ItaniumCXXABI.cpp revision a53d7a0259ff88f78ba8ecac7d0cb3ea96302b1d
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CGVTables.h"
24#include "CodeGenFunction.h"
25#include "CodeGenModule.h"
26#include "clang/AST/Mangle.h"
27#include "clang/AST/Type.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Value.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35namespace {
36class ItaniumCXXABI : public CodeGen::CGCXXABI {
37  /// VTables - All the vtables which have been defined.
38  llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
39
40protected:
41  bool UseARMMethodPtrABI;
42  bool UseARMGuardVarABI;
43
44public:
45  ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
46                bool UseARMMethodPtrABI = false,
47                bool UseARMGuardVarABI = false) :
48    CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
49    UseARMGuardVarABI(UseARMGuardVarABI) { }
50
51  bool isReturnTypeIndirect(const CXXRecordDecl *RD) const {
52    // Structures with either a non-trivial destructor or a non-trivial
53    // copy constructor are always indirect.
54    return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor();
55  }
56
57  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const {
58    // Structures with either a non-trivial destructor or a non-trivial
59    // copy constructor are always indirect.
60    if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
61      return RAA_Indirect;
62    return RAA_Default;
63  }
64
65  bool isZeroInitializable(const MemberPointerType *MPT);
66
67  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
68
69  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
70                                               llvm::Value *&This,
71                                               llvm::Value *MemFnPtr,
72                                               const MemberPointerType *MPT);
73
74  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
75                                            llvm::Value *Base,
76                                            llvm::Value *MemPtr,
77                                            const MemberPointerType *MPT);
78
79  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
80                                           const CastExpr *E,
81                                           llvm::Value *Src);
82  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
83                                              llvm::Constant *Src);
84
85  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
86
87  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
88  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
89                                        CharUnits offset);
90  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
91  llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
92                                     CharUnits ThisAdjustment);
93
94  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
95                                           llvm::Value *L,
96                                           llvm::Value *R,
97                                           const MemberPointerType *MPT,
98                                           bool Inequality);
99
100  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
101                                          llvm::Value *Addr,
102                                          const MemberPointerType *MPT);
103
104  llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
105                                      llvm::Value *ptr,
106                                      QualType type);
107
108  llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF,
109                                         llvm::Value *This,
110                                         const CXXRecordDecl *ClassDecl,
111                                         const CXXRecordDecl *BaseClassDecl);
112
113  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
114                                 CXXCtorType T,
115                                 CanQualType &ResTy,
116                                 SmallVectorImpl<CanQualType> &ArgTys);
117
118  void EmitCXXConstructors(const CXXConstructorDecl *D);
119
120  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
121                                CXXDtorType T,
122                                CanQualType &ResTy,
123                                SmallVectorImpl<CanQualType> &ArgTys);
124
125  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
126                              CXXDtorType DT) const {
127    // Itanium does not emit any destructor variant as an inline thunk.
128    // Delegating may occur as an optimization, but all variants are either
129    // emitted with external linkage or as linkonce if they are inline and used.
130    return false;
131  }
132
133  void EmitCXXDestructors(const CXXDestructorDecl *D);
134
135  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
136                                   QualType &ResTy,
137                                   FunctionArgList &Params);
138
139  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
140
141  void EmitConstructorCall(CodeGenFunction &CGF,
142                           const CXXConstructorDecl *D, CXXCtorType Type,
143                           bool ForVirtualBase, bool Delegating,
144                           llvm::Value *This,
145                           CallExpr::const_arg_iterator ArgBeg,
146                           CallExpr::const_arg_iterator ArgEnd);
147
148  void emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD);
149
150  llvm::Value *getVTableAddressPointInStructor(
151      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
152      BaseSubobject Base, const CXXRecordDecl *NearestVBase,
153      bool &NeedsVirtualOffset);
154
155  llvm::Constant *
156  getVTableAddressPointForConstExpr(BaseSubobject Base,
157                                    const CXXRecordDecl *VTableClass);
158
159  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
160                                        CharUnits VPtrOffset);
161
162  llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
163                                         llvm::Value *This, llvm::Type *Ty);
164
165  void EmitVirtualDestructorCall(CodeGenFunction &CGF,
166                                 const CXXDestructorDecl *Dtor,
167                                 CXXDtorType DtorType, SourceLocation CallLoc,
168                                 llvm::Value *This);
169
170  void emitVirtualInheritanceTables(const CXXRecordDecl *RD);
171
172  StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; }
173  StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; }
174
175  CharUnits getArrayCookieSizeImpl(QualType elementType);
176  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
177                                     llvm::Value *NewPtr,
178                                     llvm::Value *NumElements,
179                                     const CXXNewExpr *expr,
180                                     QualType ElementType);
181  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
182                                   llvm::Value *allocPtr,
183                                   CharUnits cookieSize);
184
185  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
186                       llvm::GlobalVariable *DeclPtr, bool PerformInit);
187  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
188                          llvm::Constant *dtor, llvm::Constant *addr);
189
190  llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
191                                                llvm::GlobalVariable *Var);
192  void EmitThreadLocalInitFuncs(
193      llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
194      llvm::Function *InitFunc);
195  LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
196                                    const DeclRefExpr *DRE);
197
198  bool NeedsVTTParameter(GlobalDecl GD);
199};
200
201class ARMCXXABI : public ItaniumCXXABI {
202public:
203  ARMCXXABI(CodeGen::CodeGenModule &CGM) :
204    ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
205                  /* UseARMGuardVarABI = */ true) {}
206
207  bool HasThisReturn(GlobalDecl GD) const {
208    return (isa<CXXConstructorDecl>(GD.getDecl()) || (
209              isa<CXXDestructorDecl>(GD.getDecl()) &&
210              GD.getDtorType() != Dtor_Deleting));
211  }
212
213  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
214
215  CharUnits getArrayCookieSizeImpl(QualType elementType);
216  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
217                                     llvm::Value *NewPtr,
218                                     llvm::Value *NumElements,
219                                     const CXXNewExpr *expr,
220                                     QualType ElementType);
221  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
222                                   CharUnits cookieSize);
223};
224}
225
226CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
227  switch (CGM.getTarget().getCXXABI().getKind()) {
228  // For IR-generation purposes, there's no significant difference
229  // between the ARM and iOS ABIs.
230  case TargetCXXABI::GenericARM:
231  case TargetCXXABI::iOS:
232    return new ARMCXXABI(CGM);
233
234  // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
235  // include the other 32-bit ARM oddities: constructor/destructor return values
236  // and array cookies.
237  case TargetCXXABI::GenericAArch64:
238    return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
239                             /* UseARMGuardVarABI = */ true);
240
241  case TargetCXXABI::GenericItanium:
242    if (CGM.getContext().getTargetInfo().getTriple().getArch()
243        == llvm::Triple::le32) {
244      // For PNaCl, use ARM-style method pointers so that PNaCl code
245      // does not assume anything about the alignment of function
246      // pointers.
247      return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
248                               /* UseARMGuardVarABI = */ false);
249    }
250    return new ItaniumCXXABI(CGM);
251
252  case TargetCXXABI::Microsoft:
253    llvm_unreachable("Microsoft ABI is not Itanium-based");
254  }
255  llvm_unreachable("bad ABI kind");
256}
257
258llvm::Type *
259ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
260  if (MPT->isMemberDataPointer())
261    return CGM.PtrDiffTy;
262  return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL);
263}
264
265/// In the Itanium and ARM ABIs, method pointers have the form:
266///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
267///
268/// In the Itanium ABI:
269///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
270///  - the this-adjustment is (memptr.adj)
271///  - the virtual offset is (memptr.ptr - 1)
272///
273/// In the ARM ABI:
274///  - method pointers are virtual if (memptr.adj & 1) is nonzero
275///  - the this-adjustment is (memptr.adj >> 1)
276///  - the virtual offset is (memptr.ptr)
277/// ARM uses 'adj' for the virtual flag because Thumb functions
278/// may be only single-byte aligned.
279///
280/// If the member is virtual, the adjusted 'this' pointer points
281/// to a vtable pointer from which the virtual offset is applied.
282///
283/// If the member is non-virtual, memptr.ptr is the address of
284/// the function to call.
285llvm::Value *
286ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
287                                               llvm::Value *&This,
288                                               llvm::Value *MemFnPtr,
289                                               const MemberPointerType *MPT) {
290  CGBuilderTy &Builder = CGF.Builder;
291
292  const FunctionProtoType *FPT =
293    MPT->getPointeeType()->getAs<FunctionProtoType>();
294  const CXXRecordDecl *RD =
295    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
296
297  llvm::FunctionType *FTy =
298    CGM.getTypes().GetFunctionType(
299      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
300
301  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
302
303  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
304  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
305  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
306
307  // Extract memptr.adj, which is in the second field.
308  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
309
310  // Compute the true adjustment.
311  llvm::Value *Adj = RawAdj;
312  if (UseARMMethodPtrABI)
313    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
314
315  // Apply the adjustment and cast back to the original struct type
316  // for consistency.
317  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
318  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
319  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
320
321  // Load the function pointer.
322  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
323
324  // If the LSB in the function pointer is 1, the function pointer points to
325  // a virtual function.
326  llvm::Value *IsVirtual;
327  if (UseARMMethodPtrABI)
328    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
329  else
330    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
331  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
332  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
333
334  // In the virtual path, the adjustment left 'This' pointing to the
335  // vtable of the correct base subobject.  The "function pointer" is an
336  // offset within the vtable (+1 for the virtual flag on non-ARM).
337  CGF.EmitBlock(FnVirtual);
338
339  // Cast the adjusted this to a pointer to vtable pointer and load.
340  llvm::Type *VTableTy = Builder.getInt8PtrTy();
341  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
342  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
343
344  // Apply the offset.
345  llvm::Value *VTableOffset = FnAsInt;
346  if (!UseARMMethodPtrABI)
347    VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
348  VTable = Builder.CreateGEP(VTable, VTableOffset);
349
350  // Load the virtual function to call.
351  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
352  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
353  CGF.EmitBranch(FnEnd);
354
355  // In the non-virtual path, the function pointer is actually a
356  // function pointer.
357  CGF.EmitBlock(FnNonVirtual);
358  llvm::Value *NonVirtualFn =
359    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
360
361  // We're done.
362  CGF.EmitBlock(FnEnd);
363  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
364  Callee->addIncoming(VirtualFn, FnVirtual);
365  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
366  return Callee;
367}
368
369/// Compute an l-value by applying the given pointer-to-member to a
370/// base object.
371llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
372                                                         llvm::Value *Base,
373                                                         llvm::Value *MemPtr,
374                                           const MemberPointerType *MPT) {
375  assert(MemPtr->getType() == CGM.PtrDiffTy);
376
377  CGBuilderTy &Builder = CGF.Builder;
378
379  unsigned AS = Base->getType()->getPointerAddressSpace();
380
381  // Cast to char*.
382  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
383
384  // Apply the offset, which we assume is non-null.
385  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
386
387  // Cast the address to the appropriate pointer type, adopting the
388  // address space of the base pointer.
389  llvm::Type *PType
390    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
391  return Builder.CreateBitCast(Addr, PType);
392}
393
394/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
395/// conversion.
396///
397/// Bitcast conversions are always a no-op under Itanium.
398///
399/// Obligatory offset/adjustment diagram:
400///         <-- offset -->          <-- adjustment -->
401///   |--------------------------|----------------------|--------------------|
402///   ^Derived address point     ^Base address point    ^Member address point
403///
404/// So when converting a base member pointer to a derived member pointer,
405/// we add the offset to the adjustment because the address point has
406/// decreased;  and conversely, when converting a derived MP to a base MP
407/// we subtract the offset from the adjustment because the address point
408/// has increased.
409///
410/// The standard forbids (at compile time) conversion to and from
411/// virtual bases, which is why we don't have to consider them here.
412///
413/// The standard forbids (at run time) casting a derived MP to a base
414/// MP when the derived MP does not point to a member of the base.
415/// This is why -1 is a reasonable choice for null data member
416/// pointers.
417llvm::Value *
418ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
419                                           const CastExpr *E,
420                                           llvm::Value *src) {
421  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
422         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
423         E->getCastKind() == CK_ReinterpretMemberPointer);
424
425  // Under Itanium, reinterprets don't require any additional processing.
426  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
427
428  // Use constant emission if we can.
429  if (isa<llvm::Constant>(src))
430    return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
431
432  llvm::Constant *adj = getMemberPointerAdjustment(E);
433  if (!adj) return src;
434
435  CGBuilderTy &Builder = CGF.Builder;
436  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
437
438  const MemberPointerType *destTy =
439    E->getType()->castAs<MemberPointerType>();
440
441  // For member data pointers, this is just a matter of adding the
442  // offset if the source is non-null.
443  if (destTy->isMemberDataPointer()) {
444    llvm::Value *dst;
445    if (isDerivedToBase)
446      dst = Builder.CreateNSWSub(src, adj, "adj");
447    else
448      dst = Builder.CreateNSWAdd(src, adj, "adj");
449
450    // Null check.
451    llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
452    llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
453    return Builder.CreateSelect(isNull, src, dst);
454  }
455
456  // The this-adjustment is left-shifted by 1 on ARM.
457  if (UseARMMethodPtrABI) {
458    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
459    offset <<= 1;
460    adj = llvm::ConstantInt::get(adj->getType(), offset);
461  }
462
463  llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
464  llvm::Value *dstAdj;
465  if (isDerivedToBase)
466    dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
467  else
468    dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
469
470  return Builder.CreateInsertValue(src, dstAdj, 1);
471}
472
473llvm::Constant *
474ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
475                                           llvm::Constant *src) {
476  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
477         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
478         E->getCastKind() == CK_ReinterpretMemberPointer);
479
480  // Under Itanium, reinterprets don't require any additional processing.
481  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
482
483  // If the adjustment is trivial, we don't need to do anything.
484  llvm::Constant *adj = getMemberPointerAdjustment(E);
485  if (!adj) return src;
486
487  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
488
489  const MemberPointerType *destTy =
490    E->getType()->castAs<MemberPointerType>();
491
492  // For member data pointers, this is just a matter of adding the
493  // offset if the source is non-null.
494  if (destTy->isMemberDataPointer()) {
495    // null maps to null.
496    if (src->isAllOnesValue()) return src;
497
498    if (isDerivedToBase)
499      return llvm::ConstantExpr::getNSWSub(src, adj);
500    else
501      return llvm::ConstantExpr::getNSWAdd(src, adj);
502  }
503
504  // The this-adjustment is left-shifted by 1 on ARM.
505  if (UseARMMethodPtrABI) {
506    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
507    offset <<= 1;
508    adj = llvm::ConstantInt::get(adj->getType(), offset);
509  }
510
511  llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
512  llvm::Constant *dstAdj;
513  if (isDerivedToBase)
514    dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
515  else
516    dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
517
518  return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
519}
520
521llvm::Constant *
522ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
523  // Itanium C++ ABI 2.3:
524  //   A NULL pointer is represented as -1.
525  if (MPT->isMemberDataPointer())
526    return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
527
528  llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
529  llvm::Constant *Values[2] = { Zero, Zero };
530  return llvm::ConstantStruct::getAnon(Values);
531}
532
533llvm::Constant *
534ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
535                                     CharUnits offset) {
536  // Itanium C++ ABI 2.3:
537  //   A pointer to data member is an offset from the base address of
538  //   the class object containing it, represented as a ptrdiff_t
539  return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
540}
541
542llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
543  return BuildMemberPointer(MD, CharUnits::Zero());
544}
545
546llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
547                                                  CharUnits ThisAdjustment) {
548  assert(MD->isInstance() && "Member function must not be static!");
549  MD = MD->getCanonicalDecl();
550
551  CodeGenTypes &Types = CGM.getTypes();
552
553  // Get the function pointer (or index if this is a virtual function).
554  llvm::Constant *MemPtr[2];
555  if (MD->isVirtual()) {
556    uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
557
558    const ASTContext &Context = getContext();
559    CharUnits PointerWidth =
560      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
561    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
562
563    if (UseARMMethodPtrABI) {
564      // ARM C++ ABI 3.2.1:
565      //   This ABI specifies that adj contains twice the this
566      //   adjustment, plus 1 if the member function is virtual. The
567      //   least significant bit of adj then makes exactly the same
568      //   discrimination as the least significant bit of ptr does for
569      //   Itanium.
570      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
571      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
572                                         2 * ThisAdjustment.getQuantity() + 1);
573    } else {
574      // Itanium C++ ABI 2.3:
575      //   For a virtual function, [the pointer field] is 1 plus the
576      //   virtual table offset (in bytes) of the function,
577      //   represented as a ptrdiff_t.
578      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
579      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
580                                         ThisAdjustment.getQuantity());
581    }
582  } else {
583    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
584    llvm::Type *Ty;
585    // Check whether the function has a computable LLVM signature.
586    if (Types.isFuncTypeConvertible(FPT)) {
587      // The function has a computable LLVM signature; use the correct type.
588      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
589    } else {
590      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
591      // function type is incomplete.
592      Ty = CGM.PtrDiffTy;
593    }
594    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
595
596    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
597    MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
598                                       (UseARMMethodPtrABI ? 2 : 1) *
599                                       ThisAdjustment.getQuantity());
600  }
601
602  return llvm::ConstantStruct::getAnon(MemPtr);
603}
604
605llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
606                                                 QualType MPType) {
607  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
608  const ValueDecl *MPD = MP.getMemberPointerDecl();
609  if (!MPD)
610    return EmitNullMemberPointer(MPT);
611
612  CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
613
614  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
615    return BuildMemberPointer(MD, ThisAdjustment);
616
617  CharUnits FieldOffset =
618    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
619  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
620}
621
622/// The comparison algorithm is pretty easy: the member pointers are
623/// the same if they're either bitwise identical *or* both null.
624///
625/// ARM is different here only because null-ness is more complicated.
626llvm::Value *
627ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
628                                           llvm::Value *L,
629                                           llvm::Value *R,
630                                           const MemberPointerType *MPT,
631                                           bool Inequality) {
632  CGBuilderTy &Builder = CGF.Builder;
633
634  llvm::ICmpInst::Predicate Eq;
635  llvm::Instruction::BinaryOps And, Or;
636  if (Inequality) {
637    Eq = llvm::ICmpInst::ICMP_NE;
638    And = llvm::Instruction::Or;
639    Or = llvm::Instruction::And;
640  } else {
641    Eq = llvm::ICmpInst::ICMP_EQ;
642    And = llvm::Instruction::And;
643    Or = llvm::Instruction::Or;
644  }
645
646  // Member data pointers are easy because there's a unique null
647  // value, so it just comes down to bitwise equality.
648  if (MPT->isMemberDataPointer())
649    return Builder.CreateICmp(Eq, L, R);
650
651  // For member function pointers, the tautologies are more complex.
652  // The Itanium tautology is:
653  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
654  // The ARM tautology is:
655  //   (L == R) <==> (L.ptr == R.ptr &&
656  //                  (L.adj == R.adj ||
657  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
658  // The inequality tautologies have exactly the same structure, except
659  // applying De Morgan's laws.
660
661  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
662  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
663
664  // This condition tests whether L.ptr == R.ptr.  This must always be
665  // true for equality to hold.
666  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
667
668  // This condition, together with the assumption that L.ptr == R.ptr,
669  // tests whether the pointers are both null.  ARM imposes an extra
670  // condition.
671  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
672  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
673
674  // This condition tests whether L.adj == R.adj.  If this isn't
675  // true, the pointers are unequal unless they're both null.
676  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
677  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
678  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
679
680  // Null member function pointers on ARM clear the low bit of Adj,
681  // so the zero condition has to check that neither low bit is set.
682  if (UseARMMethodPtrABI) {
683    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
684
685    // Compute (l.adj | r.adj) & 1 and test it against zero.
686    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
687    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
688    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
689                                                      "cmp.or.adj");
690    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
691  }
692
693  // Tie together all our conditions.
694  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
695  Result = Builder.CreateBinOp(And, PtrEq, Result,
696                               Inequality ? "memptr.ne" : "memptr.eq");
697  return Result;
698}
699
700llvm::Value *
701ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
702                                          llvm::Value *MemPtr,
703                                          const MemberPointerType *MPT) {
704  CGBuilderTy &Builder = CGF.Builder;
705
706  /// For member data pointers, this is just a check against -1.
707  if (MPT->isMemberDataPointer()) {
708    assert(MemPtr->getType() == CGM.PtrDiffTy);
709    llvm::Value *NegativeOne =
710      llvm::Constant::getAllOnesValue(MemPtr->getType());
711    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
712  }
713
714  // In Itanium, a member function pointer is not null if 'ptr' is not null.
715  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
716
717  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
718  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
719
720  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
721  // (the virtual bit) is set.
722  if (UseARMMethodPtrABI) {
723    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
724    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
725    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
726    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
727                                                  "memptr.isvirtual");
728    Result = Builder.CreateOr(Result, IsVirtual);
729  }
730
731  return Result;
732}
733
734/// The Itanium ABI requires non-zero initialization only for data
735/// member pointers, for which '0' is a valid offset.
736bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
737  return MPT->getPointeeType()->isFunctionType();
738}
739
740/// The Itanium ABI always places an offset to the complete object
741/// at entry -2 in the vtable.
742llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
743                                                   llvm::Value *ptr,
744                                                   QualType type) {
745  // Grab the vtable pointer as an intptr_t*.
746  llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
747
748  // Track back to entry -2 and pull out the offset there.
749  llvm::Value *offsetPtr =
750    CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
751  llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
752  offset->setAlignment(CGF.PointerAlignInBytes);
753
754  // Apply the offset.
755  ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
756  return CGF.Builder.CreateInBoundsGEP(ptr, offset);
757}
758
759llvm::Value *
760ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
761                                         llvm::Value *This,
762                                         const CXXRecordDecl *ClassDecl,
763                                         const CXXRecordDecl *BaseClassDecl) {
764  llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
765  CharUnits VBaseOffsetOffset =
766    CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
767
768  llvm::Value *VBaseOffsetPtr =
769    CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
770                                   "vbase.offset.ptr");
771  VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
772                                             CGM.PtrDiffTy->getPointerTo());
773
774  llvm::Value *VBaseOffset =
775    CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
776
777  return VBaseOffset;
778}
779
780/// The generic ABI passes 'this', plus a VTT if it's initializing a
781/// base subobject.
782void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
783                                              CXXCtorType Type,
784                                              CanQualType &ResTy,
785                                SmallVectorImpl<CanQualType> &ArgTys) {
786  ASTContext &Context = getContext();
787
788  // 'this' parameter is already there, as well as 'this' return if
789  // HasThisReturn(GlobalDecl(Ctor, Type)) is true
790
791  // Check if we need to add a VTT parameter (which has type void **).
792  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
793    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
794}
795
796void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
797  // Just make sure we're in sync with TargetCXXABI.
798  assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
799
800  // The constructor used for constructing this as a complete class;
801  // constucts the virtual bases, then calls the base constructor.
802  if (!D->getParent()->isAbstract()) {
803    // We don't need to emit the complete ctor if the class is abstract.
804    CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
805  }
806
807  // The constructor used for constructing this as a base class;
808  // ignores virtual bases.
809  CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
810}
811
812/// The generic ABI passes 'this', plus a VTT if it's destroying a
813/// base subobject.
814void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
815                                             CXXDtorType Type,
816                                             CanQualType &ResTy,
817                                SmallVectorImpl<CanQualType> &ArgTys) {
818  ASTContext &Context = getContext();
819
820  // 'this' parameter is already there, as well as 'this' return if
821  // HasThisReturn(GlobalDecl(Dtor, Type)) is true
822
823  // Check if we need to add a VTT parameter (which has type void **).
824  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
825    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
826}
827
828void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
829  // The destructor in a virtual table is always a 'deleting'
830  // destructor, which calls the complete destructor and then uses the
831  // appropriate operator delete.
832  if (D->isVirtual())
833    CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
834
835  // The destructor used for destructing this as a most-derived class;
836  // call the base destructor and then destructs any virtual bases.
837  CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
838
839  // The destructor used for destructing this as a base class; ignores
840  // virtual bases.
841  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
842}
843
844void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
845                                                QualType &ResTy,
846                                                FunctionArgList &Params) {
847  /// Create the 'this' variable.
848  BuildThisParam(CGF, Params);
849
850  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
851  assert(MD->isInstance());
852
853  // Check if we need a VTT parameter as well.
854  if (NeedsVTTParameter(CGF.CurGD)) {
855    ASTContext &Context = getContext();
856
857    // FIXME: avoid the fake decl
858    QualType T = Context.getPointerType(Context.VoidPtrTy);
859    ImplicitParamDecl *VTTDecl
860      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
861                                  &Context.Idents.get("vtt"), T);
862    Params.push_back(VTTDecl);
863    getVTTDecl(CGF) = VTTDecl;
864  }
865}
866
867void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
868  /// Initialize the 'this' slot.
869  EmitThisParam(CGF);
870
871  /// Initialize the 'vtt' slot if needed.
872  if (getVTTDecl(CGF)) {
873    getVTTValue(CGF)
874      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
875                               "vtt");
876  }
877
878  /// If this is a function that the ABI specifies returns 'this', initialize
879  /// the return slot to 'this' at the start of the function.
880  ///
881  /// Unlike the setting of return types, this is done within the ABI
882  /// implementation instead of by clients of CGCXXABI because:
883  /// 1) getThisValue is currently protected
884  /// 2) in theory, an ABI could implement 'this' returns some other way;
885  ///    HasThisReturn only specifies a contract, not the implementation
886  if (HasThisReturn(CGF.CurGD))
887    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
888}
889
890void ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF,
891                                        const CXXConstructorDecl *D,
892                                        CXXCtorType Type,
893                                        bool ForVirtualBase, bool Delegating,
894                                        llvm::Value *This,
895                                        CallExpr::const_arg_iterator ArgBeg,
896                                        CallExpr::const_arg_iterator ArgEnd) {
897  llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase,
898                                         Delegating);
899  QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
900  llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
901
902  // FIXME: Provide a source location here.
903  CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(),
904                        This, VTT, VTTTy, ArgBeg, ArgEnd);
905}
906
907void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
908                                          const CXXRecordDecl *RD) {
909  llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
910  if (VTable->hasInitializer())
911    return;
912
913  VTableContext &VTContext = CGM.getVTableContext();
914  const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
915  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
916
917  // Create and set the initializer.
918  llvm::Constant *Init = CGVT.CreateVTableInitializer(
919      RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(),
920      VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks());
921  VTable->setInitializer(Init);
922
923  // Set the correct linkage.
924  VTable->setLinkage(Linkage);
925
926  // Set the right visibility.
927  CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable);
928
929  // If this is the magic class __cxxabiv1::__fundamental_type_info,
930  // we will emit the typeinfo for the fundamental types. This is the
931  // same behaviour as GCC.
932  const DeclContext *DC = RD->getDeclContext();
933  if (RD->getIdentifier() &&
934      RD->getIdentifier()->isStr("__fundamental_type_info") &&
935      isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
936      cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
937      DC->getParent()->isTranslationUnit())
938    CGM.EmitFundamentalRTTIDescriptors();
939}
940
941llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
942    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
943    const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
944  bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD);
945  NeedsVirtualOffset = (NeedsVTTParam && NearestVBase);
946
947  llvm::Value *VTableAddressPoint;
948  if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) {
949    // Get the secondary vpointer index.
950    uint64_t VirtualPointerIndex =
951        CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
952
953    /// Load the VTT.
954    llvm::Value *VTT = CGF.LoadCXXVTT();
955    if (VirtualPointerIndex)
956      VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
957
958    // And load the address point from the VTT.
959    VTableAddressPoint = CGF.Builder.CreateLoad(VTT);
960  } else {
961    llvm::Constant *VTable =
962        CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits());
963    uint64_t AddressPoint = CGM.getVTableContext().getVTableLayout(VTableClass)
964        .getAddressPoint(Base);
965    VTableAddressPoint =
966        CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
967  }
968
969  return VTableAddressPoint;
970}
971
972llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
973    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
974  llvm::Constant *VTable = getAddrOfVTable(VTableClass, CharUnits());
975
976  // Find the appropriate vtable within the vtable group.
977  uint64_t AddressPoint =
978    CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
979  llvm::Value *Indices[] = {
980    llvm::ConstantInt::get(CGM.Int64Ty, 0),
981    llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
982  };
983
984  return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
985}
986
987llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
988                                                     CharUnits VPtrOffset) {
989  assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
990
991  llvm::GlobalVariable *&VTable = VTables[RD];
992  if (VTable)
993    return VTable;
994
995  // Queue up this v-table for possible deferred emission.
996  CGM.addDeferredVTable(RD);
997
998  SmallString<256> OutName;
999  llvm::raw_svector_ostream Out(OutName);
1000  CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out);
1001  Out.flush();
1002  StringRef Name = OutName.str();
1003
1004  VTableContext &VTContext = CGM.getVTableContext();
1005  llvm::ArrayType *ArrayType = llvm::ArrayType::get(
1006      CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents());
1007
1008  VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
1009      Name, ArrayType, llvm::GlobalValue::ExternalLinkage);
1010  VTable->setUnnamedAddr(true);
1011  return VTable;
1012}
1013
1014llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1015                                                      GlobalDecl GD,
1016                                                      llvm::Value *This,
1017                                                      llvm::Type *Ty) {
1018  GD = GD.getCanonicalDecl();
1019  Ty = Ty->getPointerTo()->getPointerTo();
1020  llvm::Value *VTable = CGF.GetVTablePtr(This, Ty);
1021
1022  uint64_t VTableIndex = CGM.getVTableContext().getMethodVTableIndex(GD);
1023  llvm::Value *VFuncPtr =
1024      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
1025  return CGF.Builder.CreateLoad(VFuncPtr);
1026}
1027
1028void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
1029                                              const CXXDestructorDecl *Dtor,
1030                                              CXXDtorType DtorType,
1031                                              SourceLocation CallLoc,
1032                                              llvm::Value *This) {
1033  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1034
1035  const CGFunctionInfo *FInfo
1036    = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
1037  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1038  llvm::Value *Callee =
1039      getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty);
1040
1041  CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
1042                        /*ImplicitParam=*/0, QualType(), 0, 0);
1043}
1044
1045void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1046  CodeGenVTables &VTables = CGM.getVTables();
1047  llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
1048  VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
1049}
1050
1051void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
1052                                    RValue RV, QualType ResultType) {
1053  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
1054    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
1055
1056  // Destructor thunks in the ARM ABI have indeterminate results.
1057  llvm::Type *T =
1058    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
1059  RValue Undef = RValue::get(llvm::UndefValue::get(T));
1060  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
1061}
1062
1063/************************** Array allocation cookies **************************/
1064
1065CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
1066  // The array cookie is a size_t; pad that up to the element alignment.
1067  // The cookie is actually right-justified in that space.
1068  return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
1069                  CGM.getContext().getTypeAlignInChars(elementType));
1070}
1071
1072llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1073                                                  llvm::Value *NewPtr,
1074                                                  llvm::Value *NumElements,
1075                                                  const CXXNewExpr *expr,
1076                                                  QualType ElementType) {
1077  assert(requiresArrayCookie(expr));
1078
1079  unsigned AS = NewPtr->getType()->getPointerAddressSpace();
1080
1081  ASTContext &Ctx = getContext();
1082  QualType SizeTy = Ctx.getSizeType();
1083  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
1084
1085  // The size of the cookie.
1086  CharUnits CookieSize =
1087    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
1088  assert(CookieSize == getArrayCookieSizeImpl(ElementType));
1089
1090  // Compute an offset to the cookie.
1091  llvm::Value *CookiePtr = NewPtr;
1092  CharUnits CookieOffset = CookieSize - SizeSize;
1093  if (!CookieOffset.isZero())
1094    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
1095                                                 CookieOffset.getQuantity());
1096
1097  // Write the number of elements into the appropriate slot.
1098  llvm::Value *NumElementsPtr
1099    = CGF.Builder.CreateBitCast(CookiePtr,
1100                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
1101  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
1102
1103  // Finally, compute a pointer to the actual data buffer by skipping
1104  // over the cookie completely.
1105  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
1106                                                CookieSize.getQuantity());
1107}
1108
1109llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1110                                                llvm::Value *allocPtr,
1111                                                CharUnits cookieSize) {
1112  // The element size is right-justified in the cookie.
1113  llvm::Value *numElementsPtr = allocPtr;
1114  CharUnits numElementsOffset =
1115    cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
1116  if (!numElementsOffset.isZero())
1117    numElementsPtr =
1118      CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
1119                                             numElementsOffset.getQuantity());
1120
1121  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1122  numElementsPtr =
1123    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
1124  return CGF.Builder.CreateLoad(numElementsPtr);
1125}
1126
1127CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
1128  // ARM says that the cookie is always:
1129  //   struct array_cookie {
1130  //     std::size_t element_size; // element_size != 0
1131  //     std::size_t element_count;
1132  //   };
1133  // But the base ABI doesn't give anything an alignment greater than
1134  // 8, so we can dismiss this as typical ABI-author blindness to
1135  // actual language complexity and round up to the element alignment.
1136  return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
1137                  CGM.getContext().getTypeAlignInChars(elementType));
1138}
1139
1140llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1141                                              llvm::Value *newPtr,
1142                                              llvm::Value *numElements,
1143                                              const CXXNewExpr *expr,
1144                                              QualType elementType) {
1145  assert(requiresArrayCookie(expr));
1146
1147  // NewPtr is a char*, but we generalize to arbitrary addrspaces.
1148  unsigned AS = newPtr->getType()->getPointerAddressSpace();
1149
1150  // The cookie is always at the start of the buffer.
1151  llvm::Value *cookie = newPtr;
1152
1153  // The first element is the element size.
1154  cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
1155  llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
1156                 getContext().getTypeSizeInChars(elementType).getQuantity());
1157  CGF.Builder.CreateStore(elementSize, cookie);
1158
1159  // The second element is the element count.
1160  cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
1161  CGF.Builder.CreateStore(numElements, cookie);
1162
1163  // Finally, compute a pointer to the actual data buffer by skipping
1164  // over the cookie completely.
1165  CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
1166  return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
1167                                                cookieSize.getQuantity());
1168}
1169
1170llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1171                                            llvm::Value *allocPtr,
1172                                            CharUnits cookieSize) {
1173  // The number of elements is at offset sizeof(size_t) relative to
1174  // the allocated pointer.
1175  llvm::Value *numElementsPtr
1176    = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
1177
1178  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1179  numElementsPtr =
1180    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
1181  return CGF.Builder.CreateLoad(numElementsPtr);
1182}
1183
1184/*********************** Static local initialization **************************/
1185
1186static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1187                                         llvm::PointerType *GuardPtrTy) {
1188  // int __cxa_guard_acquire(__guard *guard_object);
1189  llvm::FunctionType *FTy =
1190    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1191                            GuardPtrTy, /*isVarArg=*/false);
1192  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
1193                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1194                                              llvm::AttributeSet::FunctionIndex,
1195                                                 llvm::Attribute::NoUnwind));
1196}
1197
1198static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1199                                         llvm::PointerType *GuardPtrTy) {
1200  // void __cxa_guard_release(__guard *guard_object);
1201  llvm::FunctionType *FTy =
1202    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1203  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
1204                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1205                                              llvm::AttributeSet::FunctionIndex,
1206                                                 llvm::Attribute::NoUnwind));
1207}
1208
1209static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1210                                       llvm::PointerType *GuardPtrTy) {
1211  // void __cxa_guard_abort(__guard *guard_object);
1212  llvm::FunctionType *FTy =
1213    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1214  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
1215                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1216                                              llvm::AttributeSet::FunctionIndex,
1217                                                 llvm::Attribute::NoUnwind));
1218}
1219
1220namespace {
1221  struct CallGuardAbort : EHScopeStack::Cleanup {
1222    llvm::GlobalVariable *Guard;
1223    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1224
1225    void Emit(CodeGenFunction &CGF, Flags flags) {
1226      CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
1227                                  Guard);
1228    }
1229  };
1230}
1231
1232/// The ARM code here follows the Itanium code closely enough that we
1233/// just special-case it at particular places.
1234void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1235                                    const VarDecl &D,
1236                                    llvm::GlobalVariable *var,
1237                                    bool shouldPerformInit) {
1238  CGBuilderTy &Builder = CGF.Builder;
1239
1240  // We only need to use thread-safe statics for local non-TLS variables;
1241  // global initialization is always single-threaded.
1242  bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
1243                    D.isLocalVarDecl() && !D.getTLSKind();
1244
1245  // If we have a global variable with internal linkage and thread-safe statics
1246  // are disabled, we can just let the guard variable be of type i8.
1247  bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
1248
1249  llvm::IntegerType *guardTy;
1250  if (useInt8GuardVariable) {
1251    guardTy = CGF.Int8Ty;
1252  } else {
1253    // Guard variables are 64 bits in the generic ABI and size width on ARM
1254    // (i.e. 32-bit on AArch32, 64-bit on AArch64).
1255    guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty);
1256  }
1257  llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
1258
1259  // Create the guard variable if we don't already have it (as we
1260  // might if we're double-emitting this function body).
1261  llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
1262  if (!guard) {
1263    // Mangle the name for the guard.
1264    SmallString<256> guardName;
1265    {
1266      llvm::raw_svector_ostream out(guardName);
1267      getMangleContext().mangleStaticGuardVariable(&D, out);
1268      out.flush();
1269    }
1270
1271    // Create the guard variable with a zero-initializer.
1272    // Just absorb linkage and visibility from the guarded variable.
1273    guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
1274                                     false, var->getLinkage(),
1275                                     llvm::ConstantInt::get(guardTy, 0),
1276                                     guardName.str());
1277    guard->setVisibility(var->getVisibility());
1278    // If the variable is thread-local, so is its guard variable.
1279    guard->setThreadLocalMode(var->getThreadLocalMode());
1280
1281    CGM.setStaticLocalDeclGuardAddress(&D, guard);
1282  }
1283
1284  // Test whether the variable has completed initialization.
1285  llvm::Value *isInitialized;
1286
1287  // ARM C++ ABI 3.2.3.1:
1288  //   To support the potential use of initialization guard variables
1289  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1290  //   synchronizing instructions we define a static initialization
1291  //   guard variable to be a 4-byte aligned, 4- byte word with the
1292  //   following inline access protocol.
1293  //     #define INITIALIZED 1
1294  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1295  //       if (__cxa_guard_acquire(&obj_guard))
1296  //         ...
1297  //     }
1298  if (UseARMGuardVarABI && !useInt8GuardVariable) {
1299    llvm::Value *V = Builder.CreateLoad(guard);
1300    llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1);
1301    V = Builder.CreateAnd(V, Test1);
1302    isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1303
1304  // Itanium C++ ABI 3.3.2:
1305  //   The following is pseudo-code showing how these functions can be used:
1306  //     if (obj_guard.first_byte == 0) {
1307  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1308  //         try {
1309  //           ... initialize the object ...;
1310  //         } catch (...) {
1311  //            __cxa_guard_abort (&obj_guard);
1312  //            throw;
1313  //         }
1314  //         ... queue object destructor with __cxa_atexit() ...;
1315  //         __cxa_guard_release (&obj_guard);
1316  //       }
1317  //     }
1318  } else {
1319    // Load the first byte of the guard variable.
1320    llvm::LoadInst *LI =
1321      Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
1322    LI->setAlignment(1);
1323
1324    // Itanium ABI:
1325    //   An implementation supporting thread-safety on multiprocessor
1326    //   systems must also guarantee that references to the initialized
1327    //   object do not occur before the load of the initialization flag.
1328    //
1329    // In LLVM, we do this by marking the load Acquire.
1330    if (threadsafe)
1331      LI->setAtomic(llvm::Acquire);
1332
1333    isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1334  }
1335
1336  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1337  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1338
1339  // Check if the first byte of the guard variable is zero.
1340  Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
1341
1342  CGF.EmitBlock(InitCheckBlock);
1343
1344  // Variables used when coping with thread-safe statics and exceptions.
1345  if (threadsafe) {
1346    // Call __cxa_guard_acquire.
1347    llvm::Value *V
1348      = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
1349
1350    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1351
1352    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1353                         InitBlock, EndBlock);
1354
1355    // Call __cxa_guard_abort along the exceptional edge.
1356    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
1357
1358    CGF.EmitBlock(InitBlock);
1359  }
1360
1361  // Emit the initializer and add a global destructor if appropriate.
1362  CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
1363
1364  if (threadsafe) {
1365    // Pop the guard-abort cleanup if we pushed one.
1366    CGF.PopCleanupBlock();
1367
1368    // Call __cxa_guard_release.  This cannot throw.
1369    CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
1370  } else {
1371    Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
1372  }
1373
1374  CGF.EmitBlock(EndBlock);
1375}
1376
1377/// Register a global destructor using __cxa_atexit.
1378static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
1379                                        llvm::Constant *dtor,
1380                                        llvm::Constant *addr,
1381                                        bool TLS) {
1382  const char *Name = "__cxa_atexit";
1383  if (TLS) {
1384    const llvm::Triple &T = CGF.getTarget().getTriple();
1385    Name = T.isMacOSX() ?  "_tlv_atexit" : "__cxa_thread_atexit";
1386  }
1387
1388  // We're assuming that the destructor function is something we can
1389  // reasonably call with the default CC.  Go ahead and cast it to the
1390  // right prototype.
1391  llvm::Type *dtorTy =
1392    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
1393
1394  // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
1395  llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
1396  llvm::FunctionType *atexitTy =
1397    llvm::FunctionType::get(CGF.IntTy, paramTys, false);
1398
1399  // Fetch the actual function.
1400  llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
1401  if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
1402    fn->setDoesNotThrow();
1403
1404  // Create a variable that binds the atexit to this shared object.
1405  llvm::Constant *handle =
1406    CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
1407
1408  llvm::Value *args[] = {
1409    llvm::ConstantExpr::getBitCast(dtor, dtorTy),
1410    llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
1411    handle
1412  };
1413  CGF.EmitNounwindRuntimeCall(atexit, args);
1414}
1415
1416/// Register a global destructor as best as we know how.
1417void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
1418                                       const VarDecl &D,
1419                                       llvm::Constant *dtor,
1420                                       llvm::Constant *addr) {
1421  // Use __cxa_atexit if available.
1422  if (CGM.getCodeGenOpts().CXAAtExit)
1423    return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
1424
1425  if (D.getTLSKind())
1426    CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
1427
1428  // In Apple kexts, we want to add a global destructor entry.
1429  // FIXME: shouldn't this be guarded by some variable?
1430  if (CGM.getLangOpts().AppleKext) {
1431    // Generate a global destructor entry.
1432    return CGM.AddCXXDtorEntry(dtor, addr);
1433  }
1434
1435  CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
1436}
1437
1438/// Get the appropriate linkage for the wrapper function. This is essentially
1439/// the weak form of the variable's linkage; every translation unit which wneeds
1440/// the wrapper emits a copy, and we want the linker to merge them.
1441static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage(
1442    llvm::GlobalValue::LinkageTypes VarLinkage) {
1443  if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage))
1444    return llvm::GlobalValue::LinkerPrivateWeakLinkage;
1445  // For internal linkage variables, we don't need an external or weak wrapper.
1446  if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
1447    return VarLinkage;
1448  return llvm::GlobalValue::WeakODRLinkage;
1449}
1450
1451llvm::Function *
1452ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
1453                                             llvm::GlobalVariable *Var) {
1454  // Mangle the name for the thread_local wrapper function.
1455  SmallString<256> WrapperName;
1456  {
1457    llvm::raw_svector_ostream Out(WrapperName);
1458    getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
1459    Out.flush();
1460  }
1461
1462  if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName))
1463    return cast<llvm::Function>(V);
1464
1465  llvm::Type *RetTy = Var->getType();
1466  if (VD->getType()->isReferenceType())
1467    RetTy = RetTy->getPointerElementType();
1468
1469  llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
1470  llvm::Function *Wrapper = llvm::Function::Create(
1471      FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(),
1472      &CGM.getModule());
1473  // Always resolve references to the wrapper at link time.
1474  Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
1475  return Wrapper;
1476}
1477
1478void ItaniumCXXABI::EmitThreadLocalInitFuncs(
1479    llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
1480    llvm::Function *InitFunc) {
1481  for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
1482    const VarDecl *VD = Decls[I].first;
1483    llvm::GlobalVariable *Var = Decls[I].second;
1484
1485    // Mangle the name for the thread_local initialization function.
1486    SmallString<256> InitFnName;
1487    {
1488      llvm::raw_svector_ostream Out(InitFnName);
1489      getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
1490      Out.flush();
1491    }
1492
1493    // If we have a definition for the variable, emit the initialization
1494    // function as an alias to the global Init function (if any). Otherwise,
1495    // produce a declaration of the initialization function.
1496    llvm::GlobalValue *Init = 0;
1497    bool InitIsInitFunc = false;
1498    if (VD->hasDefinition()) {
1499      InitIsInitFunc = true;
1500      if (InitFunc)
1501        Init =
1502            new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(),
1503                                  InitFnName.str(), InitFunc, &CGM.getModule());
1504    } else {
1505      // Emit a weak global function referring to the initialization function.
1506      // This function will not exist if the TU defining the thread_local
1507      // variable in question does not need any dynamic initialization for
1508      // its thread_local variables.
1509      llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
1510      Init = llvm::Function::Create(
1511          FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
1512          &CGM.getModule());
1513    }
1514
1515    if (Init)
1516      Init->setVisibility(Var->getVisibility());
1517
1518    llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
1519    llvm::LLVMContext &Context = CGM.getModule().getContext();
1520    llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
1521    CGBuilderTy Builder(Entry);
1522    if (InitIsInitFunc) {
1523      if (Init)
1524        Builder.CreateCall(Init);
1525    } else {
1526      // Don't know whether we have an init function. Call it if it exists.
1527      llvm::Value *Have = Builder.CreateIsNotNull(Init);
1528      llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
1529      llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
1530      Builder.CreateCondBr(Have, InitBB, ExitBB);
1531
1532      Builder.SetInsertPoint(InitBB);
1533      Builder.CreateCall(Init);
1534      Builder.CreateBr(ExitBB);
1535
1536      Builder.SetInsertPoint(ExitBB);
1537    }
1538
1539    // For a reference, the result of the wrapper function is a pointer to
1540    // the referenced object.
1541    llvm::Value *Val = Var;
1542    if (VD->getType()->isReferenceType()) {
1543      llvm::LoadInst *LI = Builder.CreateLoad(Val);
1544      LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
1545      Val = LI;
1546    }
1547
1548    Builder.CreateRet(Val);
1549  }
1550}
1551
1552LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
1553                                                 const DeclRefExpr *DRE) {
1554  const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
1555  QualType T = VD->getType();
1556  llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
1557  llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
1558  llvm::Function *Wrapper =
1559      getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val));
1560
1561  Val = CGF.Builder.CreateCall(Wrapper);
1562
1563  LValue LV;
1564  if (VD->getType()->isReferenceType())
1565    LV = CGF.MakeNaturalAlignAddrLValue(Val, T);
1566  else
1567    LV = CGF.MakeAddrLValue(Val, DRE->getType(),
1568                            CGF.getContext().getDeclAlign(VD));
1569  // FIXME: need setObjCGCLValueClass?
1570  return LV;
1571}
1572
1573/// Return whether the given global decl needs a VTT parameter, which it does
1574/// if it's a base constructor or destructor with virtual bases.
1575bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
1576  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1577
1578  // We don't have any virtual bases, just return early.
1579  if (!MD->getParent()->getNumVBases())
1580    return false;
1581
1582  // Check if we have a base constructor.
1583  if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
1584    return true;
1585
1586  // Check if we have a base destructor.
1587  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1588    return true;
1589
1590  return false;
1591}
1592