ParseDecl.cpp revision 19510856727e0e14a3696b2a72c35163bff2a71f
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "RAIIObjectsForParser.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39  if (Range)
40    *Range = DeclaratorInfo.getSourceRange();
41
42  if (DeclaratorInfo.isInvalidType())
43    return true;
44
45  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
46}
47
48/// ParseGNUAttributes - Parse a non-empty attributes list.
49///
50/// [GNU] attributes:
51///         attribute
52///         attributes attribute
53///
54/// [GNU]  attribute:
55///          '__attribute__' '(' '(' attribute-list ')' ')'
56///
57/// [GNU]  attribute-list:
58///          attrib
59///          attribute_list ',' attrib
60///
61/// [GNU]  attrib:
62///          empty
63///          attrib-name
64///          attrib-name '(' identifier ')'
65///          attrib-name '(' identifier ',' nonempty-expr-list ')'
66///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
67///
68/// [GNU]  attrib-name:
69///          identifier
70///          typespec
71///          typequal
72///          storageclass
73///
74/// FIXME: The GCC grammar/code for this construct implies we need two
75/// token lookahead. Comment from gcc: "If they start with an identifier
76/// which is followed by a comma or close parenthesis, then the arguments
77/// start with that identifier; otherwise they are an expression list."
78///
79/// At the moment, I am not doing 2 token lookahead. I am also unaware of
80/// any attributes that don't work (based on my limited testing). Most
81/// attributes are very simple in practice. Until we find a bug, I don't see
82/// a pressing need to implement the 2 token lookahead.
83
84AttributeList *Parser::ParseGNUAttributes(SourceLocation *EndLoc) {
85  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
86
87  AttributeList *CurrAttr = 0;
88
89  while (Tok.is(tok::kw___attribute)) {
90    ConsumeToken();
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
92                         "attribute")) {
93      SkipUntil(tok::r_paren, true); // skip until ) or ;
94      return CurrAttr;
95    }
96    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
97      SkipUntil(tok::r_paren, true); // skip until ) or ;
98      return CurrAttr;
99    }
100    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
101    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
102           Tok.is(tok::comma)) {
103
104      if (Tok.is(tok::comma)) {
105        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
106        ConsumeToken();
107        continue;
108      }
109      // we have an identifier or declaration specifier (const, int, etc.)
110      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
111      SourceLocation AttrNameLoc = ConsumeToken();
112
113      // check if we have a "parameterized" attribute
114      if (Tok.is(tok::l_paren)) {
115        ConsumeParen(); // ignore the left paren loc for now
116
117        if (Tok.is(tok::identifier)) {
118          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
119          SourceLocation ParmLoc = ConsumeToken();
120
121          if (Tok.is(tok::r_paren)) {
122            // __attribute__(( mode(byte) ))
123            ConsumeParen(); // ignore the right paren loc for now
124            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
125                                         ParmName, ParmLoc, 0, 0, CurrAttr);
126          } else if (Tok.is(tok::comma)) {
127            ConsumeToken();
128            // __attribute__(( format(printf, 1, 2) ))
129            ExprVector ArgExprs(Actions);
130            bool ArgExprsOk = true;
131
132            // now parse the non-empty comma separated list of expressions
133            while (1) {
134              OwningExprResult ArgExpr(ParseAssignmentExpression());
135              if (ArgExpr.isInvalid()) {
136                ArgExprsOk = false;
137                SkipUntil(tok::r_paren);
138                break;
139              } else {
140                ArgExprs.push_back(ArgExpr.release());
141              }
142              if (Tok.isNot(tok::comma))
143                break;
144              ConsumeToken(); // Eat the comma, move to the next argument
145            }
146            if (ArgExprsOk && Tok.is(tok::r_paren)) {
147              ConsumeParen(); // ignore the right paren loc for now
148              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
149                                           AttrNameLoc, ParmName, ParmLoc,
150                                           ArgExprs.take(), ArgExprs.size(),
151                                           CurrAttr);
152            }
153          }
154        } else { // not an identifier
155          switch (Tok.getKind()) {
156          case tok::r_paren:
157          // parse a possibly empty comma separated list of expressions
158            // __attribute__(( nonnull() ))
159            ConsumeParen(); // ignore the right paren loc for now
160            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
161                                         0, SourceLocation(), 0, 0, CurrAttr);
162            break;
163          case tok::kw_char:
164          case tok::kw_wchar_t:
165          case tok::kw_char16_t:
166          case tok::kw_char32_t:
167          case tok::kw_bool:
168          case tok::kw_short:
169          case tok::kw_int:
170          case tok::kw_long:
171          case tok::kw_signed:
172          case tok::kw_unsigned:
173          case tok::kw_float:
174          case tok::kw_double:
175          case tok::kw_void:
176          case tok::kw_typeof:
177            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
178                                         0, SourceLocation(), 0, 0, CurrAttr);
179            if (CurrAttr->getKind() == AttributeList::AT_IBOutletCollection)
180              Diag(Tok, diag::err_iboutletcollection_builtintype);
181            // If it's a builtin type name, eat it and expect a rparen
182            // __attribute__(( vec_type_hint(char) ))
183            ConsumeToken();
184            if (Tok.is(tok::r_paren))
185              ConsumeParen();
186            break;
187          default:
188            // __attribute__(( aligned(16) ))
189            ExprVector ArgExprs(Actions);
190            bool ArgExprsOk = true;
191
192            // now parse the list of expressions
193            while (1) {
194              OwningExprResult ArgExpr(ParseAssignmentExpression());
195              if (ArgExpr.isInvalid()) {
196                ArgExprsOk = false;
197                SkipUntil(tok::r_paren);
198                break;
199              } else {
200                ArgExprs.push_back(ArgExpr.release());
201              }
202              if (Tok.isNot(tok::comma))
203                break;
204              ConsumeToken(); // Eat the comma, move to the next argument
205            }
206            // Match the ')'.
207            if (ArgExprsOk && Tok.is(tok::r_paren)) {
208              ConsumeParen(); // ignore the right paren loc for now
209              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
210                           AttrNameLoc, 0, SourceLocation(), ArgExprs.take(),
211                           ArgExprs.size(),
212                           CurrAttr);
213            }
214            break;
215          }
216        }
217      } else {
218        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
219                                     0, SourceLocation(), 0, 0, CurrAttr);
220      }
221    }
222    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
223      SkipUntil(tok::r_paren, false);
224    SourceLocation Loc = Tok.getLocation();
225    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
226      SkipUntil(tok::r_paren, false);
227    }
228    if (EndLoc)
229      *EndLoc = Loc;
230  }
231  return CurrAttr;
232}
233
234/// ParseMicrosoftDeclSpec - Parse an __declspec construct
235///
236/// [MS] decl-specifier:
237///             __declspec ( extended-decl-modifier-seq )
238///
239/// [MS] extended-decl-modifier-seq:
240///             extended-decl-modifier[opt]
241///             extended-decl-modifier extended-decl-modifier-seq
242
243AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
244  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
245
246  ConsumeToken();
247  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
248                       "declspec")) {
249    SkipUntil(tok::r_paren, true); // skip until ) or ;
250    return CurrAttr;
251  }
252  while (Tok.getIdentifierInfo()) {
253    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
254    SourceLocation AttrNameLoc = ConsumeToken();
255    if (Tok.is(tok::l_paren)) {
256      ConsumeParen();
257      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
258      // correctly.
259      OwningExprResult ArgExpr(ParseAssignmentExpression());
260      if (!ArgExpr.isInvalid()) {
261        ExprTy* ExprList = ArgExpr.take();
262        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
263                                     SourceLocation(), &ExprList, 1,
264                                     CurrAttr, true);
265      }
266      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
267        SkipUntil(tok::r_paren, false);
268    } else {
269      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
270                                   0, SourceLocation(), 0, 0, CurrAttr, true);
271    }
272  }
273  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
274    SkipUntil(tok::r_paren, false);
275  return CurrAttr;
276}
277
278AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
279  // Treat these like attributes
280  // FIXME: Allow Sema to distinguish between these and real attributes!
281  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
282         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
283         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
284    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
285    SourceLocation AttrNameLoc = ConsumeToken();
286    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
287      // FIXME: Support these properly!
288      continue;
289    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
290                                 SourceLocation(), 0, 0, CurrAttr, true);
291  }
292  return CurrAttr;
293}
294
295/// ParseDeclaration - Parse a full 'declaration', which consists of
296/// declaration-specifiers, some number of declarators, and a semicolon.
297/// 'Context' should be a Declarator::TheContext value.  This returns the
298/// location of the semicolon in DeclEnd.
299///
300///       declaration: [C99 6.7]
301///         block-declaration ->
302///           simple-declaration
303///           others                   [FIXME]
304/// [C++]   template-declaration
305/// [C++]   namespace-definition
306/// [C++]   using-directive
307/// [C++]   using-declaration
308/// [C++0x] static_assert-declaration
309///         others... [FIXME]
310///
311Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
312                                                SourceLocation &DeclEnd,
313                                                CXX0XAttributeList Attr) {
314  ParenBraceBracketBalancer BalancerRAIIObj(*this);
315
316  DeclPtrTy SingleDecl;
317  switch (Tok.getKind()) {
318  case tok::kw_template:
319  case tok::kw_export:
320    if (Attr.HasAttr)
321      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
322        << Attr.Range;
323    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
324    break;
325  case tok::kw_namespace:
326    if (Attr.HasAttr)
327      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
328        << Attr.Range;
329    SingleDecl = ParseNamespace(Context, DeclEnd);
330    break;
331  case tok::kw_using:
332    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd, Attr);
333    break;
334  case tok::kw_static_assert:
335    if (Attr.HasAttr)
336      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
337        << Attr.Range;
338    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
339    break;
340  default:
341    return ParseSimpleDeclaration(Context, DeclEnd, Attr.AttrList, true);
342  }
343
344  // This routine returns a DeclGroup, if the thing we parsed only contains a
345  // single decl, convert it now.
346  return Actions.ConvertDeclToDeclGroup(SingleDecl);
347}
348
349///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
350///         declaration-specifiers init-declarator-list[opt] ';'
351///[C90/C++]init-declarator-list ';'                             [TODO]
352/// [OMP]   threadprivate-directive                              [TODO]
353///
354/// If RequireSemi is false, this does not check for a ';' at the end of the
355/// declaration.  If it is true, it checks for and eats it.
356Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
357                                                      SourceLocation &DeclEnd,
358                                                      AttributeList *Attr,
359                                                      bool RequireSemi) {
360  // Parse the common declaration-specifiers piece.
361  ParsingDeclSpec DS(*this);
362  if (Attr)
363    DS.AddAttributes(Attr);
364  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
365                            getDeclSpecContextFromDeclaratorContext(Context));
366
367  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
368  // declaration-specifiers init-declarator-list[opt] ';'
369  if (Tok.is(tok::semi)) {
370    if (RequireSemi) ConsumeToken();
371    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
372                                                           DS);
373    DS.complete(TheDecl);
374    return Actions.ConvertDeclToDeclGroup(TheDecl);
375  }
376
377  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
378}
379
380/// ParseDeclGroup - Having concluded that this is either a function
381/// definition or a group of object declarations, actually parse the
382/// result.
383Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
384                                              unsigned Context,
385                                              bool AllowFunctionDefinitions,
386                                              SourceLocation *DeclEnd) {
387  // Parse the first declarator.
388  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
389  ParseDeclarator(D);
390
391  // Bail out if the first declarator didn't seem well-formed.
392  if (!D.hasName() && !D.mayOmitIdentifier()) {
393    // Skip until ; or }.
394    SkipUntil(tok::r_brace, true, true);
395    if (Tok.is(tok::semi))
396      ConsumeToken();
397    return DeclGroupPtrTy();
398  }
399
400  // Check to see if we have a function *definition* which must have a body.
401  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
402      // Look at the next token to make sure that this isn't a function
403      // declaration.  We have to check this because __attribute__ might be the
404      // start of a function definition in GCC-extended K&R C.
405      !isDeclarationAfterDeclarator()) {
406
407    if (isStartOfFunctionDefinition(D)) {
408      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
409        Diag(Tok, diag::err_function_declared_typedef);
410
411        // Recover by treating the 'typedef' as spurious.
412        DS.ClearStorageClassSpecs();
413      }
414
415      DeclPtrTy TheDecl = ParseFunctionDefinition(D);
416      return Actions.ConvertDeclToDeclGroup(TheDecl);
417    }
418
419    if (isDeclarationSpecifier()) {
420      // If there is an invalid declaration specifier right after the function
421      // prototype, then we must be in a missing semicolon case where this isn't
422      // actually a body.  Just fall through into the code that handles it as a
423      // prototype, and let the top-level code handle the erroneous declspec
424      // where it would otherwise expect a comma or semicolon.
425    } else {
426      Diag(Tok, diag::err_expected_fn_body);
427      SkipUntil(tok::semi);
428      return DeclGroupPtrTy();
429    }
430  }
431
432  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
433  DeclPtrTy FirstDecl = ParseDeclarationAfterDeclarator(D);
434  D.complete(FirstDecl);
435  if (FirstDecl.get())
436    DeclsInGroup.push_back(FirstDecl);
437
438  // If we don't have a comma, it is either the end of the list (a ';') or an
439  // error, bail out.
440  while (Tok.is(tok::comma)) {
441    // Consume the comma.
442    ConsumeToken();
443
444    // Parse the next declarator.
445    D.clear();
446
447    // Accept attributes in an init-declarator.  In the first declarator in a
448    // declaration, these would be part of the declspec.  In subsequent
449    // declarators, they become part of the declarator itself, so that they
450    // don't apply to declarators after *this* one.  Examples:
451    //    short __attribute__((common)) var;    -> declspec
452    //    short var __attribute__((common));    -> declarator
453    //    short x, __attribute__((common)) var;    -> declarator
454    if (Tok.is(tok::kw___attribute)) {
455      SourceLocation Loc;
456      AttributeList *AttrList = ParseGNUAttributes(&Loc);
457      D.AddAttributes(AttrList, Loc);
458    }
459
460    ParseDeclarator(D);
461
462    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
463    D.complete(ThisDecl);
464    if (ThisDecl.get())
465      DeclsInGroup.push_back(ThisDecl);
466  }
467
468  if (DeclEnd)
469    *DeclEnd = Tok.getLocation();
470
471  if (Context != Declarator::ForContext &&
472      ExpectAndConsume(tok::semi,
473                       Context == Declarator::FileContext
474                         ? diag::err_invalid_token_after_toplevel_declarator
475                         : diag::err_expected_semi_declaration)) {
476    // Okay, there was no semicolon and one was expected.  If we see a
477    // declaration specifier, just assume it was missing and continue parsing.
478    // Otherwise things are very confused and we skip to recover.
479    if (!isDeclarationSpecifier()) {
480      SkipUntil(tok::r_brace, true, true);
481      if (Tok.is(tok::semi))
482        ConsumeToken();
483    }
484  }
485
486  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
487                                         DeclsInGroup.data(),
488                                         DeclsInGroup.size());
489}
490
491/// \brief Parse 'declaration' after parsing 'declaration-specifiers
492/// declarator'. This method parses the remainder of the declaration
493/// (including any attributes or initializer, among other things) and
494/// finalizes the declaration.
495///
496///       init-declarator: [C99 6.7]
497///         declarator
498///         declarator '=' initializer
499/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
500/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
501/// [C++]   declarator initializer[opt]
502///
503/// [C++] initializer:
504/// [C++]   '=' initializer-clause
505/// [C++]   '(' expression-list ')'
506/// [C++0x] '=' 'default'                                                [TODO]
507/// [C++0x] '=' 'delete'
508///
509/// According to the standard grammar, =default and =delete are function
510/// definitions, but that definitely doesn't fit with the parser here.
511///
512Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
513                                     const ParsedTemplateInfo &TemplateInfo) {
514  // If a simple-asm-expr is present, parse it.
515  if (Tok.is(tok::kw_asm)) {
516    SourceLocation Loc;
517    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
518    if (AsmLabel.isInvalid()) {
519      SkipUntil(tok::semi, true, true);
520      return DeclPtrTy();
521    }
522
523    D.setAsmLabel(AsmLabel.release());
524    D.SetRangeEnd(Loc);
525  }
526
527  // If attributes are present, parse them.
528  if (Tok.is(tok::kw___attribute)) {
529    SourceLocation Loc;
530    AttributeList *AttrList = ParseGNUAttributes(&Loc);
531    D.AddAttributes(AttrList, Loc);
532  }
533
534  // Inform the current actions module that we just parsed this declarator.
535  DeclPtrTy ThisDecl;
536  switch (TemplateInfo.Kind) {
537  case ParsedTemplateInfo::NonTemplate:
538    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
539    break;
540
541  case ParsedTemplateInfo::Template:
542  case ParsedTemplateInfo::ExplicitSpecialization:
543    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
544                             Action::MultiTemplateParamsArg(Actions,
545                                          TemplateInfo.TemplateParams->data(),
546                                          TemplateInfo.TemplateParams->size()),
547                                               D);
548    break;
549
550  case ParsedTemplateInfo::ExplicitInstantiation: {
551    Action::DeclResult ThisRes
552      = Actions.ActOnExplicitInstantiation(getCurScope(),
553                                           TemplateInfo.ExternLoc,
554                                           TemplateInfo.TemplateLoc,
555                                           D);
556    if (ThisRes.isInvalid()) {
557      SkipUntil(tok::semi, true, true);
558      return DeclPtrTy();
559    }
560
561    ThisDecl = ThisRes.get();
562    break;
563    }
564  }
565
566  // Parse declarator '=' initializer.
567  if (Tok.is(tok::equal)) {
568    ConsumeToken();
569    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
570      SourceLocation DelLoc = ConsumeToken();
571      Actions.SetDeclDeleted(ThisDecl, DelLoc);
572    } else {
573      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
574        EnterScope(0);
575        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
576      }
577
578      if (Tok.is(tok::code_completion)) {
579        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
580        ConsumeCodeCompletionToken();
581        SkipUntil(tok::comma, true, true);
582        return ThisDecl;
583      }
584
585      OwningExprResult Init(ParseInitializer());
586
587      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
588        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
589        ExitScope();
590      }
591
592      if (Init.isInvalid()) {
593        SkipUntil(tok::comma, true, true);
594        Actions.ActOnInitializerError(ThisDecl);
595      } else
596        Actions.AddInitializerToDecl(ThisDecl, move(Init));
597    }
598  } else if (Tok.is(tok::l_paren)) {
599    // Parse C++ direct initializer: '(' expression-list ')'
600    SourceLocation LParenLoc = ConsumeParen();
601    ExprVector Exprs(Actions);
602    CommaLocsTy CommaLocs;
603
604    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
605      EnterScope(0);
606      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
607    }
608
609    if (ParseExpressionList(Exprs, CommaLocs)) {
610      SkipUntil(tok::r_paren);
611
612      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
613        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
614        ExitScope();
615      }
616    } else {
617      // Match the ')'.
618      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
619
620      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
621             "Unexpected number of commas!");
622
623      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
624        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
625        ExitScope();
626      }
627
628      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
629                                            move_arg(Exprs),
630                                            CommaLocs.data(), RParenLoc);
631    }
632  } else {
633    bool TypeContainsUndeducedAuto =
634      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
635    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
636  }
637
638  return ThisDecl;
639}
640
641/// ParseSpecifierQualifierList
642///        specifier-qualifier-list:
643///          type-specifier specifier-qualifier-list[opt]
644///          type-qualifier specifier-qualifier-list[opt]
645/// [GNU]    attributes     specifier-qualifier-list[opt]
646///
647void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
648  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
649  /// parse declaration-specifiers and complain about extra stuff.
650  ParseDeclarationSpecifiers(DS);
651
652  // Validate declspec for type-name.
653  unsigned Specs = DS.getParsedSpecifiers();
654  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
655      !DS.getAttributes())
656    Diag(Tok, diag::err_typename_requires_specqual);
657
658  // Issue diagnostic and remove storage class if present.
659  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
660    if (DS.getStorageClassSpecLoc().isValid())
661      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
662    else
663      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
664    DS.ClearStorageClassSpecs();
665  }
666
667  // Issue diagnostic and remove function specfier if present.
668  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
669    if (DS.isInlineSpecified())
670      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
671    if (DS.isVirtualSpecified())
672      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
673    if (DS.isExplicitSpecified())
674      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
675    DS.ClearFunctionSpecs();
676  }
677}
678
679/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
680/// specified token is valid after the identifier in a declarator which
681/// immediately follows the declspec.  For example, these things are valid:
682///
683///      int x   [             4];         // direct-declarator
684///      int x   (             int y);     // direct-declarator
685///  int(int x   )                         // direct-declarator
686///      int x   ;                         // simple-declaration
687///      int x   =             17;         // init-declarator-list
688///      int x   ,             y;          // init-declarator-list
689///      int x   __asm__       ("foo");    // init-declarator-list
690///      int x   :             4;          // struct-declarator
691///      int x   {             5};         // C++'0x unified initializers
692///
693/// This is not, because 'x' does not immediately follow the declspec (though
694/// ')' happens to be valid anyway).
695///    int (x)
696///
697static bool isValidAfterIdentifierInDeclarator(const Token &T) {
698  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
699         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
700         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
701}
702
703
704/// ParseImplicitInt - This method is called when we have an non-typename
705/// identifier in a declspec (which normally terminates the decl spec) when
706/// the declspec has no type specifier.  In this case, the declspec is either
707/// malformed or is "implicit int" (in K&R and C89).
708///
709/// This method handles diagnosing this prettily and returns false if the
710/// declspec is done being processed.  If it recovers and thinks there may be
711/// other pieces of declspec after it, it returns true.
712///
713bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
714                              const ParsedTemplateInfo &TemplateInfo,
715                              AccessSpecifier AS) {
716  assert(Tok.is(tok::identifier) && "should have identifier");
717
718  SourceLocation Loc = Tok.getLocation();
719  // If we see an identifier that is not a type name, we normally would
720  // parse it as the identifer being declared.  However, when a typename
721  // is typo'd or the definition is not included, this will incorrectly
722  // parse the typename as the identifier name and fall over misparsing
723  // later parts of the diagnostic.
724  //
725  // As such, we try to do some look-ahead in cases where this would
726  // otherwise be an "implicit-int" case to see if this is invalid.  For
727  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
728  // an identifier with implicit int, we'd get a parse error because the
729  // next token is obviously invalid for a type.  Parse these as a case
730  // with an invalid type specifier.
731  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
732
733  // Since we know that this either implicit int (which is rare) or an
734  // error, we'd do lookahead to try to do better recovery.
735  if (isValidAfterIdentifierInDeclarator(NextToken())) {
736    // If this token is valid for implicit int, e.g. "static x = 4", then
737    // we just avoid eating the identifier, so it will be parsed as the
738    // identifier in the declarator.
739    return false;
740  }
741
742  // Otherwise, if we don't consume this token, we are going to emit an
743  // error anyway.  Try to recover from various common problems.  Check
744  // to see if this was a reference to a tag name without a tag specified.
745  // This is a common problem in C (saying 'foo' instead of 'struct foo').
746  //
747  // C++ doesn't need this, and isTagName doesn't take SS.
748  if (SS == 0) {
749    const char *TagName = 0;
750    tok::TokenKind TagKind = tok::unknown;
751
752    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
753      default: break;
754      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
755      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
756      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
757      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
758    }
759
760    if (TagName) {
761      Diag(Loc, diag::err_use_of_tag_name_without_tag)
762        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
763        << FixItHint::CreateInsertion(Tok.getLocation(),TagName);
764
765      // Parse this as a tag as if the missing tag were present.
766      if (TagKind == tok::kw_enum)
767        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
768      else
769        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
770      return true;
771    }
772  }
773
774  // This is almost certainly an invalid type name. Let the action emit a
775  // diagnostic and attempt to recover.
776  Action::TypeTy *T = 0;
777  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
778                                      getCurScope(), SS, T)) {
779    // The action emitted a diagnostic, so we don't have to.
780    if (T) {
781      // The action has suggested that the type T could be used. Set that as
782      // the type in the declaration specifiers, consume the would-be type
783      // name token, and we're done.
784      const char *PrevSpec;
785      unsigned DiagID;
786      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
787                         false);
788      DS.SetRangeEnd(Tok.getLocation());
789      ConsumeToken();
790
791      // There may be other declaration specifiers after this.
792      return true;
793    }
794
795    // Fall through; the action had no suggestion for us.
796  } else {
797    // The action did not emit a diagnostic, so emit one now.
798    SourceRange R;
799    if (SS) R = SS->getRange();
800    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
801  }
802
803  // Mark this as an error.
804  const char *PrevSpec;
805  unsigned DiagID;
806  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
807  DS.SetRangeEnd(Tok.getLocation());
808  ConsumeToken();
809
810  // TODO: Could inject an invalid typedef decl in an enclosing scope to
811  // avoid rippling error messages on subsequent uses of the same type,
812  // could be useful if #include was forgotten.
813  return false;
814}
815
816/// \brief Determine the declaration specifier context from the declarator
817/// context.
818///
819/// \param Context the declarator context, which is one of the
820/// Declarator::TheContext enumerator values.
821Parser::DeclSpecContext
822Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
823  if (Context == Declarator::MemberContext)
824    return DSC_class;
825  if (Context == Declarator::FileContext)
826    return DSC_top_level;
827  return DSC_normal;
828}
829
830/// ParseDeclarationSpecifiers
831///       declaration-specifiers: [C99 6.7]
832///         storage-class-specifier declaration-specifiers[opt]
833///         type-specifier declaration-specifiers[opt]
834/// [C99]   function-specifier declaration-specifiers[opt]
835/// [GNU]   attributes declaration-specifiers[opt]
836///
837///       storage-class-specifier: [C99 6.7.1]
838///         'typedef'
839///         'extern'
840///         'static'
841///         'auto'
842///         'register'
843/// [C++]   'mutable'
844/// [GNU]   '__thread'
845///       function-specifier: [C99 6.7.4]
846/// [C99]   'inline'
847/// [C++]   'virtual'
848/// [C++]   'explicit'
849///       'friend': [C++ dcl.friend]
850///       'constexpr': [C++0x dcl.constexpr]
851
852///
853void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
854                                        const ParsedTemplateInfo &TemplateInfo,
855                                        AccessSpecifier AS,
856                                        DeclSpecContext DSContext) {
857  if (Tok.is(tok::code_completion)) {
858    Action::ParserCompletionContext CCC = Action::PCC_Namespace;
859    if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
860      CCC = DSContext == DSC_class? Action::PCC_MemberTemplate
861                                  : Action::PCC_Template;
862    else if (DSContext == DSC_class)
863      CCC = Action::PCC_Class;
864    else if (ObjCImpDecl)
865      CCC = Action::PCC_ObjCImplementation;
866
867    Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
868    ConsumeCodeCompletionToken();
869  }
870
871  DS.SetRangeStart(Tok.getLocation());
872  while (1) {
873    bool isInvalid = false;
874    const char *PrevSpec = 0;
875    unsigned DiagID = 0;
876
877    SourceLocation Loc = Tok.getLocation();
878
879    switch (Tok.getKind()) {
880    default:
881    DoneWithDeclSpec:
882      // If this is not a declaration specifier token, we're done reading decl
883      // specifiers.  First verify that DeclSpec's are consistent.
884      DS.Finish(Diags, PP);
885      return;
886
887    case tok::coloncolon: // ::foo::bar
888      // C++ scope specifier.  Annotate and loop, or bail out on error.
889      if (TryAnnotateCXXScopeToken(true)) {
890        if (!DS.hasTypeSpecifier())
891          DS.SetTypeSpecError();
892        goto DoneWithDeclSpec;
893      }
894      if (Tok.is(tok::coloncolon)) // ::new or ::delete
895        goto DoneWithDeclSpec;
896      continue;
897
898    case tok::annot_cxxscope: {
899      if (DS.hasTypeSpecifier())
900        goto DoneWithDeclSpec;
901
902      CXXScopeSpec SS;
903      SS.setScopeRep(Tok.getAnnotationValue());
904      SS.setRange(Tok.getAnnotationRange());
905
906      // We are looking for a qualified typename.
907      Token Next = NextToken();
908      if (Next.is(tok::annot_template_id) &&
909          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
910            ->Kind == TNK_Type_template) {
911        // We have a qualified template-id, e.g., N::A<int>
912
913        // C++ [class.qual]p2:
914        //   In a lookup in which the constructor is an acceptable lookup
915        //   result and the nested-name-specifier nominates a class C:
916        //
917        //     - if the name specified after the
918        //       nested-name-specifier, when looked up in C, is the
919        //       injected-class-name of C (Clause 9), or
920        //
921        //     - if the name specified after the nested-name-specifier
922        //       is the same as the identifier or the
923        //       simple-template-id's template-name in the last
924        //       component of the nested-name-specifier,
925        //
926        //   the name is instead considered to name the constructor of
927        //   class C.
928        //
929        // Thus, if the template-name is actually the constructor
930        // name, then the code is ill-formed; this interpretation is
931        // reinforced by the NAD status of core issue 635.
932        TemplateIdAnnotation *TemplateId
933          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
934        if ((DSContext == DSC_top_level ||
935             (DSContext == DSC_class && DS.isFriendSpecified())) &&
936            TemplateId->Name &&
937            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
938          if (isConstructorDeclarator()) {
939            // The user meant this to be an out-of-line constructor
940            // definition, but template arguments are not allowed
941            // there.  Just allow this as a constructor; we'll
942            // complain about it later.
943            goto DoneWithDeclSpec;
944          }
945
946          // The user meant this to name a type, but it actually names
947          // a constructor with some extraneous template
948          // arguments. Complain, then parse it as a type as the user
949          // intended.
950          Diag(TemplateId->TemplateNameLoc,
951               diag::err_out_of_line_template_id_names_constructor)
952            << TemplateId->Name;
953        }
954
955        DS.getTypeSpecScope() = SS;
956        ConsumeToken(); // The C++ scope.
957        assert(Tok.is(tok::annot_template_id) &&
958               "ParseOptionalCXXScopeSpecifier not working");
959        AnnotateTemplateIdTokenAsType(&SS);
960        continue;
961      }
962
963      if (Next.is(tok::annot_typename)) {
964        DS.getTypeSpecScope() = SS;
965        ConsumeToken(); // The C++ scope.
966        if (Tok.getAnnotationValue())
967          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc,
968                                         PrevSpec, DiagID,
969                                         Tok.getAnnotationValue());
970        else
971          DS.SetTypeSpecError();
972        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
973        ConsumeToken(); // The typename
974      }
975
976      if (Next.isNot(tok::identifier))
977        goto DoneWithDeclSpec;
978
979      // If we're in a context where the identifier could be a class name,
980      // check whether this is a constructor declaration.
981      if ((DSContext == DSC_top_level ||
982           (DSContext == DSC_class && DS.isFriendSpecified())) &&
983          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
984                                     &SS)) {
985        if (isConstructorDeclarator())
986          goto DoneWithDeclSpec;
987
988        // As noted in C++ [class.qual]p2 (cited above), when the name
989        // of the class is qualified in a context where it could name
990        // a constructor, its a constructor name. However, we've
991        // looked at the declarator, and the user probably meant this
992        // to be a type. Complain that it isn't supposed to be treated
993        // as a type, then proceed to parse it as a type.
994        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
995          << Next.getIdentifierInfo();
996      }
997
998      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
999                                            Next.getLocation(), getCurScope(), &SS);
1000
1001      // If the referenced identifier is not a type, then this declspec is
1002      // erroneous: We already checked about that it has no type specifier, and
1003      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1004      // typename.
1005      if (TypeRep == 0) {
1006        ConsumeToken();   // Eat the scope spec so the identifier is current.
1007        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1008        goto DoneWithDeclSpec;
1009      }
1010
1011      DS.getTypeSpecScope() = SS;
1012      ConsumeToken(); // The C++ scope.
1013
1014      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1015                                     DiagID, TypeRep);
1016      if (isInvalid)
1017        break;
1018
1019      DS.SetRangeEnd(Tok.getLocation());
1020      ConsumeToken(); // The typename.
1021
1022      continue;
1023    }
1024
1025    case tok::annot_typename: {
1026      if (Tok.getAnnotationValue())
1027        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1028                                       DiagID, Tok.getAnnotationValue());
1029      else
1030        DS.SetTypeSpecError();
1031
1032      if (isInvalid)
1033        break;
1034
1035      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1036      ConsumeToken(); // The typename
1037
1038      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1039      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1040      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1041      // just a normal reference to a typedef name.
1042      if (!Tok.is(tok::less) || !getLang().ObjC1)
1043        continue;
1044
1045      SourceLocation LAngleLoc, EndProtoLoc;
1046      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1047      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1048      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1049                                  LAngleLoc, EndProtoLoc);
1050      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1051                               ProtocolLocs.data(), LAngleLoc);
1052
1053      DS.SetRangeEnd(EndProtoLoc);
1054      continue;
1055    }
1056
1057      // typedef-name
1058    case tok::identifier: {
1059      // In C++, check to see if this is a scope specifier like foo::bar::, if
1060      // so handle it as such.  This is important for ctor parsing.
1061      if (getLang().CPlusPlus) {
1062        if (TryAnnotateCXXScopeToken(true)) {
1063          if (!DS.hasTypeSpecifier())
1064            DS.SetTypeSpecError();
1065          goto DoneWithDeclSpec;
1066        }
1067        if (!Tok.is(tok::identifier))
1068          continue;
1069      }
1070
1071      // This identifier can only be a typedef name if we haven't already seen
1072      // a type-specifier.  Without this check we misparse:
1073      //  typedef int X; struct Y { short X; };  as 'short int'.
1074      if (DS.hasTypeSpecifier())
1075        goto DoneWithDeclSpec;
1076
1077      // Check for need to substitute AltiVec keyword tokens.
1078      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1079        break;
1080
1081      // It has to be available as a typedef too!
1082      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
1083                                            Tok.getLocation(), getCurScope());
1084
1085      // If this is not a typedef name, don't parse it as part of the declspec,
1086      // it must be an implicit int or an error.
1087      if (TypeRep == 0) {
1088        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1089        goto DoneWithDeclSpec;
1090      }
1091
1092      // If we're in a context where the identifier could be a class name,
1093      // check whether this is a constructor declaration.
1094      if (getLang().CPlusPlus && DSContext == DSC_class &&
1095          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1096          isConstructorDeclarator())
1097        goto DoneWithDeclSpec;
1098
1099      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1100                                     DiagID, TypeRep);
1101      if (isInvalid)
1102        break;
1103
1104      DS.SetRangeEnd(Tok.getLocation());
1105      ConsumeToken(); // The identifier
1106
1107      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1108      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1109      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1110      // just a normal reference to a typedef name.
1111      if (!Tok.is(tok::less) || !getLang().ObjC1)
1112        continue;
1113
1114      SourceLocation LAngleLoc, EndProtoLoc;
1115      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1116      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1117      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1118                                  LAngleLoc, EndProtoLoc);
1119      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1120                               ProtocolLocs.data(), LAngleLoc);
1121
1122      DS.SetRangeEnd(EndProtoLoc);
1123
1124      // Need to support trailing type qualifiers (e.g. "id<p> const").
1125      // If a type specifier follows, it will be diagnosed elsewhere.
1126      continue;
1127    }
1128
1129      // type-name
1130    case tok::annot_template_id: {
1131      TemplateIdAnnotation *TemplateId
1132        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1133      if (TemplateId->Kind != TNK_Type_template) {
1134        // This template-id does not refer to a type name, so we're
1135        // done with the type-specifiers.
1136        goto DoneWithDeclSpec;
1137      }
1138
1139      // If we're in a context where the template-id could be a
1140      // constructor name or specialization, check whether this is a
1141      // constructor declaration.
1142      if (getLang().CPlusPlus && DSContext == DSC_class &&
1143          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1144          isConstructorDeclarator())
1145        goto DoneWithDeclSpec;
1146
1147      // Turn the template-id annotation token into a type annotation
1148      // token, then try again to parse it as a type-specifier.
1149      AnnotateTemplateIdTokenAsType();
1150      continue;
1151    }
1152
1153    // GNU attributes support.
1154    case tok::kw___attribute:
1155      DS.AddAttributes(ParseGNUAttributes());
1156      continue;
1157
1158    // Microsoft declspec support.
1159    case tok::kw___declspec:
1160      DS.AddAttributes(ParseMicrosoftDeclSpec());
1161      continue;
1162
1163    // Microsoft single token adornments.
1164    case tok::kw___forceinline:
1165      // FIXME: Add handling here!
1166      break;
1167
1168    case tok::kw___ptr64:
1169    case tok::kw___w64:
1170    case tok::kw___cdecl:
1171    case tok::kw___stdcall:
1172    case tok::kw___fastcall:
1173    case tok::kw___thiscall:
1174      DS.AddAttributes(ParseMicrosoftTypeAttributes());
1175      continue;
1176
1177    // storage-class-specifier
1178    case tok::kw_typedef:
1179      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1180                                         DiagID);
1181      break;
1182    case tok::kw_extern:
1183      if (DS.isThreadSpecified())
1184        Diag(Tok, diag::ext_thread_before) << "extern";
1185      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1186                                         DiagID);
1187      break;
1188    case tok::kw___private_extern__:
1189      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1190                                         PrevSpec, DiagID);
1191      break;
1192    case tok::kw_static:
1193      if (DS.isThreadSpecified())
1194        Diag(Tok, diag::ext_thread_before) << "static";
1195      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1196                                         DiagID);
1197      break;
1198    case tok::kw_auto:
1199      if (getLang().CPlusPlus0x)
1200        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1201                                       DiagID);
1202      else
1203        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1204                                           DiagID);
1205      break;
1206    case tok::kw_register:
1207      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1208                                         DiagID);
1209      break;
1210    case tok::kw_mutable:
1211      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1212                                         DiagID);
1213      break;
1214    case tok::kw___thread:
1215      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1216      break;
1217
1218    // function-specifier
1219    case tok::kw_inline:
1220      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1221      break;
1222    case tok::kw_virtual:
1223      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1224      break;
1225    case tok::kw_explicit:
1226      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1227      break;
1228
1229    // friend
1230    case tok::kw_friend:
1231      if (DSContext == DSC_class)
1232        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1233      else {
1234        PrevSpec = ""; // not actually used by the diagnostic
1235        DiagID = diag::err_friend_invalid_in_context;
1236        isInvalid = true;
1237      }
1238      break;
1239
1240    // constexpr
1241    case tok::kw_constexpr:
1242      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1243      break;
1244
1245    // type-specifier
1246    case tok::kw_short:
1247      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1248                                      DiagID);
1249      break;
1250    case tok::kw_long:
1251      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1252        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1253                                        DiagID);
1254      else
1255        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1256                                        DiagID);
1257      break;
1258    case tok::kw_signed:
1259      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1260                                     DiagID);
1261      break;
1262    case tok::kw_unsigned:
1263      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1264                                     DiagID);
1265      break;
1266    case tok::kw__Complex:
1267      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1268                                        DiagID);
1269      break;
1270    case tok::kw__Imaginary:
1271      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1272                                        DiagID);
1273      break;
1274    case tok::kw_void:
1275      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1276                                     DiagID);
1277      break;
1278    case tok::kw_char:
1279      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1280                                     DiagID);
1281      break;
1282    case tok::kw_int:
1283      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1284                                     DiagID);
1285      break;
1286    case tok::kw_float:
1287      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1288                                     DiagID);
1289      break;
1290    case tok::kw_double:
1291      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1292                                     DiagID);
1293      break;
1294    case tok::kw_wchar_t:
1295      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1296                                     DiagID);
1297      break;
1298    case tok::kw_char16_t:
1299      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1300                                     DiagID);
1301      break;
1302    case tok::kw_char32_t:
1303      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1304                                     DiagID);
1305      break;
1306    case tok::kw_bool:
1307    case tok::kw__Bool:
1308      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1309                                     DiagID);
1310      break;
1311    case tok::kw__Decimal32:
1312      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1313                                     DiagID);
1314      break;
1315    case tok::kw__Decimal64:
1316      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1317                                     DiagID);
1318      break;
1319    case tok::kw__Decimal128:
1320      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1321                                     DiagID);
1322      break;
1323    case tok::kw___vector:
1324      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1325      break;
1326    case tok::kw___pixel:
1327      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1328      break;
1329
1330    // class-specifier:
1331    case tok::kw_class:
1332    case tok::kw_struct:
1333    case tok::kw_union: {
1334      tok::TokenKind Kind = Tok.getKind();
1335      ConsumeToken();
1336      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1337      continue;
1338    }
1339
1340    // enum-specifier:
1341    case tok::kw_enum:
1342      ConsumeToken();
1343      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1344      continue;
1345
1346    // cv-qualifier:
1347    case tok::kw_const:
1348      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1349                                 getLang());
1350      break;
1351    case tok::kw_volatile:
1352      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1353                                 getLang());
1354      break;
1355    case tok::kw_restrict:
1356      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1357                                 getLang());
1358      break;
1359
1360    // C++ typename-specifier:
1361    case tok::kw_typename:
1362      if (TryAnnotateTypeOrScopeToken()) {
1363        DS.SetTypeSpecError();
1364        goto DoneWithDeclSpec;
1365      }
1366      if (!Tok.is(tok::kw_typename))
1367        continue;
1368      break;
1369
1370    // GNU typeof support.
1371    case tok::kw_typeof:
1372      ParseTypeofSpecifier(DS);
1373      continue;
1374
1375    case tok::kw_decltype:
1376      ParseDecltypeSpecifier(DS);
1377      continue;
1378
1379    case tok::less:
1380      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1381      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1382      // but we support it.
1383      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1384        goto DoneWithDeclSpec;
1385
1386      {
1387        SourceLocation LAngleLoc, EndProtoLoc;
1388        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1389        llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1390        ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1391                                    LAngleLoc, EndProtoLoc);
1392        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1393                                 ProtocolLocs.data(), LAngleLoc);
1394        DS.SetRangeEnd(EndProtoLoc);
1395
1396        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1397          << FixItHint::CreateInsertion(Loc, "id")
1398          << SourceRange(Loc, EndProtoLoc);
1399        // Need to support trailing type qualifiers (e.g. "id<p> const").
1400        // If a type specifier follows, it will be diagnosed elsewhere.
1401        continue;
1402      }
1403    }
1404    // If the specifier wasn't legal, issue a diagnostic.
1405    if (isInvalid) {
1406      assert(PrevSpec && "Method did not return previous specifier!");
1407      assert(DiagID);
1408      Diag(Tok, DiagID) << PrevSpec;
1409    }
1410    DS.SetRangeEnd(Tok.getLocation());
1411    ConsumeToken();
1412  }
1413}
1414
1415/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1416/// primarily follow the C++ grammar with additions for C99 and GNU,
1417/// which together subsume the C grammar. Note that the C++
1418/// type-specifier also includes the C type-qualifier (for const,
1419/// volatile, and C99 restrict). Returns true if a type-specifier was
1420/// found (and parsed), false otherwise.
1421///
1422///       type-specifier: [C++ 7.1.5]
1423///         simple-type-specifier
1424///         class-specifier
1425///         enum-specifier
1426///         elaborated-type-specifier  [TODO]
1427///         cv-qualifier
1428///
1429///       cv-qualifier: [C++ 7.1.5.1]
1430///         'const'
1431///         'volatile'
1432/// [C99]   'restrict'
1433///
1434///       simple-type-specifier: [ C++ 7.1.5.2]
1435///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1436///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1437///         'char'
1438///         'wchar_t'
1439///         'bool'
1440///         'short'
1441///         'int'
1442///         'long'
1443///         'signed'
1444///         'unsigned'
1445///         'float'
1446///         'double'
1447///         'void'
1448/// [C99]   '_Bool'
1449/// [C99]   '_Complex'
1450/// [C99]   '_Imaginary'  // Removed in TC2?
1451/// [GNU]   '_Decimal32'
1452/// [GNU]   '_Decimal64'
1453/// [GNU]   '_Decimal128'
1454/// [GNU]   typeof-specifier
1455/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1456/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1457/// [C++0x] 'decltype' ( expression )
1458/// [AltiVec] '__vector'
1459bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1460                                        const char *&PrevSpec,
1461                                        unsigned &DiagID,
1462                                        const ParsedTemplateInfo &TemplateInfo,
1463                                        bool SuppressDeclarations) {
1464  SourceLocation Loc = Tok.getLocation();
1465
1466  switch (Tok.getKind()) {
1467  case tok::identifier:   // foo::bar
1468    // If we already have a type specifier, this identifier is not a type.
1469    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1470        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1471        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1472      return false;
1473    // Check for need to substitute AltiVec keyword tokens.
1474    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1475      break;
1476    // Fall through.
1477  case tok::kw_typename:  // typename foo::bar
1478    // Annotate typenames and C++ scope specifiers.  If we get one, just
1479    // recurse to handle whatever we get.
1480    if (TryAnnotateTypeOrScopeToken())
1481      return true;
1482    if (Tok.is(tok::identifier))
1483      return false;
1484    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1485                                      TemplateInfo, SuppressDeclarations);
1486  case tok::coloncolon:   // ::foo::bar
1487    if (NextToken().is(tok::kw_new) ||    // ::new
1488        NextToken().is(tok::kw_delete))   // ::delete
1489      return false;
1490
1491    // Annotate typenames and C++ scope specifiers.  If we get one, just
1492    // recurse to handle whatever we get.
1493    if (TryAnnotateTypeOrScopeToken())
1494      return true;
1495    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1496                                      TemplateInfo, SuppressDeclarations);
1497
1498  // simple-type-specifier:
1499  case tok::annot_typename: {
1500    if (Tok.getAnnotationValue())
1501      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1502                                     DiagID, Tok.getAnnotationValue());
1503    else
1504      DS.SetTypeSpecError();
1505    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1506    ConsumeToken(); // The typename
1507
1508    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1509    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1510    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1511    // just a normal reference to a typedef name.
1512    if (!Tok.is(tok::less) || !getLang().ObjC1)
1513      return true;
1514
1515    SourceLocation LAngleLoc, EndProtoLoc;
1516    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1517    llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1518    ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1519                                LAngleLoc, EndProtoLoc);
1520    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1521                             ProtocolLocs.data(), LAngleLoc);
1522
1523    DS.SetRangeEnd(EndProtoLoc);
1524    return true;
1525  }
1526
1527  case tok::kw_short:
1528    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1529    break;
1530  case tok::kw_long:
1531    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1532      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1533                                      DiagID);
1534    else
1535      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1536                                      DiagID);
1537    break;
1538  case tok::kw_signed:
1539    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1540    break;
1541  case tok::kw_unsigned:
1542    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1543                                   DiagID);
1544    break;
1545  case tok::kw__Complex:
1546    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1547                                      DiagID);
1548    break;
1549  case tok::kw__Imaginary:
1550    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1551                                      DiagID);
1552    break;
1553  case tok::kw_void:
1554    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1555    break;
1556  case tok::kw_char:
1557    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1558    break;
1559  case tok::kw_int:
1560    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1561    break;
1562  case tok::kw_float:
1563    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1564    break;
1565  case tok::kw_double:
1566    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1567    break;
1568  case tok::kw_wchar_t:
1569    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1570    break;
1571  case tok::kw_char16_t:
1572    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1573    break;
1574  case tok::kw_char32_t:
1575    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1576    break;
1577  case tok::kw_bool:
1578  case tok::kw__Bool:
1579    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1580    break;
1581  case tok::kw__Decimal32:
1582    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1583                                   DiagID);
1584    break;
1585  case tok::kw__Decimal64:
1586    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1587                                   DiagID);
1588    break;
1589  case tok::kw__Decimal128:
1590    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1591                                   DiagID);
1592    break;
1593  case tok::kw___vector:
1594    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1595    break;
1596  case tok::kw___pixel:
1597    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1598    break;
1599
1600  // class-specifier:
1601  case tok::kw_class:
1602  case tok::kw_struct:
1603  case tok::kw_union: {
1604    tok::TokenKind Kind = Tok.getKind();
1605    ConsumeToken();
1606    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
1607                        SuppressDeclarations);
1608    return true;
1609  }
1610
1611  // enum-specifier:
1612  case tok::kw_enum:
1613    ConsumeToken();
1614    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
1615    return true;
1616
1617  // cv-qualifier:
1618  case tok::kw_const:
1619    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1620                               DiagID, getLang());
1621    break;
1622  case tok::kw_volatile:
1623    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1624                               DiagID, getLang());
1625    break;
1626  case tok::kw_restrict:
1627    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1628                               DiagID, getLang());
1629    break;
1630
1631  // GNU typeof support.
1632  case tok::kw_typeof:
1633    ParseTypeofSpecifier(DS);
1634    return true;
1635
1636  // C++0x decltype support.
1637  case tok::kw_decltype:
1638    ParseDecltypeSpecifier(DS);
1639    return true;
1640
1641  // C++0x auto support.
1642  case tok::kw_auto:
1643    if (!getLang().CPlusPlus0x)
1644      return false;
1645
1646    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1647    break;
1648  case tok::kw___ptr64:
1649  case tok::kw___w64:
1650  case tok::kw___cdecl:
1651  case tok::kw___stdcall:
1652  case tok::kw___fastcall:
1653  case tok::kw___thiscall:
1654    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1655    return true;
1656
1657  default:
1658    // Not a type-specifier; do nothing.
1659    return false;
1660  }
1661
1662  // If the specifier combination wasn't legal, issue a diagnostic.
1663  if (isInvalid) {
1664    assert(PrevSpec && "Method did not return previous specifier!");
1665    // Pick between error or extwarn.
1666    Diag(Tok, DiagID) << PrevSpec;
1667  }
1668  DS.SetRangeEnd(Tok.getLocation());
1669  ConsumeToken(); // whatever we parsed above.
1670  return true;
1671}
1672
1673/// ParseStructDeclaration - Parse a struct declaration without the terminating
1674/// semicolon.
1675///
1676///       struct-declaration:
1677///         specifier-qualifier-list struct-declarator-list
1678/// [GNU]   __extension__ struct-declaration
1679/// [GNU]   specifier-qualifier-list
1680///       struct-declarator-list:
1681///         struct-declarator
1682///         struct-declarator-list ',' struct-declarator
1683/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1684///       struct-declarator:
1685///         declarator
1686/// [GNU]   declarator attributes[opt]
1687///         declarator[opt] ':' constant-expression
1688/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1689///
1690void Parser::
1691ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1692  if (Tok.is(tok::kw___extension__)) {
1693    // __extension__ silences extension warnings in the subexpression.
1694    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1695    ConsumeToken();
1696    return ParseStructDeclaration(DS, Fields);
1697  }
1698
1699  // Parse the common specifier-qualifiers-list piece.
1700  SourceLocation DSStart = Tok.getLocation();
1701  ParseSpecifierQualifierList(DS);
1702
1703  // If there are no declarators, this is a free-standing declaration
1704  // specifier. Let the actions module cope with it.
1705  if (Tok.is(tok::semi)) {
1706    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
1707    return;
1708  }
1709
1710  // Read struct-declarators until we find the semicolon.
1711  bool FirstDeclarator = true;
1712  while (1) {
1713    ParsingDeclRAIIObject PD(*this);
1714    FieldDeclarator DeclaratorInfo(DS);
1715
1716    // Attributes are only allowed here on successive declarators.
1717    if (!FirstDeclarator && Tok.is(tok::kw___attribute)) {
1718      SourceLocation Loc;
1719      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1720      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1721    }
1722
1723    /// struct-declarator: declarator
1724    /// struct-declarator: declarator[opt] ':' constant-expression
1725    if (Tok.isNot(tok::colon)) {
1726      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1727      ColonProtectionRAIIObject X(*this);
1728      ParseDeclarator(DeclaratorInfo.D);
1729    }
1730
1731    if (Tok.is(tok::colon)) {
1732      ConsumeToken();
1733      OwningExprResult Res(ParseConstantExpression());
1734      if (Res.isInvalid())
1735        SkipUntil(tok::semi, true, true);
1736      else
1737        DeclaratorInfo.BitfieldSize = Res.release();
1738    }
1739
1740    // If attributes exist after the declarator, parse them.
1741    if (Tok.is(tok::kw___attribute)) {
1742      SourceLocation Loc;
1743      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1744      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1745    }
1746
1747    // We're done with this declarator;  invoke the callback.
1748    DeclPtrTy D = Fields.invoke(DeclaratorInfo);
1749    PD.complete(D);
1750
1751    // If we don't have a comma, it is either the end of the list (a ';')
1752    // or an error, bail out.
1753    if (Tok.isNot(tok::comma))
1754      return;
1755
1756    // Consume the comma.
1757    ConsumeToken();
1758
1759    FirstDeclarator = false;
1760  }
1761}
1762
1763/// ParseStructUnionBody
1764///       struct-contents:
1765///         struct-declaration-list
1766/// [EXT]   empty
1767/// [GNU]   "struct-declaration-list" without terminatoring ';'
1768///       struct-declaration-list:
1769///         struct-declaration
1770///         struct-declaration-list struct-declaration
1771/// [OBC]   '@' 'defs' '(' class-name ')'
1772///
1773void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1774                                  unsigned TagType, DeclPtrTy TagDecl) {
1775  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1776                                        PP.getSourceManager(),
1777                                        "parsing struct/union body");
1778
1779  SourceLocation LBraceLoc = ConsumeBrace();
1780
1781  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1782  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1783
1784  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1785  // C++.
1786  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1787    Diag(Tok, diag::ext_empty_struct_union)
1788      << (TagType == TST_union);
1789
1790  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1791
1792  // While we still have something to read, read the declarations in the struct.
1793  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1794    // Each iteration of this loop reads one struct-declaration.
1795
1796    // Check for extraneous top-level semicolon.
1797    if (Tok.is(tok::semi)) {
1798      Diag(Tok, diag::ext_extra_struct_semi)
1799        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1800        << FixItHint::CreateRemoval(Tok.getLocation());
1801      ConsumeToken();
1802      continue;
1803    }
1804
1805    // Parse all the comma separated declarators.
1806    DeclSpec DS;
1807
1808    if (!Tok.is(tok::at)) {
1809      struct CFieldCallback : FieldCallback {
1810        Parser &P;
1811        DeclPtrTy TagDecl;
1812        llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls;
1813
1814        CFieldCallback(Parser &P, DeclPtrTy TagDecl,
1815                       llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls) :
1816          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1817
1818        virtual DeclPtrTy invoke(FieldDeclarator &FD) {
1819          // Install the declarator into the current TagDecl.
1820          DeclPtrTy Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
1821                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1822                                                 FD.D, FD.BitfieldSize);
1823          FieldDecls.push_back(Field);
1824          return Field;
1825        }
1826      } Callback(*this, TagDecl, FieldDecls);
1827
1828      ParseStructDeclaration(DS, Callback);
1829    } else { // Handle @defs
1830      ConsumeToken();
1831      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1832        Diag(Tok, diag::err_unexpected_at);
1833        SkipUntil(tok::semi, true);
1834        continue;
1835      }
1836      ConsumeToken();
1837      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1838      if (!Tok.is(tok::identifier)) {
1839        Diag(Tok, diag::err_expected_ident);
1840        SkipUntil(tok::semi, true);
1841        continue;
1842      }
1843      llvm::SmallVector<DeclPtrTy, 16> Fields;
1844      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
1845                        Tok.getIdentifierInfo(), Fields);
1846      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1847      ConsumeToken();
1848      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1849    }
1850
1851    if (Tok.is(tok::semi)) {
1852      ConsumeToken();
1853    } else if (Tok.is(tok::r_brace)) {
1854      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
1855      break;
1856    } else {
1857      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
1858      // Skip to end of block or statement to avoid ext-warning on extra ';'.
1859      SkipUntil(tok::r_brace, true, true);
1860      // If we stopped at a ';', eat it.
1861      if (Tok.is(tok::semi)) ConsumeToken();
1862    }
1863  }
1864
1865  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1866
1867  llvm::OwningPtr<AttributeList> AttrList;
1868  // If attributes exist after struct contents, parse them.
1869  if (Tok.is(tok::kw___attribute))
1870    AttrList.reset(ParseGNUAttributes());
1871
1872  Actions.ActOnFields(getCurScope(),
1873                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1874                      LBraceLoc, RBraceLoc,
1875                      AttrList.get());
1876  StructScope.Exit();
1877  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1878}
1879
1880
1881/// ParseEnumSpecifier
1882///       enum-specifier: [C99 6.7.2.2]
1883///         'enum' identifier[opt] '{' enumerator-list '}'
1884///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1885/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1886///                                                 '}' attributes[opt]
1887///         'enum' identifier
1888/// [GNU]   'enum' attributes[opt] identifier
1889///
1890/// [C++] elaborated-type-specifier:
1891/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1892///
1893void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1894                                const ParsedTemplateInfo &TemplateInfo,
1895                                AccessSpecifier AS) {
1896  // Parse the tag portion of this.
1897  if (Tok.is(tok::code_completion)) {
1898    // Code completion for an enum name.
1899    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
1900    ConsumeCodeCompletionToken();
1901  }
1902
1903  llvm::OwningPtr<AttributeList> Attr;
1904  // If attributes exist after tag, parse them.
1905  if (Tok.is(tok::kw___attribute))
1906    Attr.reset(ParseGNUAttributes());
1907
1908  CXXScopeSpec &SS = DS.getTypeSpecScope();
1909  if (getLang().CPlusPlus) {
1910    if (ParseOptionalCXXScopeSpecifier(SS, 0, false))
1911      return;
1912
1913    if (SS.isSet() && Tok.isNot(tok::identifier)) {
1914      Diag(Tok, diag::err_expected_ident);
1915      if (Tok.isNot(tok::l_brace)) {
1916        // Has no name and is not a definition.
1917        // Skip the rest of this declarator, up until the comma or semicolon.
1918        SkipUntil(tok::comma, true);
1919        return;
1920      }
1921    }
1922  }
1923
1924  // Must have either 'enum name' or 'enum {...}'.
1925  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1926    Diag(Tok, diag::err_expected_ident_lbrace);
1927
1928    // Skip the rest of this declarator, up until the comma or semicolon.
1929    SkipUntil(tok::comma, true);
1930    return;
1931  }
1932
1933  // If an identifier is present, consume and remember it.
1934  IdentifierInfo *Name = 0;
1935  SourceLocation NameLoc;
1936  if (Tok.is(tok::identifier)) {
1937    Name = Tok.getIdentifierInfo();
1938    NameLoc = ConsumeToken();
1939  }
1940
1941  // There are three options here.  If we have 'enum foo;', then this is a
1942  // forward declaration.  If we have 'enum foo {...' then this is a
1943  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1944  //
1945  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1946  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1947  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1948  //
1949  Action::TagUseKind TUK;
1950  if (Tok.is(tok::l_brace))
1951    TUK = Action::TUK_Definition;
1952  else if (Tok.is(tok::semi))
1953    TUK = Action::TUK_Declaration;
1954  else
1955    TUK = Action::TUK_Reference;
1956
1957  // enums cannot be templates, although they can be referenced from a
1958  // template.
1959  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
1960      TUK != Action::TUK_Reference) {
1961    Diag(Tok, diag::err_enum_template);
1962
1963    // Skip the rest of this declarator, up until the comma or semicolon.
1964    SkipUntil(tok::comma, true);
1965    return;
1966  }
1967
1968  bool Owned = false;
1969  bool IsDependent = false;
1970  SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
1971  const char *PrevSpec = 0;
1972  unsigned DiagID;
1973  DeclPtrTy TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
1974                                       StartLoc, SS, Name, NameLoc, Attr.get(),
1975                                       AS,
1976                                       Action::MultiTemplateParamsArg(Actions),
1977                                       Owned, IsDependent);
1978  if (IsDependent) {
1979    // This enum has a dependent nested-name-specifier. Handle it as a
1980    // dependent tag.
1981    if (!Name) {
1982      DS.SetTypeSpecError();
1983      Diag(Tok, diag::err_expected_type_name_after_typename);
1984      return;
1985    }
1986
1987    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
1988                                                TUK, SS, Name, StartLoc,
1989                                                NameLoc);
1990    if (Type.isInvalid()) {
1991      DS.SetTypeSpecError();
1992      return;
1993    }
1994
1995    if (DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc, PrevSpec, DiagID,
1996                           Type.get(), false))
1997      Diag(StartLoc, DiagID) << PrevSpec;
1998
1999    return;
2000  }
2001
2002  if (!TagDecl.get()) {
2003    // The action failed to produce an enumeration tag. If this is a
2004    // definition, consume the entire definition.
2005    if (Tok.is(tok::l_brace)) {
2006      ConsumeBrace();
2007      SkipUntil(tok::r_brace);
2008    }
2009
2010    DS.SetTypeSpecError();
2011    return;
2012  }
2013
2014  if (Tok.is(tok::l_brace))
2015    ParseEnumBody(StartLoc, TagDecl);
2016
2017  // FIXME: The DeclSpec should keep the locations of both the keyword and the
2018  // name (if there is one).
2019  if (DS.SetTypeSpecType(DeclSpec::TST_enum, TSTLoc, PrevSpec, DiagID,
2020                         TagDecl.getAs<void>(), Owned))
2021    Diag(StartLoc, DiagID) << PrevSpec;
2022}
2023
2024/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2025///       enumerator-list:
2026///         enumerator
2027///         enumerator-list ',' enumerator
2028///       enumerator:
2029///         enumeration-constant
2030///         enumeration-constant '=' constant-expression
2031///       enumeration-constant:
2032///         identifier
2033///
2034void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
2035  // Enter the scope of the enum body and start the definition.
2036  ParseScope EnumScope(this, Scope::DeclScope);
2037  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2038
2039  SourceLocation LBraceLoc = ConsumeBrace();
2040
2041  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2042  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2043    Diag(Tok, diag::error_empty_enum);
2044
2045  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
2046
2047  DeclPtrTy LastEnumConstDecl;
2048
2049  // Parse the enumerator-list.
2050  while (Tok.is(tok::identifier)) {
2051    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2052    SourceLocation IdentLoc = ConsumeToken();
2053
2054    SourceLocation EqualLoc;
2055    OwningExprResult AssignedVal(Actions);
2056    if (Tok.is(tok::equal)) {
2057      EqualLoc = ConsumeToken();
2058      AssignedVal = ParseConstantExpression();
2059      if (AssignedVal.isInvalid())
2060        SkipUntil(tok::comma, tok::r_brace, true, true);
2061    }
2062
2063    // Install the enumerator constant into EnumDecl.
2064    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2065                                                        LastEnumConstDecl,
2066                                                        IdentLoc, Ident,
2067                                                        EqualLoc,
2068                                                        AssignedVal.release());
2069    EnumConstantDecls.push_back(EnumConstDecl);
2070    LastEnumConstDecl = EnumConstDecl;
2071
2072    if (Tok.isNot(tok::comma))
2073      break;
2074    SourceLocation CommaLoc = ConsumeToken();
2075
2076    if (Tok.isNot(tok::identifier) &&
2077        !(getLang().C99 || getLang().CPlusPlus0x))
2078      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2079        << getLang().CPlusPlus
2080        << FixItHint::CreateRemoval(CommaLoc);
2081  }
2082
2083  // Eat the }.
2084  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2085
2086  llvm::OwningPtr<AttributeList> Attr;
2087  // If attributes exist after the identifier list, parse them.
2088  if (Tok.is(tok::kw___attribute))
2089    Attr.reset(ParseGNUAttributes()); // FIXME: where do they do?
2090
2091  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2092                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2093                        getCurScope(), Attr.get());
2094
2095  EnumScope.Exit();
2096  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2097}
2098
2099/// isTypeSpecifierQualifier - Return true if the current token could be the
2100/// start of a type-qualifier-list.
2101bool Parser::isTypeQualifier() const {
2102  switch (Tok.getKind()) {
2103  default: return false;
2104    // type-qualifier
2105  case tok::kw_const:
2106  case tok::kw_volatile:
2107  case tok::kw_restrict:
2108    return true;
2109  }
2110}
2111
2112/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2113/// is definitely a type-specifier.  Return false if it isn't part of a type
2114/// specifier or if we're not sure.
2115bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2116  switch (Tok.getKind()) {
2117  default: return false;
2118    // type-specifiers
2119  case tok::kw_short:
2120  case tok::kw_long:
2121  case tok::kw_signed:
2122  case tok::kw_unsigned:
2123  case tok::kw__Complex:
2124  case tok::kw__Imaginary:
2125  case tok::kw_void:
2126  case tok::kw_char:
2127  case tok::kw_wchar_t:
2128  case tok::kw_char16_t:
2129  case tok::kw_char32_t:
2130  case tok::kw_int:
2131  case tok::kw_float:
2132  case tok::kw_double:
2133  case tok::kw_bool:
2134  case tok::kw__Bool:
2135  case tok::kw__Decimal32:
2136  case tok::kw__Decimal64:
2137  case tok::kw__Decimal128:
2138  case tok::kw___vector:
2139
2140    // struct-or-union-specifier (C99) or class-specifier (C++)
2141  case tok::kw_class:
2142  case tok::kw_struct:
2143  case tok::kw_union:
2144    // enum-specifier
2145  case tok::kw_enum:
2146
2147    // typedef-name
2148  case tok::annot_typename:
2149    return true;
2150  }
2151}
2152
2153/// isTypeSpecifierQualifier - Return true if the current token could be the
2154/// start of a specifier-qualifier-list.
2155bool Parser::isTypeSpecifierQualifier() {
2156  switch (Tok.getKind()) {
2157  default: return false;
2158
2159  case tok::identifier:   // foo::bar
2160    if (TryAltiVecVectorToken())
2161      return true;
2162    // Fall through.
2163  case tok::kw_typename:  // typename T::type
2164    // Annotate typenames and C++ scope specifiers.  If we get one, just
2165    // recurse to handle whatever we get.
2166    if (TryAnnotateTypeOrScopeToken())
2167      return true;
2168    if (Tok.is(tok::identifier))
2169      return false;
2170    return isTypeSpecifierQualifier();
2171
2172  case tok::coloncolon:   // ::foo::bar
2173    if (NextToken().is(tok::kw_new) ||    // ::new
2174        NextToken().is(tok::kw_delete))   // ::delete
2175      return false;
2176
2177    if (TryAnnotateTypeOrScopeToken())
2178      return true;
2179    return isTypeSpecifierQualifier();
2180
2181    // GNU attributes support.
2182  case tok::kw___attribute:
2183    // GNU typeof support.
2184  case tok::kw_typeof:
2185
2186    // type-specifiers
2187  case tok::kw_short:
2188  case tok::kw_long:
2189  case tok::kw_signed:
2190  case tok::kw_unsigned:
2191  case tok::kw__Complex:
2192  case tok::kw__Imaginary:
2193  case tok::kw_void:
2194  case tok::kw_char:
2195  case tok::kw_wchar_t:
2196  case tok::kw_char16_t:
2197  case tok::kw_char32_t:
2198  case tok::kw_int:
2199  case tok::kw_float:
2200  case tok::kw_double:
2201  case tok::kw_bool:
2202  case tok::kw__Bool:
2203  case tok::kw__Decimal32:
2204  case tok::kw__Decimal64:
2205  case tok::kw__Decimal128:
2206  case tok::kw___vector:
2207
2208    // struct-or-union-specifier (C99) or class-specifier (C++)
2209  case tok::kw_class:
2210  case tok::kw_struct:
2211  case tok::kw_union:
2212    // enum-specifier
2213  case tok::kw_enum:
2214
2215    // type-qualifier
2216  case tok::kw_const:
2217  case tok::kw_volatile:
2218  case tok::kw_restrict:
2219
2220    // typedef-name
2221  case tok::annot_typename:
2222    return true;
2223
2224    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2225  case tok::less:
2226    return getLang().ObjC1;
2227
2228  case tok::kw___cdecl:
2229  case tok::kw___stdcall:
2230  case tok::kw___fastcall:
2231  case tok::kw___thiscall:
2232  case tok::kw___w64:
2233  case tok::kw___ptr64:
2234    return true;
2235  }
2236}
2237
2238/// isDeclarationSpecifier() - Return true if the current token is part of a
2239/// declaration specifier.
2240bool Parser::isDeclarationSpecifier() {
2241  switch (Tok.getKind()) {
2242  default: return false;
2243
2244  case tok::identifier:   // foo::bar
2245    // Unfortunate hack to support "Class.factoryMethod" notation.
2246    if (getLang().ObjC1 && NextToken().is(tok::period))
2247      return false;
2248    if (TryAltiVecVectorToken())
2249      return true;
2250    // Fall through.
2251  case tok::kw_typename: // typename T::type
2252    // Annotate typenames and C++ scope specifiers.  If we get one, just
2253    // recurse to handle whatever we get.
2254    if (TryAnnotateTypeOrScopeToken())
2255      return true;
2256    if (Tok.is(tok::identifier))
2257      return false;
2258    return isDeclarationSpecifier();
2259
2260  case tok::coloncolon:   // ::foo::bar
2261    if (NextToken().is(tok::kw_new) ||    // ::new
2262        NextToken().is(tok::kw_delete))   // ::delete
2263      return false;
2264
2265    // Annotate typenames and C++ scope specifiers.  If we get one, just
2266    // recurse to handle whatever we get.
2267    if (TryAnnotateTypeOrScopeToken())
2268      return true;
2269    return isDeclarationSpecifier();
2270
2271    // storage-class-specifier
2272  case tok::kw_typedef:
2273  case tok::kw_extern:
2274  case tok::kw___private_extern__:
2275  case tok::kw_static:
2276  case tok::kw_auto:
2277  case tok::kw_register:
2278  case tok::kw___thread:
2279
2280    // type-specifiers
2281  case tok::kw_short:
2282  case tok::kw_long:
2283  case tok::kw_signed:
2284  case tok::kw_unsigned:
2285  case tok::kw__Complex:
2286  case tok::kw__Imaginary:
2287  case tok::kw_void:
2288  case tok::kw_char:
2289  case tok::kw_wchar_t:
2290  case tok::kw_char16_t:
2291  case tok::kw_char32_t:
2292
2293  case tok::kw_int:
2294  case tok::kw_float:
2295  case tok::kw_double:
2296  case tok::kw_bool:
2297  case tok::kw__Bool:
2298  case tok::kw__Decimal32:
2299  case tok::kw__Decimal64:
2300  case tok::kw__Decimal128:
2301  case tok::kw___vector:
2302
2303    // struct-or-union-specifier (C99) or class-specifier (C++)
2304  case tok::kw_class:
2305  case tok::kw_struct:
2306  case tok::kw_union:
2307    // enum-specifier
2308  case tok::kw_enum:
2309
2310    // type-qualifier
2311  case tok::kw_const:
2312  case tok::kw_volatile:
2313  case tok::kw_restrict:
2314
2315    // function-specifier
2316  case tok::kw_inline:
2317  case tok::kw_virtual:
2318  case tok::kw_explicit:
2319
2320    // typedef-name
2321  case tok::annot_typename:
2322
2323    // GNU typeof support.
2324  case tok::kw_typeof:
2325
2326    // GNU attributes.
2327  case tok::kw___attribute:
2328    return true;
2329
2330    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2331  case tok::less:
2332    return getLang().ObjC1;
2333
2334  case tok::kw___declspec:
2335  case tok::kw___cdecl:
2336  case tok::kw___stdcall:
2337  case tok::kw___fastcall:
2338  case tok::kw___thiscall:
2339  case tok::kw___w64:
2340  case tok::kw___ptr64:
2341  case tok::kw___forceinline:
2342    return true;
2343  }
2344}
2345
2346bool Parser::isConstructorDeclarator() {
2347  TentativeParsingAction TPA(*this);
2348
2349  // Parse the C++ scope specifier.
2350  CXXScopeSpec SS;
2351  if (ParseOptionalCXXScopeSpecifier(SS, 0, true)) {
2352    TPA.Revert();
2353    return false;
2354  }
2355
2356  // Parse the constructor name.
2357  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2358    // We already know that we have a constructor name; just consume
2359    // the token.
2360    ConsumeToken();
2361  } else {
2362    TPA.Revert();
2363    return false;
2364  }
2365
2366  // Current class name must be followed by a left parentheses.
2367  if (Tok.isNot(tok::l_paren)) {
2368    TPA.Revert();
2369    return false;
2370  }
2371  ConsumeParen();
2372
2373  // A right parentheses or ellipsis signals that we have a constructor.
2374  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2375    TPA.Revert();
2376    return true;
2377  }
2378
2379  // If we need to, enter the specified scope.
2380  DeclaratorScopeObj DeclScopeObj(*this, SS);
2381  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2382    DeclScopeObj.EnterDeclaratorScope();
2383
2384  // Check whether the next token(s) are part of a declaration
2385  // specifier, in which case we have the start of a parameter and,
2386  // therefore, we know that this is a constructor.
2387  bool IsConstructor = isDeclarationSpecifier();
2388  TPA.Revert();
2389  return IsConstructor;
2390}
2391
2392/// ParseTypeQualifierListOpt
2393///       type-qualifier-list: [C99 6.7.5]
2394///         type-qualifier
2395/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
2396///         type-qualifier-list type-qualifier
2397/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
2398/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
2399///           if CXX0XAttributesAllowed = true
2400///
2401void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed,
2402                                       bool CXX0XAttributesAllowed) {
2403  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2404    SourceLocation Loc = Tok.getLocation();
2405    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2406    if (CXX0XAttributesAllowed)
2407      DS.AddAttributes(Attr.AttrList);
2408    else
2409      Diag(Loc, diag::err_attributes_not_allowed);
2410  }
2411
2412  while (1) {
2413    bool isInvalid = false;
2414    const char *PrevSpec = 0;
2415    unsigned DiagID = 0;
2416    SourceLocation Loc = Tok.getLocation();
2417
2418    switch (Tok.getKind()) {
2419    case tok::kw_const:
2420      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2421                                 getLang());
2422      break;
2423    case tok::kw_volatile:
2424      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2425                                 getLang());
2426      break;
2427    case tok::kw_restrict:
2428      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2429                                 getLang());
2430      break;
2431    case tok::kw___w64:
2432    case tok::kw___ptr64:
2433    case tok::kw___cdecl:
2434    case tok::kw___stdcall:
2435    case tok::kw___fastcall:
2436    case tok::kw___thiscall:
2437      if (GNUAttributesAllowed) {
2438        DS.AddAttributes(ParseMicrosoftTypeAttributes());
2439        continue;
2440      }
2441      goto DoneWithTypeQuals;
2442    case tok::kw___attribute:
2443      if (GNUAttributesAllowed) {
2444        DS.AddAttributes(ParseGNUAttributes());
2445        continue; // do *not* consume the next token!
2446      }
2447      // otherwise, FALL THROUGH!
2448    default:
2449      DoneWithTypeQuals:
2450      // If this is not a type-qualifier token, we're done reading type
2451      // qualifiers.  First verify that DeclSpec's are consistent.
2452      DS.Finish(Diags, PP);
2453      return;
2454    }
2455
2456    // If the specifier combination wasn't legal, issue a diagnostic.
2457    if (isInvalid) {
2458      assert(PrevSpec && "Method did not return previous specifier!");
2459      Diag(Tok, DiagID) << PrevSpec;
2460    }
2461    ConsumeToken();
2462  }
2463}
2464
2465
2466/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2467///
2468void Parser::ParseDeclarator(Declarator &D) {
2469  /// This implements the 'declarator' production in the C grammar, then checks
2470  /// for well-formedness and issues diagnostics.
2471  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2472}
2473
2474/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2475/// is parsed by the function passed to it. Pass null, and the direct-declarator
2476/// isn't parsed at all, making this function effectively parse the C++
2477/// ptr-operator production.
2478///
2479///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2480/// [C]     pointer[opt] direct-declarator
2481/// [C++]   direct-declarator
2482/// [C++]   ptr-operator declarator
2483///
2484///       pointer: [C99 6.7.5]
2485///         '*' type-qualifier-list[opt]
2486///         '*' type-qualifier-list[opt] pointer
2487///
2488///       ptr-operator:
2489///         '*' cv-qualifier-seq[opt]
2490///         '&'
2491/// [C++0x] '&&'
2492/// [GNU]   '&' restrict[opt] attributes[opt]
2493/// [GNU?]  '&&' restrict[opt] attributes[opt]
2494///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2495void Parser::ParseDeclaratorInternal(Declarator &D,
2496                                     DirectDeclParseFunction DirectDeclParser) {
2497  if (Diags.hasAllExtensionsSilenced())
2498    D.setExtension();
2499  // C++ member pointers start with a '::' or a nested-name.
2500  // Member pointers get special handling, since there's no place for the
2501  // scope spec in the generic path below.
2502  if (getLang().CPlusPlus &&
2503      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2504       Tok.is(tok::annot_cxxscope))) {
2505    CXXScopeSpec SS;
2506    ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true); // ignore fail
2507
2508    if (SS.isNotEmpty()) {
2509      if (Tok.isNot(tok::star)) {
2510        // The scope spec really belongs to the direct-declarator.
2511        D.getCXXScopeSpec() = SS;
2512        if (DirectDeclParser)
2513          (this->*DirectDeclParser)(D);
2514        return;
2515      }
2516
2517      SourceLocation Loc = ConsumeToken();
2518      D.SetRangeEnd(Loc);
2519      DeclSpec DS;
2520      ParseTypeQualifierListOpt(DS);
2521      D.ExtendWithDeclSpec(DS);
2522
2523      // Recurse to parse whatever is left.
2524      ParseDeclaratorInternal(D, DirectDeclParser);
2525
2526      // Sema will have to catch (syntactically invalid) pointers into global
2527      // scope. It has to catch pointers into namespace scope anyway.
2528      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2529                                                      Loc, DS.TakeAttributes()),
2530                    /* Don't replace range end. */SourceLocation());
2531      return;
2532    }
2533  }
2534
2535  tok::TokenKind Kind = Tok.getKind();
2536  // Not a pointer, C++ reference, or block.
2537  if (Kind != tok::star && Kind != tok::caret &&
2538      (Kind != tok::amp || !getLang().CPlusPlus) &&
2539      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2540      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2541    if (DirectDeclParser)
2542      (this->*DirectDeclParser)(D);
2543    return;
2544  }
2545
2546  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2547  // '&&' -> rvalue reference
2548  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2549  D.SetRangeEnd(Loc);
2550
2551  if (Kind == tok::star || Kind == tok::caret) {
2552    // Is a pointer.
2553    DeclSpec DS;
2554
2555    ParseTypeQualifierListOpt(DS);
2556    D.ExtendWithDeclSpec(DS);
2557
2558    // Recursively parse the declarator.
2559    ParseDeclaratorInternal(D, DirectDeclParser);
2560    if (Kind == tok::star)
2561      // Remember that we parsed a pointer type, and remember the type-quals.
2562      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2563                                                DS.TakeAttributes()),
2564                    SourceLocation());
2565    else
2566      // Remember that we parsed a Block type, and remember the type-quals.
2567      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2568                                                     Loc, DS.TakeAttributes()),
2569                    SourceLocation());
2570  } else {
2571    // Is a reference
2572    DeclSpec DS;
2573
2574    // Complain about rvalue references in C++03, but then go on and build
2575    // the declarator.
2576    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2577      Diag(Loc, diag::err_rvalue_reference);
2578
2579    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2580    // cv-qualifiers are introduced through the use of a typedef or of a
2581    // template type argument, in which case the cv-qualifiers are ignored.
2582    //
2583    // [GNU] Retricted references are allowed.
2584    // [GNU] Attributes on references are allowed.
2585    // [C++0x] Attributes on references are not allowed.
2586    ParseTypeQualifierListOpt(DS, true, false);
2587    D.ExtendWithDeclSpec(DS);
2588
2589    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2590      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2591        Diag(DS.getConstSpecLoc(),
2592             diag::err_invalid_reference_qualifier_application) << "const";
2593      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2594        Diag(DS.getVolatileSpecLoc(),
2595             diag::err_invalid_reference_qualifier_application) << "volatile";
2596    }
2597
2598    // Recursively parse the declarator.
2599    ParseDeclaratorInternal(D, DirectDeclParser);
2600
2601    if (D.getNumTypeObjects() > 0) {
2602      // C++ [dcl.ref]p4: There shall be no references to references.
2603      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2604      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2605        if (const IdentifierInfo *II = D.getIdentifier())
2606          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2607           << II;
2608        else
2609          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2610            << "type name";
2611
2612        // Once we've complained about the reference-to-reference, we
2613        // can go ahead and build the (technically ill-formed)
2614        // declarator: reference collapsing will take care of it.
2615      }
2616    }
2617
2618    // Remember that we parsed a reference type. It doesn't have type-quals.
2619    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2620                                                DS.TakeAttributes(),
2621                                                Kind == tok::amp),
2622                  SourceLocation());
2623  }
2624}
2625
2626/// ParseDirectDeclarator
2627///       direct-declarator: [C99 6.7.5]
2628/// [C99]   identifier
2629///         '(' declarator ')'
2630/// [GNU]   '(' attributes declarator ')'
2631/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2632/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2633/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2634/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2635/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2636///         direct-declarator '(' parameter-type-list ')'
2637///         direct-declarator '(' identifier-list[opt] ')'
2638/// [GNU]   direct-declarator '(' parameter-forward-declarations
2639///                    parameter-type-list[opt] ')'
2640/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2641///                    cv-qualifier-seq[opt] exception-specification[opt]
2642/// [C++]   declarator-id
2643///
2644///       declarator-id: [C++ 8]
2645///         id-expression
2646///         '::'[opt] nested-name-specifier[opt] type-name
2647///
2648///       id-expression: [C++ 5.1]
2649///         unqualified-id
2650///         qualified-id
2651///
2652///       unqualified-id: [C++ 5.1]
2653///         identifier
2654///         operator-function-id
2655///         conversion-function-id
2656///          '~' class-name
2657///         template-id
2658///
2659void Parser::ParseDirectDeclarator(Declarator &D) {
2660  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2661
2662  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2663    // ParseDeclaratorInternal might already have parsed the scope.
2664    if (D.getCXXScopeSpec().isEmpty()) {
2665      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), /*ObjectType=*/0,
2666                                     true);
2667    }
2668
2669    if (D.getCXXScopeSpec().isValid()) {
2670      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2671        // Change the declaration context for name lookup, until this function
2672        // is exited (and the declarator has been parsed).
2673        DeclScopeObj.EnterDeclaratorScope();
2674    }
2675
2676    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2677        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2678      // We found something that indicates the start of an unqualified-id.
2679      // Parse that unqualified-id.
2680      bool AllowConstructorName;
2681      if (D.getDeclSpec().hasTypeSpecifier())
2682        AllowConstructorName = false;
2683      else if (D.getCXXScopeSpec().isSet())
2684        AllowConstructorName =
2685          (D.getContext() == Declarator::FileContext ||
2686           (D.getContext() == Declarator::MemberContext &&
2687            D.getDeclSpec().isFriendSpecified()));
2688      else
2689        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
2690
2691      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2692                             /*EnteringContext=*/true,
2693                             /*AllowDestructorName=*/true,
2694                             AllowConstructorName,
2695                             /*ObjectType=*/0,
2696                             D.getName()) ||
2697          // Once we're past the identifier, if the scope was bad, mark the
2698          // whole declarator bad.
2699          D.getCXXScopeSpec().isInvalid()) {
2700        D.SetIdentifier(0, Tok.getLocation());
2701        D.setInvalidType(true);
2702      } else {
2703        // Parsed the unqualified-id; update range information and move along.
2704        if (D.getSourceRange().getBegin().isInvalid())
2705          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2706        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2707      }
2708      goto PastIdentifier;
2709    }
2710  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2711    assert(!getLang().CPlusPlus &&
2712           "There's a C++-specific check for tok::identifier above");
2713    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2714    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2715    ConsumeToken();
2716    goto PastIdentifier;
2717  }
2718
2719  if (Tok.is(tok::l_paren)) {
2720    // direct-declarator: '(' declarator ')'
2721    // direct-declarator: '(' attributes declarator ')'
2722    // Example: 'char (*X)'   or 'int (*XX)(void)'
2723    ParseParenDeclarator(D);
2724
2725    // If the declarator was parenthesized, we entered the declarator
2726    // scope when parsing the parenthesized declarator, then exited
2727    // the scope already. Re-enter the scope, if we need to.
2728    if (D.getCXXScopeSpec().isSet()) {
2729      // If there was an error parsing parenthesized declarator, declarator
2730      // scope may have been enterred before. Don't do it again.
2731      if (!D.isInvalidType() &&
2732          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2733        // Change the declaration context for name lookup, until this function
2734        // is exited (and the declarator has been parsed).
2735        DeclScopeObj.EnterDeclaratorScope();
2736    }
2737  } else if (D.mayOmitIdentifier()) {
2738    // This could be something simple like "int" (in which case the declarator
2739    // portion is empty), if an abstract-declarator is allowed.
2740    D.SetIdentifier(0, Tok.getLocation());
2741  } else {
2742    if (D.getContext() == Declarator::MemberContext)
2743      Diag(Tok, diag::err_expected_member_name_or_semi)
2744        << D.getDeclSpec().getSourceRange();
2745    else if (getLang().CPlusPlus)
2746      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2747    else
2748      Diag(Tok, diag::err_expected_ident_lparen);
2749    D.SetIdentifier(0, Tok.getLocation());
2750    D.setInvalidType(true);
2751  }
2752
2753 PastIdentifier:
2754  assert(D.isPastIdentifier() &&
2755         "Haven't past the location of the identifier yet?");
2756
2757  // Don't parse attributes unless we have an identifier.
2758  if (D.getIdentifier() && getLang().CPlusPlus0x
2759   && isCXX0XAttributeSpecifier(true)) {
2760    SourceLocation AttrEndLoc;
2761    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2762    D.AddAttributes(Attr.AttrList, AttrEndLoc);
2763  }
2764
2765  while (1) {
2766    if (Tok.is(tok::l_paren)) {
2767      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2768      // In such a case, check if we actually have a function declarator; if it
2769      // is not, the declarator has been fully parsed.
2770      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2771        // When not in file scope, warn for ambiguous function declarators, just
2772        // in case the author intended it as a variable definition.
2773        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2774        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2775          break;
2776      }
2777      ParseFunctionDeclarator(ConsumeParen(), D);
2778    } else if (Tok.is(tok::l_square)) {
2779      ParseBracketDeclarator(D);
2780    } else {
2781      break;
2782    }
2783  }
2784}
2785
2786/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2787/// only called before the identifier, so these are most likely just grouping
2788/// parens for precedence.  If we find that these are actually function
2789/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2790///
2791///       direct-declarator:
2792///         '(' declarator ')'
2793/// [GNU]   '(' attributes declarator ')'
2794///         direct-declarator '(' parameter-type-list ')'
2795///         direct-declarator '(' identifier-list[opt] ')'
2796/// [GNU]   direct-declarator '(' parameter-forward-declarations
2797///                    parameter-type-list[opt] ')'
2798///
2799void Parser::ParseParenDeclarator(Declarator &D) {
2800  SourceLocation StartLoc = ConsumeParen();
2801  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2802
2803  // Eat any attributes before we look at whether this is a grouping or function
2804  // declarator paren.  If this is a grouping paren, the attribute applies to
2805  // the type being built up, for example:
2806  //     int (__attribute__(()) *x)(long y)
2807  // If this ends up not being a grouping paren, the attribute applies to the
2808  // first argument, for example:
2809  //     int (__attribute__(()) int x)
2810  // In either case, we need to eat any attributes to be able to determine what
2811  // sort of paren this is.
2812  //
2813  llvm::OwningPtr<AttributeList> AttrList;
2814  bool RequiresArg = false;
2815  if (Tok.is(tok::kw___attribute)) {
2816    AttrList.reset(ParseGNUAttributes());
2817
2818    // We require that the argument list (if this is a non-grouping paren) be
2819    // present even if the attribute list was empty.
2820    RequiresArg = true;
2821  }
2822  // Eat any Microsoft extensions.
2823  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2824       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
2825       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
2826    AttrList.reset(ParseMicrosoftTypeAttributes(AttrList.take()));
2827  }
2828
2829  // If we haven't past the identifier yet (or where the identifier would be
2830  // stored, if this is an abstract declarator), then this is probably just
2831  // grouping parens. However, if this could be an abstract-declarator, then
2832  // this could also be the start of function arguments (consider 'void()').
2833  bool isGrouping;
2834
2835  if (!D.mayOmitIdentifier()) {
2836    // If this can't be an abstract-declarator, this *must* be a grouping
2837    // paren, because we haven't seen the identifier yet.
2838    isGrouping = true;
2839  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2840             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2841             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2842    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2843    // considered to be a type, not a K&R identifier-list.
2844    isGrouping = false;
2845  } else {
2846    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2847    isGrouping = true;
2848  }
2849
2850  // If this is a grouping paren, handle:
2851  // direct-declarator: '(' declarator ')'
2852  // direct-declarator: '(' attributes declarator ')'
2853  if (isGrouping) {
2854    bool hadGroupingParens = D.hasGroupingParens();
2855    D.setGroupingParens(true);
2856    if (AttrList)
2857      D.AddAttributes(AttrList.take(), SourceLocation());
2858
2859    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2860    // Match the ')'.
2861    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2862
2863    D.setGroupingParens(hadGroupingParens);
2864    D.SetRangeEnd(Loc);
2865    return;
2866  }
2867
2868  // Okay, if this wasn't a grouping paren, it must be the start of a function
2869  // argument list.  Recognize that this declarator will never have an
2870  // identifier (and remember where it would have been), then call into
2871  // ParseFunctionDeclarator to handle of argument list.
2872  D.SetIdentifier(0, Tok.getLocation());
2873
2874  ParseFunctionDeclarator(StartLoc, D, AttrList.take(), RequiresArg);
2875}
2876
2877/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2878/// declarator D up to a paren, which indicates that we are parsing function
2879/// arguments.
2880///
2881/// If AttrList is non-null, then the caller parsed those arguments immediately
2882/// after the open paren - they should be considered to be the first argument of
2883/// a parameter.  If RequiresArg is true, then the first argument of the
2884/// function is required to be present and required to not be an identifier
2885/// list.
2886///
2887/// This method also handles this portion of the grammar:
2888///       parameter-type-list: [C99 6.7.5]
2889///         parameter-list
2890///         parameter-list ',' '...'
2891/// [C++]   parameter-list '...'
2892///
2893///       parameter-list: [C99 6.7.5]
2894///         parameter-declaration
2895///         parameter-list ',' parameter-declaration
2896///
2897///       parameter-declaration: [C99 6.7.5]
2898///         declaration-specifiers declarator
2899/// [C++]   declaration-specifiers declarator '=' assignment-expression
2900/// [GNU]   declaration-specifiers declarator attributes
2901///         declaration-specifiers abstract-declarator[opt]
2902/// [C++]   declaration-specifiers abstract-declarator[opt]
2903///           '=' assignment-expression
2904/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2905///
2906/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2907/// and "exception-specification[opt]".
2908///
2909void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2910                                     AttributeList *AttrList,
2911                                     bool RequiresArg) {
2912  // lparen is already consumed!
2913  assert(D.isPastIdentifier() && "Should not call before identifier!");
2914
2915  // This parameter list may be empty.
2916  if (Tok.is(tok::r_paren)) {
2917    if (RequiresArg) {
2918      Diag(Tok, diag::err_argument_required_after_attribute);
2919      delete AttrList;
2920    }
2921
2922    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
2923    SourceLocation EndLoc = RParenLoc;
2924
2925    // cv-qualifier-seq[opt].
2926    DeclSpec DS;
2927    bool hasExceptionSpec = false;
2928    SourceLocation ThrowLoc;
2929    bool hasAnyExceptionSpec = false;
2930    llvm::SmallVector<TypeTy*, 2> Exceptions;
2931    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2932    if (getLang().CPlusPlus) {
2933      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2934      if (!DS.getSourceRange().getEnd().isInvalid())
2935        EndLoc = DS.getSourceRange().getEnd();
2936
2937      // Parse exception-specification[opt].
2938      if (Tok.is(tok::kw_throw)) {
2939        hasExceptionSpec = true;
2940        ThrowLoc = Tok.getLocation();
2941        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2942                                    hasAnyExceptionSpec);
2943        assert(Exceptions.size() == ExceptionRanges.size() &&
2944               "Produced different number of exception types and ranges.");
2945      }
2946    }
2947
2948    // Remember that we parsed a function type, and remember the attributes.
2949    // int() -> no prototype, no '...'.
2950    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2951                                               /*variadic*/ false,
2952                                               SourceLocation(),
2953                                               /*arglist*/ 0, 0,
2954                                               DS.getTypeQualifiers(),
2955                                               hasExceptionSpec, ThrowLoc,
2956                                               hasAnyExceptionSpec,
2957                                               Exceptions.data(),
2958                                               ExceptionRanges.data(),
2959                                               Exceptions.size(),
2960                                               LParenLoc, RParenLoc, D),
2961                  EndLoc);
2962    return;
2963  }
2964
2965  // Alternatively, this parameter list may be an identifier list form for a
2966  // K&R-style function:  void foo(a,b,c)
2967  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
2968      && !TryAltiVecVectorToken()) {
2969    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
2970      // K&R identifier lists can't have typedefs as identifiers, per
2971      // C99 6.7.5.3p11.
2972      if (RequiresArg) {
2973        Diag(Tok, diag::err_argument_required_after_attribute);
2974        delete AttrList;
2975      }
2976
2977      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2978      // normal declarators, not for abstract-declarators.  Get the first
2979      // identifier.
2980      Token FirstTok = Tok;
2981      ConsumeToken();  // eat the first identifier.
2982
2983      // Identifier lists follow a really simple grammar: the identifiers can
2984      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
2985      // identifier lists are really rare in the brave new modern world, and it
2986      // is very common for someone to typo a type in a non-k&r style list.  If
2987      // we are presented with something like: "void foo(intptr x, float y)",
2988      // we don't want to start parsing the function declarator as though it is
2989      // a K&R style declarator just because intptr is an invalid type.
2990      //
2991      // To handle this, we check to see if the token after the first identifier
2992      // is a "," or ")".  Only if so, do we parse it as an identifier list.
2993      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
2994        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
2995                                                   FirstTok.getIdentifierInfo(),
2996                                                     FirstTok.getLocation(), D);
2997
2998      // If we get here, the code is invalid.  Push the first identifier back
2999      // into the token stream and parse the first argument as an (invalid)
3000      // normal argument declarator.
3001      PP.EnterToken(Tok);
3002      Tok = FirstTok;
3003    }
3004  }
3005
3006  // Finally, a normal, non-empty parameter type list.
3007
3008  // Build up an array of information about the parsed arguments.
3009  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3010
3011  // Enter function-declaration scope, limiting any declarators to the
3012  // function prototype scope, including parameter declarators.
3013  ParseScope PrototypeScope(this,
3014                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3015
3016  bool IsVariadic = false;
3017  SourceLocation EllipsisLoc;
3018  while (1) {
3019    if (Tok.is(tok::ellipsis)) {
3020      IsVariadic = true;
3021      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3022      break;
3023    }
3024
3025    SourceLocation DSStart = Tok.getLocation();
3026
3027    // Parse the declaration-specifiers.
3028    // Just use the ParsingDeclaration "scope" of the declarator.
3029    DeclSpec DS;
3030
3031    // If the caller parsed attributes for the first argument, add them now.
3032    if (AttrList) {
3033      DS.AddAttributes(AttrList);
3034      AttrList = 0;  // Only apply the attributes to the first parameter.
3035    }
3036    ParseDeclarationSpecifiers(DS);
3037
3038    // Parse the declarator.  This is "PrototypeContext", because we must
3039    // accept either 'declarator' or 'abstract-declarator' here.
3040    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3041    ParseDeclarator(ParmDecl);
3042
3043    // Parse GNU attributes, if present.
3044    if (Tok.is(tok::kw___attribute)) {
3045      SourceLocation Loc;
3046      AttributeList *AttrList = ParseGNUAttributes(&Loc);
3047      ParmDecl.AddAttributes(AttrList, Loc);
3048    }
3049
3050    // Remember this parsed parameter in ParamInfo.
3051    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3052
3053    // DefArgToks is used when the parsing of default arguments needs
3054    // to be delayed.
3055    CachedTokens *DefArgToks = 0;
3056
3057    // If no parameter was specified, verify that *something* was specified,
3058    // otherwise we have a missing type and identifier.
3059    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3060        ParmDecl.getNumTypeObjects() == 0) {
3061      // Completely missing, emit error.
3062      Diag(DSStart, diag::err_missing_param);
3063    } else {
3064      // Otherwise, we have something.  Add it and let semantic analysis try
3065      // to grok it and add the result to the ParamInfo we are building.
3066
3067      // Inform the actions module about the parameter declarator, so it gets
3068      // added to the current scope.
3069      DeclPtrTy Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3070
3071      // Parse the default argument, if any. We parse the default
3072      // arguments in all dialects; the semantic analysis in
3073      // ActOnParamDefaultArgument will reject the default argument in
3074      // C.
3075      if (Tok.is(tok::equal)) {
3076        SourceLocation EqualLoc = Tok.getLocation();
3077
3078        // Parse the default argument
3079        if (D.getContext() == Declarator::MemberContext) {
3080          // If we're inside a class definition, cache the tokens
3081          // corresponding to the default argument. We'll actually parse
3082          // them when we see the end of the class definition.
3083          // FIXME: Templates will require something similar.
3084          // FIXME: Can we use a smart pointer for Toks?
3085          DefArgToks = new CachedTokens;
3086
3087          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3088                                    /*StopAtSemi=*/true,
3089                                    /*ConsumeFinalToken=*/false)) {
3090            delete DefArgToks;
3091            DefArgToks = 0;
3092            Actions.ActOnParamDefaultArgumentError(Param);
3093          } else {
3094            // Mark the end of the default argument so that we know when to
3095            // stop when we parse it later on.
3096            Token DefArgEnd;
3097            DefArgEnd.startToken();
3098            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3099            DefArgEnd.setLocation(Tok.getLocation());
3100            DefArgToks->push_back(DefArgEnd);
3101            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3102                                                (*DefArgToks)[1].getLocation());
3103          }
3104        } else {
3105          // Consume the '='.
3106          ConsumeToken();
3107
3108          OwningExprResult DefArgResult(ParseAssignmentExpression());
3109          if (DefArgResult.isInvalid()) {
3110            Actions.ActOnParamDefaultArgumentError(Param);
3111            SkipUntil(tok::comma, tok::r_paren, true, true);
3112          } else {
3113            // Inform the actions module about the default argument
3114            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3115                                              move(DefArgResult));
3116          }
3117        }
3118      }
3119
3120      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3121                                          ParmDecl.getIdentifierLoc(), Param,
3122                                          DefArgToks));
3123    }
3124
3125    // If the next token is a comma, consume it and keep reading arguments.
3126    if (Tok.isNot(tok::comma)) {
3127      if (Tok.is(tok::ellipsis)) {
3128        IsVariadic = true;
3129        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3130
3131        if (!getLang().CPlusPlus) {
3132          // We have ellipsis without a preceding ',', which is ill-formed
3133          // in C. Complain and provide the fix.
3134          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3135            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3136        }
3137      }
3138
3139      break;
3140    }
3141
3142    // Consume the comma.
3143    ConsumeToken();
3144  }
3145
3146  // Leave prototype scope.
3147  PrototypeScope.Exit();
3148
3149  // If we have the closing ')', eat it.
3150  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3151  SourceLocation EndLoc = RParenLoc;
3152
3153  DeclSpec DS;
3154  bool hasExceptionSpec = false;
3155  SourceLocation ThrowLoc;
3156  bool hasAnyExceptionSpec = false;
3157  llvm::SmallVector<TypeTy*, 2> Exceptions;
3158  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3159
3160  if (getLang().CPlusPlus) {
3161    // Parse cv-qualifier-seq[opt].
3162    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3163      if (!DS.getSourceRange().getEnd().isInvalid())
3164        EndLoc = DS.getSourceRange().getEnd();
3165
3166    // Parse exception-specification[opt].
3167    if (Tok.is(tok::kw_throw)) {
3168      hasExceptionSpec = true;
3169      ThrowLoc = Tok.getLocation();
3170      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3171                                  hasAnyExceptionSpec);
3172      assert(Exceptions.size() == ExceptionRanges.size() &&
3173             "Produced different number of exception types and ranges.");
3174    }
3175  }
3176
3177  // Remember that we parsed a function type, and remember the attributes.
3178  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
3179                                             EllipsisLoc,
3180                                             ParamInfo.data(), ParamInfo.size(),
3181                                             DS.getTypeQualifiers(),
3182                                             hasExceptionSpec, ThrowLoc,
3183                                             hasAnyExceptionSpec,
3184                                             Exceptions.data(),
3185                                             ExceptionRanges.data(),
3186                                             Exceptions.size(),
3187                                             LParenLoc, RParenLoc, D),
3188                EndLoc);
3189}
3190
3191/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3192/// we found a K&R-style identifier list instead of a type argument list.  The
3193/// first identifier has already been consumed, and the current token is the
3194/// token right after it.
3195///
3196///       identifier-list: [C99 6.7.5]
3197///         identifier
3198///         identifier-list ',' identifier
3199///
3200void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3201                                                   IdentifierInfo *FirstIdent,
3202                                                   SourceLocation FirstIdentLoc,
3203                                                   Declarator &D) {
3204  // Build up an array of information about the parsed arguments.
3205  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3206  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3207
3208  // If there was no identifier specified for the declarator, either we are in
3209  // an abstract-declarator, or we are in a parameter declarator which was found
3210  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3211  // diagnose this.
3212  if (!D.getIdentifier())
3213    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3214
3215  // The first identifier was already read, and is known to be the first
3216  // identifier in the list.  Remember this identifier in ParamInfo.
3217  ParamsSoFar.insert(FirstIdent);
3218  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc,
3219                                                 DeclPtrTy()));
3220
3221  while (Tok.is(tok::comma)) {
3222    // Eat the comma.
3223    ConsumeToken();
3224
3225    // If this isn't an identifier, report the error and skip until ')'.
3226    if (Tok.isNot(tok::identifier)) {
3227      Diag(Tok, diag::err_expected_ident);
3228      SkipUntil(tok::r_paren);
3229      return;
3230    }
3231
3232    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3233
3234    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3235    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3236      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3237
3238    // Verify that the argument identifier has not already been mentioned.
3239    if (!ParamsSoFar.insert(ParmII)) {
3240      Diag(Tok, diag::err_param_redefinition) << ParmII;
3241    } else {
3242      // Remember this identifier in ParamInfo.
3243      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3244                                                     Tok.getLocation(),
3245                                                     DeclPtrTy()));
3246    }
3247
3248    // Eat the identifier.
3249    ConsumeToken();
3250  }
3251
3252  // If we have the closing ')', eat it and we're done.
3253  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3254
3255  // Remember that we parsed a function type, and remember the attributes.  This
3256  // function type is always a K&R style function type, which is not varargs and
3257  // has no prototype.
3258  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
3259                                             SourceLocation(),
3260                                             &ParamInfo[0], ParamInfo.size(),
3261                                             /*TypeQuals*/0,
3262                                             /*exception*/false,
3263                                             SourceLocation(), false, 0, 0, 0,
3264                                             LParenLoc, RLoc, D),
3265                RLoc);
3266}
3267
3268/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3269/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3270/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3271/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3272/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3273void Parser::ParseBracketDeclarator(Declarator &D) {
3274  SourceLocation StartLoc = ConsumeBracket();
3275
3276  // C array syntax has many features, but by-far the most common is [] and [4].
3277  // This code does a fast path to handle some of the most obvious cases.
3278  if (Tok.getKind() == tok::r_square) {
3279    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3280    //FIXME: Use these
3281    CXX0XAttributeList Attr;
3282    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier(true)) {
3283      Attr = ParseCXX0XAttributes();
3284    }
3285
3286    // Remember that we parsed the empty array type.
3287    OwningExprResult NumElements(Actions);
3288    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
3289                                            StartLoc, EndLoc),
3290                  EndLoc);
3291    return;
3292  } else if (Tok.getKind() == tok::numeric_constant &&
3293             GetLookAheadToken(1).is(tok::r_square)) {
3294    // [4] is very common.  Parse the numeric constant expression.
3295    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3296    ConsumeToken();
3297
3298    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3299    //FIXME: Use these
3300    CXX0XAttributeList Attr;
3301    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3302      Attr = ParseCXX0XAttributes();
3303    }
3304
3305    // If there was an error parsing the assignment-expression, recover.
3306    if (ExprRes.isInvalid())
3307      ExprRes.release();  // Deallocate expr, just use [].
3308
3309    // Remember that we parsed a array type, and remember its features.
3310    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
3311                                            StartLoc, EndLoc),
3312                  EndLoc);
3313    return;
3314  }
3315
3316  // If valid, this location is the position where we read the 'static' keyword.
3317  SourceLocation StaticLoc;
3318  if (Tok.is(tok::kw_static))
3319    StaticLoc = ConsumeToken();
3320
3321  // If there is a type-qualifier-list, read it now.
3322  // Type qualifiers in an array subscript are a C99 feature.
3323  DeclSpec DS;
3324  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3325
3326  // If we haven't already read 'static', check to see if there is one after the
3327  // type-qualifier-list.
3328  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3329    StaticLoc = ConsumeToken();
3330
3331  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3332  bool isStar = false;
3333  OwningExprResult NumElements(Actions);
3334
3335  // Handle the case where we have '[*]' as the array size.  However, a leading
3336  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3337  // the the token after the star is a ']'.  Since stars in arrays are
3338  // infrequent, use of lookahead is not costly here.
3339  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3340    ConsumeToken();  // Eat the '*'.
3341
3342    if (StaticLoc.isValid()) {
3343      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3344      StaticLoc = SourceLocation();  // Drop the static.
3345    }
3346    isStar = true;
3347  } else if (Tok.isNot(tok::r_square)) {
3348    // Note, in C89, this production uses the constant-expr production instead
3349    // of assignment-expr.  The only difference is that assignment-expr allows
3350    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3351    // are not i-c-e's, so we don't need to distinguish between the two here.
3352
3353    // Parse the constant-expression or assignment-expression now (depending
3354    // on dialect).
3355    if (getLang().CPlusPlus)
3356      NumElements = ParseConstantExpression();
3357    else
3358      NumElements = ParseAssignmentExpression();
3359  }
3360
3361  // If there was an error parsing the assignment-expression, recover.
3362  if (NumElements.isInvalid()) {
3363    D.setInvalidType(true);
3364    // If the expression was invalid, skip it.
3365    SkipUntil(tok::r_square);
3366    return;
3367  }
3368
3369  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3370
3371  //FIXME: Use these
3372  CXX0XAttributeList Attr;
3373  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3374    Attr = ParseCXX0XAttributes();
3375  }
3376
3377  // Remember that we parsed a array type, and remember its features.
3378  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
3379                                          StaticLoc.isValid(), isStar,
3380                                          NumElements.release(),
3381                                          StartLoc, EndLoc),
3382                EndLoc);
3383}
3384
3385/// [GNU]   typeof-specifier:
3386///           typeof ( expressions )
3387///           typeof ( type-name )
3388/// [GNU/C++] typeof unary-expression
3389///
3390void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3391  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3392  Token OpTok = Tok;
3393  SourceLocation StartLoc = ConsumeToken();
3394
3395  const bool hasParens = Tok.is(tok::l_paren);
3396
3397  bool isCastExpr;
3398  TypeTy *CastTy;
3399  SourceRange CastRange;
3400  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
3401                                                               isCastExpr,
3402                                                               CastTy,
3403                                                               CastRange);
3404  if (hasParens)
3405    DS.setTypeofParensRange(CastRange);
3406
3407  if (CastRange.getEnd().isInvalid())
3408    // FIXME: Not accurate, the range gets one token more than it should.
3409    DS.SetRangeEnd(Tok.getLocation());
3410  else
3411    DS.SetRangeEnd(CastRange.getEnd());
3412
3413  if (isCastExpr) {
3414    if (!CastTy) {
3415      DS.SetTypeSpecError();
3416      return;
3417    }
3418
3419    const char *PrevSpec = 0;
3420    unsigned DiagID;
3421    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3422    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3423                           DiagID, CastTy))
3424      Diag(StartLoc, DiagID) << PrevSpec;
3425    return;
3426  }
3427
3428  // If we get here, the operand to the typeof was an expresion.
3429  if (Operand.isInvalid()) {
3430    DS.SetTypeSpecError();
3431    return;
3432  }
3433
3434  const char *PrevSpec = 0;
3435  unsigned DiagID;
3436  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3437  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3438                         DiagID, Operand.release()))
3439    Diag(StartLoc, DiagID) << PrevSpec;
3440}
3441
3442
3443/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
3444/// from TryAltiVecVectorToken.
3445bool Parser::TryAltiVecVectorTokenOutOfLine() {
3446  Token Next = NextToken();
3447  switch (Next.getKind()) {
3448  default: return false;
3449  case tok::kw_short:
3450  case tok::kw_long:
3451  case tok::kw_signed:
3452  case tok::kw_unsigned:
3453  case tok::kw_void:
3454  case tok::kw_char:
3455  case tok::kw_int:
3456  case tok::kw_float:
3457  case tok::kw_double:
3458  case tok::kw_bool:
3459  case tok::kw___pixel:
3460    Tok.setKind(tok::kw___vector);
3461    return true;
3462  case tok::identifier:
3463    if (Next.getIdentifierInfo() == Ident_pixel) {
3464      Tok.setKind(tok::kw___vector);
3465      return true;
3466    }
3467    return false;
3468  }
3469}
3470
3471bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
3472                                      const char *&PrevSpec, unsigned &DiagID,
3473                                      bool &isInvalid) {
3474  if (Tok.getIdentifierInfo() == Ident_vector) {
3475    Token Next = NextToken();
3476    switch (Next.getKind()) {
3477    case tok::kw_short:
3478    case tok::kw_long:
3479    case tok::kw_signed:
3480    case tok::kw_unsigned:
3481    case tok::kw_void:
3482    case tok::kw_char:
3483    case tok::kw_int:
3484    case tok::kw_float:
3485    case tok::kw_double:
3486    case tok::kw_bool:
3487    case tok::kw___pixel:
3488      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3489      return true;
3490    case tok::identifier:
3491      if (Next.getIdentifierInfo() == Ident_pixel) {
3492        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3493        return true;
3494      }
3495      break;
3496    default:
3497      break;
3498    }
3499  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
3500             DS.isTypeAltiVecVector()) {
3501    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
3502    return true;
3503  }
3504  return false;
3505}
3506
3507