm::Instruction::BinaryOps And, Or; 580 if (Inequality) { 581 Eq = llvm::ICmpInst::ICMP_NE; 582 And = llvm::Instruction::Or; 583 Or = llvm::Instruction::And; 584 } else { 585 Eq = llvm::ICmpInst::ICMP_EQ; 586 And = llvm::Instruction::And; 587 Or = llvm::Instruction::Or; 588 } 589 590 // Member data pointers are easy because there's a unique null 591 // value, so it just comes down to bitwise equality. 592 if (MPT->isMemberDataPointer()) 593 return Builder.CreateICmp(Eq, L, R); 594 595 // For member function pointers, the tautologies are more complex. 596 // The Itanium tautology is: 597 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) 598 // The ARM tautology is: 599 // (L == R) <==> (L.ptr == R.ptr && 600 // (L.adj == R.adj || 601 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) 602 // The inequality tautologies have exactly the same structure, except 603 // applying De Morgan's laws. 604 605 llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); 606 llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); 607 608 // This condition tests whether L.ptr == R.ptr. This must always be 609 // true for equality to hold. 610 llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); 611 612 // This condition, together with the assumption that L.ptr == R.ptr, 613 // tests whether the pointers are both null. ARM imposes an extra 614 // condition. 615 llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); 616 llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); 617 618 // This condition tests whether L.adj == R.adj. If this isn't 619 // true, the pointers are unequal unless they're both null. 620 llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); 621 llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); 622 llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); 623 624 // Null member function pointers on ARM clear the low bit of Adj, 625 // so the zero condition has to check that neither low bit is set. 626 if (IsARM) { 627 llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); 628 629 // Compute (l.adj | r.adj) & 1 and test it against zero. 630 llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); 631 llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); 632 llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, 633 "cmp.or.adj"); 634 EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); 635 } 636 637 // Tie together all our conditions. 638 llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); 639 Result = Builder.CreateBinOp(And, PtrEq, Result, 640 Inequality ? "memptr.ne" : "memptr.eq"); 641 return Result; 642} 643 644llvm::Value * 645ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 646 llvm::Value *MemPtr, 647 const MemberPointerType *MPT) { 648 CGBuilderTy &Builder = CGF.Builder; 649 650 /// For member data pointers, this is just a check against -1. 651 if (MPT->isMemberDataPointer()) { 652 assert(MemPtr->getType() == getPtrDiffTy()); 653 llvm::Value *NegativeOne = 654 llvm::Constant::getAllOnesValue(MemPtr->getType()); 655 return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); 656 } 657 658 // In Itanium, a member function pointer is not null if 'ptr' is not null. 659 llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); 660 661 llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); 662 llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); 663 664 // On ARM, a member function pointer is also non-null if the low bit of 'adj' 665 // (the virtual bit) is set. 666 if (IsARM) { 667 llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); 668 llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); 669 llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); 670 llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, 671 "memptr.isvirtual"); 672 Result = Builder.CreateOr(Result, IsVirtual); 673 } 674 675 return Result; 676} 677 678/// The Itanium ABI requires non-zero initialization only for data 679/// member pointers, for which '0' is a valid offset. 680bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 681 return MPT->getPointeeType()->isFunctionType(); 682} 683 684/// The Itanium ABI always places an offset to the complete object 685/// at entry -2 in the vtable. 686llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, 687 llvm::Value *ptr, 688 QualType type) { 689 // Grab the vtable pointer as an intptr_t*. 690 llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo()); 691 692 // Track back to entry -2 and pull out the offset there. 693 llvm::Value *offsetPtr = 694 CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr"); 695 llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr); 696 offset->setAlignment(CGF.PointerAlignInBytes); 697 698 // Apply the offset. 699 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 700 return CGF.Builder.CreateInBoundsGEP(ptr, offset); 701} 702 703/// The generic ABI passes 'this', plus a VTT if it's initializing a 704/// base subobject. 705void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 706 CXXCtorType Type, 707 CanQualType &ResTy, 708 SmallVectorImpl<CanQualType> &ArgTys) { 709 ASTContext &Context = getContext(); 710 711 // 'this' is already there. 712 713 // Check if we need to add a VTT parameter (which has type void **). 714 if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) 715 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 716} 717 718/// The ARM ABI does the same as the Itanium ABI, but returns 'this'. 719void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 720 CXXCtorType Type, 721 CanQualType &ResTy, 722 SmallVectorImpl<CanQualType> &ArgTys) { 723 ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys); 724 ResTy = ArgTys[0]; 725} 726 727/// The generic ABI passes 'this', plus a VTT if it's destroying a 728/// base subobject. 729void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 730 CXXDtorType Type, 731 CanQualType &ResTy, 732 SmallVectorImpl<CanQualType> &ArgTys) { 733 ASTContext &Context = getContext(); 734 735 // 'this' is already there. 736 737 // Check if we need to add a VTT parameter (which has type void **). 738 if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) 739 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 740} 741 742/// The ARM ABI does the same as the Itanium ABI, but returns 'this' 743/// for non-deleting destructors. 744void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 745 CXXDtorType Type, 746 CanQualType &ResTy, 747 SmallVectorImpl<CanQualType> &ArgTys) { 748 ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys); 749 750 if (Type != Dtor_Deleting) 751 ResTy = ArgTys[0]; 752} 753 754void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 755 QualType &ResTy, 756 FunctionArgList &Params) { 757 /// Create the 'this' variable. 758 BuildThisParam(CGF, Params); 759 760 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 761 assert(MD->isInstance()); 762 763 // Check if we need a VTT parameter as well. 764 if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) { 765 ASTContext &Context = getContext(); 766 767 // FIXME: avoid the fake decl 768 QualType T = Context.getPointerType(Context.VoidPtrTy); 769 ImplicitParamDecl *VTTDecl 770 = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), 771 &Context.Idents.get("vtt"), T); 772 Params.push_back(VTTDecl); 773 getVTTDecl(CGF) = VTTDecl; 774 } 775} 776 777void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 778 QualType &ResTy, 779 FunctionArgList &Params) { 780 ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params); 781 782 // Return 'this' from certain constructors and destructors. 783 if (HasThisReturn(CGF.CurGD)) 784 ResTy = Params[0]->getType(); 785} 786 787void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 788 /// Initialize the 'this' slot. 789 EmitThisParam(CGF); 790 791 /// Initialize the 'vtt' slot if needed. 792 if (getVTTDecl(CGF)) { 793 getVTTValue(CGF) 794 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), 795 "vtt"); 796 } 797} 798 799void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 800 ItaniumCXXABI::EmitInstanceFunctionProlog(CGF); 801 802 /// Initialize the return slot to 'this' at the start of the 803 /// function. 804 if (HasThisReturn(CGF.CurGD)) 805 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 806} 807 808void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, 809 RValue RV, QualType ResultType) { 810 if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) 811 return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); 812 813 // Destructor thunks in the ARM ABI have indeterminate results. 814 llvm::Type *T = 815 cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType(); 816 RValue Undef = RValue::get(llvm::UndefValue::get(T)); 817 return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); 818} 819 820/************************** Array allocation cookies **************************/ 821 822CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { 823 // The array cookie is a size_t; pad that up to the element alignment. 824 // The cookie is actually right-justified in that space. 825 return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), 826 CGM.getContext().getTypeAlignInChars(elementType)); 827} 828 829llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 830 llvm::Value *NewPtr, 831 llvm::Value *NumElements, 832 const CXXNewExpr *expr, 833 QualType ElementType) { 834 assert(requiresArrayCookie(expr)); 835 836 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 837 838 ASTContext &Ctx = getContext(); 839 QualType SizeTy = Ctx.getSizeType(); 840 CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); 841 842 // The size of the cookie. 843 CharUnits CookieSize = 844 std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); 845 assert(CookieSize == getArrayCookieSizeImpl(ElementType)); 846 847 // Compute an offset to the cookie. 848 llvm::Value *CookiePtr = NewPtr; 849 CharUnits CookieOffset = CookieSize - SizeSize; 850 if (!CookieOffset.isZero()) 851 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, 852 CookieOffset.getQuantity()); 853 854 // Write the number of elements into the appropriate slot. 855 llvm::Value *NumElementsPtr 856 = CGF.Builder.CreateBitCast(CookiePtr, 857 CGF.ConvertType(SizeTy)->getPointerTo(AS)); 858 CGF.Builder.CreateStore(NumElements, NumElementsPtr); 859 860 // Finally, compute a pointer to the actual data buffer by skipping 861 // over the cookie completely. 862 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 863 CookieSize.getQuantity()); 864} 865 866llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 867 llvm::Value *allocPtr, 868 CharUnits cookieSize) { 869 // The element size is right-justified in the cookie. 870 llvm::Value *numElementsPtr = allocPtr; 871 CharUnits numElementsOffset = 872 cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes); 873 if (!numElementsOffset.isZero()) 874 numElementsPtr = 875 CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr, 876 numElementsOffset.getQuantity()); 877 878 unsigned AS = cast<llvm::PointerType>(allocPtr->getType())->getAddressSpace(); 879 numElementsPtr = 880 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); 881 return CGF.Builder.CreateLoad(numElementsPtr); 882} 883 884CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { 885 // On ARM, the cookie is always: 886 // struct array_cookie { 887 // std::size_t element_size; // element_size != 0 888 // std::size_t element_count; 889 // }; 890 // TODO: what should we do if the allocated type actually wants 891 // greater alignment? 892 return CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes); 893} 894 895llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 896 llvm::Value *NewPtr, 897 llvm::Value *NumElements, 898 const CXXNewExpr *expr, 899 QualType ElementType) { 900 assert(requiresArrayCookie(expr)); 901 902 // NewPtr is a char*. 903 904 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 905 906 ASTContext &Ctx = getContext(); 907 CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType()); 908 llvm::IntegerType *SizeTy = 909 cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType())); 910 911 // The cookie is always at the start of the buffer. 912 llvm::Value *CookiePtr = NewPtr; 913 914 // The first element is the element size. 915 CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS)); 916 llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy, 917 Ctx.getTypeSizeInChars(ElementType).getQuantity()); 918 CGF.Builder.CreateStore(ElementSize, CookiePtr); 919 920 // The second element is the element count. 921 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1); 922 CGF.Builder.CreateStore(NumElements, CookiePtr); 923 924 // Finally, compute a pointer to the actual data buffer by skipping 925 // over the cookie completely. 926 CharUnits CookieSize = 2 * SizeSize; 927 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 928 CookieSize.getQuantity()); 929} 930 931llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 932 llvm::Value *allocPtr, 933 CharUnits cookieSize) { 934 // The number of elements is at offset sizeof(size_t) relative to 935 // the allocated pointer. 936 llvm::Value *numElementsPtr 937 = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes); 938 939 unsigned AS = cast<llvm::PointerType>(allocPtr->getType())->getAddressSpace(); 940 numElementsPtr = 941 CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); 942 return CGF.Builder.CreateLoad(numElementsPtr); 943} 944 945/*********************** Static local initialization **************************/ 946 947static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, 948 llvm::PointerType *GuardPtrTy) { 949 // int __cxa_guard_acquire(__guard *guard_object); 950 llvm::FunctionType *FTy = 951 llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), 952 GuardPtrTy, /*isVarArg=*/false); 953 llvm::Attributes::Builder B; 954 B.addAttribute(llvm::Attributes::NoUnwind); 955 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire", 956 llvm::Attributes::get(CGM.getLLVMContext(), 957 B)); 958} 959 960static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, 961 llvm::PointerType *GuardPtrTy) { 962 // void __cxa_guard_release(__guard *guard_object); 963 llvm::FunctionType *FTy = 964 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 965 llvm::Attributes::Builder B; 966 B.addAttribute(llvm::Attributes::NoUnwind); 967 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release", 968 llvm::Attributes::get(CGM.getLLVMContext(), 969 B)); 970} 971 972static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, 973 llvm::PointerType *GuardPtrTy) { 974 // void __cxa_guard_abort(__guard *guard_object); 975 llvm::FunctionType *FTy = 976 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 977 llvm::Attributes::Builder B; 978 B.addAttribute(llvm::Attributes::NoUnwind); 979 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort", 980 llvm::Attributes::get(CGM.getLLVMContext(), 981 B)); 982} 983 984namespace { 985 struct CallGuardAbort : EHScopeStack::Cleanup { 986 llvm::GlobalVariable *Guard; 987 CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} 988 989 void Emit(CodeGenFunction &CGF, Flags flags) { 990 CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard) 991 ->setDoesNotThrow(); 992 } 993 }; 994} 995 996/// The ARM code here follows the Itanium code closely enough that we 997/// just special-case it at particular places. 998void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, 999 const VarDecl &D, 1000 llvm::GlobalVariable *var, 1001 bool shouldPerformInit) { 1002 CGBuilderTy &Builder = CGF.Builder; 1003 1004 // We only need to use thread-safe statics for local variables; 1005 // global initialization is always single-threaded. 1006 bool threadsafe = 1007 (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl()); 1008 1009 // If we have a global variable with internal linkage and thread-safe statics 1010 // are disabled, we can just let the guard variable be of type i8. 1011 bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); 1012 1013 llvm::IntegerType *guardTy; 1014 if (useInt8GuardVariable) { 1015 guardTy = CGF.Int8Ty; 1016 } else { 1017 // Guard variables are 64 bits in the generic ABI and 32 bits on ARM. 1018 guardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty); 1019 } 1020 llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); 1021 1022 // Create the guard variable if we don't already have it (as we 1023 // might if we're double-emitting this function body). 1024 llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); 1025 if (!guard) { 1026 // Mangle the name for the guard. 1027 SmallString<256> guardName; 1028 { 1029 llvm::raw_svector_ostream out(guardName); 1030 getMangleContext().mangleItaniumGuardVariable(&D, out); 1031 out.flush(); 1032 } 1033 1034 // Create the guard variable with a zero-initializer. 1035 // Just absorb linkage and visibility from the guarded variable. 1036 guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, 1037 false, var->getLinkage(), 1038 llvm::ConstantInt::get(guardTy, 0), 1039 guardName.str()); 1040 guard->setVisibility(var->getVisibility()); 1041 1042 CGM.setStaticLocalDeclGuardAddress(&D, guard); 1043 } 1044 1045 // Test whether the variable has completed initialization. 1046 llvm::Value *isInitialized; 1047 1048 // ARM C++ ABI 3.2.3.1: 1049 // To support the potential use of initialization guard variables 1050 // as semaphores that are the target of ARM SWP and LDREX/STREX 1051 // synchronizing instructions we define a static initialization 1052 // guard variable to be a 4-byte aligned, 4- byte word with the 1053 // following inline access protocol. 1054 // #define INITIALIZED 1 1055 // if ((obj_guard & INITIALIZED) != INITIALIZED) { 1056 // if (__cxa_guard_acquire(&obj_guard)) 1057 // ... 1058 // } 1059 if (IsARM && !useInt8GuardVariable) { 1060 llvm::Value *V = Builder.CreateLoad(guard); 1061 V = Builder.CreateAnd(V, Builder.getInt32(1)); 1062 isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); 1063 1064 // Itanium C++ ABI 3.3.2: 1065 // The following is pseudo-code showing how these functions can be used: 1066 // if (obj_guard.first_byte == 0) { 1067 // if ( __cxa_guard_acquire (&obj_guard) ) { 1068 // try { 1069 // ... initialize the object ...; 1070 // } catch (...) { 1071 // __cxa_guard_abort (&obj_guard); 1072 // throw; 1073 // } 1074 // ... queue object destructor with __cxa_atexit() ...; 1075 // __cxa_guard_release (&obj_guard); 1076 // } 1077 // } 1078 } else { 1079 // Load the first byte of the guard variable. 1080 llvm::LoadInst *LI = 1081 Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy)); 1082 LI->setAlignment(1); 1083 1084 // Itanium ABI: 1085 // An implementation supporting thread-safety on multiprocessor 1086 // systems must also guarantee that references to the initialized 1087 // object do not occur before the load of the initialization flag. 1088 // 1089 // In LLVM, we do this by marking the load Acquire. 1090 if (threadsafe) 1091 LI->setAtomic(llvm::Acquire); 1092 1093 isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized"); 1094 } 1095 1096 llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); 1097 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 1098 1099 // Check if the first byte of the guard variable is zero. 1100 Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); 1101 1102 CGF.EmitBlock(InitCheckBlock); 1103 1104 // Variables used when coping with thread-safe statics and exceptions. 1105 if (threadsafe) { 1106 // Call __cxa_guard_acquire. 1107 llvm::Value *V 1108 = Builder.CreateCall(getGuardAcquireFn(CGM, guardPtrTy), guard); 1109 1110 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 1111 1112 Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), 1113 InitBlock, EndBlock); 1114 1115 // Call __cxa_guard_abort along the exceptional edge. 1116 CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); 1117 1118 CGF.EmitBlock(InitBlock); 1119 } 1120 1121 // Emit the initializer and add a global destructor if appropriate. 1122 CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); 1123 1124 if (threadsafe) { 1125 // Pop the guard-abort cleanup if we pushed one. 1126 CGF.PopCleanupBlock(); 1127 1128 // Call __cxa_guard_release. This cannot throw. 1129 Builder.CreateCall(getGuardReleaseFn(CGM, guardPtrTy), guard); 1130 } else { 1131 Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard); 1132 } 1133 1134 CGF.EmitBlock(EndBlock); 1135} 1136 1137/// Register a global destructor using __cxa_atexit. 1138static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, 1139 llvm::Constant *dtor, 1140 llvm::Constant *addr) { 1141 // We're assuming that the destructor function is something we can 1142 // reasonably call with the default CC. Go ahead and cast it to the 1143 // right prototype. 1144 llvm::Type *dtorTy = 1145 llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); 1146 1147 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); 1148 llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; 1149 llvm::FunctionType *atexitTy = 1150 llvm::FunctionType::get(CGF.IntTy, paramTys, false); 1151 1152 // Fetch the actual function. 1153 llvm::Constant *atexit = 1154 CGF.CGM.CreateRuntimeFunction(atexitTy, "__cxa_atexit"); 1155 if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit)) 1156 fn->setDoesNotThrow(); 1157 1158 // Create a variable that binds the atexit to this shared object. 1159 llvm::Constant *handle = 1160 CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); 1161 1162 llvm::Value *args[] = { 1163 llvm::ConstantExpr::getBitCast(dtor, dtorTy), 1164 llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), 1165 handle 1166 }; 1167 CGF.Builder.CreateCall(atexit, args)->setDoesNotThrow(); 1168} 1169 1170/// Register a global destructor as best as we know how. 1171void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, 1172 llvm::Constant *dtor, 1173 llvm::Constant *addr) { 1174 // Use __cxa_atexit if available. 1175 if (CGM.getCodeGenOpts().CXAAtExit) { 1176 return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr); 1177 } 1178 1179 // In Apple kexts, we want to add a global destructor entry. 1180 // FIXME: shouldn't this be guarded by some variable? 1181 if (CGM.getContext().getLangOpts().AppleKext) { 1182 // Generate a global destructor entry. 1183 return CGM.AddCXXDtorEntry(dtor, addr); 1184 } 1185 1186 CGF.registerGlobalDtorWithAtExit(dtor, addr); 1187} 1188 1189/// Generate and emit virtual tables for the given class. 1190void ItaniumCXXABI::EmitVTables(const CXXRecordDecl *Class) { 1191 CGM.getVTables().GenerateClassData(CGM.getVTableLinkage(Class), Class); 1192} 1193