ItaniumCXXABI.cpp revision c5cbb909e8a27deb8f1a2b6b7bf56a96051af81a
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This provides C++ code generation targeting the Itanium C++ ABI. The class 11// in this file generates structures that follow the Itanium C++ ABI, which is 12// documented at: 13// http://www.codesourcery.com/public/cxx-abi/abi.html 14// http://www.codesourcery.com/public/cxx-abi/abi-eh.html 15// 16// It also supports the closely-related ARM ABI, documented at: 17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf 18// 19//===----------------------------------------------------------------------===// 20 21#include "CGCXXABI.h" 22#include "CGRecordLayout.h" 23#include "CodeGenFunction.h" 24#include "CodeGenModule.h" 25#include <clang/AST/Mangle.h> 26#include <clang/AST/Type.h> 27#include <llvm/Intrinsics.h> 28#include <llvm/Target/TargetData.h> 29#include <llvm/Value.h> 30 31using namespace clang; 32using namespace CodeGen; 33 34namespace { 35class ItaniumCXXABI : public CodeGen::CGCXXABI { 36private: 37 const llvm::IntegerType *PtrDiffTy; 38protected: 39 bool IsARM; 40 41 // It's a little silly for us to cache this. 42 const llvm::IntegerType *getPtrDiffTy() { 43 if (!PtrDiffTy) { 44 QualType T = getContext().getPointerDiffType(); 45 const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T); 46 PtrDiffTy = cast<llvm::IntegerType>(Ty); 47 } 48 return PtrDiffTy; 49 } 50 51 bool NeedsArrayCookie(const CXXNewExpr *expr); 52 bool NeedsArrayCookie(const CXXDeleteExpr *expr, 53 QualType elementType); 54 55public: 56 ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) : 57 CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { } 58 59 bool isZeroInitializable(const MemberPointerType *MPT); 60 61 const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); 62 63 llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 64 llvm::Value *&This, 65 llvm::Value *MemFnPtr, 66 const MemberPointerType *MPT); 67 68 llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, 69 llvm::Value *Base, 70 llvm::Value *MemPtr, 71 const MemberPointerType *MPT); 72 73 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 74 const CastExpr *E, 75 llvm::Value *Src); 76 77 llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C, 78 const CastExpr *E); 79 80 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); 81 82 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); 83 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 84 CharUnits offset); 85 86 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 87 llvm::Value *L, 88 llvm::Value *R, 89 const MemberPointerType *MPT, 90 bool Inequality); 91 92 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 93 llvm::Value *Addr, 94 const MemberPointerType *MPT); 95 96 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 97 CXXCtorType T, 98 CanQualType &ResTy, 99 llvm::SmallVectorImpl<CanQualType> &ArgTys); 100 101 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 102 CXXDtorType T, 103 CanQualType &ResTy, 104 llvm::SmallVectorImpl<CanQualType> &ArgTys); 105 106 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 107 QualType &ResTy, 108 FunctionArgList &Params); 109 110 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 111 112 CharUnits GetArrayCookieSize(const CXXNewExpr *expr); 113 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 114 llvm::Value *NewPtr, 115 llvm::Value *NumElements, 116 const CXXNewExpr *expr, 117 QualType ElementType); 118 void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr, 119 const CXXDeleteExpr *expr, 120 QualType ElementType, llvm::Value *&NumElements, 121 llvm::Value *&AllocPtr, CharUnits &CookieSize); 122 123 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 124 llvm::GlobalVariable *DeclPtr); 125}; 126 127class ARMCXXABI : public ItaniumCXXABI { 128public: 129 ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {} 130 131 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 132 CXXCtorType T, 133 CanQualType &ResTy, 134 llvm::SmallVectorImpl<CanQualType> &ArgTys); 135 136 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 137 CXXDtorType T, 138 CanQualType &ResTy, 139 llvm::SmallVectorImpl<CanQualType> &ArgTys); 140 141 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 142 QualType &ResTy, 143 FunctionArgList &Params); 144 145 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 146 147 void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); 148 149 CharUnits GetArrayCookieSize(const CXXNewExpr *expr); 150 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 151 llvm::Value *NewPtr, 152 llvm::Value *NumElements, 153 const CXXNewExpr *expr, 154 QualType ElementType); 155 void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr, 156 const CXXDeleteExpr *expr, 157 QualType ElementType, llvm::Value *&NumElements, 158 llvm::Value *&AllocPtr, CharUnits &CookieSize); 159 160private: 161 /// \brief Returns true if the given instance method is one of the 162 /// kinds that the ARM ABI says returns 'this'. 163 static bool HasThisReturn(GlobalDecl GD) { 164 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 165 return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) || 166 (isa<CXXConstructorDecl>(MD))); 167 } 168}; 169} 170 171CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { 172 return new ItaniumCXXABI(CGM); 173} 174 175CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) { 176 return new ARMCXXABI(CGM); 177} 178 179const llvm::Type * 180ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 181 if (MPT->isMemberDataPointer()) 182 return getPtrDiffTy(); 183 return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL); 184} 185 186/// In the Itanium and ARM ABIs, method pointers have the form: 187/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; 188/// 189/// In the Itanium ABI: 190/// - method pointers are virtual if (memptr.ptr & 1) is nonzero 191/// - the this-adjustment is (memptr.adj) 192/// - the virtual offset is (memptr.ptr - 1) 193/// 194/// In the ARM ABI: 195/// - method pointers are virtual if (memptr.adj & 1) is nonzero 196/// - the this-adjustment is (memptr.adj >> 1) 197/// - the virtual offset is (memptr.ptr) 198/// ARM uses 'adj' for the virtual flag because Thumb functions 199/// may be only single-byte aligned. 200/// 201/// If the member is virtual, the adjusted 'this' pointer points 202/// to a vtable pointer from which the virtual offset is applied. 203/// 204/// If the member is non-virtual, memptr.ptr is the address of 205/// the function to call. 206llvm::Value * 207ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 208 llvm::Value *&This, 209 llvm::Value *MemFnPtr, 210 const MemberPointerType *MPT) { 211 CGBuilderTy &Builder = CGF.Builder; 212 213 const FunctionProtoType *FPT = 214 MPT->getPointeeType()->getAs<FunctionProtoType>(); 215 const CXXRecordDecl *RD = 216 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 217 218 const llvm::FunctionType *FTy = 219 CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT), 220 FPT->isVariadic()); 221 222 const llvm::IntegerType *ptrdiff = getPtrDiffTy(); 223 llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1); 224 225 llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); 226 llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); 227 llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); 228 229 // Extract memptr.adj, which is in the second field. 230 llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); 231 232 // Compute the true adjustment. 233 llvm::Value *Adj = RawAdj; 234 if (IsARM) 235 Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); 236 237 // Apply the adjustment and cast back to the original struct type 238 // for consistency. 239 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); 240 Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); 241 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); 242 243 // Load the function pointer. 244 llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); 245 246 // If the LSB in the function pointer is 1, the function pointer points to 247 // a virtual function. 248 llvm::Value *IsVirtual; 249 if (IsARM) 250 IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); 251 else 252 IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); 253 IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); 254 Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); 255 256 // In the virtual path, the adjustment left 'This' pointing to the 257 // vtable of the correct base subobject. The "function pointer" is an 258 // offset within the vtable (+1 for the virtual flag on non-ARM). 259 CGF.EmitBlock(FnVirtual); 260 261 // Cast the adjusted this to a pointer to vtable pointer and load. 262 const llvm::Type *VTableTy = Builder.getInt8PtrTy(); 263 llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); 264 VTable = Builder.CreateLoad(VTable, "memptr.vtable"); 265 266 // Apply the offset. 267 llvm::Value *VTableOffset = FnAsInt; 268 if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); 269 VTable = Builder.CreateGEP(VTable, VTableOffset); 270 271 // Load the virtual function to call. 272 VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); 273 llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); 274 CGF.EmitBranch(FnEnd); 275 276 // In the non-virtual path, the function pointer is actually a 277 // function pointer. 278 CGF.EmitBlock(FnNonVirtual); 279 llvm::Value *NonVirtualFn = 280 Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); 281 282 // We're done. 283 CGF.EmitBlock(FnEnd); 284 llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); 285 Callee->addIncoming(VirtualFn, FnVirtual); 286 Callee->addIncoming(NonVirtualFn, FnNonVirtual); 287 return Callee; 288} 289 290/// Compute an l-value by applying the given pointer-to-member to a 291/// base object. 292llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, 293 llvm::Value *Base, 294 llvm::Value *MemPtr, 295 const MemberPointerType *MPT) { 296 assert(MemPtr->getType() == getPtrDiffTy()); 297 298 CGBuilderTy &Builder = CGF.Builder; 299 300 unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace(); 301 302 // Cast to char*. 303 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); 304 305 // Apply the offset, which we assume is non-null. 306 llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); 307 308 // Cast the address to the appropriate pointer type, adopting the 309 // address space of the base pointer. 310 const llvm::Type *PType 311 = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 312 return Builder.CreateBitCast(Addr, PType); 313} 314 315/// Perform a derived-to-base or base-to-derived member pointer conversion. 316/// 317/// Obligatory offset/adjustment diagram: 318/// <-- offset --> <-- adjustment --> 319/// |--------------------------|----------------------|--------------------| 320/// ^Derived address point ^Base address point ^Member address point 321/// 322/// So when converting a base member pointer to a derived member pointer, 323/// we add the offset to the adjustment because the address point has 324/// decreased; and conversely, when converting a derived MP to a base MP 325/// we subtract the offset from the adjustment because the address point 326/// has increased. 327/// 328/// The standard forbids (at compile time) conversion to and from 329/// virtual bases, which is why we don't have to consider them here. 330/// 331/// The standard forbids (at run time) casting a derived MP to a base 332/// MP when the derived MP does not point to a member of the base. 333/// This is why -1 is a reasonable choice for null data member 334/// pointers. 335llvm::Value * 336ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 337 const CastExpr *E, 338 llvm::Value *Src) { 339 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 340 E->getCastKind() == CK_BaseToDerivedMemberPointer); 341 342 if (isa<llvm::Constant>(Src)) 343 return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E); 344 345 CGBuilderTy &Builder = CGF.Builder; 346 347 const MemberPointerType *SrcTy = 348 E->getSubExpr()->getType()->getAs<MemberPointerType>(); 349 const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>(); 350 351 const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl(); 352 const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl(); 353 354 bool DerivedToBase = 355 E->getCastKind() == CK_DerivedToBaseMemberPointer; 356 357 const CXXRecordDecl *DerivedDecl; 358 if (DerivedToBase) 359 DerivedDecl = SrcDecl; 360 else 361 DerivedDecl = DestDecl; 362 363 llvm::Constant *Adj = 364 CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, 365 E->path_begin(), 366 E->path_end()); 367 if (!Adj) return Src; 368 369 // For member data pointers, this is just a matter of adding the 370 // offset if the source is non-null. 371 if (SrcTy->isMemberDataPointer()) { 372 llvm::Value *Dst; 373 if (DerivedToBase) 374 Dst = Builder.CreateNSWSub(Src, Adj, "adj"); 375 else 376 Dst = Builder.CreateNSWAdd(Src, Adj, "adj"); 377 378 // Null check. 379 llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType()); 380 llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull"); 381 return Builder.CreateSelect(IsNull, Src, Dst); 382 } 383 384 // The this-adjustment is left-shifted by 1 on ARM. 385 if (IsARM) { 386 uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue(); 387 Offset <<= 1; 388 Adj = llvm::ConstantInt::get(Adj->getType(), Offset); 389 } 390 391 llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj"); 392 llvm::Value *DstAdj; 393 if (DerivedToBase) 394 DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj"); 395 else 396 DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj"); 397 398 return Builder.CreateInsertValue(Src, DstAdj, 1); 399} 400 401llvm::Constant * 402ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C, 403 const CastExpr *E) { 404 const MemberPointerType *SrcTy = 405 E->getSubExpr()->getType()->getAs<MemberPointerType>(); 406 const MemberPointerType *DestTy = 407 E->getType()->getAs<MemberPointerType>(); 408 409 bool DerivedToBase = 410 E->getCastKind() == CK_DerivedToBaseMemberPointer; 411 412 const CXXRecordDecl *DerivedDecl; 413 if (DerivedToBase) 414 DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl(); 415 else 416 DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl(); 417 418 // Calculate the offset to the base class. 419 llvm::Constant *Offset = 420 CGM.GetNonVirtualBaseClassOffset(DerivedDecl, 421 E->path_begin(), 422 E->path_end()); 423 // If there's no offset, we're done. 424 if (!Offset) return C; 425 426 // If the source is a member data pointer, we have to do a null 427 // check and then add the offset. In the common case, we can fold 428 // away the offset. 429 if (SrcTy->isMemberDataPointer()) { 430 assert(C->getType() == getPtrDiffTy()); 431 432 // If it's a constant int, just create a new constant int. 433 if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) { 434 int64_t Src = CI->getSExtValue(); 435 436 // Null converts to null. 437 if (Src == -1) return CI; 438 439 // Otherwise, just add the offset. 440 int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue(); 441 int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV); 442 return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true); 443 } 444 445 // Otherwise, we have to form a constant select expression. 446 llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType()); 447 448 llvm::Constant *IsNull = 449 llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null); 450 451 llvm::Constant *Dst; 452 if (DerivedToBase) 453 Dst = llvm::ConstantExpr::getNSWSub(C, Offset); 454 else 455 Dst = llvm::ConstantExpr::getNSWAdd(C, Offset); 456 457 return llvm::ConstantExpr::getSelect(IsNull, Null, Dst); 458 } 459 460 // The this-adjustment is left-shifted by 1 on ARM. 461 if (IsARM) { 462 int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue(); 463 OffsetV <<= 1; 464 Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV); 465 } 466 467 llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C); 468 469 llvm::Constant *Values[2] = { CS->getOperand(0), 0 }; 470 if (DerivedToBase) 471 Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset); 472 else 473 Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset); 474 475 return llvm::ConstantStruct::get(CS->getType(), Values); 476} 477 478 479llvm::Constant * 480ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 481 const llvm::Type *ptrdiff_t = getPtrDiffTy(); 482 483 // Itanium C++ ABI 2.3: 484 // A NULL pointer is represented as -1. 485 if (MPT->isMemberDataPointer()) 486 return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true); 487 488 llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0); 489 llvm::Constant *Values[2] = { Zero, Zero }; 490 return llvm::ConstantStruct::getAnon(Values); 491} 492 493llvm::Constant * 494ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 495 CharUnits offset) { 496 // Itanium C++ ABI 2.3: 497 // A pointer to data member is an offset from the base address of 498 // the class object containing it, represented as a ptrdiff_t 499 return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity()); 500} 501 502llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { 503 assert(MD->isInstance() && "Member function must not be static!"); 504 MD = MD->getCanonicalDecl(); 505 506 CodeGenTypes &Types = CGM.getTypes(); 507 const llvm::Type *ptrdiff_t = getPtrDiffTy(); 508 509 // Get the function pointer (or index if this is a virtual function). 510 llvm::Constant *MemPtr[2]; 511 if (MD->isVirtual()) { 512 uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD); 513 514 const ASTContext &Context = getContext(); 515 CharUnits PointerWidth = 516 Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0)); 517 uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); 518 519 if (IsARM) { 520 // ARM C++ ABI 3.2.1: 521 // This ABI specifies that adj contains twice the this 522 // adjustment, plus 1 if the member function is virtual. The 523 // least significant bit of adj then makes exactly the same 524 // discrimination as the least significant bit of ptr does for 525 // Itanium. 526 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset); 527 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1); 528 } else { 529 // Itanium C++ ABI 2.3: 530 // For a virtual function, [the pointer field] is 1 plus the 531 // virtual table offset (in bytes) of the function, 532 // represented as a ptrdiff_t. 533 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1); 534 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0); 535 } 536 } else { 537 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 538 const llvm::Type *Ty; 539 // Check whether the function has a computable LLVM signature. 540 if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) { 541 // The function has a computable LLVM signature; use the correct type. 542 Ty = Types.GetFunctionType(Types.getFunctionInfo(MD), 543 FPT->isVariadic()); 544 } else { 545 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 546 // function type is incomplete. 547 Ty = ptrdiff_t; 548 } 549 llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); 550 551 MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t); 552 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0); 553 } 554 555 return llvm::ConstantStruct::getAnon(MemPtr); 556} 557 558/// The comparison algorithm is pretty easy: the member pointers are 559/// the same if they're either bitwise identical *or* both null. 560/// 561/// ARM is different here only because null-ness is more complicated. 562llvm::Value * 563ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 564 llvm::Value *L, 565 llvm::Value *R, 566 const MemberPointerType *MPT, 567 bool Inequality) { 568 CGBuilderTy &Builder = CGF.Builder; 569 570 llvm::ICmpInst::Predicate Eq; 571 llvm::Instruction::BinaryOps And, Or; 572 if (Inequality) { 573 Eq = llvm::ICmpInst::ICMP_NE; 574 And = llvm::Instruction::Or; 575 Or = llvm::Instruction::And; 576 } else { 577 Eq = llvm::ICmpInst::ICMP_EQ; 578 And = llvm::Instruction::And; 579 Or = llvm::Instruction::Or; 580 } 581 582 // Member data pointers are easy because there's a unique null 583 // value, so it just comes down to bitwise equality. 584 if (MPT->isMemberDataPointer()) 585 return Builder.CreateICmp(Eq, L, R); 586 587 // For member function pointers, the tautologies are more complex. 588 // The Itanium tautology is: 589 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) 590 // The ARM tautology is: 591 // (L == R) <==> (L.ptr == R.ptr && 592 // (L.adj == R.adj || 593 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) 594 // The inequality tautologies have exactly the same structure, except 595 // applying De Morgan's laws. 596 597 llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); 598 llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); 599 600 // This condition tests whether L.ptr == R.ptr. This must always be 601 // true for equality to hold. 602 llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); 603 604 // This condition, together with the assumption that L.ptr == R.ptr, 605 // tests whether the pointers are both null. ARM imposes an extra 606 // condition. 607 llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); 608 llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); 609 610 // This condition tests whether L.adj == R.adj. If this isn't 611 // true, the pointers are unequal unless they're both null. 612 llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); 613 llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); 614 llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); 615 616 // Null member function pointers on ARM clear the low bit of Adj, 617 // so the zero condition has to check that neither low bit is set. 618 if (IsARM) { 619 llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); 620 621 // Compute (l.adj | r.adj) & 1 and test it against zero. 622 llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); 623 llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); 624 llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, 625 "cmp.or.adj"); 626 EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); 627 } 628 629 // Tie together all our conditions. 630 llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); 631 Result = Builder.CreateBinOp(And, PtrEq, Result, 632 Inequality ? "memptr.ne" : "memptr.eq"); 633 return Result; 634} 635 636llvm::Value * 637ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 638 llvm::Value *MemPtr, 639 const MemberPointerType *MPT) { 640 CGBuilderTy &Builder = CGF.Builder; 641 642 /// For member data pointers, this is just a check against -1. 643 if (MPT->isMemberDataPointer()) { 644 assert(MemPtr->getType() == getPtrDiffTy()); 645 llvm::Value *NegativeOne = 646 llvm::Constant::getAllOnesValue(MemPtr->getType()); 647 return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); 648 } 649 650 // In Itanium, a member function pointer is not null if 'ptr' is not null. 651 llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); 652 653 llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); 654 llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); 655 656 // On ARM, a member function pointer is also non-null if the low bit of 'adj' 657 // (the virtual bit) is set. 658 if (IsARM) { 659 llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); 660 llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); 661 llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); 662 llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, 663 "memptr.isvirtual"); 664 Result = Builder.CreateOr(Result, IsVirtual); 665 } 666 667 return Result; 668} 669 670/// The Itanium ABI requires non-zero initialization only for data 671/// member pointers, for which '0' is a valid offset. 672bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 673 return MPT->getPointeeType()->isFunctionType(); 674} 675 676/// The generic ABI passes 'this', plus a VTT if it's initializing a 677/// base subobject. 678void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 679 CXXCtorType Type, 680 CanQualType &ResTy, 681 llvm::SmallVectorImpl<CanQualType> &ArgTys) { 682 ASTContext &Context = getContext(); 683 684 // 'this' is already there. 685 686 // Check if we need to add a VTT parameter (which has type void **). 687 if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) 688 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 689} 690 691/// The ARM ABI does the same as the Itanium ABI, but returns 'this'. 692void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 693 CXXCtorType Type, 694 CanQualType &ResTy, 695 llvm::SmallVectorImpl<CanQualType> &ArgTys) { 696 ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys); 697 ResTy = ArgTys[0]; 698} 699 700/// The generic ABI passes 'this', plus a VTT if it's destroying a 701/// base subobject. 702void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 703 CXXDtorType Type, 704 CanQualType &ResTy, 705 llvm::SmallVectorImpl<CanQualType> &ArgTys) { 706 ASTContext &Context = getContext(); 707 708 // 'this' is already there. 709 710 // Check if we need to add a VTT parameter (which has type void **). 711 if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) 712 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 713} 714 715/// The ARM ABI does the same as the Itanium ABI, but returns 'this' 716/// for non-deleting destructors. 717void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 718 CXXDtorType Type, 719 CanQualType &ResTy, 720 llvm::SmallVectorImpl<CanQualType> &ArgTys) { 721 ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys); 722 723 if (Type != Dtor_Deleting) 724 ResTy = ArgTys[0]; 725} 726 727void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 728 QualType &ResTy, 729 FunctionArgList &Params) { 730 /// Create the 'this' variable. 731 BuildThisParam(CGF, Params); 732 733 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 734 assert(MD->isInstance()); 735 736 // Check if we need a VTT parameter as well. 737 if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) { 738 ASTContext &Context = getContext(); 739 740 // FIXME: avoid the fake decl 741 QualType T = Context.getPointerType(Context.VoidPtrTy); 742 ImplicitParamDecl *VTTDecl 743 = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), 744 &Context.Idents.get("vtt"), T); 745 Params.push_back(VTTDecl); 746 getVTTDecl(CGF) = VTTDecl; 747 } 748} 749 750void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 751 QualType &ResTy, 752 FunctionArgList &Params) { 753 ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params); 754 755 // Return 'this' from certain constructors and destructors. 756 if (HasThisReturn(CGF.CurGD)) 757 ResTy = Params[0]->getType(); 758} 759 760void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 761 /// Initialize the 'this' slot. 762 EmitThisParam(CGF); 763 764 /// Initialize the 'vtt' slot if needed. 765 if (getVTTDecl(CGF)) { 766 getVTTValue(CGF) 767 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), 768 "vtt"); 769 } 770} 771 772void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 773 ItaniumCXXABI::EmitInstanceFunctionProlog(CGF); 774 775 /// Initialize the return slot to 'this' at the start of the 776 /// function. 777 if (HasThisReturn(CGF.CurGD)) 778 CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue); 779} 780 781void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, 782 RValue RV, QualType ResultType) { 783 if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) 784 return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); 785 786 // Destructor thunks in the ARM ABI have indeterminate results. 787 const llvm::Type *T = 788 cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType(); 789 RValue Undef = RValue::get(llvm::UndefValue::get(T)); 790 return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); 791} 792 793/************************** Array allocation cookies **************************/ 794 795bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) { 796 // If the class's usual deallocation function takes two arguments, 797 // it needs a cookie. 798 if (expr->doesUsualArrayDeleteWantSize()) 799 return true; 800 801 // Automatic Reference Counting: 802 // We need an array cookie for pointers with strong or weak lifetime. 803 QualType AllocatedType = expr->getAllocatedType(); 804 if (getContext().getLangOptions().ObjCAutoRefCount && 805 AllocatedType->isObjCLifetimeType()) { 806 switch (AllocatedType.getObjCLifetime()) { 807 case Qualifiers::OCL_None: 808 case Qualifiers::OCL_ExplicitNone: 809 case Qualifiers::OCL_Autoreleasing: 810 return false; 811 812 case Qualifiers::OCL_Strong: 813 case Qualifiers::OCL_Weak: 814 return true; 815 } 816 } 817 818 // Otherwise, if the class has a non-trivial destructor, it always 819 // needs a cookie. 820 const CXXRecordDecl *record = 821 AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 822 return (record && !record->hasTrivialDestructor()); 823} 824 825bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr, 826 QualType elementType) { 827 // If the class's usual deallocation function takes two arguments, 828 // it needs a cookie. 829 if (expr->doesUsualArrayDeleteWantSize()) 830 return true; 831 832 // Automatic Reference Counting: 833 // We need an array cookie for pointers with strong or weak lifetime. 834 if (getContext().getLangOptions().ObjCAutoRefCount && 835 elementType->isObjCLifetimeType()) { 836 switch (elementType.getObjCLifetime()) { 837 case Qualifiers::OCL_None: 838 case Qualifiers::OCL_ExplicitNone: 839 case Qualifiers::OCL_Autoreleasing: 840 return false; 841 842 case Qualifiers::OCL_Strong: 843 case Qualifiers::OCL_Weak: 844 return true; 845 } 846 } 847 848 // Otherwise, if the class has a non-trivial destructor, it always 849 // needs a cookie. 850 const CXXRecordDecl *record = 851 elementType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 852 return (record && !record->hasTrivialDestructor()); 853} 854 855CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) { 856 if (!NeedsArrayCookie(expr)) 857 return CharUnits::Zero(); 858 859 // Padding is the maximum of sizeof(size_t) and alignof(elementType) 860 ASTContext &Ctx = getContext(); 861 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 862 Ctx.getTypeAlignInChars(expr->getAllocatedType())); 863} 864 865llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 866 llvm::Value *NewPtr, 867 llvm::Value *NumElements, 868 const CXXNewExpr *expr, 869 QualType ElementType) { 870 assert(NeedsArrayCookie(expr)); 871 872 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 873 874 ASTContext &Ctx = getContext(); 875 QualType SizeTy = Ctx.getSizeType(); 876 CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); 877 878 // The size of the cookie. 879 CharUnits CookieSize = 880 std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); 881 882 // Compute an offset to the cookie. 883 llvm::Value *CookiePtr = NewPtr; 884 CharUnits CookieOffset = CookieSize - SizeSize; 885 if (!CookieOffset.isZero()) 886 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, 887 CookieOffset.getQuantity()); 888 889 // Write the number of elements into the appropriate slot. 890 llvm::Value *NumElementsPtr 891 = CGF.Builder.CreateBitCast(CookiePtr, 892 CGF.ConvertType(SizeTy)->getPointerTo(AS)); 893 CGF.Builder.CreateStore(NumElements, NumElementsPtr); 894 895 // Finally, compute a pointer to the actual data buffer by skipping 896 // over the cookie completely. 897 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 898 CookieSize.getQuantity()); 899} 900 901void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF, 902 llvm::Value *Ptr, 903 const CXXDeleteExpr *expr, 904 QualType ElementType, 905 llvm::Value *&NumElements, 906 llvm::Value *&AllocPtr, 907 CharUnits &CookieSize) { 908 // Derive a char* in the same address space as the pointer. 909 unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 910 const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS); 911 912 // If we don't need an array cookie, bail out early. 913 if (!NeedsArrayCookie(expr, ElementType)) { 914 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 915 NumElements = 0; 916 CookieSize = CharUnits::Zero(); 917 return; 918 } 919 920 QualType SizeTy = getContext().getSizeType(); 921 CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy); 922 const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy); 923 924 CookieSize 925 = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType)); 926 927 CharUnits NumElementsOffset = CookieSize - SizeSize; 928 929 // Compute the allocated pointer. 930 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 931 AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 932 -CookieSize.getQuantity()); 933 934 llvm::Value *NumElementsPtr = AllocPtr; 935 if (!NumElementsOffset.isZero()) 936 NumElementsPtr = 937 CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr, 938 NumElementsOffset.getQuantity()); 939 NumElementsPtr = 940 CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS)); 941 NumElements = CGF.Builder.CreateLoad(NumElementsPtr); 942} 943 944CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) { 945 if (!NeedsArrayCookie(expr)) 946 return CharUnits::Zero(); 947 948 // On ARM, the cookie is always: 949 // struct array_cookie { 950 // std::size_t element_size; // element_size != 0 951 // std::size_t element_count; 952 // }; 953 // TODO: what should we do if the allocated type actually wants 954 // greater alignment? 955 return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2; 956} 957 958llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 959 llvm::Value *NewPtr, 960 llvm::Value *NumElements, 961 const CXXNewExpr *expr, 962 QualType ElementType) { 963 assert(NeedsArrayCookie(expr)); 964 965 // NewPtr is a char*. 966 967 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 968 969 ASTContext &Ctx = getContext(); 970 CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType()); 971 const llvm::IntegerType *SizeTy = 972 cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType())); 973 974 // The cookie is always at the start of the buffer. 975 llvm::Value *CookiePtr = NewPtr; 976 977 // The first element is the element size. 978 CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS)); 979 llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy, 980 Ctx.getTypeSizeInChars(ElementType).getQuantity()); 981 CGF.Builder.CreateStore(ElementSize, CookiePtr); 982 983 // The second element is the element count. 984 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1); 985 CGF.Builder.CreateStore(NumElements, CookiePtr); 986 987 // Finally, compute a pointer to the actual data buffer by skipping 988 // over the cookie completely. 989 CharUnits CookieSize = 2 * SizeSize; 990 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 991 CookieSize.getQuantity()); 992} 993 994void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF, 995 llvm::Value *Ptr, 996 const CXXDeleteExpr *expr, 997 QualType ElementType, 998 llvm::Value *&NumElements, 999 llvm::Value *&AllocPtr, 1000 CharUnits &CookieSize) { 1001 // Derive a char* in the same address space as the pointer. 1002 unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1003 const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS); 1004 1005 // If we don't need an array cookie, bail out early. 1006 if (!NeedsArrayCookie(expr, ElementType)) { 1007 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 1008 NumElements = 0; 1009 CookieSize = CharUnits::Zero(); 1010 return; 1011 } 1012 1013 QualType SizeTy = getContext().getSizeType(); 1014 CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy); 1015 const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy); 1016 1017 // The cookie size is always 2 * sizeof(size_t). 1018 CookieSize = 2 * SizeSize; 1019 1020 // The allocated pointer is the input ptr, minus that amount. 1021 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 1022 AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 1023 -CookieSize.getQuantity()); 1024 1025 // The number of elements is at offset sizeof(size_t) relative to that. 1026 llvm::Value *NumElementsPtr 1027 = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 1028 SizeSize.getQuantity()); 1029 NumElementsPtr = 1030 CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS)); 1031 NumElements = CGF.Builder.CreateLoad(NumElementsPtr); 1032} 1033 1034/*********************** Static local initialization **************************/ 1035 1036static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, 1037 const llvm::PointerType *GuardPtrTy) { 1038 // int __cxa_guard_acquire(__guard *guard_object); 1039 const llvm::FunctionType *FTy = 1040 llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), 1041 GuardPtrTy, /*isVarArg=*/false); 1042 1043 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire"); 1044} 1045 1046static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, 1047 const llvm::PointerType *GuardPtrTy) { 1048 // void __cxa_guard_release(__guard *guard_object); 1049 const llvm::FunctionType *FTy = 1050 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 1051 GuardPtrTy, /*isVarArg=*/false); 1052 1053 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release"); 1054} 1055 1056static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, 1057 const llvm::PointerType *GuardPtrTy) { 1058 // void __cxa_guard_abort(__guard *guard_object); 1059 const llvm::FunctionType *FTy = 1060 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 1061 GuardPtrTy, /*isVarArg=*/false); 1062 1063 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort"); 1064} 1065 1066namespace { 1067 struct CallGuardAbort : EHScopeStack::Cleanup { 1068 llvm::GlobalVariable *Guard; 1069 CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} 1070 1071 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1072 CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard) 1073 ->setDoesNotThrow(); 1074 } 1075 }; 1076} 1077 1078/// The ARM code here follows the Itanium code closely enough that we 1079/// just special-case it at particular places. 1080void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, 1081 const VarDecl &D, 1082 llvm::GlobalVariable *GV) { 1083 CGBuilderTy &Builder = CGF.Builder; 1084 1085 // We only need to use thread-safe statics for local variables; 1086 // global initialization is always single-threaded. 1087 bool threadsafe = 1088 (getContext().getLangOptions().ThreadsafeStatics && D.isLocalVarDecl()); 1089 1090 const llvm::IntegerType *GuardTy; 1091 1092 // If we have a global variable with internal linkage and thread-safe statics 1093 // are disabled, we can just let the guard variable be of type i8. 1094 bool useInt8GuardVariable = !threadsafe && GV->hasInternalLinkage(); 1095 if (useInt8GuardVariable) { 1096 GuardTy = CGF.Int8Ty; 1097 } else { 1098 // Guard variables are 64 bits in the generic ABI and 32 bits on ARM. 1099 GuardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty); 1100 } 1101 const llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo(); 1102 1103 // Create the guard variable. 1104 llvm::SmallString<256> GuardVName; 1105 llvm::raw_svector_ostream Out(GuardVName); 1106 getMangleContext().mangleItaniumGuardVariable(&D, Out); 1107 Out.flush(); 1108 1109 // Just absorb linkage and visibility from the variable. 1110 llvm::GlobalVariable *GuardVariable = 1111 new llvm::GlobalVariable(CGM.getModule(), GuardTy, 1112 false, GV->getLinkage(), 1113 llvm::ConstantInt::get(GuardTy, 0), 1114 GuardVName.str()); 1115 GuardVariable->setVisibility(GV->getVisibility()); 1116 1117 // Test whether the variable has completed initialization. 1118 llvm::Value *IsInitialized; 1119 1120 // ARM C++ ABI 3.2.3.1: 1121 // To support the potential use of initialization guard variables 1122 // as semaphores that are the target of ARM SWP and LDREX/STREX 1123 // synchronizing instructions we define a static initialization 1124 // guard variable to be a 4-byte aligned, 4- byte word with the 1125 // following inline access protocol. 1126 // #define INITIALIZED 1 1127 // if ((obj_guard & INITIALIZED) != INITIALIZED) { 1128 // if (__cxa_guard_acquire(&obj_guard)) 1129 // ... 1130 // } 1131 if (IsARM && !useInt8GuardVariable) { 1132 llvm::Value *V = Builder.CreateLoad(GuardVariable); 1133 V = Builder.CreateAnd(V, Builder.getInt32(1)); 1134 IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); 1135 1136 // Itanium C++ ABI 3.3.2: 1137 // The following is pseudo-code showing how these functions can be used: 1138 // if (obj_guard.first_byte == 0) { 1139 // if ( __cxa_guard_acquire (&obj_guard) ) { 1140 // try { 1141 // ... initialize the object ...; 1142 // } catch (...) { 1143 // __cxa_guard_abort (&obj_guard); 1144 // throw; 1145 // } 1146 // ... queue object destructor with __cxa_atexit() ...; 1147 // __cxa_guard_release (&obj_guard); 1148 // } 1149 // } 1150 } else { 1151 // Load the first byte of the guard variable. 1152 const llvm::Type *PtrTy = Builder.getInt8PtrTy(); 1153 llvm::Value *V = 1154 Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy), "tmp"); 1155 1156 IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); 1157 } 1158 1159 llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); 1160 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 1161 1162 llvm::BasicBlock *NoCheckBlock = EndBlock; 1163 if (threadsafe) NoCheckBlock = CGF.createBasicBlock("init.barrier"); 1164 1165 // Check if the first byte of the guard variable is zero. 1166 Builder.CreateCondBr(IsInitialized, InitCheckBlock, NoCheckBlock); 1167 1168 CGF.EmitBlock(InitCheckBlock); 1169 1170 // Variables used when coping with thread-safe statics and exceptions. 1171 if (threadsafe) { 1172 // Call __cxa_guard_acquire. 1173 llvm::Value *V 1174 = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable); 1175 1176 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 1177 1178 Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), 1179 InitBlock, EndBlock); 1180 1181 // Call __cxa_guard_abort along the exceptional edge. 1182 CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable); 1183 1184 CGF.EmitBlock(InitBlock); 1185 } 1186 1187 // Emit the initializer and add a global destructor if appropriate. 1188 CGF.EmitCXXGlobalVarDeclInit(D, GV); 1189 1190 if (threadsafe) { 1191 // Pop the guard-abort cleanup if we pushed one. 1192 CGF.PopCleanupBlock(); 1193 1194 // Call __cxa_guard_release. This cannot throw. 1195 Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable); 1196 } else { 1197 Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable); 1198 } 1199 1200 // Emit an acquire memory barrier if using thread-safe statics: 1201 // Itanium ABI: 1202 // An implementation supporting thread-safety on multiprocessor 1203 // systems must also guarantee that references to the initialized 1204 // object do not occur before the load of the initialization flag. 1205 if (threadsafe) { 1206 Builder.CreateBr(EndBlock); 1207 CGF.EmitBlock(NoCheckBlock); 1208 1209 llvm::Value *_false = Builder.getFalse(); 1210 llvm::Value *_true = Builder.getTrue(); 1211 1212 Builder.CreateCall5(CGM.getIntrinsic(llvm::Intrinsic::memory_barrier), 1213 /* load-load, load-store */ _true, _true, 1214 /* store-load, store-store */ _false, _false, 1215 /* device or I/O */ _false); 1216 } 1217 1218 CGF.EmitBlock(EndBlock); 1219} 1220