ParseDecl.cpp revision 3507369940bfb269551bfa1fec812481f60e3552
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
232  switch (Tok.getKind()) {
233  case tok::kw_export:
234  case tok::kw_template:
235    return ParseTemplateDeclarationOrSpecialization(Context);
236  case tok::kw_namespace:
237    return ParseNamespace(Context);
238  case tok::kw_using:
239    return ParseUsingDirectiveOrDeclaration(Context);
240  case tok::kw_static_assert:
241    return ParseStaticAssertDeclaration();
242  default:
243    return ParseSimpleDeclaration(Context);
244  }
245}
246
247///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
248///         declaration-specifiers init-declarator-list[opt] ';'
249///[C90/C++]init-declarator-list ';'                             [TODO]
250/// [OMP]   threadprivate-directive                              [TODO]
251Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
252  // Parse the common declaration-specifiers piece.
253  DeclSpec DS;
254  ParseDeclarationSpecifiers(DS);
255
256  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
257  // declaration-specifiers init-declarator-list[opt] ';'
258  if (Tok.is(tok::semi)) {
259    ConsumeToken();
260    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
261  }
262
263  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
264  ParseDeclarator(DeclaratorInfo);
265
266  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
267}
268
269
270/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
271/// parsing 'declaration-specifiers declarator'.  This method is split out this
272/// way to handle the ambiguity between top-level function-definitions and
273/// declarations.
274///
275///       init-declarator-list: [C99 6.7]
276///         init-declarator
277///         init-declarator-list ',' init-declarator
278///       init-declarator: [C99 6.7]
279///         declarator
280///         declarator '=' initializer
281/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
282/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
283/// [C++]   declarator initializer[opt]
284///
285/// [C++] initializer:
286/// [C++]   '=' initializer-clause
287/// [C++]   '(' expression-list ')'
288/// [C++0x] '=' 'default'                                                [TODO]
289/// [C++0x] '=' 'delete'
290///
291/// According to the standard grammar, =default and =delete are function
292/// definitions, but that definitely doesn't fit with the parser here.
293///
294Parser::DeclTy *Parser::
295ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
296
297  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
298  // that they can be chained properly if the actions want this.
299  Parser::DeclTy *LastDeclInGroup = 0;
300
301  // At this point, we know that it is not a function definition.  Parse the
302  // rest of the init-declarator-list.
303  while (1) {
304    // If a simple-asm-expr is present, parse it.
305    if (Tok.is(tok::kw_asm)) {
306      SourceLocation Loc;
307      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
308      if (AsmLabel.isInvalid()) {
309        SkipUntil(tok::semi);
310        return 0;
311      }
312
313      D.setAsmLabel(AsmLabel.release());
314      D.SetRangeEnd(Loc);
315    }
316
317    // If attributes are present, parse them.
318    if (Tok.is(tok::kw___attribute)) {
319      SourceLocation Loc;
320      AttributeList *AttrList = ParseAttributes(&Loc);
321      D.AddAttributes(AttrList, Loc);
322    }
323
324    // Inform the current actions module that we just parsed this declarator.
325    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
326
327    // Parse declarator '=' initializer.
328    if (Tok.is(tok::equal)) {
329      ConsumeToken();
330      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
331        SourceLocation DelLoc = ConsumeToken();
332        Actions.SetDeclDeleted(LastDeclInGroup, DelLoc);
333      } else {
334        OwningExprResult Init(ParseInitializer());
335        if (Init.isInvalid()) {
336          SkipUntil(tok::semi);
337          return 0;
338        }
339        Actions.AddInitializerToDecl(LastDeclInGroup, move(Init));
340      }
341    } else if (Tok.is(tok::l_paren)) {
342      // Parse C++ direct initializer: '(' expression-list ')'
343      SourceLocation LParenLoc = ConsumeParen();
344      ExprVector Exprs(Actions);
345      CommaLocsTy CommaLocs;
346
347      bool InvalidExpr = false;
348      if (ParseExpressionList(Exprs, CommaLocs)) {
349        SkipUntil(tok::r_paren);
350        InvalidExpr = true;
351      }
352      // Match the ')'.
353      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
354
355      if (!InvalidExpr) {
356        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
357               "Unexpected number of commas!");
358        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
359                                              move_arg(Exprs),
360                                              &CommaLocs[0], RParenLoc);
361      }
362    } else {
363      Actions.ActOnUninitializedDecl(LastDeclInGroup);
364    }
365
366    // If we don't have a comma, it is either the end of the list (a ';') or an
367    // error, bail out.
368    if (Tok.isNot(tok::comma))
369      break;
370
371    // Consume the comma.
372    ConsumeToken();
373
374    // Parse the next declarator.
375    D.clear();
376
377    // Accept attributes in an init-declarator.  In the first declarator in a
378    // declaration, these would be part of the declspec.  In subsequent
379    // declarators, they become part of the declarator itself, so that they
380    // don't apply to declarators after *this* one.  Examples:
381    //    short __attribute__((common)) var;    -> declspec
382    //    short var __attribute__((common));    -> declarator
383    //    short x, __attribute__((common)) var;    -> declarator
384    if (Tok.is(tok::kw___attribute)) {
385      SourceLocation Loc;
386      AttributeList *AttrList = ParseAttributes(&Loc);
387      D.AddAttributes(AttrList, Loc);
388    }
389
390    ParseDeclarator(D);
391  }
392
393  if (Tok.is(tok::semi)) {
394    ConsumeToken();
395    // for(is key; in keys) is error.
396    if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
397      Diag(Tok, diag::err_parse_error);
398      return 0;
399    }
400    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
401  }
402  // If this is an ObjC2 for-each loop, this is a successful declarator
403  // parse.  The syntax for these looks like:
404  // 'for' '(' declaration 'in' expr ')' statement
405  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
406    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
407  }
408  Diag(Tok, diag::err_parse_error);
409  // Skip to end of block or statement
410  SkipUntil(tok::r_brace, true, true);
411  if (Tok.is(tok::semi))
412    ConsumeToken();
413  return 0;
414}
415
416/// ParseSpecifierQualifierList
417///        specifier-qualifier-list:
418///          type-specifier specifier-qualifier-list[opt]
419///          type-qualifier specifier-qualifier-list[opt]
420/// [GNU]    attributes     specifier-qualifier-list[opt]
421///
422void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
423  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
424  /// parse declaration-specifiers and complain about extra stuff.
425  ParseDeclarationSpecifiers(DS);
426
427  // Validate declspec for type-name.
428  unsigned Specs = DS.getParsedSpecifiers();
429  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
430    Diag(Tok, diag::err_typename_requires_specqual);
431
432  // Issue diagnostic and remove storage class if present.
433  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
434    if (DS.getStorageClassSpecLoc().isValid())
435      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
436    else
437      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
438    DS.ClearStorageClassSpecs();
439  }
440
441  // Issue diagnostic and remove function specfier if present.
442  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
443    if (DS.isInlineSpecified())
444      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
445    if (DS.isVirtualSpecified())
446      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
447    if (DS.isExplicitSpecified())
448      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
449    DS.ClearFunctionSpecs();
450  }
451}
452
453/// ParseDeclarationSpecifiers
454///       declaration-specifiers: [C99 6.7]
455///         storage-class-specifier declaration-specifiers[opt]
456///         type-specifier declaration-specifiers[opt]
457/// [C99]   function-specifier declaration-specifiers[opt]
458/// [GNU]   attributes declaration-specifiers[opt]
459///
460///       storage-class-specifier: [C99 6.7.1]
461///         'typedef'
462///         'extern'
463///         'static'
464///         'auto'
465///         'register'
466/// [C++]   'mutable'
467/// [GNU]   '__thread'
468///       function-specifier: [C99 6.7.4]
469/// [C99]   'inline'
470/// [C++]   'virtual'
471/// [C++]   'explicit'
472///
473void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
474                                        TemplateParameterLists *TemplateParams,
475                                        AccessSpecifier AS){
476  DS.SetRangeStart(Tok.getLocation());
477  while (1) {
478    int isInvalid = false;
479    const char *PrevSpec = 0;
480    SourceLocation Loc = Tok.getLocation();
481
482    switch (Tok.getKind()) {
483    default:
484    DoneWithDeclSpec:
485      // If this is not a declaration specifier token, we're done reading decl
486      // specifiers.  First verify that DeclSpec's are consistent.
487      DS.Finish(Diags, PP.getSourceManager(), getLang());
488      return;
489
490    case tok::coloncolon: // ::foo::bar
491      // Annotate C++ scope specifiers.  If we get one, loop.
492      if (TryAnnotateCXXScopeToken())
493        continue;
494      goto DoneWithDeclSpec;
495
496    case tok::annot_cxxscope: {
497      if (DS.hasTypeSpecifier())
498        goto DoneWithDeclSpec;
499
500      // We are looking for a qualified typename.
501      Token Next = NextToken();
502      if (Next.is(tok::annot_template_id) &&
503          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
504          ->Kind == TNK_Class_template) {
505        // We have a qualified template-id, e.g., N::A<int>
506        CXXScopeSpec SS;
507        ParseOptionalCXXScopeSpecifier(SS);
508        assert(Tok.is(tok::annot_template_id) &&
509               "ParseOptionalCXXScopeSpecifier not working");
510        AnnotateTemplateIdTokenAsType(&SS);
511        continue;
512      }
513
514      if (Next.isNot(tok::identifier))
515        goto DoneWithDeclSpec;
516
517      CXXScopeSpec SS;
518      SS.setScopeRep(Tok.getAnnotationValue());
519      SS.setRange(Tok.getAnnotationRange());
520
521      // If the next token is the name of the class type that the C++ scope
522      // denotes, followed by a '(', then this is a constructor declaration.
523      // We're done with the decl-specifiers.
524      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
525                                     CurScope, &SS) &&
526          GetLookAheadToken(2).is(tok::l_paren))
527        goto DoneWithDeclSpec;
528
529      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
530                                            Next.getLocation(), CurScope, &SS);
531
532      if (TypeRep == 0)
533        goto DoneWithDeclSpec;
534
535      ConsumeToken(); // The C++ scope.
536
537      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
538                                     TypeRep);
539      if (isInvalid)
540        break;
541
542      DS.SetRangeEnd(Tok.getLocation());
543      ConsumeToken(); // The typename.
544
545      continue;
546    }
547
548    case tok::annot_typename: {
549      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
550                                     Tok.getAnnotationValue());
551      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
552      ConsumeToken(); // The typename
553
554      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
555      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
556      // Objective-C interface.  If we don't have Objective-C or a '<', this is
557      // just a normal reference to a typedef name.
558      if (!Tok.is(tok::less) || !getLang().ObjC1)
559        continue;
560
561      SourceLocation EndProtoLoc;
562      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
563      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
564      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
565
566      DS.SetRangeEnd(EndProtoLoc);
567      continue;
568    }
569
570      // typedef-name
571    case tok::identifier: {
572      // In C++, check to see if this is a scope specifier like foo::bar::, if
573      // so handle it as such.  This is important for ctor parsing.
574      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
575        continue;
576
577      // This identifier can only be a typedef name if we haven't already seen
578      // a type-specifier.  Without this check we misparse:
579      //  typedef int X; struct Y { short X; };  as 'short int'.
580      if (DS.hasTypeSpecifier())
581        goto DoneWithDeclSpec;
582
583      // It has to be available as a typedef too!
584      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
585                                            Tok.getLocation(), CurScope);
586
587      if (TypeRep == 0)
588        goto DoneWithDeclSpec;
589
590      // C++: If the identifier is actually the name of the class type
591      // being defined and the next token is a '(', then this is a
592      // constructor declaration. We're done with the decl-specifiers
593      // and will treat this token as an identifier.
594      if (getLang().CPlusPlus &&
595          CurScope->isClassScope() &&
596          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
597          NextToken().getKind() == tok::l_paren)
598        goto DoneWithDeclSpec;
599
600      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
601                                     TypeRep);
602      if (isInvalid)
603        break;
604
605      DS.SetRangeEnd(Tok.getLocation());
606      ConsumeToken(); // The identifier
607
608      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
609      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
610      // Objective-C interface.  If we don't have Objective-C or a '<', this is
611      // just a normal reference to a typedef name.
612      if (!Tok.is(tok::less) || !getLang().ObjC1)
613        continue;
614
615      SourceLocation EndProtoLoc;
616      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
617      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
618      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
619
620      DS.SetRangeEnd(EndProtoLoc);
621
622      // Need to support trailing type qualifiers (e.g. "id<p> const").
623      // If a type specifier follows, it will be diagnosed elsewhere.
624      continue;
625    }
626
627      // type-name
628    case tok::annot_template_id: {
629      TemplateIdAnnotation *TemplateId
630        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
631      if (TemplateId->Kind != TNK_Class_template) {
632        // This template-id does not refer to a type name, so we're
633        // done with the type-specifiers.
634        goto DoneWithDeclSpec;
635      }
636
637      // Turn the template-id annotation token into a type annotation
638      // token, then try again to parse it as a type-specifier.
639      if (AnnotateTemplateIdTokenAsType())
640        DS.SetTypeSpecError();
641
642      continue;
643    }
644
645    // GNU attributes support.
646    case tok::kw___attribute:
647      DS.AddAttributes(ParseAttributes());
648      continue;
649
650    // Microsoft declspec support.
651    case tok::kw___declspec:
652      if (!PP.getLangOptions().Microsoft)
653        goto DoneWithDeclSpec;
654      FuzzyParseMicrosoftDeclSpec();
655      continue;
656
657    // Microsoft single token adornments.
658    case tok::kw___forceinline:
659    case tok::kw___w64:
660    case tok::kw___cdecl:
661    case tok::kw___stdcall:
662    case tok::kw___fastcall:
663      if (!PP.getLangOptions().Microsoft)
664        goto DoneWithDeclSpec;
665      // Just ignore it.
666      break;
667
668    // storage-class-specifier
669    case tok::kw_typedef:
670      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
671      break;
672    case tok::kw_extern:
673      if (DS.isThreadSpecified())
674        Diag(Tok, diag::ext_thread_before) << "extern";
675      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
676      break;
677    case tok::kw___private_extern__:
678      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
679                                         PrevSpec);
680      break;
681    case tok::kw_static:
682      if (DS.isThreadSpecified())
683        Diag(Tok, diag::ext_thread_before) << "static";
684      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
685      break;
686    case tok::kw_auto:
687      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
688      break;
689    case tok::kw_register:
690      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
691      break;
692    case tok::kw_mutable:
693      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
694      break;
695    case tok::kw___thread:
696      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
697      break;
698
699      continue;
700
701    // function-specifier
702    case tok::kw_inline:
703      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
704      break;
705    case tok::kw_virtual:
706      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
707      break;
708    case tok::kw_explicit:
709      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
710      break;
711
712    // type-specifier
713    case tok::kw_short:
714      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
715      break;
716    case tok::kw_long:
717      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
718        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
719      else
720        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
721      break;
722    case tok::kw_signed:
723      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
724      break;
725    case tok::kw_unsigned:
726      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
727      break;
728    case tok::kw__Complex:
729      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
730      break;
731    case tok::kw__Imaginary:
732      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
733      break;
734    case tok::kw_void:
735      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
736      break;
737    case tok::kw_char:
738      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
739      break;
740    case tok::kw_int:
741      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
742      break;
743    case tok::kw_float:
744      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
745      break;
746    case tok::kw_double:
747      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
748      break;
749    case tok::kw_wchar_t:
750      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
751      break;
752    case tok::kw_bool:
753    case tok::kw__Bool:
754      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
755      break;
756    case tok::kw__Decimal32:
757      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
758      break;
759    case tok::kw__Decimal64:
760      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
761      break;
762    case tok::kw__Decimal128:
763      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
764      break;
765
766    // class-specifier:
767    case tok::kw_class:
768    case tok::kw_struct:
769    case tok::kw_union:
770      ParseClassSpecifier(DS, TemplateParams, AS);
771      continue;
772
773    // enum-specifier:
774    case tok::kw_enum:
775      ParseEnumSpecifier(DS, AS);
776      continue;
777
778    // cv-qualifier:
779    case tok::kw_const:
780      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
781      break;
782    case tok::kw_volatile:
783      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
784                                 getLang())*2;
785      break;
786    case tok::kw_restrict:
787      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
788                                 getLang())*2;
789      break;
790
791    // GNU typeof support.
792    case tok::kw_typeof:
793      ParseTypeofSpecifier(DS);
794      continue;
795
796    case tok::less:
797      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
798      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
799      // but we support it.
800      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
801        goto DoneWithDeclSpec;
802
803      {
804        SourceLocation EndProtoLoc;
805        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
806        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
807        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
808        DS.SetRangeEnd(EndProtoLoc);
809
810        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
811          << SourceRange(Loc, EndProtoLoc);
812        // Need to support trailing type qualifiers (e.g. "id<p> const").
813        // If a type specifier follows, it will be diagnosed elsewhere.
814        continue;
815      }
816    }
817    // If the specifier combination wasn't legal, issue a diagnostic.
818    if (isInvalid) {
819      assert(PrevSpec && "Method did not return previous specifier!");
820      // Pick between error or extwarn.
821      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
822                                       : diag::ext_duplicate_declspec;
823      Diag(Tok, DiagID) << PrevSpec;
824    }
825    DS.SetRangeEnd(Tok.getLocation());
826    ConsumeToken();
827  }
828}
829
830/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
831/// primarily follow the C++ grammar with additions for C99 and GNU,
832/// which together subsume the C grammar. Note that the C++
833/// type-specifier also includes the C type-qualifier (for const,
834/// volatile, and C99 restrict). Returns true if a type-specifier was
835/// found (and parsed), false otherwise.
836///
837///       type-specifier: [C++ 7.1.5]
838///         simple-type-specifier
839///         class-specifier
840///         enum-specifier
841///         elaborated-type-specifier  [TODO]
842///         cv-qualifier
843///
844///       cv-qualifier: [C++ 7.1.5.1]
845///         'const'
846///         'volatile'
847/// [C99]   'restrict'
848///
849///       simple-type-specifier: [ C++ 7.1.5.2]
850///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
851///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
852///         'char'
853///         'wchar_t'
854///         'bool'
855///         'short'
856///         'int'
857///         'long'
858///         'signed'
859///         'unsigned'
860///         'float'
861///         'double'
862///         'void'
863/// [C99]   '_Bool'
864/// [C99]   '_Complex'
865/// [C99]   '_Imaginary'  // Removed in TC2?
866/// [GNU]   '_Decimal32'
867/// [GNU]   '_Decimal64'
868/// [GNU]   '_Decimal128'
869/// [GNU]   typeof-specifier
870/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
871/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
872bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
873                                        const char *&PrevSpec,
874                                        TemplateParameterLists *TemplateParams){
875  SourceLocation Loc = Tok.getLocation();
876
877  switch (Tok.getKind()) {
878  case tok::identifier:   // foo::bar
879    // Annotate typenames and C++ scope specifiers.  If we get one, just
880    // recurse to handle whatever we get.
881    if (TryAnnotateTypeOrScopeToken())
882      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
883    // Otherwise, not a type specifier.
884    return false;
885  case tok::coloncolon:   // ::foo::bar
886    if (NextToken().is(tok::kw_new) ||    // ::new
887        NextToken().is(tok::kw_delete))   // ::delete
888      return false;
889
890    // Annotate typenames and C++ scope specifiers.  If we get one, just
891    // recurse to handle whatever we get.
892    if (TryAnnotateTypeOrScopeToken())
893      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
894    // Otherwise, not a type specifier.
895    return false;
896
897  // simple-type-specifier:
898  case tok::annot_typename: {
899    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
900                                   Tok.getAnnotationValue());
901    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
902    ConsumeToken(); // The typename
903
904    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
905    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
906    // Objective-C interface.  If we don't have Objective-C or a '<', this is
907    // just a normal reference to a typedef name.
908    if (!Tok.is(tok::less) || !getLang().ObjC1)
909      return true;
910
911    SourceLocation EndProtoLoc;
912    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
913    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
914    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
915
916    DS.SetRangeEnd(EndProtoLoc);
917    return true;
918  }
919
920  case tok::kw_short:
921    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
922    break;
923  case tok::kw_long:
924    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
925      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
926    else
927      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
928    break;
929  case tok::kw_signed:
930    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
931    break;
932  case tok::kw_unsigned:
933    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
934    break;
935  case tok::kw__Complex:
936    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
937    break;
938  case tok::kw__Imaginary:
939    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
940    break;
941  case tok::kw_void:
942    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
943    break;
944  case tok::kw_char:
945    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
946    break;
947  case tok::kw_int:
948    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
949    break;
950  case tok::kw_float:
951    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
952    break;
953  case tok::kw_double:
954    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
955    break;
956  case tok::kw_wchar_t:
957    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
958    break;
959  case tok::kw_bool:
960  case tok::kw__Bool:
961    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
962    break;
963  case tok::kw__Decimal32:
964    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
965    break;
966  case tok::kw__Decimal64:
967    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
968    break;
969  case tok::kw__Decimal128:
970    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
971    break;
972
973  // class-specifier:
974  case tok::kw_class:
975  case tok::kw_struct:
976  case tok::kw_union:
977    ParseClassSpecifier(DS, TemplateParams);
978    return true;
979
980  // enum-specifier:
981  case tok::kw_enum:
982    ParseEnumSpecifier(DS);
983    return true;
984
985  // cv-qualifier:
986  case tok::kw_const:
987    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
988                               getLang())*2;
989    break;
990  case tok::kw_volatile:
991    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
992                               getLang())*2;
993    break;
994  case tok::kw_restrict:
995    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
996                               getLang())*2;
997    break;
998
999  // GNU typeof support.
1000  case tok::kw_typeof:
1001    ParseTypeofSpecifier(DS);
1002    return true;
1003
1004  case tok::kw___cdecl:
1005  case tok::kw___stdcall:
1006  case tok::kw___fastcall:
1007    if (!PP.getLangOptions().Microsoft) return false;
1008    ConsumeToken();
1009    return true;
1010
1011  default:
1012    // Not a type-specifier; do nothing.
1013    return false;
1014  }
1015
1016  // If the specifier combination wasn't legal, issue a diagnostic.
1017  if (isInvalid) {
1018    assert(PrevSpec && "Method did not return previous specifier!");
1019    // Pick between error or extwarn.
1020    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1021                                     : diag::ext_duplicate_declspec;
1022    Diag(Tok, DiagID) << PrevSpec;
1023  }
1024  DS.SetRangeEnd(Tok.getLocation());
1025  ConsumeToken(); // whatever we parsed above.
1026  return true;
1027}
1028
1029/// ParseStructDeclaration - Parse a struct declaration without the terminating
1030/// semicolon.
1031///
1032///       struct-declaration:
1033///         specifier-qualifier-list struct-declarator-list
1034/// [GNU]   __extension__ struct-declaration
1035/// [GNU]   specifier-qualifier-list
1036///       struct-declarator-list:
1037///         struct-declarator
1038///         struct-declarator-list ',' struct-declarator
1039/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1040///       struct-declarator:
1041///         declarator
1042/// [GNU]   declarator attributes[opt]
1043///         declarator[opt] ':' constant-expression
1044/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1045///
1046void Parser::
1047ParseStructDeclaration(DeclSpec &DS,
1048                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1049  if (Tok.is(tok::kw___extension__)) {
1050    // __extension__ silences extension warnings in the subexpression.
1051    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1052    ConsumeToken();
1053    return ParseStructDeclaration(DS, Fields);
1054  }
1055
1056  // Parse the common specifier-qualifiers-list piece.
1057  SourceLocation DSStart = Tok.getLocation();
1058  ParseSpecifierQualifierList(DS);
1059
1060  // If there are no declarators, this is a free-standing declaration
1061  // specifier. Let the actions module cope with it.
1062  if (Tok.is(tok::semi)) {
1063    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1064    return;
1065  }
1066
1067  // Read struct-declarators until we find the semicolon.
1068  Fields.push_back(FieldDeclarator(DS));
1069  while (1) {
1070    FieldDeclarator &DeclaratorInfo = Fields.back();
1071
1072    /// struct-declarator: declarator
1073    /// struct-declarator: declarator[opt] ':' constant-expression
1074    if (Tok.isNot(tok::colon))
1075      ParseDeclarator(DeclaratorInfo.D);
1076
1077    if (Tok.is(tok::colon)) {
1078      ConsumeToken();
1079      OwningExprResult Res(ParseConstantExpression());
1080      if (Res.isInvalid())
1081        SkipUntil(tok::semi, true, true);
1082      else
1083        DeclaratorInfo.BitfieldSize = Res.release();
1084    }
1085
1086    // If attributes exist after the declarator, parse them.
1087    if (Tok.is(tok::kw___attribute)) {
1088      SourceLocation Loc;
1089      AttributeList *AttrList = ParseAttributes(&Loc);
1090      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1091    }
1092
1093    // If we don't have a comma, it is either the end of the list (a ';')
1094    // or an error, bail out.
1095    if (Tok.isNot(tok::comma))
1096      return;
1097
1098    // Consume the comma.
1099    ConsumeToken();
1100
1101    // Parse the next declarator.
1102    Fields.push_back(FieldDeclarator(DS));
1103
1104    // Attributes are only allowed on the second declarator.
1105    if (Tok.is(tok::kw___attribute)) {
1106      SourceLocation Loc;
1107      AttributeList *AttrList = ParseAttributes(&Loc);
1108      Fields.back().D.AddAttributes(AttrList, Loc);
1109    }
1110  }
1111}
1112
1113/// ParseStructUnionBody
1114///       struct-contents:
1115///         struct-declaration-list
1116/// [EXT]   empty
1117/// [GNU]   "struct-declaration-list" without terminatoring ';'
1118///       struct-declaration-list:
1119///         struct-declaration
1120///         struct-declaration-list struct-declaration
1121/// [OBC]   '@' 'defs' '(' class-name ')'
1122///
1123void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1124                                  unsigned TagType, DeclTy *TagDecl) {
1125  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1126                                        PP.getSourceManager(),
1127                                        "parsing struct/union body");
1128
1129  SourceLocation LBraceLoc = ConsumeBrace();
1130
1131  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1132  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1133
1134  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1135  // C++.
1136  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1137    Diag(Tok, diag::ext_empty_struct_union_enum)
1138      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1139
1140  llvm::SmallVector<DeclTy*, 32> FieldDecls;
1141  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1142
1143  // While we still have something to read, read the declarations in the struct.
1144  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1145    // Each iteration of this loop reads one struct-declaration.
1146
1147    // Check for extraneous top-level semicolon.
1148    if (Tok.is(tok::semi)) {
1149      Diag(Tok, diag::ext_extra_struct_semi);
1150      ConsumeToken();
1151      continue;
1152    }
1153
1154    // Parse all the comma separated declarators.
1155    DeclSpec DS;
1156    FieldDeclarators.clear();
1157    if (!Tok.is(tok::at)) {
1158      ParseStructDeclaration(DS, FieldDeclarators);
1159
1160      // Convert them all to fields.
1161      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1162        FieldDeclarator &FD = FieldDeclarators[i];
1163        // Install the declarator into the current TagDecl.
1164        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
1165                                           DS.getSourceRange().getBegin(),
1166                                           FD.D, FD.BitfieldSize);
1167        FieldDecls.push_back(Field);
1168      }
1169    } else { // Handle @defs
1170      ConsumeToken();
1171      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1172        Diag(Tok, diag::err_unexpected_at);
1173        SkipUntil(tok::semi, true, true);
1174        continue;
1175      }
1176      ConsumeToken();
1177      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1178      if (!Tok.is(tok::identifier)) {
1179        Diag(Tok, diag::err_expected_ident);
1180        SkipUntil(tok::semi, true, true);
1181        continue;
1182      }
1183      llvm::SmallVector<DeclTy*, 16> Fields;
1184      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1185                        Tok.getIdentifierInfo(), Fields);
1186      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1187      ConsumeToken();
1188      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1189    }
1190
1191    if (Tok.is(tok::semi)) {
1192      ConsumeToken();
1193    } else if (Tok.is(tok::r_brace)) {
1194      Diag(Tok, diag::ext_expected_semi_decl_list);
1195      break;
1196    } else {
1197      Diag(Tok, diag::err_expected_semi_decl_list);
1198      // Skip to end of block or statement
1199      SkipUntil(tok::r_brace, true, true);
1200    }
1201  }
1202
1203  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1204
1205  AttributeList *AttrList = 0;
1206  // If attributes exist after struct contents, parse them.
1207  if (Tok.is(tok::kw___attribute))
1208    AttrList = ParseAttributes();
1209
1210  Actions.ActOnFields(CurScope,
1211                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1212                      LBraceLoc, RBraceLoc,
1213                      AttrList);
1214  StructScope.Exit();
1215  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1216}
1217
1218
1219/// ParseEnumSpecifier
1220///       enum-specifier: [C99 6.7.2.2]
1221///         'enum' identifier[opt] '{' enumerator-list '}'
1222///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1223/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1224///                                                 '}' attributes[opt]
1225///         'enum' identifier
1226/// [GNU]   'enum' attributes[opt] identifier
1227///
1228/// [C++] elaborated-type-specifier:
1229/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1230///
1231void Parser::ParseEnumSpecifier(DeclSpec &DS, AccessSpecifier AS) {
1232  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1233  SourceLocation StartLoc = ConsumeToken();
1234
1235  // Parse the tag portion of this.
1236
1237  AttributeList *Attr = 0;
1238  // If attributes exist after tag, parse them.
1239  if (Tok.is(tok::kw___attribute))
1240    Attr = ParseAttributes();
1241
1242  CXXScopeSpec SS;
1243  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1244    if (Tok.isNot(tok::identifier)) {
1245      Diag(Tok, diag::err_expected_ident);
1246      if (Tok.isNot(tok::l_brace)) {
1247        // Has no name and is not a definition.
1248        // Skip the rest of this declarator, up until the comma or semicolon.
1249        SkipUntil(tok::comma, true);
1250        return;
1251      }
1252    }
1253  }
1254
1255  // Must have either 'enum name' or 'enum {...}'.
1256  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1257    Diag(Tok, diag::err_expected_ident_lbrace);
1258
1259    // Skip the rest of this declarator, up until the comma or semicolon.
1260    SkipUntil(tok::comma, true);
1261    return;
1262  }
1263
1264  // If an identifier is present, consume and remember it.
1265  IdentifierInfo *Name = 0;
1266  SourceLocation NameLoc;
1267  if (Tok.is(tok::identifier)) {
1268    Name = Tok.getIdentifierInfo();
1269    NameLoc = ConsumeToken();
1270  }
1271
1272  // There are three options here.  If we have 'enum foo;', then this is a
1273  // forward declaration.  If we have 'enum foo {...' then this is a
1274  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1275  //
1276  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1277  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1278  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1279  //
1280  Action::TagKind TK;
1281  if (Tok.is(tok::l_brace))
1282    TK = Action::TK_Definition;
1283  else if (Tok.is(tok::semi))
1284    TK = Action::TK_Declaration;
1285  else
1286    TK = Action::TK_Reference;
1287  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1288                                     SS, Name, NameLoc, Attr, AS);
1289
1290  if (Tok.is(tok::l_brace))
1291    ParseEnumBody(StartLoc, TagDecl);
1292
1293  // TODO: semantic analysis on the declspec for enums.
1294  const char *PrevSpec = 0;
1295  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1296    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1297}
1298
1299/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1300///       enumerator-list:
1301///         enumerator
1302///         enumerator-list ',' enumerator
1303///       enumerator:
1304///         enumeration-constant
1305///         enumeration-constant '=' constant-expression
1306///       enumeration-constant:
1307///         identifier
1308///
1309void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1310  // Enter the scope of the enum body and start the definition.
1311  ParseScope EnumScope(this, Scope::DeclScope);
1312  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1313
1314  SourceLocation LBraceLoc = ConsumeBrace();
1315
1316  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1317  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1318    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1319
1320  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1321
1322  DeclTy *LastEnumConstDecl = 0;
1323
1324  // Parse the enumerator-list.
1325  while (Tok.is(tok::identifier)) {
1326    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1327    SourceLocation IdentLoc = ConsumeToken();
1328
1329    SourceLocation EqualLoc;
1330    OwningExprResult AssignedVal(Actions);
1331    if (Tok.is(tok::equal)) {
1332      EqualLoc = ConsumeToken();
1333      AssignedVal = ParseConstantExpression();
1334      if (AssignedVal.isInvalid())
1335        SkipUntil(tok::comma, tok::r_brace, true, true);
1336    }
1337
1338    // Install the enumerator constant into EnumDecl.
1339    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1340                                                      LastEnumConstDecl,
1341                                                      IdentLoc, Ident,
1342                                                      EqualLoc,
1343                                                      AssignedVal.release());
1344    EnumConstantDecls.push_back(EnumConstDecl);
1345    LastEnumConstDecl = EnumConstDecl;
1346
1347    if (Tok.isNot(tok::comma))
1348      break;
1349    SourceLocation CommaLoc = ConsumeToken();
1350
1351    if (Tok.isNot(tok::identifier) && !getLang().C99)
1352      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1353  }
1354
1355  // Eat the }.
1356  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1357
1358  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1359                        EnumConstantDecls.size());
1360
1361  DeclTy *AttrList = 0;
1362  // If attributes exist after the identifier list, parse them.
1363  if (Tok.is(tok::kw___attribute))
1364    AttrList = ParseAttributes(); // FIXME: where do they do?
1365
1366  EnumScope.Exit();
1367  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1368}
1369
1370/// isTypeSpecifierQualifier - Return true if the current token could be the
1371/// start of a type-qualifier-list.
1372bool Parser::isTypeQualifier() const {
1373  switch (Tok.getKind()) {
1374  default: return false;
1375    // type-qualifier
1376  case tok::kw_const:
1377  case tok::kw_volatile:
1378  case tok::kw_restrict:
1379    return true;
1380  }
1381}
1382
1383/// isTypeSpecifierQualifier - Return true if the current token could be the
1384/// start of a specifier-qualifier-list.
1385bool Parser::isTypeSpecifierQualifier() {
1386  switch (Tok.getKind()) {
1387  default: return false;
1388
1389  case tok::identifier:   // foo::bar
1390    // Annotate typenames and C++ scope specifiers.  If we get one, just
1391    // recurse to handle whatever we get.
1392    if (TryAnnotateTypeOrScopeToken())
1393      return isTypeSpecifierQualifier();
1394    // Otherwise, not a type specifier.
1395    return false;
1396  case tok::coloncolon:   // ::foo::bar
1397    if (NextToken().is(tok::kw_new) ||    // ::new
1398        NextToken().is(tok::kw_delete))   // ::delete
1399      return false;
1400
1401    // Annotate typenames and C++ scope specifiers.  If we get one, just
1402    // recurse to handle whatever we get.
1403    if (TryAnnotateTypeOrScopeToken())
1404      return isTypeSpecifierQualifier();
1405    // Otherwise, not a type specifier.
1406    return false;
1407
1408    // GNU attributes support.
1409  case tok::kw___attribute:
1410    // GNU typeof support.
1411  case tok::kw_typeof:
1412
1413    // type-specifiers
1414  case tok::kw_short:
1415  case tok::kw_long:
1416  case tok::kw_signed:
1417  case tok::kw_unsigned:
1418  case tok::kw__Complex:
1419  case tok::kw__Imaginary:
1420  case tok::kw_void:
1421  case tok::kw_char:
1422  case tok::kw_wchar_t:
1423  case tok::kw_int:
1424  case tok::kw_float:
1425  case tok::kw_double:
1426  case tok::kw_bool:
1427  case tok::kw__Bool:
1428  case tok::kw__Decimal32:
1429  case tok::kw__Decimal64:
1430  case tok::kw__Decimal128:
1431
1432    // struct-or-union-specifier (C99) or class-specifier (C++)
1433  case tok::kw_class:
1434  case tok::kw_struct:
1435  case tok::kw_union:
1436    // enum-specifier
1437  case tok::kw_enum:
1438
1439    // type-qualifier
1440  case tok::kw_const:
1441  case tok::kw_volatile:
1442  case tok::kw_restrict:
1443
1444    // typedef-name
1445  case tok::annot_typename:
1446    return true;
1447
1448    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1449  case tok::less:
1450    return getLang().ObjC1;
1451
1452  case tok::kw___cdecl:
1453  case tok::kw___stdcall:
1454  case tok::kw___fastcall:
1455    return PP.getLangOptions().Microsoft;
1456  }
1457}
1458
1459/// isDeclarationSpecifier() - Return true if the current token is part of a
1460/// declaration specifier.
1461bool Parser::isDeclarationSpecifier() {
1462  switch (Tok.getKind()) {
1463  default: return false;
1464
1465  case tok::identifier:   // foo::bar
1466    // Unfortunate hack to support "Class.factoryMethod" notation.
1467    if (getLang().ObjC1 && NextToken().is(tok::period))
1468      return false;
1469
1470    // Annotate typenames and C++ scope specifiers.  If we get one, just
1471    // recurse to handle whatever we get.
1472    if (TryAnnotateTypeOrScopeToken())
1473      return isDeclarationSpecifier();
1474    // Otherwise, not a declaration specifier.
1475    return false;
1476  case tok::coloncolon:   // ::foo::bar
1477    if (NextToken().is(tok::kw_new) ||    // ::new
1478        NextToken().is(tok::kw_delete))   // ::delete
1479      return false;
1480
1481    // Annotate typenames and C++ scope specifiers.  If we get one, just
1482    // recurse to handle whatever we get.
1483    if (TryAnnotateTypeOrScopeToken())
1484      return isDeclarationSpecifier();
1485    // Otherwise, not a declaration specifier.
1486    return false;
1487
1488    // storage-class-specifier
1489  case tok::kw_typedef:
1490  case tok::kw_extern:
1491  case tok::kw___private_extern__:
1492  case tok::kw_static:
1493  case tok::kw_auto:
1494  case tok::kw_register:
1495  case tok::kw___thread:
1496
1497    // type-specifiers
1498  case tok::kw_short:
1499  case tok::kw_long:
1500  case tok::kw_signed:
1501  case tok::kw_unsigned:
1502  case tok::kw__Complex:
1503  case tok::kw__Imaginary:
1504  case tok::kw_void:
1505  case tok::kw_char:
1506  case tok::kw_wchar_t:
1507  case tok::kw_int:
1508  case tok::kw_float:
1509  case tok::kw_double:
1510  case tok::kw_bool:
1511  case tok::kw__Bool:
1512  case tok::kw__Decimal32:
1513  case tok::kw__Decimal64:
1514  case tok::kw__Decimal128:
1515
1516    // struct-or-union-specifier (C99) or class-specifier (C++)
1517  case tok::kw_class:
1518  case tok::kw_struct:
1519  case tok::kw_union:
1520    // enum-specifier
1521  case tok::kw_enum:
1522
1523    // type-qualifier
1524  case tok::kw_const:
1525  case tok::kw_volatile:
1526  case tok::kw_restrict:
1527
1528    // function-specifier
1529  case tok::kw_inline:
1530  case tok::kw_virtual:
1531  case tok::kw_explicit:
1532
1533    // typedef-name
1534  case tok::annot_typename:
1535
1536    // GNU typeof support.
1537  case tok::kw_typeof:
1538
1539    // GNU attributes.
1540  case tok::kw___attribute:
1541    return true;
1542
1543    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1544  case tok::less:
1545    return getLang().ObjC1;
1546
1547  case tok::kw___declspec:
1548  case tok::kw___cdecl:
1549  case tok::kw___stdcall:
1550  case tok::kw___fastcall:
1551    return PP.getLangOptions().Microsoft;
1552  }
1553}
1554
1555
1556/// ParseTypeQualifierListOpt
1557///       type-qualifier-list: [C99 6.7.5]
1558///         type-qualifier
1559/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1560///         type-qualifier-list type-qualifier
1561/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1562///
1563void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1564  while (1) {
1565    int isInvalid = false;
1566    const char *PrevSpec = 0;
1567    SourceLocation Loc = Tok.getLocation();
1568
1569    switch (Tok.getKind()) {
1570    case tok::kw_const:
1571      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1572                                 getLang())*2;
1573      break;
1574    case tok::kw_volatile:
1575      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1576                                 getLang())*2;
1577      break;
1578    case tok::kw_restrict:
1579      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1580                                 getLang())*2;
1581      break;
1582    case tok::kw___ptr64:
1583    case tok::kw___cdecl:
1584    case tok::kw___stdcall:
1585    case tok::kw___fastcall:
1586      if (!PP.getLangOptions().Microsoft)
1587        goto DoneWithTypeQuals;
1588      // Just ignore it.
1589      break;
1590    case tok::kw___attribute:
1591      if (AttributesAllowed) {
1592        DS.AddAttributes(ParseAttributes());
1593        continue; // do *not* consume the next token!
1594      }
1595      // otherwise, FALL THROUGH!
1596    default:
1597      DoneWithTypeQuals:
1598      // If this is not a type-qualifier token, we're done reading type
1599      // qualifiers.  First verify that DeclSpec's are consistent.
1600      DS.Finish(Diags, PP.getSourceManager(), getLang());
1601      return;
1602    }
1603
1604    // If the specifier combination wasn't legal, issue a diagnostic.
1605    if (isInvalid) {
1606      assert(PrevSpec && "Method did not return previous specifier!");
1607      // Pick between error or extwarn.
1608      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1609                                      : diag::ext_duplicate_declspec;
1610      Diag(Tok, DiagID) << PrevSpec;
1611    }
1612    ConsumeToken();
1613  }
1614}
1615
1616
1617/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1618///
1619void Parser::ParseDeclarator(Declarator &D) {
1620  /// This implements the 'declarator' production in the C grammar, then checks
1621  /// for well-formedness and issues diagnostics.
1622  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1623}
1624
1625/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1626/// is parsed by the function passed to it. Pass null, and the direct-declarator
1627/// isn't parsed at all, making this function effectively parse the C++
1628/// ptr-operator production.
1629///
1630///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1631/// [C]     pointer[opt] direct-declarator
1632/// [C++]   direct-declarator
1633/// [C++]   ptr-operator declarator
1634///
1635///       pointer: [C99 6.7.5]
1636///         '*' type-qualifier-list[opt]
1637///         '*' type-qualifier-list[opt] pointer
1638///
1639///       ptr-operator:
1640///         '*' cv-qualifier-seq[opt]
1641///         '&'
1642/// [C++0x] '&&'
1643/// [GNU]   '&' restrict[opt] attributes[opt]
1644/// [GNU?]  '&&' restrict[opt] attributes[opt]
1645///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1646void Parser::ParseDeclaratorInternal(Declarator &D,
1647                                     DirectDeclParseFunction DirectDeclParser) {
1648
1649  // C++ member pointers start with a '::' or a nested-name.
1650  // Member pointers get special handling, since there's no place for the
1651  // scope spec in the generic path below.
1652  if (getLang().CPlusPlus &&
1653      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1654       Tok.is(tok::annot_cxxscope))) {
1655    CXXScopeSpec SS;
1656    if (ParseOptionalCXXScopeSpecifier(SS)) {
1657      if(Tok.isNot(tok::star)) {
1658        // The scope spec really belongs to the direct-declarator.
1659        D.getCXXScopeSpec() = SS;
1660        if (DirectDeclParser)
1661          (this->*DirectDeclParser)(D);
1662        return;
1663      }
1664
1665      SourceLocation Loc = ConsumeToken();
1666      D.SetRangeEnd(Loc);
1667      DeclSpec DS;
1668      ParseTypeQualifierListOpt(DS);
1669      D.ExtendWithDeclSpec(DS);
1670
1671      // Recurse to parse whatever is left.
1672      ParseDeclaratorInternal(D, DirectDeclParser);
1673
1674      // Sema will have to catch (syntactically invalid) pointers into global
1675      // scope. It has to catch pointers into namespace scope anyway.
1676      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1677                                                      Loc, DS.TakeAttributes()),
1678                    /* Don't replace range end. */SourceLocation());
1679      return;
1680    }
1681  }
1682
1683  tok::TokenKind Kind = Tok.getKind();
1684  // Not a pointer, C++ reference, or block.
1685  if (Kind != tok::star &&
1686      (Kind != tok::amp || !getLang().CPlusPlus) &&
1687      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1688      (Kind != tok::ampamp || !getLang().CPlusPlus) &&
1689      (Kind != tok::caret || !getLang().Blocks)) {
1690    if (DirectDeclParser)
1691      (this->*DirectDeclParser)(D);
1692    return;
1693  }
1694
1695  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1696  // '&&' -> rvalue reference
1697  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1698  D.SetRangeEnd(Loc);
1699
1700  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1701    // Is a pointer.
1702    DeclSpec DS;
1703
1704    ParseTypeQualifierListOpt(DS);
1705    D.ExtendWithDeclSpec(DS);
1706
1707    // Recursively parse the declarator.
1708    ParseDeclaratorInternal(D, DirectDeclParser);
1709    if (Kind == tok::star)
1710      // Remember that we parsed a pointer type, and remember the type-quals.
1711      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1712                                                DS.TakeAttributes()),
1713                    SourceLocation());
1714    else
1715      // Remember that we parsed a Block type, and remember the type-quals.
1716      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1717                                                     Loc),
1718                    SourceLocation());
1719  } else {
1720    // Is a reference
1721    DeclSpec DS;
1722
1723    // Complain about rvalue references in C++03, but then go on and build
1724    // the declarator.
1725    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1726      Diag(Loc, diag::err_rvalue_reference);
1727
1728    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1729    // cv-qualifiers are introduced through the use of a typedef or of a
1730    // template type argument, in which case the cv-qualifiers are ignored.
1731    //
1732    // [GNU] Retricted references are allowed.
1733    // [GNU] Attributes on references are allowed.
1734    ParseTypeQualifierListOpt(DS);
1735    D.ExtendWithDeclSpec(DS);
1736
1737    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1738      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1739        Diag(DS.getConstSpecLoc(),
1740             diag::err_invalid_reference_qualifier_application) << "const";
1741      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1742        Diag(DS.getVolatileSpecLoc(),
1743             diag::err_invalid_reference_qualifier_application) << "volatile";
1744    }
1745
1746    // Recursively parse the declarator.
1747    ParseDeclaratorInternal(D, DirectDeclParser);
1748
1749    if (D.getNumTypeObjects() > 0) {
1750      // C++ [dcl.ref]p4: There shall be no references to references.
1751      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1752      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1753        if (const IdentifierInfo *II = D.getIdentifier())
1754          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1755           << II;
1756        else
1757          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1758            << "type name";
1759
1760        // Once we've complained about the reference-to-reference, we
1761        // can go ahead and build the (technically ill-formed)
1762        // declarator: reference collapsing will take care of it.
1763      }
1764    }
1765
1766    // Remember that we parsed a reference type. It doesn't have type-quals.
1767    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1768                                                DS.TakeAttributes(),
1769                                                Kind == tok::amp),
1770                  SourceLocation());
1771  }
1772}
1773
1774/// ParseDirectDeclarator
1775///       direct-declarator: [C99 6.7.5]
1776/// [C99]   identifier
1777///         '(' declarator ')'
1778/// [GNU]   '(' attributes declarator ')'
1779/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1780/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1781/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1782/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1783/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1784///         direct-declarator '(' parameter-type-list ')'
1785///         direct-declarator '(' identifier-list[opt] ')'
1786/// [GNU]   direct-declarator '(' parameter-forward-declarations
1787///                    parameter-type-list[opt] ')'
1788/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1789///                    cv-qualifier-seq[opt] exception-specification[opt]
1790/// [C++]   declarator-id
1791///
1792///       declarator-id: [C++ 8]
1793///         id-expression
1794///         '::'[opt] nested-name-specifier[opt] type-name
1795///
1796///       id-expression: [C++ 5.1]
1797///         unqualified-id
1798///         qualified-id            [TODO]
1799///
1800///       unqualified-id: [C++ 5.1]
1801///         identifier
1802///         operator-function-id
1803///         conversion-function-id  [TODO]
1804///          '~' class-name
1805///         template-id
1806///
1807void Parser::ParseDirectDeclarator(Declarator &D) {
1808  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1809
1810  if (getLang().CPlusPlus) {
1811    if (D.mayHaveIdentifier()) {
1812      // ParseDeclaratorInternal might already have parsed the scope.
1813      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1814        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1815      if (afterCXXScope) {
1816        // Change the declaration context for name lookup, until this function
1817        // is exited (and the declarator has been parsed).
1818        DeclScopeObj.EnterDeclaratorScope();
1819      }
1820
1821      if (Tok.is(tok::identifier)) {
1822        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1823
1824        // If this identifier is the name of the current class, it's a
1825        // constructor name.
1826        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1827          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1828                                               Tok.getLocation(), CurScope),
1829                           Tok.getLocation());
1830        // This is a normal identifier.
1831        } else
1832          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1833        ConsumeToken();
1834        goto PastIdentifier;
1835      } else if (Tok.is(tok::annot_template_id)) {
1836        TemplateIdAnnotation *TemplateId
1837          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1838
1839        // FIXME: Could this template-id name a constructor?
1840
1841        // FIXME: This is an egregious hack, where we silently ignore
1842        // the specialization (which should be a function template
1843        // specialization name) and use the name instead. This hack
1844        // will go away when we have support for function
1845        // specializations.
1846        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1847        TemplateId->Destroy();
1848        ConsumeToken();
1849        goto PastIdentifier;
1850      } else if (Tok.is(tok::kw_operator)) {
1851        SourceLocation OperatorLoc = Tok.getLocation();
1852        SourceLocation EndLoc;
1853
1854        // First try the name of an overloaded operator
1855        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1856          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1857        } else {
1858          // This must be a conversion function (C++ [class.conv.fct]).
1859          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1860            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1861          else {
1862            D.SetIdentifier(0, Tok.getLocation());
1863          }
1864        }
1865        goto PastIdentifier;
1866      } else if (Tok.is(tok::tilde)) {
1867        // This should be a C++ destructor.
1868        SourceLocation TildeLoc = ConsumeToken();
1869        if (Tok.is(tok::identifier)) {
1870          // FIXME: Inaccurate.
1871          SourceLocation NameLoc = Tok.getLocation();
1872          SourceLocation EndLoc;
1873          if (TypeTy *Type = ParseClassName(EndLoc)) {
1874            D.setDestructor(Type, TildeLoc, NameLoc);
1875          } else {
1876            D.SetIdentifier(0, TildeLoc);
1877          }
1878        } else {
1879          Diag(Tok, diag::err_expected_class_name);
1880          D.SetIdentifier(0, TildeLoc);
1881        }
1882        goto PastIdentifier;
1883      }
1884
1885      // If we reached this point, token is not identifier and not '~'.
1886
1887      if (afterCXXScope) {
1888        Diag(Tok, diag::err_expected_unqualified_id);
1889        D.SetIdentifier(0, Tok.getLocation());
1890        D.setInvalidType(true);
1891        goto PastIdentifier;
1892      }
1893    }
1894  }
1895
1896  // If we reached this point, we are either in C/ObjC or the token didn't
1897  // satisfy any of the C++-specific checks.
1898  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1899    assert(!getLang().CPlusPlus &&
1900           "There's a C++-specific check for tok::identifier above");
1901    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1902    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1903    ConsumeToken();
1904  } else if (Tok.is(tok::l_paren)) {
1905    // direct-declarator: '(' declarator ')'
1906    // direct-declarator: '(' attributes declarator ')'
1907    // Example: 'char (*X)'   or 'int (*XX)(void)'
1908    ParseParenDeclarator(D);
1909  } else if (D.mayOmitIdentifier()) {
1910    // This could be something simple like "int" (in which case the declarator
1911    // portion is empty), if an abstract-declarator is allowed.
1912    D.SetIdentifier(0, Tok.getLocation());
1913  } else {
1914    if (D.getContext() == Declarator::MemberContext)
1915      Diag(Tok, diag::err_expected_member_name_or_semi)
1916        << D.getDeclSpec().getSourceRange();
1917    else if (getLang().CPlusPlus)
1918      Diag(Tok, diag::err_expected_unqualified_id);
1919    else
1920      Diag(Tok, diag::err_expected_ident_lparen);
1921    D.SetIdentifier(0, Tok.getLocation());
1922    D.setInvalidType(true);
1923  }
1924
1925 PastIdentifier:
1926  assert(D.isPastIdentifier() &&
1927         "Haven't past the location of the identifier yet?");
1928
1929  while (1) {
1930    if (Tok.is(tok::l_paren)) {
1931      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1932      // In such a case, check if we actually have a function declarator; if it
1933      // is not, the declarator has been fully parsed.
1934      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1935        // When not in file scope, warn for ambiguous function declarators, just
1936        // in case the author intended it as a variable definition.
1937        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1938        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1939          break;
1940      }
1941      ParseFunctionDeclarator(ConsumeParen(), D);
1942    } else if (Tok.is(tok::l_square)) {
1943      ParseBracketDeclarator(D);
1944    } else {
1945      break;
1946    }
1947  }
1948}
1949
1950/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1951/// only called before the identifier, so these are most likely just grouping
1952/// parens for precedence.  If we find that these are actually function
1953/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1954///
1955///       direct-declarator:
1956///         '(' declarator ')'
1957/// [GNU]   '(' attributes declarator ')'
1958///         direct-declarator '(' parameter-type-list ')'
1959///         direct-declarator '(' identifier-list[opt] ')'
1960/// [GNU]   direct-declarator '(' parameter-forward-declarations
1961///                    parameter-type-list[opt] ')'
1962///
1963void Parser::ParseParenDeclarator(Declarator &D) {
1964  SourceLocation StartLoc = ConsumeParen();
1965  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1966
1967  // Eat any attributes before we look at whether this is a grouping or function
1968  // declarator paren.  If this is a grouping paren, the attribute applies to
1969  // the type being built up, for example:
1970  //     int (__attribute__(()) *x)(long y)
1971  // If this ends up not being a grouping paren, the attribute applies to the
1972  // first argument, for example:
1973  //     int (__attribute__(()) int x)
1974  // In either case, we need to eat any attributes to be able to determine what
1975  // sort of paren this is.
1976  //
1977  AttributeList *AttrList = 0;
1978  bool RequiresArg = false;
1979  if (Tok.is(tok::kw___attribute)) {
1980    AttrList = ParseAttributes();
1981
1982    // We require that the argument list (if this is a non-grouping paren) be
1983    // present even if the attribute list was empty.
1984    RequiresArg = true;
1985  }
1986  // Eat any Microsoft extensions.
1987  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1988          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1989    ConsumeToken();
1990
1991  // If we haven't past the identifier yet (or where the identifier would be
1992  // stored, if this is an abstract declarator), then this is probably just
1993  // grouping parens. However, if this could be an abstract-declarator, then
1994  // this could also be the start of function arguments (consider 'void()').
1995  bool isGrouping;
1996
1997  if (!D.mayOmitIdentifier()) {
1998    // If this can't be an abstract-declarator, this *must* be a grouping
1999    // paren, because we haven't seen the identifier yet.
2000    isGrouping = true;
2001  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2002             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2003             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2004    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2005    // considered to be a type, not a K&R identifier-list.
2006    isGrouping = false;
2007  } else {
2008    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2009    isGrouping = true;
2010  }
2011
2012  // If this is a grouping paren, handle:
2013  // direct-declarator: '(' declarator ')'
2014  // direct-declarator: '(' attributes declarator ')'
2015  if (isGrouping) {
2016    bool hadGroupingParens = D.hasGroupingParens();
2017    D.setGroupingParens(true);
2018    if (AttrList)
2019      D.AddAttributes(AttrList, SourceLocation());
2020
2021    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2022    // Match the ')'.
2023    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2024
2025    D.setGroupingParens(hadGroupingParens);
2026    D.SetRangeEnd(Loc);
2027    return;
2028  }
2029
2030  // Okay, if this wasn't a grouping paren, it must be the start of a function
2031  // argument list.  Recognize that this declarator will never have an
2032  // identifier (and remember where it would have been), then call into
2033  // ParseFunctionDeclarator to handle of argument list.
2034  D.SetIdentifier(0, Tok.getLocation());
2035
2036  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2037}
2038
2039/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2040/// declarator D up to a paren, which indicates that we are parsing function
2041/// arguments.
2042///
2043/// If AttrList is non-null, then the caller parsed those arguments immediately
2044/// after the open paren - they should be considered to be the first argument of
2045/// a parameter.  If RequiresArg is true, then the first argument of the
2046/// function is required to be present and required to not be an identifier
2047/// list.
2048///
2049/// This method also handles this portion of the grammar:
2050///       parameter-type-list: [C99 6.7.5]
2051///         parameter-list
2052///         parameter-list ',' '...'
2053///
2054///       parameter-list: [C99 6.7.5]
2055///         parameter-declaration
2056///         parameter-list ',' parameter-declaration
2057///
2058///       parameter-declaration: [C99 6.7.5]
2059///         declaration-specifiers declarator
2060/// [C++]   declaration-specifiers declarator '=' assignment-expression
2061/// [GNU]   declaration-specifiers declarator attributes
2062///         declaration-specifiers abstract-declarator[opt]
2063/// [C++]   declaration-specifiers abstract-declarator[opt]
2064///           '=' assignment-expression
2065/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2066///
2067/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2068/// and "exception-specification[opt]".
2069///
2070void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2071                                     AttributeList *AttrList,
2072                                     bool RequiresArg) {
2073  // lparen is already consumed!
2074  assert(D.isPastIdentifier() && "Should not call before identifier!");
2075
2076  // This parameter list may be empty.
2077  if (Tok.is(tok::r_paren)) {
2078    if (RequiresArg) {
2079      Diag(Tok, diag::err_argument_required_after_attribute);
2080      delete AttrList;
2081    }
2082
2083    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2084
2085    // cv-qualifier-seq[opt].
2086    DeclSpec DS;
2087    if (getLang().CPlusPlus) {
2088      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2089      if (!DS.getSourceRange().getEnd().isInvalid())
2090        Loc = DS.getSourceRange().getEnd();
2091
2092      // Parse exception-specification[opt].
2093      if (Tok.is(tok::kw_throw))
2094        ParseExceptionSpecification(Loc);
2095    }
2096
2097    // Remember that we parsed a function type, and remember the attributes.
2098    // int() -> no prototype, no '...'.
2099    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2100                                               /*variadic*/ false,
2101                                               SourceLocation(),
2102                                               /*arglist*/ 0, 0,
2103                                               DS.getTypeQualifiers(),
2104                                               LParenLoc, D),
2105                  Loc);
2106    return;
2107  }
2108
2109  // Alternatively, this parameter list may be an identifier list form for a
2110  // K&R-style function:  void foo(a,b,c)
2111  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2112    if (!TryAnnotateTypeOrScopeToken()) {
2113      // K&R identifier lists can't have typedefs as identifiers, per
2114      // C99 6.7.5.3p11.
2115      if (RequiresArg) {
2116        Diag(Tok, diag::err_argument_required_after_attribute);
2117        delete AttrList;
2118      }
2119      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2120      // normal declarators, not for abstract-declarators.
2121      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2122    }
2123  }
2124
2125  // Finally, a normal, non-empty parameter type list.
2126
2127  // Build up an array of information about the parsed arguments.
2128  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2129
2130  // Enter function-declaration scope, limiting any declarators to the
2131  // function prototype scope, including parameter declarators.
2132  ParseScope PrototypeScope(this,
2133                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2134
2135  bool IsVariadic = false;
2136  SourceLocation EllipsisLoc;
2137  while (1) {
2138    if (Tok.is(tok::ellipsis)) {
2139      IsVariadic = true;
2140      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2141      break;
2142    }
2143
2144    SourceLocation DSStart = Tok.getLocation();
2145
2146    // Parse the declaration-specifiers.
2147    DeclSpec DS;
2148
2149    // If the caller parsed attributes for the first argument, add them now.
2150    if (AttrList) {
2151      DS.AddAttributes(AttrList);
2152      AttrList = 0;  // Only apply the attributes to the first parameter.
2153    }
2154    ParseDeclarationSpecifiers(DS);
2155
2156    // Parse the declarator.  This is "PrototypeContext", because we must
2157    // accept either 'declarator' or 'abstract-declarator' here.
2158    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2159    ParseDeclarator(ParmDecl);
2160
2161    // Parse GNU attributes, if present.
2162    if (Tok.is(tok::kw___attribute)) {
2163      SourceLocation Loc;
2164      AttributeList *AttrList = ParseAttributes(&Loc);
2165      ParmDecl.AddAttributes(AttrList, Loc);
2166    }
2167
2168    // Remember this parsed parameter in ParamInfo.
2169    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2170
2171    // DefArgToks is used when the parsing of default arguments needs
2172    // to be delayed.
2173    CachedTokens *DefArgToks = 0;
2174
2175    // If no parameter was specified, verify that *something* was specified,
2176    // otherwise we have a missing type and identifier.
2177    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2178        ParmDecl.getNumTypeObjects() == 0) {
2179      // Completely missing, emit error.
2180      Diag(DSStart, diag::err_missing_param);
2181    } else {
2182      // Otherwise, we have something.  Add it and let semantic analysis try
2183      // to grok it and add the result to the ParamInfo we are building.
2184
2185      // Inform the actions module about the parameter declarator, so it gets
2186      // added to the current scope.
2187      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2188
2189      // Parse the default argument, if any. We parse the default
2190      // arguments in all dialects; the semantic analysis in
2191      // ActOnParamDefaultArgument will reject the default argument in
2192      // C.
2193      if (Tok.is(tok::equal)) {
2194        SourceLocation EqualLoc = Tok.getLocation();
2195
2196        // Parse the default argument
2197        if (D.getContext() == Declarator::MemberContext) {
2198          // If we're inside a class definition, cache the tokens
2199          // corresponding to the default argument. We'll actually parse
2200          // them when we see the end of the class definition.
2201          // FIXME: Templates will require something similar.
2202          // FIXME: Can we use a smart pointer for Toks?
2203          DefArgToks = new CachedTokens;
2204
2205          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2206                                    tok::semi, false)) {
2207            delete DefArgToks;
2208            DefArgToks = 0;
2209            Actions.ActOnParamDefaultArgumentError(Param);
2210          } else
2211            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2212        } else {
2213          // Consume the '='.
2214          ConsumeToken();
2215
2216          OwningExprResult DefArgResult(ParseAssignmentExpression());
2217          if (DefArgResult.isInvalid()) {
2218            Actions.ActOnParamDefaultArgumentError(Param);
2219            SkipUntil(tok::comma, tok::r_paren, true, true);
2220          } else {
2221            // Inform the actions module about the default argument
2222            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2223                                              move(DefArgResult));
2224          }
2225        }
2226      }
2227
2228      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2229                                          ParmDecl.getIdentifierLoc(), Param,
2230                                          DefArgToks));
2231    }
2232
2233    // If the next token is a comma, consume it and keep reading arguments.
2234    if (Tok.isNot(tok::comma)) break;
2235
2236    // Consume the comma.
2237    ConsumeToken();
2238  }
2239
2240  // Leave prototype scope.
2241  PrototypeScope.Exit();
2242
2243  // If we have the closing ')', eat it.
2244  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2245
2246  DeclSpec DS;
2247  if (getLang().CPlusPlus) {
2248    // Parse cv-qualifier-seq[opt].
2249    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2250      if (!DS.getSourceRange().getEnd().isInvalid())
2251        Loc = DS.getSourceRange().getEnd();
2252
2253    // Parse exception-specification[opt].
2254    if (Tok.is(tok::kw_throw))
2255      ParseExceptionSpecification(Loc);
2256  }
2257
2258  // Remember that we parsed a function type, and remember the attributes.
2259  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2260                                             EllipsisLoc,
2261                                             &ParamInfo[0], ParamInfo.size(),
2262                                             DS.getTypeQualifiers(),
2263                                             LParenLoc, D),
2264                Loc);
2265}
2266
2267/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2268/// we found a K&R-style identifier list instead of a type argument list.  The
2269/// current token is known to be the first identifier in the list.
2270///
2271///       identifier-list: [C99 6.7.5]
2272///         identifier
2273///         identifier-list ',' identifier
2274///
2275void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2276                                                   Declarator &D) {
2277  // Build up an array of information about the parsed arguments.
2278  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2279  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2280
2281  // If there was no identifier specified for the declarator, either we are in
2282  // an abstract-declarator, or we are in a parameter declarator which was found
2283  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2284  // diagnose this.
2285  if (!D.getIdentifier())
2286    Diag(Tok, diag::ext_ident_list_in_param);
2287
2288  // Tok is known to be the first identifier in the list.  Remember this
2289  // identifier in ParamInfo.
2290  ParamsSoFar.insert(Tok.getIdentifierInfo());
2291  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2292                                                 Tok.getLocation(), 0));
2293
2294  ConsumeToken();  // eat the first identifier.
2295
2296  while (Tok.is(tok::comma)) {
2297    // Eat the comma.
2298    ConsumeToken();
2299
2300    // If this isn't an identifier, report the error and skip until ')'.
2301    if (Tok.isNot(tok::identifier)) {
2302      Diag(Tok, diag::err_expected_ident);
2303      SkipUntil(tok::r_paren);
2304      return;
2305    }
2306
2307    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2308
2309    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2310    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2311      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2312
2313    // Verify that the argument identifier has not already been mentioned.
2314    if (!ParamsSoFar.insert(ParmII)) {
2315      Diag(Tok, diag::err_param_redefinition) << ParmII;
2316    } else {
2317      // Remember this identifier in ParamInfo.
2318      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2319                                                     Tok.getLocation(), 0));
2320    }
2321
2322    // Eat the identifier.
2323    ConsumeToken();
2324  }
2325
2326  // If we have the closing ')', eat it and we're done.
2327  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2328
2329  // Remember that we parsed a function type, and remember the attributes.  This
2330  // function type is always a K&R style function type, which is not varargs and
2331  // has no prototype.
2332  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2333                                             SourceLocation(),
2334                                             &ParamInfo[0], ParamInfo.size(),
2335                                             /*TypeQuals*/0, LParenLoc, D),
2336                RLoc);
2337}
2338
2339/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2340/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2341/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2342/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2343/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2344void Parser::ParseBracketDeclarator(Declarator &D) {
2345  SourceLocation StartLoc = ConsumeBracket();
2346
2347  // C array syntax has many features, but by-far the most common is [] and [4].
2348  // This code does a fast path to handle some of the most obvious cases.
2349  if (Tok.getKind() == tok::r_square) {
2350    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2351    // Remember that we parsed the empty array type.
2352    OwningExprResult NumElements(Actions);
2353    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2354                  EndLoc);
2355    return;
2356  } else if (Tok.getKind() == tok::numeric_constant &&
2357             GetLookAheadToken(1).is(tok::r_square)) {
2358    // [4] is very common.  Parse the numeric constant expression.
2359    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2360    ConsumeToken();
2361
2362    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2363
2364    // If there was an error parsing the assignment-expression, recover.
2365    if (ExprRes.isInvalid())
2366      ExprRes.release();  // Deallocate expr, just use [].
2367
2368    // Remember that we parsed a array type, and remember its features.
2369    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2370                                            ExprRes.release(), StartLoc),
2371                  EndLoc);
2372    return;
2373  }
2374
2375  // If valid, this location is the position where we read the 'static' keyword.
2376  SourceLocation StaticLoc;
2377  if (Tok.is(tok::kw_static))
2378    StaticLoc = ConsumeToken();
2379
2380  // If there is a type-qualifier-list, read it now.
2381  // Type qualifiers in an array subscript are a C99 feature.
2382  DeclSpec DS;
2383  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2384
2385  // If we haven't already read 'static', check to see if there is one after the
2386  // type-qualifier-list.
2387  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2388    StaticLoc = ConsumeToken();
2389
2390  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2391  bool isStar = false;
2392  OwningExprResult NumElements(Actions);
2393
2394  // Handle the case where we have '[*]' as the array size.  However, a leading
2395  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2396  // the the token after the star is a ']'.  Since stars in arrays are
2397  // infrequent, use of lookahead is not costly here.
2398  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2399    ConsumeToken();  // Eat the '*'.
2400
2401    if (StaticLoc.isValid()) {
2402      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2403      StaticLoc = SourceLocation();  // Drop the static.
2404    }
2405    isStar = true;
2406  } else if (Tok.isNot(tok::r_square)) {
2407    // Note, in C89, this production uses the constant-expr production instead
2408    // of assignment-expr.  The only difference is that assignment-expr allows
2409    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2410    // are not i-c-e's, so we don't need to distinguish between the two here.
2411
2412    // Parse the assignment-expression now.
2413    NumElements = ParseAssignmentExpression();
2414  }
2415
2416  // If there was an error parsing the assignment-expression, recover.
2417  if (NumElements.isInvalid()) {
2418    // If the expression was invalid, skip it.
2419    SkipUntil(tok::r_square);
2420    return;
2421  }
2422
2423  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2424
2425  // Remember that we parsed a array type, and remember its features.
2426  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2427                                          StaticLoc.isValid(), isStar,
2428                                          NumElements.release(), StartLoc),
2429                EndLoc);
2430}
2431
2432/// [GNU]   typeof-specifier:
2433///           typeof ( expressions )
2434///           typeof ( type-name )
2435/// [GNU/C++] typeof unary-expression
2436///
2437void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2438  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2439  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2440  SourceLocation StartLoc = ConsumeToken();
2441
2442  if (Tok.isNot(tok::l_paren)) {
2443    if (!getLang().CPlusPlus) {
2444      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2445      return;
2446    }
2447
2448    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2449    if (Result.isInvalid()) {
2450      DS.SetTypeSpecError();
2451      return;
2452    }
2453
2454    const char *PrevSpec = 0;
2455    // Check for duplicate type specifiers.
2456    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2457                           Result.release()))
2458      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2459
2460    // FIXME: Not accurate, the range gets one token more than it should.
2461    DS.SetRangeEnd(Tok.getLocation());
2462    return;
2463  }
2464
2465  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2466
2467  if (isTypeIdInParens()) {
2468    Action::TypeResult Ty = ParseTypeName();
2469
2470    assert((Ty.isInvalid() || Ty.get()) &&
2471           "Parser::ParseTypeofSpecifier(): missing type");
2472
2473    if (Tok.isNot(tok::r_paren)) {
2474      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2475      return;
2476    }
2477    RParenLoc = ConsumeParen();
2478
2479    if (Ty.isInvalid())
2480      DS.SetTypeSpecError();
2481    else {
2482      const char *PrevSpec = 0;
2483      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2484      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2485                             Ty.get()))
2486        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2487    }
2488  } else { // we have an expression.
2489    OwningExprResult Result(ParseExpression());
2490
2491    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2492      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2493      DS.SetTypeSpecError();
2494      return;
2495    }
2496    RParenLoc = ConsumeParen();
2497    const char *PrevSpec = 0;
2498    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2499    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2500                           Result.release()))
2501      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2502  }
2503  DS.SetRangeEnd(RParenLoc);
2504}
2505
2506
2507