ParseDecl.cpp revision 334d47e92e9f241576fdeb7477b69a03136ba854
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/PrettyDeclStackTrace.h"
19#include "RAIIObjectsForParser.h"
20#include "llvm/ADT/SmallSet.h"
21using namespace clang;
22
23//===----------------------------------------------------------------------===//
24// C99 6.7: Declarations.
25//===----------------------------------------------------------------------===//
26
27/// ParseTypeName
28///       type-name: [C99 6.7.6]
29///         specifier-qualifier-list abstract-declarator[opt]
30///
31/// Called type-id in C++.
32TypeResult Parser::ParseTypeName(SourceRange *Range) {
33  // Parse the common declaration-specifiers piece.
34  DeclSpec DS;
35  ParseSpecifierQualifierList(DS);
36
37  // Parse the abstract-declarator, if present.
38  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
39  ParseDeclarator(DeclaratorInfo);
40  if (Range)
41    *Range = DeclaratorInfo.getSourceRange();
42
43  if (DeclaratorInfo.isInvalidType())
44    return true;
45
46  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
47}
48
49/// ParseGNUAttributes - Parse a non-empty attributes list.
50///
51/// [GNU] attributes:
52///         attribute
53///         attributes attribute
54///
55/// [GNU]  attribute:
56///          '__attribute__' '(' '(' attribute-list ')' ')'
57///
58/// [GNU]  attribute-list:
59///          attrib
60///          attribute_list ',' attrib
61///
62/// [GNU]  attrib:
63///          empty
64///          attrib-name
65///          attrib-name '(' identifier ')'
66///          attrib-name '(' identifier ',' nonempty-expr-list ')'
67///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
68///
69/// [GNU]  attrib-name:
70///          identifier
71///          typespec
72///          typequal
73///          storageclass
74///
75/// FIXME: The GCC grammar/code for this construct implies we need two
76/// token lookahead. Comment from gcc: "If they start with an identifier
77/// which is followed by a comma or close parenthesis, then the arguments
78/// start with that identifier; otherwise they are an expression list."
79///
80/// At the moment, I am not doing 2 token lookahead. I am also unaware of
81/// any attributes that don't work (based on my limited testing). Most
82/// attributes are very simple in practice. Until we find a bug, I don't see
83/// a pressing need to implement the 2 token lookahead.
84
85AttributeList *Parser::ParseGNUAttributes(SourceLocation *EndLoc) {
86  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
87
88  AttributeList *CurrAttr = 0;
89
90  while (Tok.is(tok::kw___attribute)) {
91    ConsumeToken();
92    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
93                         "attribute")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return CurrAttr;
96    }
97    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
98      SkipUntil(tok::r_paren, true); // skip until ) or ;
99      return CurrAttr;
100    }
101    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
102    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
103           Tok.is(tok::comma)) {
104
105      if (Tok.is(tok::comma)) {
106        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
107        ConsumeToken();
108        continue;
109      }
110      // we have an identifier or declaration specifier (const, int, etc.)
111      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
112      SourceLocation AttrNameLoc = ConsumeToken();
113
114      // check if we have a "parameterized" attribute
115      if (Tok.is(tok::l_paren)) {
116        ConsumeParen(); // ignore the left paren loc for now
117
118        if (Tok.is(tok::identifier)) {
119          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
120          SourceLocation ParmLoc = ConsumeToken();
121
122          if (Tok.is(tok::r_paren)) {
123            // __attribute__(( mode(byte) ))
124            ConsumeParen(); // ignore the right paren loc for now
125            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
126                                         ParmName, ParmLoc, 0, 0, CurrAttr);
127          } else if (Tok.is(tok::comma)) {
128            ConsumeToken();
129            // __attribute__(( format(printf, 1, 2) ))
130            ExprVector ArgExprs(Actions);
131            bool ArgExprsOk = true;
132
133            // now parse the non-empty comma separated list of expressions
134            while (1) {
135              ExprResult ArgExpr(ParseAssignmentExpression());
136              if (ArgExpr.isInvalid()) {
137                ArgExprsOk = false;
138                SkipUntil(tok::r_paren);
139                break;
140              } else {
141                ArgExprs.push_back(ArgExpr.release());
142              }
143              if (Tok.isNot(tok::comma))
144                break;
145              ConsumeToken(); // Eat the comma, move to the next argument
146            }
147            if (ArgExprsOk && Tok.is(tok::r_paren)) {
148              ConsumeParen(); // ignore the right paren loc for now
149              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
150                                           AttrNameLoc, ParmName, ParmLoc,
151                                           ArgExprs.take(), ArgExprs.size(),
152                                           CurrAttr);
153            }
154          }
155        } else { // not an identifier
156          switch (Tok.getKind()) {
157          case tok::r_paren:
158          // parse a possibly empty comma separated list of expressions
159            // __attribute__(( nonnull() ))
160            ConsumeParen(); // ignore the right paren loc for now
161            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
162                                         0, SourceLocation(), 0, 0, CurrAttr);
163            break;
164          case tok::kw_char:
165          case tok::kw_wchar_t:
166          case tok::kw_char16_t:
167          case tok::kw_char32_t:
168          case tok::kw_bool:
169          case tok::kw_short:
170          case tok::kw_int:
171          case tok::kw_long:
172          case tok::kw_signed:
173          case tok::kw_unsigned:
174          case tok::kw_float:
175          case tok::kw_double:
176          case tok::kw_void:
177          case tok::kw_typeof:
178            CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
179                                         0, SourceLocation(), 0, 0, CurrAttr);
180            if (CurrAttr->getKind() == AttributeList::AT_IBOutletCollection)
181              Diag(Tok, diag::err_iboutletcollection_builtintype);
182            // If it's a builtin type name, eat it and expect a rparen
183            // __attribute__(( vec_type_hint(char) ))
184            ConsumeToken();
185            if (Tok.is(tok::r_paren))
186              ConsumeParen();
187            break;
188          default:
189            // __attribute__(( aligned(16) ))
190            ExprVector ArgExprs(Actions);
191            bool ArgExprsOk = true;
192
193            // now parse the list of expressions
194            while (1) {
195              ExprResult ArgExpr(ParseAssignmentExpression());
196              if (ArgExpr.isInvalid()) {
197                ArgExprsOk = false;
198                SkipUntil(tok::r_paren);
199                break;
200              } else {
201                ArgExprs.push_back(ArgExpr.release());
202              }
203              if (Tok.isNot(tok::comma))
204                break;
205              ConsumeToken(); // Eat the comma, move to the next argument
206            }
207            // Match the ')'.
208            if (ArgExprsOk && Tok.is(tok::r_paren)) {
209              ConsumeParen(); // ignore the right paren loc for now
210              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
211                           AttrNameLoc, 0, SourceLocation(), ArgExprs.take(),
212                           ArgExprs.size(),
213                           CurrAttr);
214            }
215            break;
216          }
217        }
218      } else {
219        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
220                                     0, SourceLocation(), 0, 0, CurrAttr);
221      }
222    }
223    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
224      SkipUntil(tok::r_paren, false);
225    SourceLocation Loc = Tok.getLocation();
226    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
227      SkipUntil(tok::r_paren, false);
228    }
229    if (EndLoc)
230      *EndLoc = Loc;
231  }
232  return CurrAttr;
233}
234
235/// ParseMicrosoftDeclSpec - Parse an __declspec construct
236///
237/// [MS] decl-specifier:
238///             __declspec ( extended-decl-modifier-seq )
239///
240/// [MS] extended-decl-modifier-seq:
241///             extended-decl-modifier[opt]
242///             extended-decl-modifier extended-decl-modifier-seq
243
244AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
245  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
246
247  ConsumeToken();
248  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
249                       "declspec")) {
250    SkipUntil(tok::r_paren, true); // skip until ) or ;
251    return CurrAttr;
252  }
253  while (Tok.getIdentifierInfo()) {
254    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
255    SourceLocation AttrNameLoc = ConsumeToken();
256    if (Tok.is(tok::l_paren)) {
257      ConsumeParen();
258      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
259      // correctly.
260      ExprResult ArgExpr(ParseAssignmentExpression());
261      if (!ArgExpr.isInvalid()) {
262        Expr *ExprList = ArgExpr.take();
263        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
264                                     SourceLocation(), &ExprList, 1,
265                                     CurrAttr, true);
266      }
267      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
268        SkipUntil(tok::r_paren, false);
269    } else {
270      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
271                                   0, SourceLocation(), 0, 0, CurrAttr, true);
272    }
273  }
274  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
275    SkipUntil(tok::r_paren, false);
276  return CurrAttr;
277}
278
279AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
280  // Treat these like attributes
281  // FIXME: Allow Sema to distinguish between these and real attributes!
282  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
283         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
284         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
285    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
286    SourceLocation AttrNameLoc = ConsumeToken();
287    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
288      // FIXME: Support these properly!
289      continue;
290    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
291                                 SourceLocation(), 0, 0, CurrAttr, true);
292  }
293  return CurrAttr;
294}
295
296AttributeList* Parser::ParseBorlandTypeAttributes(AttributeList *CurrAttr) {
297  // Treat these like attributes
298  while (Tok.is(tok::kw___pascal)) {
299    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
300    SourceLocation AttrNameLoc = ConsumeToken();
301    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
302                                 SourceLocation(), 0, 0, CurrAttr, true);
303  }
304  return CurrAttr;
305}
306
307/// ParseDeclaration - Parse a full 'declaration', which consists of
308/// declaration-specifiers, some number of declarators, and a semicolon.
309/// 'Context' should be a Declarator::TheContext value.  This returns the
310/// location of the semicolon in DeclEnd.
311///
312///       declaration: [C99 6.7]
313///         block-declaration ->
314///           simple-declaration
315///           others                   [FIXME]
316/// [C++]   template-declaration
317/// [C++]   namespace-definition
318/// [C++]   using-directive
319/// [C++]   using-declaration
320/// [C++0x] static_assert-declaration
321///         others... [FIXME]
322///
323Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
324                                                unsigned Context,
325                                                SourceLocation &DeclEnd,
326                                                CXX0XAttributeList Attr) {
327  ParenBraceBracketBalancer BalancerRAIIObj(*this);
328
329  Decl *SingleDecl = 0;
330  switch (Tok.getKind()) {
331  case tok::kw_template:
332  case tok::kw_export:
333    if (Attr.HasAttr)
334      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
335        << Attr.Range;
336    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
337    break;
338  case tok::kw_inline:
339    // Could be the start of an inline namespace. Allowed as an ext in C++03.
340    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
341      if (Attr.HasAttr)
342        Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
343          << Attr.Range;
344      SourceLocation InlineLoc = ConsumeToken();
345      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
346      break;
347    }
348    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, Attr.AttrList,
349                                  true);
350  case tok::kw_namespace:
351    if (Attr.HasAttr)
352      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
353        << Attr.Range;
354    SingleDecl = ParseNamespace(Context, DeclEnd);
355    break;
356  case tok::kw_using:
357    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd, Attr);
358    break;
359  case tok::kw_static_assert:
360    if (Attr.HasAttr)
361      Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
362        << Attr.Range;
363    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
364    break;
365  default:
366    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, Attr.AttrList,
367                                  true);
368  }
369
370  // This routine returns a DeclGroup, if the thing we parsed only contains a
371  // single decl, convert it now.
372  return Actions.ConvertDeclToDeclGroup(SingleDecl);
373}
374
375///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
376///         declaration-specifiers init-declarator-list[opt] ';'
377///[C90/C++]init-declarator-list ';'                             [TODO]
378/// [OMP]   threadprivate-directive                              [TODO]
379///
380/// If RequireSemi is false, this does not check for a ';' at the end of the
381/// declaration.  If it is true, it checks for and eats it.
382Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
383                                                      unsigned Context,
384                                                      SourceLocation &DeclEnd,
385                                                      AttributeList *Attr,
386                                                      bool RequireSemi) {
387  // Parse the common declaration-specifiers piece.
388  ParsingDeclSpec DS(*this);
389  if (Attr)
390    DS.AddAttributes(Attr);
391  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
392                            getDeclSpecContextFromDeclaratorContext(Context));
393  StmtResult R = Actions.ActOnVlaStmt(DS);
394  if (R.isUsable())
395    Stmts.push_back(R.release());
396
397  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
398  // declaration-specifiers init-declarator-list[opt] ';'
399  if (Tok.is(tok::semi)) {
400    if (RequireSemi) ConsumeToken();
401    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
402                                                           DS);
403    DS.complete(TheDecl);
404    return Actions.ConvertDeclToDeclGroup(TheDecl);
405  }
406
407  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
408}
409
410/// ParseDeclGroup - Having concluded that this is either a function
411/// definition or a group of object declarations, actually parse the
412/// result.
413Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
414                                              unsigned Context,
415                                              bool AllowFunctionDefinitions,
416                                              SourceLocation *DeclEnd) {
417  // Parse the first declarator.
418  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
419  ParseDeclarator(D);
420
421  // Bail out if the first declarator didn't seem well-formed.
422  if (!D.hasName() && !D.mayOmitIdentifier()) {
423    // Skip until ; or }.
424    SkipUntil(tok::r_brace, true, true);
425    if (Tok.is(tok::semi))
426      ConsumeToken();
427    return DeclGroupPtrTy();
428  }
429
430  // Check to see if we have a function *definition* which must have a body.
431  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
432      // Look at the next token to make sure that this isn't a function
433      // declaration.  We have to check this because __attribute__ might be the
434      // start of a function definition in GCC-extended K&R C.
435      !isDeclarationAfterDeclarator()) {
436
437    if (isStartOfFunctionDefinition(D)) {
438      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
439        Diag(Tok, diag::err_function_declared_typedef);
440
441        // Recover by treating the 'typedef' as spurious.
442        DS.ClearStorageClassSpecs();
443      }
444
445      Decl *TheDecl = ParseFunctionDefinition(D);
446      return Actions.ConvertDeclToDeclGroup(TheDecl);
447    }
448
449    if (isDeclarationSpecifier()) {
450      // If there is an invalid declaration specifier right after the function
451      // prototype, then we must be in a missing semicolon case where this isn't
452      // actually a body.  Just fall through into the code that handles it as a
453      // prototype, and let the top-level code handle the erroneous declspec
454      // where it would otherwise expect a comma or semicolon.
455    } else {
456      Diag(Tok, diag::err_expected_fn_body);
457      SkipUntil(tok::semi);
458      return DeclGroupPtrTy();
459    }
460  }
461
462  llvm::SmallVector<Decl *, 8> DeclsInGroup;
463  Decl *FirstDecl = ParseDeclarationAfterDeclarator(D);
464  D.complete(FirstDecl);
465  if (FirstDecl)
466    DeclsInGroup.push_back(FirstDecl);
467
468  // If we don't have a comma, it is either the end of the list (a ';') or an
469  // error, bail out.
470  while (Tok.is(tok::comma)) {
471    // Consume the comma.
472    ConsumeToken();
473
474    // Parse the next declarator.
475    D.clear();
476
477    // Accept attributes in an init-declarator.  In the first declarator in a
478    // declaration, these would be part of the declspec.  In subsequent
479    // declarators, they become part of the declarator itself, so that they
480    // don't apply to declarators after *this* one.  Examples:
481    //    short __attribute__((common)) var;    -> declspec
482    //    short var __attribute__((common));    -> declarator
483    //    short x, __attribute__((common)) var;    -> declarator
484    if (Tok.is(tok::kw___attribute)) {
485      SourceLocation Loc;
486      AttributeList *AttrList = ParseGNUAttributes(&Loc);
487      D.AddAttributes(AttrList, Loc);
488    }
489
490    ParseDeclarator(D);
491
492    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
493    D.complete(ThisDecl);
494    if (ThisDecl)
495      DeclsInGroup.push_back(ThisDecl);
496  }
497
498  if (DeclEnd)
499    *DeclEnd = Tok.getLocation();
500
501  if (Context != Declarator::ForContext &&
502      ExpectAndConsume(tok::semi,
503                       Context == Declarator::FileContext
504                         ? diag::err_invalid_token_after_toplevel_declarator
505                         : diag::err_expected_semi_declaration)) {
506    // Okay, there was no semicolon and one was expected.  If we see a
507    // declaration specifier, just assume it was missing and continue parsing.
508    // Otherwise things are very confused and we skip to recover.
509    if (!isDeclarationSpecifier()) {
510      SkipUntil(tok::r_brace, true, true);
511      if (Tok.is(tok::semi))
512        ConsumeToken();
513    }
514  }
515
516  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
517                                         DeclsInGroup.data(),
518                                         DeclsInGroup.size());
519}
520
521/// \brief Parse 'declaration' after parsing 'declaration-specifiers
522/// declarator'. This method parses the remainder of the declaration
523/// (including any attributes or initializer, among other things) and
524/// finalizes the declaration.
525///
526///       init-declarator: [C99 6.7]
527///         declarator
528///         declarator '=' initializer
529/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
530/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
531/// [C++]   declarator initializer[opt]
532///
533/// [C++] initializer:
534/// [C++]   '=' initializer-clause
535/// [C++]   '(' expression-list ')'
536/// [C++0x] '=' 'default'                                                [TODO]
537/// [C++0x] '=' 'delete'
538///
539/// According to the standard grammar, =default and =delete are function
540/// definitions, but that definitely doesn't fit with the parser here.
541///
542Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
543                                     const ParsedTemplateInfo &TemplateInfo) {
544  // If a simple-asm-expr is present, parse it.
545  if (Tok.is(tok::kw_asm)) {
546    SourceLocation Loc;
547    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
548    if (AsmLabel.isInvalid()) {
549      SkipUntil(tok::semi, true, true);
550      return 0;
551    }
552
553    D.setAsmLabel(AsmLabel.release());
554    D.SetRangeEnd(Loc);
555  }
556
557  // If attributes are present, parse them.
558  if (Tok.is(tok::kw___attribute)) {
559    SourceLocation Loc;
560    AttributeList *AttrList = ParseGNUAttributes(&Loc);
561    D.AddAttributes(AttrList, Loc);
562  }
563
564  // Inform the current actions module that we just parsed this declarator.
565  Decl *ThisDecl = 0;
566  switch (TemplateInfo.Kind) {
567  case ParsedTemplateInfo::NonTemplate:
568    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
569    break;
570
571  case ParsedTemplateInfo::Template:
572  case ParsedTemplateInfo::ExplicitSpecialization:
573    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
574                             MultiTemplateParamsArg(Actions,
575                                          TemplateInfo.TemplateParams->data(),
576                                          TemplateInfo.TemplateParams->size()),
577                                               D);
578    break;
579
580  case ParsedTemplateInfo::ExplicitInstantiation: {
581    DeclResult ThisRes
582      = Actions.ActOnExplicitInstantiation(getCurScope(),
583                                           TemplateInfo.ExternLoc,
584                                           TemplateInfo.TemplateLoc,
585                                           D);
586    if (ThisRes.isInvalid()) {
587      SkipUntil(tok::semi, true, true);
588      return 0;
589    }
590
591    ThisDecl = ThisRes.get();
592    break;
593    }
594  }
595
596  // Parse declarator '=' initializer.
597  if (isTokenEqualOrMistypedEqualEqual(
598                               diag::err_invalid_equalequal_after_declarator)) {
599    ConsumeToken();
600    if (Tok.is(tok::kw_delete)) {
601      SourceLocation DelLoc = ConsumeToken();
602
603      if (!getLang().CPlusPlus0x)
604        Diag(DelLoc, diag::warn_deleted_function_accepted_as_extension);
605
606      Actions.SetDeclDeleted(ThisDecl, DelLoc);
607    } else {
608      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
609        EnterScope(0);
610        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
611      }
612
613      if (Tok.is(tok::code_completion)) {
614        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
615        ConsumeCodeCompletionToken();
616        SkipUntil(tok::comma, true, true);
617        return ThisDecl;
618      }
619
620      ExprResult Init(ParseInitializer());
621
622      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
623        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
624        ExitScope();
625      }
626
627      if (Init.isInvalid()) {
628        SkipUntil(tok::comma, true, true);
629        Actions.ActOnInitializerError(ThisDecl);
630      } else
631        Actions.AddInitializerToDecl(ThisDecl, Init.take());
632    }
633  } else if (Tok.is(tok::l_paren)) {
634    // Parse C++ direct initializer: '(' expression-list ')'
635    SourceLocation LParenLoc = ConsumeParen();
636    ExprVector Exprs(Actions);
637    CommaLocsTy CommaLocs;
638
639    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
640      EnterScope(0);
641      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
642    }
643
644    if (ParseExpressionList(Exprs, CommaLocs)) {
645      SkipUntil(tok::r_paren);
646
647      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
648        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
649        ExitScope();
650      }
651    } else {
652      // Match the ')'.
653      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
654
655      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
656             "Unexpected number of commas!");
657
658      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
659        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
660        ExitScope();
661      }
662
663      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
664                                            move_arg(Exprs),
665                                            RParenLoc);
666    }
667  } else {
668    bool TypeContainsUndeducedAuto =
669      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
670    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
671  }
672
673  return ThisDecl;
674}
675
676/// ParseSpecifierQualifierList
677///        specifier-qualifier-list:
678///          type-specifier specifier-qualifier-list[opt]
679///          type-qualifier specifier-qualifier-list[opt]
680/// [GNU]    attributes     specifier-qualifier-list[opt]
681///
682void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
683  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
684  /// parse declaration-specifiers and complain about extra stuff.
685  ParseDeclarationSpecifiers(DS);
686
687  // Validate declspec for type-name.
688  unsigned Specs = DS.getParsedSpecifiers();
689  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
690      !DS.getAttributes())
691    Diag(Tok, diag::err_typename_requires_specqual);
692
693  // Issue diagnostic and remove storage class if present.
694  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
695    if (DS.getStorageClassSpecLoc().isValid())
696      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
697    else
698      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
699    DS.ClearStorageClassSpecs();
700  }
701
702  // Issue diagnostic and remove function specfier if present.
703  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
704    if (DS.isInlineSpecified())
705      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
706    if (DS.isVirtualSpecified())
707      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
708    if (DS.isExplicitSpecified())
709      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
710    DS.ClearFunctionSpecs();
711  }
712}
713
714/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
715/// specified token is valid after the identifier in a declarator which
716/// immediately follows the declspec.  For example, these things are valid:
717///
718///      int x   [             4];         // direct-declarator
719///      int x   (             int y);     // direct-declarator
720///  int(int x   )                         // direct-declarator
721///      int x   ;                         // simple-declaration
722///      int x   =             17;         // init-declarator-list
723///      int x   ,             y;          // init-declarator-list
724///      int x   __asm__       ("foo");    // init-declarator-list
725///      int x   :             4;          // struct-declarator
726///      int x   {             5};         // C++'0x unified initializers
727///
728/// This is not, because 'x' does not immediately follow the declspec (though
729/// ')' happens to be valid anyway).
730///    int (x)
731///
732static bool isValidAfterIdentifierInDeclarator(const Token &T) {
733  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
734         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
735         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
736}
737
738
739/// ParseImplicitInt - This method is called when we have an non-typename
740/// identifier in a declspec (which normally terminates the decl spec) when
741/// the declspec has no type specifier.  In this case, the declspec is either
742/// malformed or is "implicit int" (in K&R and C89).
743///
744/// This method handles diagnosing this prettily and returns false if the
745/// declspec is done being processed.  If it recovers and thinks there may be
746/// other pieces of declspec after it, it returns true.
747///
748bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
749                              const ParsedTemplateInfo &TemplateInfo,
750                              AccessSpecifier AS) {
751  assert(Tok.is(tok::identifier) && "should have identifier");
752
753  SourceLocation Loc = Tok.getLocation();
754  // If we see an identifier that is not a type name, we normally would
755  // parse it as the identifer being declared.  However, when a typename
756  // is typo'd or the definition is not included, this will incorrectly
757  // parse the typename as the identifier name and fall over misparsing
758  // later parts of the diagnostic.
759  //
760  // As such, we try to do some look-ahead in cases where this would
761  // otherwise be an "implicit-int" case to see if this is invalid.  For
762  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
763  // an identifier with implicit int, we'd get a parse error because the
764  // next token is obviously invalid for a type.  Parse these as a case
765  // with an invalid type specifier.
766  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
767
768  // Since we know that this either implicit int (which is rare) or an
769  // error, we'd do lookahead to try to do better recovery.
770  if (isValidAfterIdentifierInDeclarator(NextToken())) {
771    // If this token is valid for implicit int, e.g. "static x = 4", then
772    // we just avoid eating the identifier, so it will be parsed as the
773    // identifier in the declarator.
774    return false;
775  }
776
777  // Otherwise, if we don't consume this token, we are going to emit an
778  // error anyway.  Try to recover from various common problems.  Check
779  // to see if this was a reference to a tag name without a tag specified.
780  // This is a common problem in C (saying 'foo' instead of 'struct foo').
781  //
782  // C++ doesn't need this, and isTagName doesn't take SS.
783  if (SS == 0) {
784    const char *TagName = 0;
785    tok::TokenKind TagKind = tok::unknown;
786
787    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
788      default: break;
789      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
790      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
791      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
792      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
793    }
794
795    if (TagName) {
796      Diag(Loc, diag::err_use_of_tag_name_without_tag)
797        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
798        << FixItHint::CreateInsertion(Tok.getLocation(),TagName);
799
800      // Parse this as a tag as if the missing tag were present.
801      if (TagKind == tok::kw_enum)
802        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
803      else
804        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
805      return true;
806    }
807  }
808
809  // This is almost certainly an invalid type name. Let the action emit a
810  // diagnostic and attempt to recover.
811  ParsedType T;
812  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
813                                      getCurScope(), SS, T)) {
814    // The action emitted a diagnostic, so we don't have to.
815    if (T) {
816      // The action has suggested that the type T could be used. Set that as
817      // the type in the declaration specifiers, consume the would-be type
818      // name token, and we're done.
819      const char *PrevSpec;
820      unsigned DiagID;
821      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
822      DS.SetRangeEnd(Tok.getLocation());
823      ConsumeToken();
824
825      // There may be other declaration specifiers after this.
826      return true;
827    }
828
829    // Fall through; the action had no suggestion for us.
830  } else {
831    // The action did not emit a diagnostic, so emit one now.
832    SourceRange R;
833    if (SS) R = SS->getRange();
834    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
835  }
836
837  // Mark this as an error.
838  const char *PrevSpec;
839  unsigned DiagID;
840  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
841  DS.SetRangeEnd(Tok.getLocation());
842  ConsumeToken();
843
844  // TODO: Could inject an invalid typedef decl in an enclosing scope to
845  // avoid rippling error messages on subsequent uses of the same type,
846  // could be useful if #include was forgotten.
847  return false;
848}
849
850/// \brief Determine the declaration specifier context from the declarator
851/// context.
852///
853/// \param Context the declarator context, which is one of the
854/// Declarator::TheContext enumerator values.
855Parser::DeclSpecContext
856Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
857  if (Context == Declarator::MemberContext)
858    return DSC_class;
859  if (Context == Declarator::FileContext)
860    return DSC_top_level;
861  return DSC_normal;
862}
863
864/// ParseDeclarationSpecifiers
865///       declaration-specifiers: [C99 6.7]
866///         storage-class-specifier declaration-specifiers[opt]
867///         type-specifier declaration-specifiers[opt]
868/// [C99]   function-specifier declaration-specifiers[opt]
869/// [GNU]   attributes declaration-specifiers[opt]
870///
871///       storage-class-specifier: [C99 6.7.1]
872///         'typedef'
873///         'extern'
874///         'static'
875///         'auto'
876///         'register'
877/// [C++]   'mutable'
878/// [GNU]   '__thread'
879///       function-specifier: [C99 6.7.4]
880/// [C99]   'inline'
881/// [C++]   'virtual'
882/// [C++]   'explicit'
883///       'friend': [C++ dcl.friend]
884///       'constexpr': [C++0x dcl.constexpr]
885
886///
887void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
888                                        const ParsedTemplateInfo &TemplateInfo,
889                                        AccessSpecifier AS,
890                                        DeclSpecContext DSContext) {
891  DS.SetRangeStart(Tok.getLocation());
892  while (1) {
893    bool isInvalid = false;
894    const char *PrevSpec = 0;
895    unsigned DiagID = 0;
896
897    SourceLocation Loc = Tok.getLocation();
898
899    switch (Tok.getKind()) {
900    default:
901    DoneWithDeclSpec:
902      // If this is not a declaration specifier token, we're done reading decl
903      // specifiers.  First verify that DeclSpec's are consistent.
904      DS.Finish(Diags, PP);
905      return;
906
907    case tok::code_completion: {
908      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
909      if (DS.hasTypeSpecifier()) {
910        bool AllowNonIdentifiers
911          = (getCurScope()->getFlags() & (Scope::ControlScope |
912                                          Scope::BlockScope |
913                                          Scope::TemplateParamScope |
914                                          Scope::FunctionPrototypeScope |
915                                          Scope::AtCatchScope)) == 0;
916        bool AllowNestedNameSpecifiers
917          = DSContext == DSC_top_level ||
918            (DSContext == DSC_class && DS.isFriendSpecified());
919
920        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
921                                     AllowNonIdentifiers,
922                                     AllowNestedNameSpecifiers);
923        ConsumeCodeCompletionToken();
924        return;
925      }
926
927      if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
928        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
929                                    : Sema::PCC_Template;
930      else if (DSContext == DSC_class)
931        CCC = Sema::PCC_Class;
932      else if (ObjCImpDecl)
933        CCC = Sema::PCC_ObjCImplementation;
934
935      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
936      ConsumeCodeCompletionToken();
937      return;
938    }
939
940    case tok::coloncolon: // ::foo::bar
941      // C++ scope specifier.  Annotate and loop, or bail out on error.
942      if (TryAnnotateCXXScopeToken(true)) {
943        if (!DS.hasTypeSpecifier())
944          DS.SetTypeSpecError();
945        goto DoneWithDeclSpec;
946      }
947      if (Tok.is(tok::coloncolon)) // ::new or ::delete
948        goto DoneWithDeclSpec;
949      continue;
950
951    case tok::annot_cxxscope: {
952      if (DS.hasTypeSpecifier())
953        goto DoneWithDeclSpec;
954
955      CXXScopeSpec SS;
956      SS.setScopeRep((NestedNameSpecifier*) Tok.getAnnotationValue());
957      SS.setRange(Tok.getAnnotationRange());
958
959      // We are looking for a qualified typename.
960      Token Next = NextToken();
961      if (Next.is(tok::annot_template_id) &&
962          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
963            ->Kind == TNK_Type_template) {
964        // We have a qualified template-id, e.g., N::A<int>
965
966        // C++ [class.qual]p2:
967        //   In a lookup in which the constructor is an acceptable lookup
968        //   result and the nested-name-specifier nominates a class C:
969        //
970        //     - if the name specified after the
971        //       nested-name-specifier, when looked up in C, is the
972        //       injected-class-name of C (Clause 9), or
973        //
974        //     - if the name specified after the nested-name-specifier
975        //       is the same as the identifier or the
976        //       simple-template-id's template-name in the last
977        //       component of the nested-name-specifier,
978        //
979        //   the name is instead considered to name the constructor of
980        //   class C.
981        //
982        // Thus, if the template-name is actually the constructor
983        // name, then the code is ill-formed; this interpretation is
984        // reinforced by the NAD status of core issue 635.
985        TemplateIdAnnotation *TemplateId
986          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
987        if ((DSContext == DSC_top_level ||
988             (DSContext == DSC_class && DS.isFriendSpecified())) &&
989            TemplateId->Name &&
990            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
991          if (isConstructorDeclarator()) {
992            // The user meant this to be an out-of-line constructor
993            // definition, but template arguments are not allowed
994            // there.  Just allow this as a constructor; we'll
995            // complain about it later.
996            goto DoneWithDeclSpec;
997          }
998
999          // The user meant this to name a type, but it actually names
1000          // a constructor with some extraneous template
1001          // arguments. Complain, then parse it as a type as the user
1002          // intended.
1003          Diag(TemplateId->TemplateNameLoc,
1004               diag::err_out_of_line_template_id_names_constructor)
1005            << TemplateId->Name;
1006        }
1007
1008        DS.getTypeSpecScope() = SS;
1009        ConsumeToken(); // The C++ scope.
1010        assert(Tok.is(tok::annot_template_id) &&
1011               "ParseOptionalCXXScopeSpecifier not working");
1012        AnnotateTemplateIdTokenAsType(&SS);
1013        continue;
1014      }
1015
1016      if (Next.is(tok::annot_typename)) {
1017        DS.getTypeSpecScope() = SS;
1018        ConsumeToken(); // The C++ scope.
1019        if (Tok.getAnnotationValue()) {
1020          ParsedType T = getTypeAnnotation(Tok);
1021          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc,
1022                                         PrevSpec, DiagID, T);
1023        }
1024        else
1025          DS.SetTypeSpecError();
1026        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1027        ConsumeToken(); // The typename
1028      }
1029
1030      if (Next.isNot(tok::identifier))
1031        goto DoneWithDeclSpec;
1032
1033      // If we're in a context where the identifier could be a class name,
1034      // check whether this is a constructor declaration.
1035      if ((DSContext == DSC_top_level ||
1036           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1037          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1038                                     &SS)) {
1039        if (isConstructorDeclarator())
1040          goto DoneWithDeclSpec;
1041
1042        // As noted in C++ [class.qual]p2 (cited above), when the name
1043        // of the class is qualified in a context where it could name
1044        // a constructor, its a constructor name. However, we've
1045        // looked at the declarator, and the user probably meant this
1046        // to be a type. Complain that it isn't supposed to be treated
1047        // as a type, then proceed to parse it as a type.
1048        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1049          << Next.getIdentifierInfo();
1050      }
1051
1052      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1053                                               Next.getLocation(),
1054                                               getCurScope(), &SS);
1055
1056      // If the referenced identifier is not a type, then this declspec is
1057      // erroneous: We already checked about that it has no type specifier, and
1058      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1059      // typename.
1060      if (TypeRep == 0) {
1061        ConsumeToken();   // Eat the scope spec so the identifier is current.
1062        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1063        goto DoneWithDeclSpec;
1064      }
1065
1066      DS.getTypeSpecScope() = SS;
1067      ConsumeToken(); // The C++ scope.
1068
1069      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1070                                     DiagID, TypeRep);
1071      if (isInvalid)
1072        break;
1073
1074      DS.SetRangeEnd(Tok.getLocation());
1075      ConsumeToken(); // The typename.
1076
1077      continue;
1078    }
1079
1080    case tok::annot_typename: {
1081      if (Tok.getAnnotationValue()) {
1082        ParsedType T = getTypeAnnotation(Tok);
1083        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1084                                       DiagID, T);
1085      } else
1086        DS.SetTypeSpecError();
1087
1088      if (isInvalid)
1089        break;
1090
1091      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1092      ConsumeToken(); // The typename
1093
1094      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1095      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1096      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1097      // just a normal reference to a typedef name.
1098      if (!Tok.is(tok::less) || !getLang().ObjC1)
1099        continue;
1100
1101      SourceLocation LAngleLoc, EndProtoLoc;
1102      llvm::SmallVector<Decl *, 8> ProtocolDecl;
1103      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1104      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1105                                  LAngleLoc, EndProtoLoc);
1106      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1107                               ProtocolLocs.data(), LAngleLoc);
1108
1109      DS.SetRangeEnd(EndProtoLoc);
1110      continue;
1111    }
1112
1113      // typedef-name
1114    case tok::identifier: {
1115      // In C++, check to see if this is a scope specifier like foo::bar::, if
1116      // so handle it as such.  This is important for ctor parsing.
1117      if (getLang().CPlusPlus) {
1118        if (TryAnnotateCXXScopeToken(true)) {
1119          if (!DS.hasTypeSpecifier())
1120            DS.SetTypeSpecError();
1121          goto DoneWithDeclSpec;
1122        }
1123        if (!Tok.is(tok::identifier))
1124          continue;
1125      }
1126
1127      // This identifier can only be a typedef name if we haven't already seen
1128      // a type-specifier.  Without this check we misparse:
1129      //  typedef int X; struct Y { short X; };  as 'short int'.
1130      if (DS.hasTypeSpecifier())
1131        goto DoneWithDeclSpec;
1132
1133      // Check for need to substitute AltiVec keyword tokens.
1134      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1135        break;
1136
1137      // It has to be available as a typedef too!
1138      ParsedType TypeRep =
1139        Actions.getTypeName(*Tok.getIdentifierInfo(),
1140                            Tok.getLocation(), getCurScope());
1141
1142      // If this is not a typedef name, don't parse it as part of the declspec,
1143      // it must be an implicit int or an error.
1144      if (!TypeRep) {
1145        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1146        goto DoneWithDeclSpec;
1147      }
1148
1149      // If we're in a context where the identifier could be a class name,
1150      // check whether this is a constructor declaration.
1151      if (getLang().CPlusPlus && DSContext == DSC_class &&
1152          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1153          isConstructorDeclarator())
1154        goto DoneWithDeclSpec;
1155
1156      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1157                                     DiagID, TypeRep);
1158      if (isInvalid)
1159        break;
1160
1161      DS.SetRangeEnd(Tok.getLocation());
1162      ConsumeToken(); // The identifier
1163
1164      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1165      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1166      // Objective-C interface.  If we don't have Objective-C or a '<', this is
1167      // just a normal reference to a typedef name.
1168      if (!Tok.is(tok::less) || !getLang().ObjC1)
1169        continue;
1170
1171      SourceLocation LAngleLoc, EndProtoLoc;
1172      llvm::SmallVector<Decl *, 8> ProtocolDecl;
1173      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1174      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1175                                  LAngleLoc, EndProtoLoc);
1176      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1177                               ProtocolLocs.data(), LAngleLoc);
1178
1179      DS.SetRangeEnd(EndProtoLoc);
1180
1181      // Need to support trailing type qualifiers (e.g. "id<p> const").
1182      // If a type specifier follows, it will be diagnosed elsewhere.
1183      continue;
1184    }
1185
1186      // type-name
1187    case tok::annot_template_id: {
1188      TemplateIdAnnotation *TemplateId
1189        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1190      if (TemplateId->Kind != TNK_Type_template) {
1191        // This template-id does not refer to a type name, so we're
1192        // done with the type-specifiers.
1193        goto DoneWithDeclSpec;
1194      }
1195
1196      // If we're in a context where the template-id could be a
1197      // constructor name or specialization, check whether this is a
1198      // constructor declaration.
1199      if (getLang().CPlusPlus && DSContext == DSC_class &&
1200          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1201          isConstructorDeclarator())
1202        goto DoneWithDeclSpec;
1203
1204      // Turn the template-id annotation token into a type annotation
1205      // token, then try again to parse it as a type-specifier.
1206      AnnotateTemplateIdTokenAsType();
1207      continue;
1208    }
1209
1210    // GNU attributes support.
1211    case tok::kw___attribute:
1212      DS.AddAttributes(ParseGNUAttributes());
1213      continue;
1214
1215    // Microsoft declspec support.
1216    case tok::kw___declspec:
1217      DS.AddAttributes(ParseMicrosoftDeclSpec());
1218      continue;
1219
1220    // Microsoft single token adornments.
1221    case tok::kw___forceinline:
1222      // FIXME: Add handling here!
1223      break;
1224
1225    case tok::kw___ptr64:
1226    case tok::kw___w64:
1227    case tok::kw___cdecl:
1228    case tok::kw___stdcall:
1229    case tok::kw___fastcall:
1230    case tok::kw___thiscall:
1231      DS.AddAttributes(ParseMicrosoftTypeAttributes());
1232      continue;
1233
1234    // Borland single token adornments.
1235    case tok::kw___pascal:
1236      DS.AddAttributes(ParseBorlandTypeAttributes());
1237      continue;
1238
1239    // storage-class-specifier
1240    case tok::kw_typedef:
1241      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1242                                         DiagID);
1243      break;
1244    case tok::kw_extern:
1245      if (DS.isThreadSpecified())
1246        Diag(Tok, diag::ext_thread_before) << "extern";
1247      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1248                                         DiagID);
1249      break;
1250    case tok::kw___private_extern__:
1251      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1252                                         PrevSpec, DiagID);
1253      break;
1254    case tok::kw_static:
1255      if (DS.isThreadSpecified())
1256        Diag(Tok, diag::ext_thread_before) << "static";
1257      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1258                                         DiagID);
1259      break;
1260    case tok::kw_auto:
1261      if (getLang().CPlusPlus0x)
1262        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1263                                       DiagID);
1264      else
1265        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1266                                           DiagID);
1267      break;
1268    case tok::kw_register:
1269      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1270                                         DiagID);
1271      break;
1272    case tok::kw_mutable:
1273      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1274                                         DiagID);
1275      break;
1276    case tok::kw___thread:
1277      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1278      break;
1279
1280    // function-specifier
1281    case tok::kw_inline:
1282      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1283      break;
1284    case tok::kw_virtual:
1285      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1286      break;
1287    case tok::kw_explicit:
1288      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1289      break;
1290
1291    // friend
1292    case tok::kw_friend:
1293      if (DSContext == DSC_class)
1294        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1295      else {
1296        PrevSpec = ""; // not actually used by the diagnostic
1297        DiagID = diag::err_friend_invalid_in_context;
1298        isInvalid = true;
1299      }
1300      break;
1301
1302    // constexpr
1303    case tok::kw_constexpr:
1304      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1305      break;
1306
1307    // type-specifier
1308    case tok::kw_short:
1309      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1310                                      DiagID);
1311      break;
1312    case tok::kw_long:
1313      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1314        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1315                                        DiagID);
1316      else
1317        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1318                                        DiagID);
1319      break;
1320    case tok::kw_signed:
1321      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1322                                     DiagID);
1323      break;
1324    case tok::kw_unsigned:
1325      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1326                                     DiagID);
1327      break;
1328    case tok::kw__Complex:
1329      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1330                                        DiagID);
1331      break;
1332    case tok::kw__Imaginary:
1333      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1334                                        DiagID);
1335      break;
1336    case tok::kw_void:
1337      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1338                                     DiagID);
1339      break;
1340    case tok::kw_char:
1341      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1342                                     DiagID);
1343      break;
1344    case tok::kw_int:
1345      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1346                                     DiagID);
1347      break;
1348    case tok::kw_float:
1349      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1350                                     DiagID);
1351      break;
1352    case tok::kw_double:
1353      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1354                                     DiagID);
1355      break;
1356    case tok::kw_wchar_t:
1357      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1358                                     DiagID);
1359      break;
1360    case tok::kw_char16_t:
1361      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1362                                     DiagID);
1363      break;
1364    case tok::kw_char32_t:
1365      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1366                                     DiagID);
1367      break;
1368    case tok::kw_bool:
1369    case tok::kw__Bool:
1370      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1371                                     DiagID);
1372      break;
1373    case tok::kw__Decimal32:
1374      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1375                                     DiagID);
1376      break;
1377    case tok::kw__Decimal64:
1378      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1379                                     DiagID);
1380      break;
1381    case tok::kw__Decimal128:
1382      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1383                                     DiagID);
1384      break;
1385    case tok::kw___vector:
1386      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1387      break;
1388    case tok::kw___pixel:
1389      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1390      break;
1391
1392    // class-specifier:
1393    case tok::kw_class:
1394    case tok::kw_struct:
1395    case tok::kw_union: {
1396      tok::TokenKind Kind = Tok.getKind();
1397      ConsumeToken();
1398      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1399      continue;
1400    }
1401
1402    // enum-specifier:
1403    case tok::kw_enum:
1404      ConsumeToken();
1405      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1406      continue;
1407
1408    // cv-qualifier:
1409    case tok::kw_const:
1410      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1411                                 getLang());
1412      break;
1413    case tok::kw_volatile:
1414      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1415                                 getLang());
1416      break;
1417    case tok::kw_restrict:
1418      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1419                                 getLang());
1420      break;
1421
1422    // C++ typename-specifier:
1423    case tok::kw_typename:
1424      if (TryAnnotateTypeOrScopeToken()) {
1425        DS.SetTypeSpecError();
1426        goto DoneWithDeclSpec;
1427      }
1428      if (!Tok.is(tok::kw_typename))
1429        continue;
1430      break;
1431
1432    // GNU typeof support.
1433    case tok::kw_typeof:
1434      ParseTypeofSpecifier(DS);
1435      continue;
1436
1437    case tok::kw_decltype:
1438      ParseDecltypeSpecifier(DS);
1439      continue;
1440
1441    case tok::less:
1442      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1443      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1444      // but we support it.
1445      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1446        goto DoneWithDeclSpec;
1447
1448      {
1449        SourceLocation LAngleLoc, EndProtoLoc;
1450        llvm::SmallVector<Decl *, 8> ProtocolDecl;
1451        llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1452        ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1453                                    LAngleLoc, EndProtoLoc);
1454        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1455                                 ProtocolLocs.data(), LAngleLoc);
1456        DS.SetRangeEnd(EndProtoLoc);
1457
1458        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1459          << FixItHint::CreateInsertion(Loc, "id")
1460          << SourceRange(Loc, EndProtoLoc);
1461        // Need to support trailing type qualifiers (e.g. "id<p> const").
1462        // If a type specifier follows, it will be diagnosed elsewhere.
1463        continue;
1464      }
1465    }
1466    // If the specifier wasn't legal, issue a diagnostic.
1467    if (isInvalid) {
1468      assert(PrevSpec && "Method did not return previous specifier!");
1469      assert(DiagID);
1470
1471      if (DiagID == diag::ext_duplicate_declspec)
1472        Diag(Tok, DiagID)
1473          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1474      else
1475        Diag(Tok, DiagID) << PrevSpec;
1476    }
1477    DS.SetRangeEnd(Tok.getLocation());
1478    ConsumeToken();
1479  }
1480}
1481
1482/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1483/// primarily follow the C++ grammar with additions for C99 and GNU,
1484/// which together subsume the C grammar. Note that the C++
1485/// type-specifier also includes the C type-qualifier (for const,
1486/// volatile, and C99 restrict). Returns true if a type-specifier was
1487/// found (and parsed), false otherwise.
1488///
1489///       type-specifier: [C++ 7.1.5]
1490///         simple-type-specifier
1491///         class-specifier
1492///         enum-specifier
1493///         elaborated-type-specifier  [TODO]
1494///         cv-qualifier
1495///
1496///       cv-qualifier: [C++ 7.1.5.1]
1497///         'const'
1498///         'volatile'
1499/// [C99]   'restrict'
1500///
1501///       simple-type-specifier: [ C++ 7.1.5.2]
1502///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1503///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1504///         'char'
1505///         'wchar_t'
1506///         'bool'
1507///         'short'
1508///         'int'
1509///         'long'
1510///         'signed'
1511///         'unsigned'
1512///         'float'
1513///         'double'
1514///         'void'
1515/// [C99]   '_Bool'
1516/// [C99]   '_Complex'
1517/// [C99]   '_Imaginary'  // Removed in TC2?
1518/// [GNU]   '_Decimal32'
1519/// [GNU]   '_Decimal64'
1520/// [GNU]   '_Decimal128'
1521/// [GNU]   typeof-specifier
1522/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1523/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1524/// [C++0x] 'decltype' ( expression )
1525/// [AltiVec] '__vector'
1526bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1527                                        const char *&PrevSpec,
1528                                        unsigned &DiagID,
1529                                        const ParsedTemplateInfo &TemplateInfo,
1530                                        bool SuppressDeclarations) {
1531  SourceLocation Loc = Tok.getLocation();
1532
1533  switch (Tok.getKind()) {
1534  case tok::identifier:   // foo::bar
1535    // If we already have a type specifier, this identifier is not a type.
1536    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1537        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1538        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1539      return false;
1540    // Check for need to substitute AltiVec keyword tokens.
1541    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1542      break;
1543    // Fall through.
1544  case tok::kw_typename:  // typename foo::bar
1545    // Annotate typenames and C++ scope specifiers.  If we get one, just
1546    // recurse to handle whatever we get.
1547    if (TryAnnotateTypeOrScopeToken())
1548      return true;
1549    if (Tok.is(tok::identifier))
1550      return false;
1551    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1552                                      TemplateInfo, SuppressDeclarations);
1553  case tok::coloncolon:   // ::foo::bar
1554    if (NextToken().is(tok::kw_new) ||    // ::new
1555        NextToken().is(tok::kw_delete))   // ::delete
1556      return false;
1557
1558    // Annotate typenames and C++ scope specifiers.  If we get one, just
1559    // recurse to handle whatever we get.
1560    if (TryAnnotateTypeOrScopeToken())
1561      return true;
1562    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1563                                      TemplateInfo, SuppressDeclarations);
1564
1565  // simple-type-specifier:
1566  case tok::annot_typename: {
1567    if (ParsedType T = getTypeAnnotation(Tok)) {
1568      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1569                                     DiagID, T);
1570    } else
1571      DS.SetTypeSpecError();
1572    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1573    ConsumeToken(); // The typename
1574
1575    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1576    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1577    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1578    // just a normal reference to a typedef name.
1579    if (!Tok.is(tok::less) || !getLang().ObjC1)
1580      return true;
1581
1582    SourceLocation LAngleLoc, EndProtoLoc;
1583    llvm::SmallVector<Decl *, 8> ProtocolDecl;
1584    llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1585    ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1586                                LAngleLoc, EndProtoLoc);
1587    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1588                             ProtocolLocs.data(), LAngleLoc);
1589
1590    DS.SetRangeEnd(EndProtoLoc);
1591    return true;
1592  }
1593
1594  case tok::kw_short:
1595    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1596    break;
1597  case tok::kw_long:
1598    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1599      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1600                                      DiagID);
1601    else
1602      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1603                                      DiagID);
1604    break;
1605  case tok::kw_signed:
1606    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1607    break;
1608  case tok::kw_unsigned:
1609    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1610                                   DiagID);
1611    break;
1612  case tok::kw__Complex:
1613    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1614                                      DiagID);
1615    break;
1616  case tok::kw__Imaginary:
1617    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1618                                      DiagID);
1619    break;
1620  case tok::kw_void:
1621    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1622    break;
1623  case tok::kw_char:
1624    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1625    break;
1626  case tok::kw_int:
1627    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1628    break;
1629  case tok::kw_float:
1630    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1631    break;
1632  case tok::kw_double:
1633    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1634    break;
1635  case tok::kw_wchar_t:
1636    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1637    break;
1638  case tok::kw_char16_t:
1639    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1640    break;
1641  case tok::kw_char32_t:
1642    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1643    break;
1644  case tok::kw_bool:
1645  case tok::kw__Bool:
1646    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1647    break;
1648  case tok::kw__Decimal32:
1649    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1650                                   DiagID);
1651    break;
1652  case tok::kw__Decimal64:
1653    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1654                                   DiagID);
1655    break;
1656  case tok::kw__Decimal128:
1657    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1658                                   DiagID);
1659    break;
1660  case tok::kw___vector:
1661    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1662    break;
1663  case tok::kw___pixel:
1664    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1665    break;
1666
1667  // class-specifier:
1668  case tok::kw_class:
1669  case tok::kw_struct:
1670  case tok::kw_union: {
1671    tok::TokenKind Kind = Tok.getKind();
1672    ConsumeToken();
1673    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
1674                        SuppressDeclarations);
1675    return true;
1676  }
1677
1678  // enum-specifier:
1679  case tok::kw_enum:
1680    ConsumeToken();
1681    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
1682    return true;
1683
1684  // cv-qualifier:
1685  case tok::kw_const:
1686    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1687                               DiagID, getLang());
1688    break;
1689  case tok::kw_volatile:
1690    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1691                               DiagID, getLang());
1692    break;
1693  case tok::kw_restrict:
1694    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1695                               DiagID, getLang());
1696    break;
1697
1698  // GNU typeof support.
1699  case tok::kw_typeof:
1700    ParseTypeofSpecifier(DS);
1701    return true;
1702
1703  // C++0x decltype support.
1704  case tok::kw_decltype:
1705    ParseDecltypeSpecifier(DS);
1706    return true;
1707
1708  // C++0x auto support.
1709  case tok::kw_auto:
1710    if (!getLang().CPlusPlus0x)
1711      return false;
1712
1713    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1714    break;
1715
1716  case tok::kw___ptr64:
1717  case tok::kw___w64:
1718  case tok::kw___cdecl:
1719  case tok::kw___stdcall:
1720  case tok::kw___fastcall:
1721  case tok::kw___thiscall:
1722    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1723    return true;
1724
1725  case tok::kw___pascal:
1726    DS.AddAttributes(ParseBorlandTypeAttributes());
1727    return true;
1728
1729  default:
1730    // Not a type-specifier; do nothing.
1731    return false;
1732  }
1733
1734  // If the specifier combination wasn't legal, issue a diagnostic.
1735  if (isInvalid) {
1736    assert(PrevSpec && "Method did not return previous specifier!");
1737    // Pick between error or extwarn.
1738    Diag(Tok, DiagID) << PrevSpec;
1739  }
1740  DS.SetRangeEnd(Tok.getLocation());
1741  ConsumeToken(); // whatever we parsed above.
1742  return true;
1743}
1744
1745/// ParseStructDeclaration - Parse a struct declaration without the terminating
1746/// semicolon.
1747///
1748///       struct-declaration:
1749///         specifier-qualifier-list struct-declarator-list
1750/// [GNU]   __extension__ struct-declaration
1751/// [GNU]   specifier-qualifier-list
1752///       struct-declarator-list:
1753///         struct-declarator
1754///         struct-declarator-list ',' struct-declarator
1755/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1756///       struct-declarator:
1757///         declarator
1758/// [GNU]   declarator attributes[opt]
1759///         declarator[opt] ':' constant-expression
1760/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1761///
1762void Parser::
1763ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1764  if (Tok.is(tok::kw___extension__)) {
1765    // __extension__ silences extension warnings in the subexpression.
1766    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1767    ConsumeToken();
1768    return ParseStructDeclaration(DS, Fields);
1769  }
1770
1771  // Parse the common specifier-qualifiers-list piece.
1772  SourceLocation DSStart = Tok.getLocation();
1773  ParseSpecifierQualifierList(DS);
1774
1775  // If there are no declarators, this is a free-standing declaration
1776  // specifier. Let the actions module cope with it.
1777  if (Tok.is(tok::semi)) {
1778    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
1779    return;
1780  }
1781
1782  // Read struct-declarators until we find the semicolon.
1783  bool FirstDeclarator = true;
1784  while (1) {
1785    ParsingDeclRAIIObject PD(*this);
1786    FieldDeclarator DeclaratorInfo(DS);
1787
1788    // Attributes are only allowed here on successive declarators.
1789    if (!FirstDeclarator && Tok.is(tok::kw___attribute)) {
1790      SourceLocation Loc;
1791      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1792      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1793    }
1794
1795    /// struct-declarator: declarator
1796    /// struct-declarator: declarator[opt] ':' constant-expression
1797    if (Tok.isNot(tok::colon)) {
1798      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1799      ColonProtectionRAIIObject X(*this);
1800      ParseDeclarator(DeclaratorInfo.D);
1801    }
1802
1803    if (Tok.is(tok::colon)) {
1804      ConsumeToken();
1805      ExprResult Res(ParseConstantExpression());
1806      if (Res.isInvalid())
1807        SkipUntil(tok::semi, true, true);
1808      else
1809        DeclaratorInfo.BitfieldSize = Res.release();
1810    }
1811
1812    // If attributes exist after the declarator, parse them.
1813    if (Tok.is(tok::kw___attribute)) {
1814      SourceLocation Loc;
1815      AttributeList *AttrList = ParseGNUAttributes(&Loc);
1816      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1817    }
1818
1819    // We're done with this declarator;  invoke the callback.
1820    Decl *D = Fields.invoke(DeclaratorInfo);
1821    PD.complete(D);
1822
1823    // If we don't have a comma, it is either the end of the list (a ';')
1824    // or an error, bail out.
1825    if (Tok.isNot(tok::comma))
1826      return;
1827
1828    // Consume the comma.
1829    ConsumeToken();
1830
1831    FirstDeclarator = false;
1832  }
1833}
1834
1835/// ParseStructUnionBody
1836///       struct-contents:
1837///         struct-declaration-list
1838/// [EXT]   empty
1839/// [GNU]   "struct-declaration-list" without terminatoring ';'
1840///       struct-declaration-list:
1841///         struct-declaration
1842///         struct-declaration-list struct-declaration
1843/// [OBC]   '@' 'defs' '(' class-name ')'
1844///
1845void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1846                                  unsigned TagType, Decl *TagDecl) {
1847  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1848                                      "parsing struct/union body");
1849
1850  SourceLocation LBraceLoc = ConsumeBrace();
1851
1852  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1853  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1854
1855  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1856  // C++.
1857  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1858    Diag(Tok, diag::ext_empty_struct_union)
1859      << (TagType == TST_union);
1860
1861  llvm::SmallVector<Decl *, 32> FieldDecls;
1862
1863  // While we still have something to read, read the declarations in the struct.
1864  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1865    // Each iteration of this loop reads one struct-declaration.
1866
1867    // Check for extraneous top-level semicolon.
1868    if (Tok.is(tok::semi)) {
1869      Diag(Tok, diag::ext_extra_struct_semi)
1870        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1871        << FixItHint::CreateRemoval(Tok.getLocation());
1872      ConsumeToken();
1873      continue;
1874    }
1875
1876    // Parse all the comma separated declarators.
1877    DeclSpec DS;
1878
1879    if (!Tok.is(tok::at)) {
1880      struct CFieldCallback : FieldCallback {
1881        Parser &P;
1882        Decl *TagDecl;
1883        llvm::SmallVectorImpl<Decl *> &FieldDecls;
1884
1885        CFieldCallback(Parser &P, Decl *TagDecl,
1886                       llvm::SmallVectorImpl<Decl *> &FieldDecls) :
1887          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1888
1889        virtual Decl *invoke(FieldDeclarator &FD) {
1890          // Install the declarator into the current TagDecl.
1891          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
1892                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1893                                                 FD.D, FD.BitfieldSize);
1894          FieldDecls.push_back(Field);
1895          return Field;
1896        }
1897      } Callback(*this, TagDecl, FieldDecls);
1898
1899      ParseStructDeclaration(DS, Callback);
1900    } else { // Handle @defs
1901      ConsumeToken();
1902      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1903        Diag(Tok, diag::err_unexpected_at);
1904        SkipUntil(tok::semi, true);
1905        continue;
1906      }
1907      ConsumeToken();
1908      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1909      if (!Tok.is(tok::identifier)) {
1910        Diag(Tok, diag::err_expected_ident);
1911        SkipUntil(tok::semi, true);
1912        continue;
1913      }
1914      llvm::SmallVector<Decl *, 16> Fields;
1915      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
1916                        Tok.getIdentifierInfo(), Fields);
1917      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1918      ConsumeToken();
1919      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1920    }
1921
1922    if (Tok.is(tok::semi)) {
1923      ConsumeToken();
1924    } else if (Tok.is(tok::r_brace)) {
1925      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
1926      break;
1927    } else {
1928      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
1929      // Skip to end of block or statement to avoid ext-warning on extra ';'.
1930      SkipUntil(tok::r_brace, true, true);
1931      // If we stopped at a ';', eat it.
1932      if (Tok.is(tok::semi)) ConsumeToken();
1933    }
1934  }
1935
1936  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1937
1938  llvm::OwningPtr<AttributeList> AttrList;
1939  // If attributes exist after struct contents, parse them.
1940  if (Tok.is(tok::kw___attribute))
1941    AttrList.reset(ParseGNUAttributes());
1942
1943  Actions.ActOnFields(getCurScope(),
1944                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1945                      LBraceLoc, RBraceLoc,
1946                      AttrList.get());
1947  StructScope.Exit();
1948  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1949}
1950
1951
1952/// ParseEnumSpecifier
1953///       enum-specifier: [C99 6.7.2.2]
1954///         'enum' identifier[opt] '{' enumerator-list '}'
1955///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1956/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1957///                                                 '}' attributes[opt]
1958///         'enum' identifier
1959/// [GNU]   'enum' attributes[opt] identifier
1960///
1961/// [C++0x] enum-head '{' enumerator-list[opt] '}'
1962/// [C++0x] enum-head '{' enumerator-list ','  '}'
1963///
1964///       enum-head: [C++0x]
1965///         enum-key attributes[opt] identifier[opt] enum-base[opt]
1966///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
1967///
1968///       enum-key: [C++0x]
1969///         'enum'
1970///         'enum' 'class'
1971///         'enum' 'struct'
1972///
1973///       enum-base: [C++0x]
1974///         ':' type-specifier-seq
1975///
1976/// [C++] elaborated-type-specifier:
1977/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1978///
1979void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1980                                const ParsedTemplateInfo &TemplateInfo,
1981                                AccessSpecifier AS) {
1982  // Parse the tag portion of this.
1983  if (Tok.is(tok::code_completion)) {
1984    // Code completion for an enum name.
1985    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
1986    ConsumeCodeCompletionToken();
1987  }
1988
1989  llvm::OwningPtr<AttributeList> Attr;
1990  // If attributes exist after tag, parse them.
1991  if (Tok.is(tok::kw___attribute))
1992    Attr.reset(ParseGNUAttributes());
1993
1994  CXXScopeSpec &SS = DS.getTypeSpecScope();
1995  if (getLang().CPlusPlus) {
1996    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
1997      return;
1998
1999    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2000      Diag(Tok, diag::err_expected_ident);
2001      if (Tok.isNot(tok::l_brace)) {
2002        // Has no name and is not a definition.
2003        // Skip the rest of this declarator, up until the comma or semicolon.
2004        SkipUntil(tok::comma, true);
2005        return;
2006      }
2007    }
2008  }
2009
2010  bool IsScopedEnum = false;
2011
2012  if (getLang().CPlusPlus0x && (Tok.is(tok::kw_class)
2013                                || Tok.is(tok::kw_struct))) {
2014    ConsumeToken();
2015    IsScopedEnum = true;
2016  }
2017
2018  // Must have either 'enum name' or 'enum {...}'.
2019  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
2020    Diag(Tok, diag::err_expected_ident_lbrace);
2021
2022    // Skip the rest of this declarator, up until the comma or semicolon.
2023    SkipUntil(tok::comma, true);
2024    return;
2025  }
2026
2027  // If an identifier is present, consume and remember it.
2028  IdentifierInfo *Name = 0;
2029  SourceLocation NameLoc;
2030  if (Tok.is(tok::identifier)) {
2031    Name = Tok.getIdentifierInfo();
2032    NameLoc = ConsumeToken();
2033  }
2034
2035  if (!Name && IsScopedEnum) {
2036    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2037    // declaration of a scoped enumeration.
2038    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2039    IsScopedEnum = false;
2040  }
2041
2042  TypeResult BaseType;
2043
2044  if (getLang().CPlusPlus0x && Tok.is(tok::colon)) {
2045    ConsumeToken();
2046    SourceRange Range;
2047    BaseType = ParseTypeName(&Range);
2048  }
2049
2050  // There are three options here.  If we have 'enum foo;', then this is a
2051  // forward declaration.  If we have 'enum foo {...' then this is a
2052  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2053  //
2054  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2055  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2056  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2057  //
2058  Sema::TagUseKind TUK;
2059  if (Tok.is(tok::l_brace))
2060    TUK = Sema::TUK_Definition;
2061  else if (Tok.is(tok::semi))
2062    TUK = Sema::TUK_Declaration;
2063  else
2064    TUK = Sema::TUK_Reference;
2065
2066  // enums cannot be templates, although they can be referenced from a
2067  // template.
2068  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2069      TUK != Sema::TUK_Reference) {
2070    Diag(Tok, diag::err_enum_template);
2071
2072    // Skip the rest of this declarator, up until the comma or semicolon.
2073    SkipUntil(tok::comma, true);
2074    return;
2075  }
2076
2077  bool Owned = false;
2078  bool IsDependent = false;
2079  SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
2080  const char *PrevSpec = 0;
2081  unsigned DiagID;
2082  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2083                                   StartLoc, SS, Name, NameLoc, Attr.get(),
2084                                   AS,
2085                                   MultiTemplateParamsArg(Actions),
2086                                   Owned, IsDependent, IsScopedEnum,
2087                                   BaseType);
2088
2089  if (IsDependent) {
2090    // This enum has a dependent nested-name-specifier. Handle it as a
2091    // dependent tag.
2092    if (!Name) {
2093      DS.SetTypeSpecError();
2094      Diag(Tok, diag::err_expected_type_name_after_typename);
2095      return;
2096    }
2097
2098    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2099                                                TUK, SS, Name, StartLoc,
2100                                                NameLoc);
2101    if (Type.isInvalid()) {
2102      DS.SetTypeSpecError();
2103      return;
2104    }
2105
2106    if (DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc, PrevSpec, DiagID,
2107                           Type.get()))
2108      Diag(StartLoc, DiagID) << PrevSpec;
2109
2110    return;
2111  }
2112
2113  if (!TagDecl) {
2114    // The action failed to produce an enumeration tag. If this is a
2115    // definition, consume the entire definition.
2116    if (Tok.is(tok::l_brace)) {
2117      ConsumeBrace();
2118      SkipUntil(tok::r_brace);
2119    }
2120
2121    DS.SetTypeSpecError();
2122    return;
2123  }
2124
2125  if (Tok.is(tok::l_brace))
2126    ParseEnumBody(StartLoc, TagDecl);
2127
2128  // FIXME: The DeclSpec should keep the locations of both the keyword
2129  // and the name (if there is one).
2130  if (DS.SetTypeSpecType(DeclSpec::TST_enum, TSTLoc, PrevSpec, DiagID,
2131                         TagDecl, Owned))
2132    Diag(StartLoc, DiagID) << PrevSpec;
2133}
2134
2135/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2136///       enumerator-list:
2137///         enumerator
2138///         enumerator-list ',' enumerator
2139///       enumerator:
2140///         enumeration-constant
2141///         enumeration-constant '=' constant-expression
2142///       enumeration-constant:
2143///         identifier
2144///
2145void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2146  // Enter the scope of the enum body and start the definition.
2147  ParseScope EnumScope(this, Scope::DeclScope);
2148  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2149
2150  SourceLocation LBraceLoc = ConsumeBrace();
2151
2152  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2153  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2154    Diag(Tok, diag::error_empty_enum);
2155
2156  llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2157
2158  Decl *LastEnumConstDecl = 0;
2159
2160  // Parse the enumerator-list.
2161  while (Tok.is(tok::identifier)) {
2162    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2163    SourceLocation IdentLoc = ConsumeToken();
2164
2165    SourceLocation EqualLoc;
2166    ExprResult AssignedVal;
2167    if (Tok.is(tok::equal)) {
2168      EqualLoc = ConsumeToken();
2169      AssignedVal = ParseConstantExpression();
2170      if (AssignedVal.isInvalid())
2171        SkipUntil(tok::comma, tok::r_brace, true, true);
2172    }
2173
2174    // Install the enumerator constant into EnumDecl.
2175    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2176                                                    LastEnumConstDecl,
2177                                                    IdentLoc, Ident,
2178                                                    EqualLoc,
2179                                                    AssignedVal.release());
2180    EnumConstantDecls.push_back(EnumConstDecl);
2181    LastEnumConstDecl = EnumConstDecl;
2182
2183    if (Tok.is(tok::identifier)) {
2184      // We're missing a comma between enumerators.
2185      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2186      Diag(Loc, diag::err_enumerator_list_missing_comma)
2187        << FixItHint::CreateInsertion(Loc, ", ");
2188      continue;
2189    }
2190
2191    if (Tok.isNot(tok::comma))
2192      break;
2193    SourceLocation CommaLoc = ConsumeToken();
2194
2195    if (Tok.isNot(tok::identifier) &&
2196        !(getLang().C99 || getLang().CPlusPlus0x))
2197      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2198        << getLang().CPlusPlus
2199        << FixItHint::CreateRemoval(CommaLoc);
2200  }
2201
2202  // Eat the }.
2203  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2204
2205  llvm::OwningPtr<AttributeList> Attr;
2206  // If attributes exist after the identifier list, parse them.
2207  if (Tok.is(tok::kw___attribute))
2208    Attr.reset(ParseGNUAttributes()); // FIXME: where do they do?
2209
2210  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2211                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2212                        getCurScope(), Attr.get());
2213
2214  EnumScope.Exit();
2215  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2216}
2217
2218/// isTypeSpecifierQualifier - Return true if the current token could be the
2219/// start of a type-qualifier-list.
2220bool Parser::isTypeQualifier() const {
2221  switch (Tok.getKind()) {
2222  default: return false;
2223    // type-qualifier
2224  case tok::kw_const:
2225  case tok::kw_volatile:
2226  case tok::kw_restrict:
2227    return true;
2228  }
2229}
2230
2231/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2232/// is definitely a type-specifier.  Return false if it isn't part of a type
2233/// specifier or if we're not sure.
2234bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2235  switch (Tok.getKind()) {
2236  default: return false;
2237    // type-specifiers
2238  case tok::kw_short:
2239  case tok::kw_long:
2240  case tok::kw_signed:
2241  case tok::kw_unsigned:
2242  case tok::kw__Complex:
2243  case tok::kw__Imaginary:
2244  case tok::kw_void:
2245  case tok::kw_char:
2246  case tok::kw_wchar_t:
2247  case tok::kw_char16_t:
2248  case tok::kw_char32_t:
2249  case tok::kw_int:
2250  case tok::kw_float:
2251  case tok::kw_double:
2252  case tok::kw_bool:
2253  case tok::kw__Bool:
2254  case tok::kw__Decimal32:
2255  case tok::kw__Decimal64:
2256  case tok::kw__Decimal128:
2257  case tok::kw___vector:
2258
2259    // struct-or-union-specifier (C99) or class-specifier (C++)
2260  case tok::kw_class:
2261  case tok::kw_struct:
2262  case tok::kw_union:
2263    // enum-specifier
2264  case tok::kw_enum:
2265
2266    // typedef-name
2267  case tok::annot_typename:
2268    return true;
2269  }
2270}
2271
2272/// isTypeSpecifierQualifier - Return true if the current token could be the
2273/// start of a specifier-qualifier-list.
2274bool Parser::isTypeSpecifierQualifier() {
2275  switch (Tok.getKind()) {
2276  default: return false;
2277
2278  case tok::identifier:   // foo::bar
2279    if (TryAltiVecVectorToken())
2280      return true;
2281    // Fall through.
2282  case tok::kw_typename:  // typename T::type
2283    // Annotate typenames and C++ scope specifiers.  If we get one, just
2284    // recurse to handle whatever we get.
2285    if (TryAnnotateTypeOrScopeToken())
2286      return true;
2287    if (Tok.is(tok::identifier))
2288      return false;
2289    return isTypeSpecifierQualifier();
2290
2291  case tok::coloncolon:   // ::foo::bar
2292    if (NextToken().is(tok::kw_new) ||    // ::new
2293        NextToken().is(tok::kw_delete))   // ::delete
2294      return false;
2295
2296    if (TryAnnotateTypeOrScopeToken())
2297      return true;
2298    return isTypeSpecifierQualifier();
2299
2300    // GNU attributes support.
2301  case tok::kw___attribute:
2302    // GNU typeof support.
2303  case tok::kw_typeof:
2304
2305    // type-specifiers
2306  case tok::kw_short:
2307  case tok::kw_long:
2308  case tok::kw_signed:
2309  case tok::kw_unsigned:
2310  case tok::kw__Complex:
2311  case tok::kw__Imaginary:
2312  case tok::kw_void:
2313  case tok::kw_char:
2314  case tok::kw_wchar_t:
2315  case tok::kw_char16_t:
2316  case tok::kw_char32_t:
2317  case tok::kw_int:
2318  case tok::kw_float:
2319  case tok::kw_double:
2320  case tok::kw_bool:
2321  case tok::kw__Bool:
2322  case tok::kw__Decimal32:
2323  case tok::kw__Decimal64:
2324  case tok::kw__Decimal128:
2325  case tok::kw___vector:
2326
2327    // struct-or-union-specifier (C99) or class-specifier (C++)
2328  case tok::kw_class:
2329  case tok::kw_struct:
2330  case tok::kw_union:
2331    // enum-specifier
2332  case tok::kw_enum:
2333
2334    // type-qualifier
2335  case tok::kw_const:
2336  case tok::kw_volatile:
2337  case tok::kw_restrict:
2338
2339    // typedef-name
2340  case tok::annot_typename:
2341    return true;
2342
2343    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2344  case tok::less:
2345    return getLang().ObjC1;
2346
2347  case tok::kw___cdecl:
2348  case tok::kw___stdcall:
2349  case tok::kw___fastcall:
2350  case tok::kw___thiscall:
2351  case tok::kw___w64:
2352  case tok::kw___ptr64:
2353  case tok::kw___pascal:
2354    return true;
2355  }
2356}
2357
2358/// isDeclarationSpecifier() - Return true if the current token is part of a
2359/// declaration specifier.
2360///
2361/// \param DisambiguatingWithExpression True to indicate that the purpose of
2362/// this check is to disambiguate between an expression and a declaration.
2363bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2364  switch (Tok.getKind()) {
2365  default: return false;
2366
2367  case tok::identifier:   // foo::bar
2368    // Unfortunate hack to support "Class.factoryMethod" notation.
2369    if (getLang().ObjC1 && NextToken().is(tok::period))
2370      return false;
2371    if (TryAltiVecVectorToken())
2372      return true;
2373    // Fall through.
2374  case tok::kw_typename: // typename T::type
2375    // Annotate typenames and C++ scope specifiers.  If we get one, just
2376    // recurse to handle whatever we get.
2377    if (TryAnnotateTypeOrScopeToken())
2378      return true;
2379    if (Tok.is(tok::identifier))
2380      return false;
2381
2382    // If we're in Objective-C and we have an Objective-C class type followed
2383    // by an identifier and then either ':' or ']', in a place where an
2384    // expression is permitted, then this is probably a class message send
2385    // missing the initial '['. In this case, we won't consider this to be
2386    // the start of a declaration.
2387    if (DisambiguatingWithExpression &&
2388        isStartOfObjCClassMessageMissingOpenBracket())
2389      return false;
2390
2391    return isDeclarationSpecifier();
2392
2393  case tok::coloncolon:   // ::foo::bar
2394    if (NextToken().is(tok::kw_new) ||    // ::new
2395        NextToken().is(tok::kw_delete))   // ::delete
2396      return false;
2397
2398    // Annotate typenames and C++ scope specifiers.  If we get one, just
2399    // recurse to handle whatever we get.
2400    if (TryAnnotateTypeOrScopeToken())
2401      return true;
2402    return isDeclarationSpecifier();
2403
2404    // storage-class-specifier
2405  case tok::kw_typedef:
2406  case tok::kw_extern:
2407  case tok::kw___private_extern__:
2408  case tok::kw_static:
2409  case tok::kw_auto:
2410  case tok::kw_register:
2411  case tok::kw___thread:
2412
2413    // type-specifiers
2414  case tok::kw_short:
2415  case tok::kw_long:
2416  case tok::kw_signed:
2417  case tok::kw_unsigned:
2418  case tok::kw__Complex:
2419  case tok::kw__Imaginary:
2420  case tok::kw_void:
2421  case tok::kw_char:
2422  case tok::kw_wchar_t:
2423  case tok::kw_char16_t:
2424  case tok::kw_char32_t:
2425
2426  case tok::kw_int:
2427  case tok::kw_float:
2428  case tok::kw_double:
2429  case tok::kw_bool:
2430  case tok::kw__Bool:
2431  case tok::kw__Decimal32:
2432  case tok::kw__Decimal64:
2433  case tok::kw__Decimal128:
2434  case tok::kw___vector:
2435
2436    // struct-or-union-specifier (C99) or class-specifier (C++)
2437  case tok::kw_class:
2438  case tok::kw_struct:
2439  case tok::kw_union:
2440    // enum-specifier
2441  case tok::kw_enum:
2442
2443    // type-qualifier
2444  case tok::kw_const:
2445  case tok::kw_volatile:
2446  case tok::kw_restrict:
2447
2448    // function-specifier
2449  case tok::kw_inline:
2450  case tok::kw_virtual:
2451  case tok::kw_explicit:
2452
2453    // typedef-name
2454  case tok::annot_typename:
2455
2456    // GNU typeof support.
2457  case tok::kw_typeof:
2458
2459    // GNU attributes.
2460  case tok::kw___attribute:
2461    return true;
2462
2463    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2464  case tok::less:
2465    return getLang().ObjC1;
2466
2467  case tok::kw___declspec:
2468  case tok::kw___cdecl:
2469  case tok::kw___stdcall:
2470  case tok::kw___fastcall:
2471  case tok::kw___thiscall:
2472  case tok::kw___w64:
2473  case tok::kw___ptr64:
2474  case tok::kw___forceinline:
2475  case tok::kw___pascal:
2476    return true;
2477  }
2478}
2479
2480bool Parser::isConstructorDeclarator() {
2481  TentativeParsingAction TPA(*this);
2482
2483  // Parse the C++ scope specifier.
2484  CXXScopeSpec SS;
2485  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
2486    TPA.Revert();
2487    return false;
2488  }
2489
2490  // Parse the constructor name.
2491  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2492    // We already know that we have a constructor name; just consume
2493    // the token.
2494    ConsumeToken();
2495  } else {
2496    TPA.Revert();
2497    return false;
2498  }
2499
2500  // Current class name must be followed by a left parentheses.
2501  if (Tok.isNot(tok::l_paren)) {
2502    TPA.Revert();
2503    return false;
2504  }
2505  ConsumeParen();
2506
2507  // A right parentheses or ellipsis signals that we have a constructor.
2508  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2509    TPA.Revert();
2510    return true;
2511  }
2512
2513  // If we need to, enter the specified scope.
2514  DeclaratorScopeObj DeclScopeObj(*this, SS);
2515  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2516    DeclScopeObj.EnterDeclaratorScope();
2517
2518  // Check whether the next token(s) are part of a declaration
2519  // specifier, in which case we have the start of a parameter and,
2520  // therefore, we know that this is a constructor.
2521  bool IsConstructor = isDeclarationSpecifier();
2522  TPA.Revert();
2523  return IsConstructor;
2524}
2525
2526/// ParseTypeQualifierListOpt
2527///          type-qualifier-list: [C99 6.7.5]
2528///            type-qualifier
2529/// [vendor]   attributes
2530///              [ only if VendorAttributesAllowed=true ]
2531///            type-qualifier-list type-qualifier
2532/// [vendor]   type-qualifier-list attributes
2533///              [ only if VendorAttributesAllowed=true ]
2534/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
2535///              [ only if CXX0XAttributesAllowed=true ]
2536/// Note: vendor can be GNU, MS, etc.
2537///
2538void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
2539                                       bool VendorAttributesAllowed,
2540                                       bool CXX0XAttributesAllowed) {
2541  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2542    SourceLocation Loc = Tok.getLocation();
2543    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2544    if (CXX0XAttributesAllowed)
2545      DS.AddAttributes(Attr.AttrList);
2546    else
2547      Diag(Loc, diag::err_attributes_not_allowed);
2548  }
2549
2550  while (1) {
2551    bool isInvalid = false;
2552    const char *PrevSpec = 0;
2553    unsigned DiagID = 0;
2554    SourceLocation Loc = Tok.getLocation();
2555
2556    switch (Tok.getKind()) {
2557    case tok::code_completion:
2558      Actions.CodeCompleteTypeQualifiers(DS);
2559      ConsumeCodeCompletionToken();
2560      break;
2561
2562    case tok::kw_const:
2563      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2564                                 getLang());
2565      break;
2566    case tok::kw_volatile:
2567      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2568                                 getLang());
2569      break;
2570    case tok::kw_restrict:
2571      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2572                                 getLang());
2573      break;
2574    case tok::kw___w64:
2575    case tok::kw___ptr64:
2576    case tok::kw___cdecl:
2577    case tok::kw___stdcall:
2578    case tok::kw___fastcall:
2579    case tok::kw___thiscall:
2580      if (VendorAttributesAllowed) {
2581        DS.AddAttributes(ParseMicrosoftTypeAttributes());
2582        continue;
2583      }
2584      goto DoneWithTypeQuals;
2585    case tok::kw___pascal:
2586      if (VendorAttributesAllowed) {
2587        DS.AddAttributes(ParseBorlandTypeAttributes());
2588        continue;
2589      }
2590      goto DoneWithTypeQuals;
2591    case tok::kw___attribute:
2592      if (VendorAttributesAllowed) {
2593        DS.AddAttributes(ParseGNUAttributes());
2594        continue; // do *not* consume the next token!
2595      }
2596      // otherwise, FALL THROUGH!
2597    default:
2598      DoneWithTypeQuals:
2599      // If this is not a type-qualifier token, we're done reading type
2600      // qualifiers.  First verify that DeclSpec's are consistent.
2601      DS.Finish(Diags, PP);
2602      return;
2603    }
2604
2605    // If the specifier combination wasn't legal, issue a diagnostic.
2606    if (isInvalid) {
2607      assert(PrevSpec && "Method did not return previous specifier!");
2608      Diag(Tok, DiagID) << PrevSpec;
2609    }
2610    ConsumeToken();
2611  }
2612}
2613
2614
2615/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2616///
2617void Parser::ParseDeclarator(Declarator &D) {
2618  /// This implements the 'declarator' production in the C grammar, then checks
2619  /// for well-formedness and issues diagnostics.
2620  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2621}
2622
2623/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2624/// is parsed by the function passed to it. Pass null, and the direct-declarator
2625/// isn't parsed at all, making this function effectively parse the C++
2626/// ptr-operator production.
2627///
2628///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2629/// [C]     pointer[opt] direct-declarator
2630/// [C++]   direct-declarator
2631/// [C++]   ptr-operator declarator
2632///
2633///       pointer: [C99 6.7.5]
2634///         '*' type-qualifier-list[opt]
2635///         '*' type-qualifier-list[opt] pointer
2636///
2637///       ptr-operator:
2638///         '*' cv-qualifier-seq[opt]
2639///         '&'
2640/// [C++0x] '&&'
2641/// [GNU]   '&' restrict[opt] attributes[opt]
2642/// [GNU?]  '&&' restrict[opt] attributes[opt]
2643///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2644void Parser::ParseDeclaratorInternal(Declarator &D,
2645                                     DirectDeclParseFunction DirectDeclParser) {
2646  if (Diags.hasAllExtensionsSilenced())
2647    D.setExtension();
2648
2649  // C++ member pointers start with a '::' or a nested-name.
2650  // Member pointers get special handling, since there's no place for the
2651  // scope spec in the generic path below.
2652  if (getLang().CPlusPlus &&
2653      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2654       Tok.is(tok::annot_cxxscope))) {
2655    CXXScopeSpec SS;
2656    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
2657
2658    if (SS.isNotEmpty()) {
2659      if (Tok.isNot(tok::star)) {
2660        // The scope spec really belongs to the direct-declarator.
2661        D.getCXXScopeSpec() = SS;
2662        if (DirectDeclParser)
2663          (this->*DirectDeclParser)(D);
2664        return;
2665      }
2666
2667      SourceLocation Loc = ConsumeToken();
2668      D.SetRangeEnd(Loc);
2669      DeclSpec DS;
2670      ParseTypeQualifierListOpt(DS);
2671      D.ExtendWithDeclSpec(DS);
2672
2673      // Recurse to parse whatever is left.
2674      ParseDeclaratorInternal(D, DirectDeclParser);
2675
2676      // Sema will have to catch (syntactically invalid) pointers into global
2677      // scope. It has to catch pointers into namespace scope anyway.
2678      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2679                                                      Loc, DS.TakeAttributes()),
2680                    /* Don't replace range end. */SourceLocation());
2681      return;
2682    }
2683  }
2684
2685  tok::TokenKind Kind = Tok.getKind();
2686  // Not a pointer, C++ reference, or block.
2687  if (Kind != tok::star && Kind != tok::caret &&
2688      (Kind != tok::amp || !getLang().CPlusPlus) &&
2689      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2690      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2691    if (DirectDeclParser)
2692      (this->*DirectDeclParser)(D);
2693    return;
2694  }
2695
2696  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2697  // '&&' -> rvalue reference
2698  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2699  D.SetRangeEnd(Loc);
2700
2701  if (Kind == tok::star || Kind == tok::caret) {
2702    // Is a pointer.
2703    DeclSpec DS;
2704
2705    ParseTypeQualifierListOpt(DS);
2706    D.ExtendWithDeclSpec(DS);
2707
2708    // Recursively parse the declarator.
2709    ParseDeclaratorInternal(D, DirectDeclParser);
2710    if (Kind == tok::star)
2711      // Remember that we parsed a pointer type, and remember the type-quals.
2712      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2713                                                DS.TakeAttributes()),
2714                    SourceLocation());
2715    else
2716      // Remember that we parsed a Block type, and remember the type-quals.
2717      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2718                                                     Loc, DS.TakeAttributes()),
2719                    SourceLocation());
2720  } else {
2721    // Is a reference
2722    DeclSpec DS;
2723
2724    // Complain about rvalue references in C++03, but then go on and build
2725    // the declarator.
2726    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2727      Diag(Loc, diag::err_rvalue_reference);
2728
2729    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2730    // cv-qualifiers are introduced through the use of a typedef or of a
2731    // template type argument, in which case the cv-qualifiers are ignored.
2732    //
2733    // [GNU] Retricted references are allowed.
2734    // [GNU] Attributes on references are allowed.
2735    // [C++0x] Attributes on references are not allowed.
2736    ParseTypeQualifierListOpt(DS, true, false);
2737    D.ExtendWithDeclSpec(DS);
2738
2739    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2740      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2741        Diag(DS.getConstSpecLoc(),
2742             diag::err_invalid_reference_qualifier_application) << "const";
2743      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2744        Diag(DS.getVolatileSpecLoc(),
2745             diag::err_invalid_reference_qualifier_application) << "volatile";
2746    }
2747
2748    // Recursively parse the declarator.
2749    ParseDeclaratorInternal(D, DirectDeclParser);
2750
2751    if (D.getNumTypeObjects() > 0) {
2752      // C++ [dcl.ref]p4: There shall be no references to references.
2753      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2754      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2755        if (const IdentifierInfo *II = D.getIdentifier())
2756          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2757           << II;
2758        else
2759          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2760            << "type name";
2761
2762        // Once we've complained about the reference-to-reference, we
2763        // can go ahead and build the (technically ill-formed)
2764        // declarator: reference collapsing will take care of it.
2765      }
2766    }
2767
2768    // Remember that we parsed a reference type. It doesn't have type-quals.
2769    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2770                                                DS.TakeAttributes(),
2771                                                Kind == tok::amp),
2772                  SourceLocation());
2773  }
2774}
2775
2776/// ParseDirectDeclarator
2777///       direct-declarator: [C99 6.7.5]
2778/// [C99]   identifier
2779///         '(' declarator ')'
2780/// [GNU]   '(' attributes declarator ')'
2781/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2782/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2783/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2784/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2785/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2786///         direct-declarator '(' parameter-type-list ')'
2787///         direct-declarator '(' identifier-list[opt] ')'
2788/// [GNU]   direct-declarator '(' parameter-forward-declarations
2789///                    parameter-type-list[opt] ')'
2790/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2791///                    cv-qualifier-seq[opt] exception-specification[opt]
2792/// [C++]   declarator-id
2793///
2794///       declarator-id: [C++ 8]
2795///         id-expression
2796///         '::'[opt] nested-name-specifier[opt] type-name
2797///
2798///       id-expression: [C++ 5.1]
2799///         unqualified-id
2800///         qualified-id
2801///
2802///       unqualified-id: [C++ 5.1]
2803///         identifier
2804///         operator-function-id
2805///         conversion-function-id
2806///          '~' class-name
2807///         template-id
2808///
2809void Parser::ParseDirectDeclarator(Declarator &D) {
2810  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2811
2812  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2813    // ParseDeclaratorInternal might already have parsed the scope.
2814    if (D.getCXXScopeSpec().isEmpty()) {
2815      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
2816    }
2817
2818    if (D.getCXXScopeSpec().isValid()) {
2819      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2820        // Change the declaration context for name lookup, until this function
2821        // is exited (and the declarator has been parsed).
2822        DeclScopeObj.EnterDeclaratorScope();
2823    }
2824
2825    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2826        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2827      // We found something that indicates the start of an unqualified-id.
2828      // Parse that unqualified-id.
2829      bool AllowConstructorName;
2830      if (D.getDeclSpec().hasTypeSpecifier())
2831        AllowConstructorName = false;
2832      else if (D.getCXXScopeSpec().isSet())
2833        AllowConstructorName =
2834          (D.getContext() == Declarator::FileContext ||
2835           (D.getContext() == Declarator::MemberContext &&
2836            D.getDeclSpec().isFriendSpecified()));
2837      else
2838        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
2839
2840      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2841                             /*EnteringContext=*/true,
2842                             /*AllowDestructorName=*/true,
2843                             AllowConstructorName,
2844                             ParsedType(),
2845                             D.getName()) ||
2846          // Once we're past the identifier, if the scope was bad, mark the
2847          // whole declarator bad.
2848          D.getCXXScopeSpec().isInvalid()) {
2849        D.SetIdentifier(0, Tok.getLocation());
2850        D.setInvalidType(true);
2851      } else {
2852        // Parsed the unqualified-id; update range information and move along.
2853        if (D.getSourceRange().getBegin().isInvalid())
2854          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2855        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2856      }
2857      goto PastIdentifier;
2858    }
2859  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2860    assert(!getLang().CPlusPlus &&
2861           "There's a C++-specific check for tok::identifier above");
2862    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2863    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2864    ConsumeToken();
2865    goto PastIdentifier;
2866  }
2867
2868  if (Tok.is(tok::l_paren)) {
2869    // direct-declarator: '(' declarator ')'
2870    // direct-declarator: '(' attributes declarator ')'
2871    // Example: 'char (*X)'   or 'int (*XX)(void)'
2872    ParseParenDeclarator(D);
2873
2874    // If the declarator was parenthesized, we entered the declarator
2875    // scope when parsing the parenthesized declarator, then exited
2876    // the scope already. Re-enter the scope, if we need to.
2877    if (D.getCXXScopeSpec().isSet()) {
2878      // If there was an error parsing parenthesized declarator, declarator
2879      // scope may have been enterred before. Don't do it again.
2880      if (!D.isInvalidType() &&
2881          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2882        // Change the declaration context for name lookup, until this function
2883        // is exited (and the declarator has been parsed).
2884        DeclScopeObj.EnterDeclaratorScope();
2885    }
2886  } else if (D.mayOmitIdentifier()) {
2887    // This could be something simple like "int" (in which case the declarator
2888    // portion is empty), if an abstract-declarator is allowed.
2889    D.SetIdentifier(0, Tok.getLocation());
2890  } else {
2891    if (D.getContext() == Declarator::MemberContext)
2892      Diag(Tok, diag::err_expected_member_name_or_semi)
2893        << D.getDeclSpec().getSourceRange();
2894    else if (getLang().CPlusPlus)
2895      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2896    else
2897      Diag(Tok, diag::err_expected_ident_lparen);
2898    D.SetIdentifier(0, Tok.getLocation());
2899    D.setInvalidType(true);
2900  }
2901
2902 PastIdentifier:
2903  assert(D.isPastIdentifier() &&
2904         "Haven't past the location of the identifier yet?");
2905
2906  // Don't parse attributes unless we have an identifier.
2907  if (D.getIdentifier() && getLang().CPlusPlus0x
2908   && isCXX0XAttributeSpecifier(true)) {
2909    SourceLocation AttrEndLoc;
2910    CXX0XAttributeList Attr = ParseCXX0XAttributes();
2911    D.AddAttributes(Attr.AttrList, AttrEndLoc);
2912  }
2913
2914  while (1) {
2915    if (Tok.is(tok::l_paren)) {
2916      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2917      // In such a case, check if we actually have a function declarator; if it
2918      // is not, the declarator has been fully parsed.
2919      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2920        // When not in file scope, warn for ambiguous function declarators, just
2921        // in case the author intended it as a variable definition.
2922        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2923        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2924          break;
2925      }
2926      ParseFunctionDeclarator(ConsumeParen(), D);
2927    } else if (Tok.is(tok::l_square)) {
2928      ParseBracketDeclarator(D);
2929    } else {
2930      break;
2931    }
2932  }
2933}
2934
2935/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2936/// only called before the identifier, so these are most likely just grouping
2937/// parens for precedence.  If we find that these are actually function
2938/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2939///
2940///       direct-declarator:
2941///         '(' declarator ')'
2942/// [GNU]   '(' attributes declarator ')'
2943///         direct-declarator '(' parameter-type-list ')'
2944///         direct-declarator '(' identifier-list[opt] ')'
2945/// [GNU]   direct-declarator '(' parameter-forward-declarations
2946///                    parameter-type-list[opt] ')'
2947///
2948void Parser::ParseParenDeclarator(Declarator &D) {
2949  SourceLocation StartLoc = ConsumeParen();
2950  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2951
2952  // Eat any attributes before we look at whether this is a grouping or function
2953  // declarator paren.  If this is a grouping paren, the attribute applies to
2954  // the type being built up, for example:
2955  //     int (__attribute__(()) *x)(long y)
2956  // If this ends up not being a grouping paren, the attribute applies to the
2957  // first argument, for example:
2958  //     int (__attribute__(()) int x)
2959  // In either case, we need to eat any attributes to be able to determine what
2960  // sort of paren this is.
2961  //
2962  llvm::OwningPtr<AttributeList> AttrList;
2963  bool RequiresArg = false;
2964  if (Tok.is(tok::kw___attribute)) {
2965    AttrList.reset(ParseGNUAttributes());
2966
2967    // We require that the argument list (if this is a non-grouping paren) be
2968    // present even if the attribute list was empty.
2969    RequiresArg = true;
2970  }
2971  // Eat any Microsoft extensions.
2972  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2973       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
2974       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
2975    AttrList.reset(ParseMicrosoftTypeAttributes(AttrList.take()));
2976  }
2977  // Eat any Borland extensions.
2978  if  (Tok.is(tok::kw___pascal)) {
2979    AttrList.reset(ParseBorlandTypeAttributes(AttrList.take()));
2980  }
2981
2982  // If we haven't past the identifier yet (or where the identifier would be
2983  // stored, if this is an abstract declarator), then this is probably just
2984  // grouping parens. However, if this could be an abstract-declarator, then
2985  // this could also be the start of function arguments (consider 'void()').
2986  bool isGrouping;
2987
2988  if (!D.mayOmitIdentifier()) {
2989    // If this can't be an abstract-declarator, this *must* be a grouping
2990    // paren, because we haven't seen the identifier yet.
2991    isGrouping = true;
2992  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2993             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2994             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2995    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2996    // considered to be a type, not a K&R identifier-list.
2997    isGrouping = false;
2998  } else {
2999    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3000    isGrouping = true;
3001  }
3002
3003  // If this is a grouping paren, handle:
3004  // direct-declarator: '(' declarator ')'
3005  // direct-declarator: '(' attributes declarator ')'
3006  if (isGrouping) {
3007    bool hadGroupingParens = D.hasGroupingParens();
3008    D.setGroupingParens(true);
3009    if (AttrList)
3010      D.AddAttributes(AttrList.take(), SourceLocation());
3011
3012    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3013    // Match the ')'.
3014    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3015
3016    D.setGroupingParens(hadGroupingParens);
3017    D.SetRangeEnd(Loc);
3018    return;
3019  }
3020
3021  // Okay, if this wasn't a grouping paren, it must be the start of a function
3022  // argument list.  Recognize that this declarator will never have an
3023  // identifier (and remember where it would have been), then call into
3024  // ParseFunctionDeclarator to handle of argument list.
3025  D.SetIdentifier(0, Tok.getLocation());
3026
3027  ParseFunctionDeclarator(StartLoc, D, AttrList.take(), RequiresArg);
3028}
3029
3030/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3031/// declarator D up to a paren, which indicates that we are parsing function
3032/// arguments.
3033///
3034/// If AttrList is non-null, then the caller parsed those arguments immediately
3035/// after the open paren - they should be considered to be the first argument of
3036/// a parameter.  If RequiresArg is true, then the first argument of the
3037/// function is required to be present and required to not be an identifier
3038/// list.
3039///
3040/// This method also handles this portion of the grammar:
3041///       parameter-type-list: [C99 6.7.5]
3042///         parameter-list
3043///         parameter-list ',' '...'
3044/// [C++]   parameter-list '...'
3045///
3046///       parameter-list: [C99 6.7.5]
3047///         parameter-declaration
3048///         parameter-list ',' parameter-declaration
3049///
3050///       parameter-declaration: [C99 6.7.5]
3051///         declaration-specifiers declarator
3052/// [C++]   declaration-specifiers declarator '=' assignment-expression
3053/// [GNU]   declaration-specifiers declarator attributes
3054///         declaration-specifiers abstract-declarator[opt]
3055/// [C++]   declaration-specifiers abstract-declarator[opt]
3056///           '=' assignment-expression
3057/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3058///
3059/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
3060/// and "exception-specification[opt]".
3061///
3062void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3063                                     AttributeList *AttrList,
3064                                     bool RequiresArg) {
3065  // lparen is already consumed!
3066  assert(D.isPastIdentifier() && "Should not call before identifier!");
3067
3068  ParsedType TrailingReturnType;
3069
3070  // This parameter list may be empty.
3071  if (Tok.is(tok::r_paren)) {
3072    if (RequiresArg) {
3073      Diag(Tok, diag::err_argument_required_after_attribute);
3074      delete AttrList;
3075    }
3076
3077    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
3078    SourceLocation EndLoc = RParenLoc;
3079
3080    // cv-qualifier-seq[opt].
3081    DeclSpec DS;
3082    bool hasExceptionSpec = false;
3083    SourceLocation ThrowLoc;
3084    bool hasAnyExceptionSpec = false;
3085    llvm::SmallVector<ParsedType, 2> Exceptions;
3086    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3087    if (getLang().CPlusPlus) {
3088      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3089      if (!DS.getSourceRange().getEnd().isInvalid())
3090        EndLoc = DS.getSourceRange().getEnd();
3091
3092      // Parse exception-specification[opt].
3093      if (Tok.is(tok::kw_throw)) {
3094        hasExceptionSpec = true;
3095        ThrowLoc = Tok.getLocation();
3096        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3097                                    hasAnyExceptionSpec);
3098        assert(Exceptions.size() == ExceptionRanges.size() &&
3099               "Produced different number of exception types and ranges.");
3100      }
3101
3102      // Parse trailing-return-type.
3103      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3104        TrailingReturnType = ParseTrailingReturnType().get();
3105      }
3106    }
3107
3108    // Remember that we parsed a function type, and remember the attributes.
3109    // int() -> no prototype, no '...'.
3110    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
3111                                               /*variadic*/ false,
3112                                               SourceLocation(),
3113                                               /*arglist*/ 0, 0,
3114                                               DS.getTypeQualifiers(),
3115                                               hasExceptionSpec, ThrowLoc,
3116                                               hasAnyExceptionSpec,
3117                                               Exceptions.data(),
3118                                               ExceptionRanges.data(),
3119                                               Exceptions.size(),
3120                                               LParenLoc, RParenLoc, D,
3121                                               TrailingReturnType),
3122                  EndLoc);
3123    return;
3124  }
3125
3126  // Alternatively, this parameter list may be an identifier list form for a
3127  // K&R-style function:  void foo(a,b,c)
3128  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
3129      && !TryAltiVecVectorToken()) {
3130    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
3131      // K&R identifier lists can't have typedefs as identifiers, per
3132      // C99 6.7.5.3p11.
3133      if (RequiresArg) {
3134        Diag(Tok, diag::err_argument_required_after_attribute);
3135        delete AttrList;
3136      }
3137
3138      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
3139      // normal declarators, not for abstract-declarators.  Get the first
3140      // identifier.
3141      Token FirstTok = Tok;
3142      ConsumeToken();  // eat the first identifier.
3143
3144      // Identifier lists follow a really simple grammar: the identifiers can
3145      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
3146      // identifier lists are really rare in the brave new modern world, and it
3147      // is very common for someone to typo a type in a non-k&r style list.  If
3148      // we are presented with something like: "void foo(intptr x, float y)",
3149      // we don't want to start parsing the function declarator as though it is
3150      // a K&R style declarator just because intptr is an invalid type.
3151      //
3152      // To handle this, we check to see if the token after the first identifier
3153      // is a "," or ")".  Only if so, do we parse it as an identifier list.
3154      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
3155        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
3156                                                   FirstTok.getIdentifierInfo(),
3157                                                     FirstTok.getLocation(), D);
3158
3159      // If we get here, the code is invalid.  Push the first identifier back
3160      // into the token stream and parse the first argument as an (invalid)
3161      // normal argument declarator.
3162      PP.EnterToken(Tok);
3163      Tok = FirstTok;
3164    }
3165  }
3166
3167  // Finally, a normal, non-empty parameter type list.
3168
3169  // Build up an array of information about the parsed arguments.
3170  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3171
3172  // Enter function-declaration scope, limiting any declarators to the
3173  // function prototype scope, including parameter declarators.
3174  ParseScope PrototypeScope(this,
3175                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3176
3177  bool IsVariadic = false;
3178  SourceLocation EllipsisLoc;
3179  while (1) {
3180    if (Tok.is(tok::ellipsis)) {
3181      IsVariadic = true;
3182      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3183      break;
3184    }
3185
3186    // Skip any Microsoft attributes before a param.
3187    if (getLang().Microsoft && Tok.is(tok::l_square))
3188      ParseMicrosoftAttributes();
3189
3190    SourceLocation DSStart = Tok.getLocation();
3191
3192    // Parse the declaration-specifiers.
3193    // Just use the ParsingDeclaration "scope" of the declarator.
3194    DeclSpec DS;
3195
3196    // If the caller parsed attributes for the first argument, add them now.
3197    if (AttrList) {
3198      DS.AddAttributes(AttrList);
3199      AttrList = 0;  // Only apply the attributes to the first parameter.
3200    }
3201    ParseDeclarationSpecifiers(DS);
3202
3203    // Parse the declarator.  This is "PrototypeContext", because we must
3204    // accept either 'declarator' or 'abstract-declarator' here.
3205    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3206    ParseDeclarator(ParmDecl);
3207
3208    // Parse GNU attributes, if present.
3209    if (Tok.is(tok::kw___attribute)) {
3210      SourceLocation Loc;
3211      AttributeList *AttrList = ParseGNUAttributes(&Loc);
3212      ParmDecl.AddAttributes(AttrList, Loc);
3213    }
3214
3215    // Remember this parsed parameter in ParamInfo.
3216    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3217
3218    // DefArgToks is used when the parsing of default arguments needs
3219    // to be delayed.
3220    CachedTokens *DefArgToks = 0;
3221
3222    // If no parameter was specified, verify that *something* was specified,
3223    // otherwise we have a missing type and identifier.
3224    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3225        ParmDecl.getNumTypeObjects() == 0) {
3226      // Completely missing, emit error.
3227      Diag(DSStart, diag::err_missing_param);
3228    } else {
3229      // Otherwise, we have something.  Add it and let semantic analysis try
3230      // to grok it and add the result to the ParamInfo we are building.
3231
3232      // Inform the actions module about the parameter declarator, so it gets
3233      // added to the current scope.
3234      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3235
3236      // Parse the default argument, if any. We parse the default
3237      // arguments in all dialects; the semantic analysis in
3238      // ActOnParamDefaultArgument will reject the default argument in
3239      // C.
3240      if (Tok.is(tok::equal)) {
3241        SourceLocation EqualLoc = Tok.getLocation();
3242
3243        // Parse the default argument
3244        if (D.getContext() == Declarator::MemberContext) {
3245          // If we're inside a class definition, cache the tokens
3246          // corresponding to the default argument. We'll actually parse
3247          // them when we see the end of the class definition.
3248          // FIXME: Templates will require something similar.
3249          // FIXME: Can we use a smart pointer for Toks?
3250          DefArgToks = new CachedTokens;
3251
3252          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3253                                    /*StopAtSemi=*/true,
3254                                    /*ConsumeFinalToken=*/false)) {
3255            delete DefArgToks;
3256            DefArgToks = 0;
3257            Actions.ActOnParamDefaultArgumentError(Param);
3258          } else {
3259            // Mark the end of the default argument so that we know when to
3260            // stop when we parse it later on.
3261            Token DefArgEnd;
3262            DefArgEnd.startToken();
3263            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3264            DefArgEnd.setLocation(Tok.getLocation());
3265            DefArgToks->push_back(DefArgEnd);
3266            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3267                                                (*DefArgToks)[1].getLocation());
3268          }
3269        } else {
3270          // Consume the '='.
3271          ConsumeToken();
3272
3273          // The argument isn't actually potentially evaluated unless it is
3274          // used.
3275          EnterExpressionEvaluationContext Eval(Actions,
3276                                              Sema::PotentiallyEvaluatedIfUsed);
3277
3278          ExprResult DefArgResult(ParseAssignmentExpression());
3279          if (DefArgResult.isInvalid()) {
3280            Actions.ActOnParamDefaultArgumentError(Param);
3281            SkipUntil(tok::comma, tok::r_paren, true, true);
3282          } else {
3283            // Inform the actions module about the default argument
3284            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3285                                              DefArgResult.take());
3286          }
3287        }
3288      }
3289
3290      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3291                                          ParmDecl.getIdentifierLoc(), Param,
3292                                          DefArgToks));
3293    }
3294
3295    // If the next token is a comma, consume it and keep reading arguments.
3296    if (Tok.isNot(tok::comma)) {
3297      if (Tok.is(tok::ellipsis)) {
3298        IsVariadic = true;
3299        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3300
3301        if (!getLang().CPlusPlus) {
3302          // We have ellipsis without a preceding ',', which is ill-formed
3303          // in C. Complain and provide the fix.
3304          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3305            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3306        }
3307      }
3308
3309      break;
3310    }
3311
3312    // Consume the comma.
3313    ConsumeToken();
3314  }
3315
3316  // If we have the closing ')', eat it.
3317  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3318  SourceLocation EndLoc = RParenLoc;
3319
3320  DeclSpec DS;
3321  bool hasExceptionSpec = false;
3322  SourceLocation ThrowLoc;
3323  bool hasAnyExceptionSpec = false;
3324  llvm::SmallVector<ParsedType, 2> Exceptions;
3325  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3326
3327  if (getLang().CPlusPlus) {
3328    // Parse cv-qualifier-seq[opt].
3329    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3330      if (!DS.getSourceRange().getEnd().isInvalid())
3331        EndLoc = DS.getSourceRange().getEnd();
3332
3333    // Parse exception-specification[opt].
3334    if (Tok.is(tok::kw_throw)) {
3335      hasExceptionSpec = true;
3336      ThrowLoc = Tok.getLocation();
3337      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3338                                  hasAnyExceptionSpec);
3339      assert(Exceptions.size() == ExceptionRanges.size() &&
3340             "Produced different number of exception types and ranges.");
3341    }
3342
3343    // Parse trailing-return-type.
3344    if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3345      TrailingReturnType = ParseTrailingReturnType().get();
3346    }
3347  }
3348
3349  // FIXME: We should leave the prototype scope before parsing the exception
3350  // specification, and then reenter it when parsing the trailing return type.
3351
3352  // Leave prototype scope.
3353  PrototypeScope.Exit();
3354
3355  // Remember that we parsed a function type, and remember the attributes.
3356  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
3357                                             EllipsisLoc,
3358                                             ParamInfo.data(), ParamInfo.size(),
3359                                             DS.getTypeQualifiers(),
3360                                             hasExceptionSpec, ThrowLoc,
3361                                             hasAnyExceptionSpec,
3362                                             Exceptions.data(),
3363                                             ExceptionRanges.data(),
3364                                             Exceptions.size(),
3365                                             LParenLoc, RParenLoc, D,
3366                                             TrailingReturnType),
3367                EndLoc);
3368}
3369
3370/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3371/// we found a K&R-style identifier list instead of a type argument list.  The
3372/// first identifier has already been consumed, and the current token is the
3373/// token right after it.
3374///
3375///       identifier-list: [C99 6.7.5]
3376///         identifier
3377///         identifier-list ',' identifier
3378///
3379void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3380                                                   IdentifierInfo *FirstIdent,
3381                                                   SourceLocation FirstIdentLoc,
3382                                                   Declarator &D) {
3383  // Build up an array of information about the parsed arguments.
3384  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3385  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3386
3387  // If there was no identifier specified for the declarator, either we are in
3388  // an abstract-declarator, or we are in a parameter declarator which was found
3389  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3390  // diagnose this.
3391  if (!D.getIdentifier())
3392    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3393
3394  // The first identifier was already read, and is known to be the first
3395  // identifier in the list.  Remember this identifier in ParamInfo.
3396  ParamsSoFar.insert(FirstIdent);
3397  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
3398
3399  while (Tok.is(tok::comma)) {
3400    // Eat the comma.
3401    ConsumeToken();
3402
3403    // If this isn't an identifier, report the error and skip until ')'.
3404    if (Tok.isNot(tok::identifier)) {
3405      Diag(Tok, diag::err_expected_ident);
3406      SkipUntil(tok::r_paren);
3407      return;
3408    }
3409
3410    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3411
3412    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3413    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3414      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3415
3416    // Verify that the argument identifier has not already been mentioned.
3417    if (!ParamsSoFar.insert(ParmII)) {
3418      Diag(Tok, diag::err_param_redefinition) << ParmII;
3419    } else {
3420      // Remember this identifier in ParamInfo.
3421      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3422                                                     Tok.getLocation(),
3423                                                     0));
3424    }
3425
3426    // Eat the identifier.
3427    ConsumeToken();
3428  }
3429
3430  // If we have the closing ')', eat it and we're done.
3431  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3432
3433  // Remember that we parsed a function type, and remember the attributes.  This
3434  // function type is always a K&R style function type, which is not varargs and
3435  // has no prototype.
3436  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
3437                                             SourceLocation(),
3438                                             &ParamInfo[0], ParamInfo.size(),
3439                                             /*TypeQuals*/0,
3440                                             /*exception*/false,
3441                                             SourceLocation(), false, 0, 0, 0,
3442                                             LParenLoc, RLoc, D),
3443                RLoc);
3444}
3445
3446/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3447/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3448/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3449/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3450/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3451void Parser::ParseBracketDeclarator(Declarator &D) {
3452  SourceLocation StartLoc = ConsumeBracket();
3453
3454  // C array syntax has many features, but by-far the most common is [] and [4].
3455  // This code does a fast path to handle some of the most obvious cases.
3456  if (Tok.getKind() == tok::r_square) {
3457    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3458    //FIXME: Use these
3459    CXX0XAttributeList Attr;
3460    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier(true)) {
3461      Attr = ParseCXX0XAttributes();
3462    }
3463
3464    // Remember that we parsed the empty array type.
3465    ExprResult NumElements;
3466    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
3467                                            StartLoc, EndLoc),
3468                  EndLoc);
3469    return;
3470  } else if (Tok.getKind() == tok::numeric_constant &&
3471             GetLookAheadToken(1).is(tok::r_square)) {
3472    // [4] is very common.  Parse the numeric constant expression.
3473    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3474    ConsumeToken();
3475
3476    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3477    //FIXME: Use these
3478    CXX0XAttributeList Attr;
3479    if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3480      Attr = ParseCXX0XAttributes();
3481    }
3482
3483    // If there was an error parsing the assignment-expression, recover.
3484    if (ExprRes.isInvalid())
3485      ExprRes.release();  // Deallocate expr, just use [].
3486
3487    // Remember that we parsed a array type, and remember its features.
3488    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
3489                                            StartLoc, EndLoc),
3490                  EndLoc);
3491    return;
3492  }
3493
3494  // If valid, this location is the position where we read the 'static' keyword.
3495  SourceLocation StaticLoc;
3496  if (Tok.is(tok::kw_static))
3497    StaticLoc = ConsumeToken();
3498
3499  // If there is a type-qualifier-list, read it now.
3500  // Type qualifiers in an array subscript are a C99 feature.
3501  DeclSpec DS;
3502  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3503
3504  // If we haven't already read 'static', check to see if there is one after the
3505  // type-qualifier-list.
3506  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3507    StaticLoc = ConsumeToken();
3508
3509  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3510  bool isStar = false;
3511  ExprResult NumElements;
3512
3513  // Handle the case where we have '[*]' as the array size.  However, a leading
3514  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3515  // the the token after the star is a ']'.  Since stars in arrays are
3516  // infrequent, use of lookahead is not costly here.
3517  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3518    ConsumeToken();  // Eat the '*'.
3519
3520    if (StaticLoc.isValid()) {
3521      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3522      StaticLoc = SourceLocation();  // Drop the static.
3523    }
3524    isStar = true;
3525  } else if (Tok.isNot(tok::r_square)) {
3526    // Note, in C89, this production uses the constant-expr production instead
3527    // of assignment-expr.  The only difference is that assignment-expr allows
3528    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3529    // are not i-c-e's, so we don't need to distinguish between the two here.
3530
3531    // Parse the constant-expression or assignment-expression now (depending
3532    // on dialect).
3533    if (getLang().CPlusPlus)
3534      NumElements = ParseConstantExpression();
3535    else
3536      NumElements = ParseAssignmentExpression();
3537  }
3538
3539  // If there was an error parsing the assignment-expression, recover.
3540  if (NumElements.isInvalid()) {
3541    D.setInvalidType(true);
3542    // If the expression was invalid, skip it.
3543    SkipUntil(tok::r_square);
3544    return;
3545  }
3546
3547  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3548
3549  //FIXME: Use these
3550  CXX0XAttributeList Attr;
3551  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3552    Attr = ParseCXX0XAttributes();
3553  }
3554
3555  // Remember that we parsed a array type, and remember its features.
3556  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
3557                                          StaticLoc.isValid(), isStar,
3558                                          NumElements.release(),
3559                                          StartLoc, EndLoc),
3560                EndLoc);
3561}
3562
3563/// [GNU]   typeof-specifier:
3564///           typeof ( expressions )
3565///           typeof ( type-name )
3566/// [GNU/C++] typeof unary-expression
3567///
3568void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3569  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3570  Token OpTok = Tok;
3571  SourceLocation StartLoc = ConsumeToken();
3572
3573  const bool hasParens = Tok.is(tok::l_paren);
3574
3575  bool isCastExpr;
3576  ParsedType CastTy;
3577  SourceRange CastRange;
3578  ExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
3579                                                         isCastExpr,
3580                                                         CastTy,
3581                                                         CastRange);
3582  if (hasParens)
3583    DS.setTypeofParensRange(CastRange);
3584
3585  if (CastRange.getEnd().isInvalid())
3586    // FIXME: Not accurate, the range gets one token more than it should.
3587    DS.SetRangeEnd(Tok.getLocation());
3588  else
3589    DS.SetRangeEnd(CastRange.getEnd());
3590
3591  if (isCastExpr) {
3592    if (!CastTy) {
3593      DS.SetTypeSpecError();
3594      return;
3595    }
3596
3597    const char *PrevSpec = 0;
3598    unsigned DiagID;
3599    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3600    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3601                           DiagID, CastTy))
3602      Diag(StartLoc, DiagID) << PrevSpec;
3603    return;
3604  }
3605
3606  // If we get here, the operand to the typeof was an expresion.
3607  if (Operand.isInvalid()) {
3608    DS.SetTypeSpecError();
3609    return;
3610  }
3611
3612  const char *PrevSpec = 0;
3613  unsigned DiagID;
3614  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3615  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3616                         DiagID, Operand.get()))
3617    Diag(StartLoc, DiagID) << PrevSpec;
3618}
3619
3620
3621/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
3622/// from TryAltiVecVectorToken.
3623bool Parser::TryAltiVecVectorTokenOutOfLine() {
3624  Token Next = NextToken();
3625  switch (Next.getKind()) {
3626  default: return false;
3627  case tok::kw_short:
3628  case tok::kw_long:
3629  case tok::kw_signed:
3630  case tok::kw_unsigned:
3631  case tok::kw_void:
3632  case tok::kw_char:
3633  case tok::kw_int:
3634  case tok::kw_float:
3635  case tok::kw_double:
3636  case tok::kw_bool:
3637  case tok::kw___pixel:
3638    Tok.setKind(tok::kw___vector);
3639    return true;
3640  case tok::identifier:
3641    if (Next.getIdentifierInfo() == Ident_pixel) {
3642      Tok.setKind(tok::kw___vector);
3643      return true;
3644    }
3645    return false;
3646  }
3647}
3648
3649bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
3650                                      const char *&PrevSpec, unsigned &DiagID,
3651                                      bool &isInvalid) {
3652  if (Tok.getIdentifierInfo() == Ident_vector) {
3653    Token Next = NextToken();
3654    switch (Next.getKind()) {
3655    case tok::kw_short:
3656    case tok::kw_long:
3657    case tok::kw_signed:
3658    case tok::kw_unsigned:
3659    case tok::kw_void:
3660    case tok::kw_char:
3661    case tok::kw_int:
3662    case tok::kw_float:
3663    case tok::kw_double:
3664    case tok::kw_bool:
3665    case tok::kw___pixel:
3666      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3667      return true;
3668    case tok::identifier:
3669      if (Next.getIdentifierInfo() == Ident_pixel) {
3670        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3671        return true;
3672      }
3673      break;
3674    default:
3675      break;
3676    }
3677  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
3678             DS.isTypeAltiVecVector()) {
3679    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
3680    return true;
3681  }
3682  return false;
3683}
3684
3685