ParseDecl.cpp revision 41f2b32df5faff10c305ef1892fcb02846e4f489
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Parser::TypeTy *Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
41}
42
43/// ParseAttributes - Parse a non-empty attributes list.
44///
45/// [GNU] attributes:
46///         attribute
47///         attributes attribute
48///
49/// [GNU]  attribute:
50///          '__attribute__' '(' '(' attribute-list ')' ')'
51///
52/// [GNU]  attribute-list:
53///          attrib
54///          attribute_list ',' attrib
55///
56/// [GNU]  attrib:
57///          empty
58///          attrib-name
59///          attrib-name '(' identifier ')'
60///          attrib-name '(' identifier ',' nonempty-expr-list ')'
61///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
62///
63/// [GNU]  attrib-name:
64///          identifier
65///          typespec
66///          typequal
67///          storageclass
68///
69/// FIXME: The GCC grammar/code for this construct implies we need two
70/// token lookahead. Comment from gcc: "If they start with an identifier
71/// which is followed by a comma or close parenthesis, then the arguments
72/// start with that identifier; otherwise they are an expression list."
73///
74/// At the moment, I am not doing 2 token lookahead. I am also unaware of
75/// any attributes that don't work (based on my limited testing). Most
76/// attributes are very simple in practice. Until we find a bug, I don't see
77/// a pressing need to implement the 2 token lookahead.
78
79AttributeList *Parser::ParseAttributes() {
80  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
81
82  AttributeList *CurrAttr = 0;
83
84  while (Tok.is(tok::kw___attribute)) {
85    ConsumeToken();
86    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
87                         "attribute")) {
88      SkipUntil(tok::r_paren, true); // skip until ) or ;
89      return CurrAttr;
90    }
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
96    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
97           Tok.is(tok::comma)) {
98
99      if (Tok.is(tok::comma)) {
100        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
101        ConsumeToken();
102        continue;
103      }
104      // we have an identifier or declaration specifier (const, int, etc.)
105      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
106      SourceLocation AttrNameLoc = ConsumeToken();
107
108      // check if we have a "paramterized" attribute
109      if (Tok.is(tok::l_paren)) {
110        ConsumeParen(); // ignore the left paren loc for now
111
112        if (Tok.is(tok::identifier)) {
113          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
114          SourceLocation ParmLoc = ConsumeToken();
115
116          if (Tok.is(tok::r_paren)) {
117            // __attribute__(( mode(byte) ))
118            ConsumeParen(); // ignore the right paren loc for now
119            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
120                                         ParmName, ParmLoc, 0, 0, CurrAttr);
121          } else if (Tok.is(tok::comma)) {
122            ConsumeToken();
123            // __attribute__(( format(printf, 1, 2) ))
124            ExprVector ArgExprs(Actions);
125            bool ArgExprsOk = true;
126
127            // now parse the non-empty comma separated list of expressions
128            while (1) {
129              OwningExprResult ArgExpr(ParseAssignmentExpression());
130              if (ArgExpr.isInvalid()) {
131                ArgExprsOk = false;
132                SkipUntil(tok::r_paren);
133                break;
134              } else {
135                ArgExprs.push_back(ArgExpr.release());
136              }
137              if (Tok.isNot(tok::comma))
138                break;
139              ConsumeToken(); // Eat the comma, move to the next argument
140            }
141            if (ArgExprsOk && Tok.is(tok::r_paren)) {
142              ConsumeParen(); // ignore the right paren loc for now
143              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
144                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
145            }
146          }
147        } else { // not an identifier
148          // parse a possibly empty comma separated list of expressions
149          if (Tok.is(tok::r_paren)) {
150            // __attribute__(( nonnull() ))
151            ConsumeParen(); // ignore the right paren loc for now
152            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
153                                         0, SourceLocation(), 0, 0, CurrAttr);
154          } else {
155            // __attribute__(( aligned(16) ))
156            ExprVector ArgExprs(Actions);
157            bool ArgExprsOk = true;
158
159            // now parse the list of expressions
160            while (1) {
161              OwningExprResult ArgExpr(ParseAssignmentExpression());
162              if (ArgExpr.isInvalid()) {
163                ArgExprsOk = false;
164                SkipUntil(tok::r_paren);
165                break;
166              } else {
167                ArgExprs.push_back(ArgExpr.release());
168              }
169              if (Tok.isNot(tok::comma))
170                break;
171              ConsumeToken(); // Eat the comma, move to the next argument
172            }
173            // Match the ')'.
174            if (ArgExprsOk && Tok.is(tok::r_paren)) {
175              ConsumeParen(); // ignore the right paren loc for now
176              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
177                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
178                           CurrAttr);
179            }
180          }
181        }
182      } else {
183        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
184                                     0, SourceLocation(), 0, 0, CurrAttr);
185      }
186    }
187    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
188      SkipUntil(tok::r_paren, false);
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191  }
192  return CurrAttr;
193}
194
195/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
196/// routine is called to skip/ignore tokens that comprise the MS declspec.
197void Parser::FuzzyParseMicrosoftDeclSpec() {
198  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
199  ConsumeToken();
200  if (Tok.is(tok::l_paren)) {
201    unsigned short savedParenCount = ParenCount;
202    do {
203      ConsumeAnyToken();
204    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
205  }
206  return;
207}
208
209/// ParseDeclaration - Parse a full 'declaration', which consists of
210/// declaration-specifiers, some number of declarators, and a semicolon.
211/// 'Context' should be a Declarator::TheContext value.
212///
213///       declaration: [C99 6.7]
214///         block-declaration ->
215///           simple-declaration
216///           others                   [FIXME]
217/// [C++]   template-declaration
218/// [C++]   namespace-definition
219/// [C++]   using-directive
220/// [C++]   using-declaration [TODO]
221///         others... [FIXME]
222///
223Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
224  switch (Tok.getKind()) {
225  case tok::kw_export:
226  case tok::kw_template:
227    return ParseTemplateDeclaration(Context);
228  case tok::kw_namespace:
229    return ParseNamespace(Context);
230  case tok::kw_using:
231    return ParseUsingDirectiveOrDeclaration(Context);
232  default:
233    return ParseSimpleDeclaration(Context);
234  }
235}
236
237///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
238///         declaration-specifiers init-declarator-list[opt] ';'
239///[C90/C++]init-declarator-list ';'                             [TODO]
240/// [OMP]   threadprivate-directive                              [TODO]
241Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
242  // Parse the common declaration-specifiers piece.
243  DeclSpec DS;
244  ParseDeclarationSpecifiers(DS);
245
246  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
247  // declaration-specifiers init-declarator-list[opt] ';'
248  if (Tok.is(tok::semi)) {
249    ConsumeToken();
250    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
251  }
252
253  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
254  ParseDeclarator(DeclaratorInfo);
255
256  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
257}
258
259
260/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
261/// parsing 'declaration-specifiers declarator'.  This method is split out this
262/// way to handle the ambiguity between top-level function-definitions and
263/// declarations.
264///
265///       init-declarator-list: [C99 6.7]
266///         init-declarator
267///         init-declarator-list ',' init-declarator
268///       init-declarator: [C99 6.7]
269///         declarator
270///         declarator '=' initializer
271/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
272/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
273/// [C++]   declarator initializer[opt]
274///
275/// [C++] initializer:
276/// [C++]   '=' initializer-clause
277/// [C++]   '(' expression-list ')'
278///
279Parser::DeclTy *Parser::
280ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
281
282  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
283  // that they can be chained properly if the actions want this.
284  Parser::DeclTy *LastDeclInGroup = 0;
285
286  // At this point, we know that it is not a function definition.  Parse the
287  // rest of the init-declarator-list.
288  while (1) {
289    // If a simple-asm-expr is present, parse it.
290    if (Tok.is(tok::kw_asm)) {
291      OwningExprResult AsmLabel(ParseSimpleAsm());
292      if (AsmLabel.isInvalid()) {
293        SkipUntil(tok::semi);
294        return 0;
295      }
296
297      D.setAsmLabel(AsmLabel.release());
298    }
299
300    // If attributes are present, parse them.
301    if (Tok.is(tok::kw___attribute))
302      D.AddAttributes(ParseAttributes());
303
304    // Inform the current actions module that we just parsed this declarator.
305    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
306
307    // Parse declarator '=' initializer.
308    if (Tok.is(tok::equal)) {
309      ConsumeToken();
310      OwningExprResult Init(ParseInitializer());
311      if (Init.isInvalid()) {
312        SkipUntil(tok::semi);
313        return 0;
314      }
315      Actions.AddInitializerToDecl(LastDeclInGroup, move_convert(Init));
316    } else if (Tok.is(tok::l_paren)) {
317      // Parse C++ direct initializer: '(' expression-list ')'
318      SourceLocation LParenLoc = ConsumeParen();
319      ExprVector Exprs(Actions);
320      CommaLocsTy CommaLocs;
321
322      bool InvalidExpr = false;
323      if (ParseExpressionList(Exprs, CommaLocs)) {
324        SkipUntil(tok::r_paren);
325        InvalidExpr = true;
326      }
327      // Match the ')'.
328      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
329
330      if (!InvalidExpr) {
331        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
332               "Unexpected number of commas!");
333        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
334                                              Exprs.take(), Exprs.size(),
335                                              &CommaLocs[0], RParenLoc);
336      }
337    } else {
338      Actions.ActOnUninitializedDecl(LastDeclInGroup);
339    }
340
341    // If we don't have a comma, it is either the end of the list (a ';') or an
342    // error, bail out.
343    if (Tok.isNot(tok::comma))
344      break;
345
346    // Consume the comma.
347    ConsumeToken();
348
349    // Parse the next declarator.
350    D.clear();
351
352    // Accept attributes in an init-declarator.  In the first declarator in a
353    // declaration, these would be part of the declspec.  In subsequent
354    // declarators, they become part of the declarator itself, so that they
355    // don't apply to declarators after *this* one.  Examples:
356    //    short __attribute__((common)) var;    -> declspec
357    //    short var __attribute__((common));    -> declarator
358    //    short x, __attribute__((common)) var;    -> declarator
359    if (Tok.is(tok::kw___attribute))
360      D.AddAttributes(ParseAttributes());
361
362    ParseDeclarator(D);
363  }
364
365  if (Tok.is(tok::semi)) {
366    ConsumeToken();
367    // for(is key; in keys) is error.
368    if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
369      Diag(Tok, diag::err_parse_error);
370      return 0;
371    }
372    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
373  }
374  // If this is an ObjC2 for-each loop, this is a successful declarator
375  // parse.  The syntax for these looks like:
376  // 'for' '(' declaration 'in' expr ')' statement
377  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
378    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
379  }
380  Diag(Tok, diag::err_parse_error);
381  // Skip to end of block or statement
382  SkipUntil(tok::r_brace, true, true);
383  if (Tok.is(tok::semi))
384    ConsumeToken();
385  return 0;
386}
387
388/// ParseSpecifierQualifierList
389///        specifier-qualifier-list:
390///          type-specifier specifier-qualifier-list[opt]
391///          type-qualifier specifier-qualifier-list[opt]
392/// [GNU]    attributes     specifier-qualifier-list[opt]
393///
394void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
395  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
396  /// parse declaration-specifiers and complain about extra stuff.
397  ParseDeclarationSpecifiers(DS);
398
399  // Validate declspec for type-name.
400  unsigned Specs = DS.getParsedSpecifiers();
401  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
402    Diag(Tok, diag::err_typename_requires_specqual);
403
404  // Issue diagnostic and remove storage class if present.
405  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
406    if (DS.getStorageClassSpecLoc().isValid())
407      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
408    else
409      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
410    DS.ClearStorageClassSpecs();
411  }
412
413  // Issue diagnostic and remove function specfier if present.
414  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
415    if (DS.isInlineSpecified())
416      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
417    if (DS.isVirtualSpecified())
418      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
419    if (DS.isExplicitSpecified())
420      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
421    DS.ClearFunctionSpecs();
422  }
423}
424
425/// ParseDeclarationSpecifiers
426///       declaration-specifiers: [C99 6.7]
427///         storage-class-specifier declaration-specifiers[opt]
428///         type-specifier declaration-specifiers[opt]
429/// [C99]   function-specifier declaration-specifiers[opt]
430/// [GNU]   attributes declaration-specifiers[opt]
431///
432///       storage-class-specifier: [C99 6.7.1]
433///         'typedef'
434///         'extern'
435///         'static'
436///         'auto'
437///         'register'
438/// [C++]   'mutable'
439/// [GNU]   '__thread'
440///       function-specifier: [C99 6.7.4]
441/// [C99]   'inline'
442/// [C++]   'virtual'
443/// [C++]   'explicit'
444///
445void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
446                                        TemplateParameterLists *TemplateParams){
447  DS.SetRangeStart(Tok.getLocation());
448  while (1) {
449    int isInvalid = false;
450    const char *PrevSpec = 0;
451    SourceLocation Loc = Tok.getLocation();
452
453    switch (Tok.getKind()) {
454    default:
455      // Try to parse a type-specifier; if we found one, continue. If it's not
456      // a type, this falls through.
457      if (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateParams))
458        continue;
459
460    DoneWithDeclSpec:
461      // If this is not a declaration specifier token, we're done reading decl
462      // specifiers.  First verify that DeclSpec's are consistent.
463      DS.Finish(Diags, PP.getSourceManager(), getLang());
464      return;
465
466    case tok::coloncolon: // ::foo::bar
467      // Annotate C++ scope specifiers.  If we get one, loop.
468      if (TryAnnotateCXXScopeToken())
469        continue;
470      goto DoneWithDeclSpec;
471
472    case tok::annot_cxxscope: {
473      if (DS.hasTypeSpecifier())
474        goto DoneWithDeclSpec;
475
476      // We are looking for a qualified typename.
477      if (NextToken().isNot(tok::identifier))
478        goto DoneWithDeclSpec;
479
480      CXXScopeSpec SS;
481      SS.setScopeRep(Tok.getAnnotationValue());
482      SS.setRange(Tok.getAnnotationRange());
483
484      // If the next token is the name of the class type that the C++ scope
485      // denotes, followed by a '(', then this is a constructor declaration.
486      // We're done with the decl-specifiers.
487      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
488                                     CurScope, &SS) &&
489          GetLookAheadToken(2).is(tok::l_paren))
490        goto DoneWithDeclSpec;
491
492      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
493                                           CurScope, &SS);
494      if (TypeRep == 0)
495        goto DoneWithDeclSpec;
496
497      ConsumeToken(); // The C++ scope.
498
499      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
500                                     TypeRep);
501      if (isInvalid)
502        break;
503
504      DS.SetRangeEnd(Tok.getLocation());
505      ConsumeToken(); // The typename.
506
507      continue;
508    }
509
510      // typedef-name
511    case tok::identifier: {
512      // In C++, check to see if this is a scope specifier like foo::bar::, if
513      // so handle it as such.  This is important for ctor parsing.
514      if (getLang().CPlusPlus &&
515        TryAnnotateCXXScopeToken())
516          continue;
517
518      // This identifier can only be a typedef name if we haven't already seen
519      // a type-specifier.  Without this check we misparse:
520      //  typedef int X; struct Y { short X; };  as 'short int'.
521      if (DS.hasTypeSpecifier())
522        goto DoneWithDeclSpec;
523
524      // It has to be available as a typedef too!
525      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
526      if (TypeRep == 0)
527        goto DoneWithDeclSpec;
528
529      // C++: If the identifier is actually the name of the class type
530      // being defined and the next token is a '(', then this is a
531      // constructor declaration. We're done with the decl-specifiers
532      // and will treat this token as an identifier.
533      if (getLang().CPlusPlus &&
534          CurScope->isClassScope() &&
535          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
536          NextToken().getKind() == tok::l_paren)
537        goto DoneWithDeclSpec;
538
539      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
540                                     TypeRep);
541      if (isInvalid)
542        break;
543
544      DS.SetRangeEnd(Tok.getLocation());
545      ConsumeToken(); // The identifier
546
547      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
548      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
549      // Objective-C interface.  If we don't have Objective-C or a '<', this is
550      // just a normal reference to a typedef name.
551      if (!Tok.is(tok::less) || !getLang().ObjC1)
552        continue;
553
554      SourceLocation EndProtoLoc;
555      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
556      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
557      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
558
559      DS.SetRangeEnd(EndProtoLoc);
560
561      // Need to support trailing type qualifiers (e.g. "id<p> const").
562      // If a type specifier follows, it will be diagnosed elsewhere.
563      continue;
564    }
565    // GNU attributes support.
566    case tok::kw___attribute:
567      DS.AddAttributes(ParseAttributes());
568      continue;
569
570    // Microsoft declspec support.
571    case tok::kw___declspec:
572      if (!PP.getLangOptions().Microsoft)
573        goto DoneWithDeclSpec;
574      FuzzyParseMicrosoftDeclSpec();
575      continue;
576
577    // Microsoft single token adornments.
578    case tok::kw___forceinline:
579    case tok::kw___w64:
580    case tok::kw___cdecl:
581    case tok::kw___stdcall:
582    case tok::kw___fastcall:
583      if (!PP.getLangOptions().Microsoft)
584        goto DoneWithDeclSpec;
585      // Just ignore it.
586      break;
587
588    // storage-class-specifier
589    case tok::kw_typedef:
590      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
591      break;
592    case tok::kw_extern:
593      if (DS.isThreadSpecified())
594        Diag(Tok, diag::ext_thread_before) << "extern";
595      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
596      break;
597    case tok::kw___private_extern__:
598      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
599                                         PrevSpec);
600      break;
601    case tok::kw_static:
602      if (DS.isThreadSpecified())
603        Diag(Tok, diag::ext_thread_before) << "static";
604      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
605      break;
606    case tok::kw_auto:
607      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
608      break;
609    case tok::kw_register:
610      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
611      break;
612    case tok::kw_mutable:
613      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
614      break;
615    case tok::kw___thread:
616      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
617      break;
618
619      continue;
620
621    // function-specifier
622    case tok::kw_inline:
623      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
624      break;
625
626    case tok::kw_virtual:
627      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
628      break;
629
630    case tok::kw_explicit:
631      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
632      break;
633
634    case tok::less:
635      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
636      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
637      // but we support it.
638      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
639        goto DoneWithDeclSpec;
640
641      {
642        SourceLocation EndProtoLoc;
643        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
644        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
645        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
646        DS.SetRangeEnd(EndProtoLoc);
647
648        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
649          << SourceRange(Loc, EndProtoLoc);
650        // Need to support trailing type qualifiers (e.g. "id<p> const").
651        // If a type specifier follows, it will be diagnosed elsewhere.
652        continue;
653      }
654    }
655    // If the specifier combination wasn't legal, issue a diagnostic.
656    if (isInvalid) {
657      assert(PrevSpec && "Method did not return previous specifier!");
658      // Pick between error or extwarn.
659      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
660                                       : diag::ext_duplicate_declspec;
661      Diag(Tok, DiagID) << PrevSpec;
662    }
663    DS.SetRangeEnd(Tok.getLocation());
664    ConsumeToken();
665  }
666}
667
668/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
669/// primarily follow the C++ grammar with additions for C99 and GNU,
670/// which together subsume the C grammar. Note that the C++
671/// type-specifier also includes the C type-qualifier (for const,
672/// volatile, and C99 restrict). Returns true if a type-specifier was
673/// found (and parsed), false otherwise.
674///
675///       type-specifier: [C++ 7.1.5]
676///         simple-type-specifier
677///         class-specifier
678///         enum-specifier
679///         elaborated-type-specifier  [TODO]
680///         cv-qualifier
681///
682///       cv-qualifier: [C++ 7.1.5.1]
683///         'const'
684///         'volatile'
685/// [C99]   'restrict'
686///
687///       simple-type-specifier: [ C++ 7.1.5.2]
688///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
689///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
690///         'char'
691///         'wchar_t'
692///         'bool'
693///         'short'
694///         'int'
695///         'long'
696///         'signed'
697///         'unsigned'
698///         'float'
699///         'double'
700///         'void'
701/// [C99]   '_Bool'
702/// [C99]   '_Complex'
703/// [C99]   '_Imaginary'  // Removed in TC2?
704/// [GNU]   '_Decimal32'
705/// [GNU]   '_Decimal64'
706/// [GNU]   '_Decimal128'
707/// [GNU]   typeof-specifier
708/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
709/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
710bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
711                                        const char *&PrevSpec,
712                                        TemplateParameterLists *TemplateParams){
713  SourceLocation Loc = Tok.getLocation();
714
715  switch (Tok.getKind()) {
716  case tok::identifier:   // foo::bar
717    // Annotate typenames and C++ scope specifiers.  If we get one, just
718    // recurse to handle whatever we get.
719    if (TryAnnotateTypeOrScopeToken())
720      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
721    // Otherwise, not a type specifier.
722    return false;
723  case tok::coloncolon:   // ::foo::bar
724    if (NextToken().is(tok::kw_new) ||    // ::new
725        NextToken().is(tok::kw_delete))   // ::delete
726      return false;
727
728    // Annotate typenames and C++ scope specifiers.  If we get one, just
729    // recurse to handle whatever we get.
730    if (TryAnnotateTypeOrScopeToken())
731      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
732    // Otherwise, not a type specifier.
733    return false;
734
735  // simple-type-specifier:
736  case tok::annot_typename: {
737    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
738                                   Tok.getAnnotationValue());
739    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
740    ConsumeToken(); // The typename
741
742    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
743    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
744    // Objective-C interface.  If we don't have Objective-C or a '<', this is
745    // just a normal reference to a typedef name.
746    if (!Tok.is(tok::less) || !getLang().ObjC1)
747      return true;
748
749    SourceLocation EndProtoLoc;
750    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
751    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
752    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
753
754    DS.SetRangeEnd(EndProtoLoc);
755    return true;
756  }
757
758  case tok::kw_short:
759    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
760    break;
761  case tok::kw_long:
762    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
763      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
764    else
765      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
766    break;
767  case tok::kw_signed:
768    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
769    break;
770  case tok::kw_unsigned:
771    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
772    break;
773  case tok::kw__Complex:
774    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
775    break;
776  case tok::kw__Imaginary:
777    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
778    break;
779  case tok::kw_void:
780    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
781    break;
782  case tok::kw_char:
783    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
784    break;
785  case tok::kw_int:
786    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
787    break;
788  case tok::kw_float:
789    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
790    break;
791  case tok::kw_double:
792    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
793    break;
794  case tok::kw_wchar_t:
795    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
796    break;
797  case tok::kw_bool:
798  case tok::kw__Bool:
799    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
800    break;
801  case tok::kw__Decimal32:
802    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
803    break;
804  case tok::kw__Decimal64:
805    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
806    break;
807  case tok::kw__Decimal128:
808    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
809    break;
810
811  // class-specifier:
812  case tok::kw_class:
813  case tok::kw_struct:
814  case tok::kw_union:
815    ParseClassSpecifier(DS, TemplateParams);
816    return true;
817
818  // enum-specifier:
819  case tok::kw_enum:
820    ParseEnumSpecifier(DS);
821    return true;
822
823  // cv-qualifier:
824  case tok::kw_const:
825    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
826                               getLang())*2;
827    break;
828  case tok::kw_volatile:
829    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
830                               getLang())*2;
831    break;
832  case tok::kw_restrict:
833    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
834                               getLang())*2;
835    break;
836
837  // GNU typeof support.
838  case tok::kw_typeof:
839    ParseTypeofSpecifier(DS);
840    return true;
841
842  case tok::kw___cdecl:
843  case tok::kw___stdcall:
844  case tok::kw___fastcall:
845    return PP.getLangOptions().Microsoft;
846
847  default:
848    // Not a type-specifier; do nothing.
849    return false;
850  }
851
852  // If the specifier combination wasn't legal, issue a diagnostic.
853  if (isInvalid) {
854    assert(PrevSpec && "Method did not return previous specifier!");
855    // Pick between error or extwarn.
856    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
857                                     : diag::ext_duplicate_declspec;
858    Diag(Tok, DiagID) << PrevSpec;
859  }
860  DS.SetRangeEnd(Tok.getLocation());
861  ConsumeToken(); // whatever we parsed above.
862  return true;
863}
864
865/// ParseStructDeclaration - Parse a struct declaration without the terminating
866/// semicolon.
867///
868///       struct-declaration:
869///         specifier-qualifier-list struct-declarator-list
870/// [GNU]   __extension__ struct-declaration
871/// [GNU]   specifier-qualifier-list
872///       struct-declarator-list:
873///         struct-declarator
874///         struct-declarator-list ',' struct-declarator
875/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
876///       struct-declarator:
877///         declarator
878/// [GNU]   declarator attributes[opt]
879///         declarator[opt] ':' constant-expression
880/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
881///
882void Parser::
883ParseStructDeclaration(DeclSpec &DS,
884                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
885  if (Tok.is(tok::kw___extension__)) {
886    // __extension__ silences extension warnings in the subexpression.
887    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
888    ConsumeToken();
889    return ParseStructDeclaration(DS, Fields);
890  }
891
892  // Parse the common specifier-qualifiers-list piece.
893  SourceLocation DSStart = Tok.getLocation();
894  ParseSpecifierQualifierList(DS);
895
896  // If there are no declarators, this is a free-standing declaration
897  // specifier. Let the actions module cope with it.
898  if (Tok.is(tok::semi)) {
899    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
900    return;
901  }
902
903  // Read struct-declarators until we find the semicolon.
904  Fields.push_back(FieldDeclarator(DS));
905  while (1) {
906    FieldDeclarator &DeclaratorInfo = Fields.back();
907
908    /// struct-declarator: declarator
909    /// struct-declarator: declarator[opt] ':' constant-expression
910    if (Tok.isNot(tok::colon))
911      ParseDeclarator(DeclaratorInfo.D);
912
913    if (Tok.is(tok::colon)) {
914      ConsumeToken();
915      OwningExprResult Res(ParseConstantExpression());
916      if (Res.isInvalid())
917        SkipUntil(tok::semi, true, true);
918      else
919        DeclaratorInfo.BitfieldSize = Res.release();
920    }
921
922    // If attributes exist after the declarator, parse them.
923    if (Tok.is(tok::kw___attribute))
924      DeclaratorInfo.D.AddAttributes(ParseAttributes());
925
926    // If we don't have a comma, it is either the end of the list (a ';')
927    // or an error, bail out.
928    if (Tok.isNot(tok::comma))
929      return;
930
931    // Consume the comma.
932    ConsumeToken();
933
934    // Parse the next declarator.
935    Fields.push_back(FieldDeclarator(DS));
936
937    // Attributes are only allowed on the second declarator.
938    if (Tok.is(tok::kw___attribute))
939      Fields.back().D.AddAttributes(ParseAttributes());
940  }
941}
942
943/// ParseStructUnionBody
944///       struct-contents:
945///         struct-declaration-list
946/// [EXT]   empty
947/// [GNU]   "struct-declaration-list" without terminatoring ';'
948///       struct-declaration-list:
949///         struct-declaration
950///         struct-declaration-list struct-declaration
951/// [OBC]   '@' 'defs' '(' class-name ')'
952///
953void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
954                                  unsigned TagType, DeclTy *TagDecl) {
955  SourceLocation LBraceLoc = ConsumeBrace();
956
957  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
958  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
959
960  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
961  // C++.
962  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
963    Diag(Tok, diag::ext_empty_struct_union_enum)
964      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
965
966  llvm::SmallVector<DeclTy*, 32> FieldDecls;
967  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
968
969  // While we still have something to read, read the declarations in the struct.
970  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
971    // Each iteration of this loop reads one struct-declaration.
972
973    // Check for extraneous top-level semicolon.
974    if (Tok.is(tok::semi)) {
975      Diag(Tok, diag::ext_extra_struct_semi);
976      ConsumeToken();
977      continue;
978    }
979
980    // Parse all the comma separated declarators.
981    DeclSpec DS;
982    FieldDeclarators.clear();
983    if (!Tok.is(tok::at)) {
984      ParseStructDeclaration(DS, FieldDeclarators);
985
986      // Convert them all to fields.
987      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
988        FieldDeclarator &FD = FieldDeclarators[i];
989        // Install the declarator into the current TagDecl.
990        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
991                                           DS.getSourceRange().getBegin(),
992                                           FD.D, FD.BitfieldSize);
993        FieldDecls.push_back(Field);
994      }
995    } else { // Handle @defs
996      ConsumeToken();
997      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
998        Diag(Tok, diag::err_unexpected_at);
999        SkipUntil(tok::semi, true, true);
1000        continue;
1001      }
1002      ConsumeToken();
1003      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1004      if (!Tok.is(tok::identifier)) {
1005        Diag(Tok, diag::err_expected_ident);
1006        SkipUntil(tok::semi, true, true);
1007        continue;
1008      }
1009      llvm::SmallVector<DeclTy*, 16> Fields;
1010      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1011                        Tok.getIdentifierInfo(), Fields);
1012      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1013      ConsumeToken();
1014      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1015    }
1016
1017    if (Tok.is(tok::semi)) {
1018      ConsumeToken();
1019    } else if (Tok.is(tok::r_brace)) {
1020      Diag(Tok, diag::ext_expected_semi_decl_list);
1021      break;
1022    } else {
1023      Diag(Tok, diag::err_expected_semi_decl_list);
1024      // Skip to end of block or statement
1025      SkipUntil(tok::r_brace, true, true);
1026    }
1027  }
1028
1029  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1030
1031  AttributeList *AttrList = 0;
1032  // If attributes exist after struct contents, parse them.
1033  if (Tok.is(tok::kw___attribute))
1034    AttrList = ParseAttributes();
1035
1036  Actions.ActOnFields(CurScope,
1037                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1038                      LBraceLoc, RBraceLoc,
1039                      AttrList);
1040  StructScope.Exit();
1041  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1042}
1043
1044
1045/// ParseEnumSpecifier
1046///       enum-specifier: [C99 6.7.2.2]
1047///         'enum' identifier[opt] '{' enumerator-list '}'
1048///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1049/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1050///                                                 '}' attributes[opt]
1051///         'enum' identifier
1052/// [GNU]   'enum' attributes[opt] identifier
1053///
1054/// [C++] elaborated-type-specifier:
1055/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1056///
1057void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1058  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1059  SourceLocation StartLoc = ConsumeToken();
1060
1061  // Parse the tag portion of this.
1062
1063  AttributeList *Attr = 0;
1064  // If attributes exist after tag, parse them.
1065  if (Tok.is(tok::kw___attribute))
1066    Attr = ParseAttributes();
1067
1068  CXXScopeSpec SS;
1069  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1070    if (Tok.isNot(tok::identifier)) {
1071      Diag(Tok, diag::err_expected_ident);
1072      if (Tok.isNot(tok::l_brace)) {
1073        // Has no name and is not a definition.
1074        // Skip the rest of this declarator, up until the comma or semicolon.
1075        SkipUntil(tok::comma, true);
1076        return;
1077      }
1078    }
1079  }
1080
1081  // Must have either 'enum name' or 'enum {...}'.
1082  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1083    Diag(Tok, diag::err_expected_ident_lbrace);
1084
1085    // Skip the rest of this declarator, up until the comma or semicolon.
1086    SkipUntil(tok::comma, true);
1087    return;
1088  }
1089
1090  // If an identifier is present, consume and remember it.
1091  IdentifierInfo *Name = 0;
1092  SourceLocation NameLoc;
1093  if (Tok.is(tok::identifier)) {
1094    Name = Tok.getIdentifierInfo();
1095    NameLoc = ConsumeToken();
1096  }
1097
1098  // There are three options here.  If we have 'enum foo;', then this is a
1099  // forward declaration.  If we have 'enum foo {...' then this is a
1100  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1101  //
1102  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1103  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1104  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1105  //
1106  Action::TagKind TK;
1107  if (Tok.is(tok::l_brace))
1108    TK = Action::TK_Definition;
1109  else if (Tok.is(tok::semi))
1110    TK = Action::TK_Declaration;
1111  else
1112    TK = Action::TK_Reference;
1113  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1114                                     SS, Name, NameLoc, Attr,
1115                                     Action::MultiTemplateParamsArg(Actions));
1116
1117  if (Tok.is(tok::l_brace))
1118    ParseEnumBody(StartLoc, TagDecl);
1119
1120  // TODO: semantic analysis on the declspec for enums.
1121  const char *PrevSpec = 0;
1122  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1123    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1124}
1125
1126/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1127///       enumerator-list:
1128///         enumerator
1129///         enumerator-list ',' enumerator
1130///       enumerator:
1131///         enumeration-constant
1132///         enumeration-constant '=' constant-expression
1133///       enumeration-constant:
1134///         identifier
1135///
1136void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1137  // Enter the scope of the enum body and start the definition.
1138  ParseScope EnumScope(this, Scope::DeclScope);
1139  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1140
1141  SourceLocation LBraceLoc = ConsumeBrace();
1142
1143  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1144  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1145    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1146
1147  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1148
1149  DeclTy *LastEnumConstDecl = 0;
1150
1151  // Parse the enumerator-list.
1152  while (Tok.is(tok::identifier)) {
1153    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1154    SourceLocation IdentLoc = ConsumeToken();
1155
1156    SourceLocation EqualLoc;
1157    OwningExprResult AssignedVal(Actions);
1158    if (Tok.is(tok::equal)) {
1159      EqualLoc = ConsumeToken();
1160      AssignedVal = ParseConstantExpression();
1161      if (AssignedVal.isInvalid())
1162        SkipUntil(tok::comma, tok::r_brace, true, true);
1163    }
1164
1165    // Install the enumerator constant into EnumDecl.
1166    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1167                                                      LastEnumConstDecl,
1168                                                      IdentLoc, Ident,
1169                                                      EqualLoc,
1170                                                      AssignedVal.release());
1171    EnumConstantDecls.push_back(EnumConstDecl);
1172    LastEnumConstDecl = EnumConstDecl;
1173
1174    if (Tok.isNot(tok::comma))
1175      break;
1176    SourceLocation CommaLoc = ConsumeToken();
1177
1178    if (Tok.isNot(tok::identifier) && !getLang().C99)
1179      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1180  }
1181
1182  // Eat the }.
1183  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1184
1185  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1186                        EnumConstantDecls.size());
1187
1188  DeclTy *AttrList = 0;
1189  // If attributes exist after the identifier list, parse them.
1190  if (Tok.is(tok::kw___attribute))
1191    AttrList = ParseAttributes(); // FIXME: where do they do?
1192
1193  EnumScope.Exit();
1194  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1195}
1196
1197/// isTypeSpecifierQualifier - Return true if the current token could be the
1198/// start of a type-qualifier-list.
1199bool Parser::isTypeQualifier() const {
1200  switch (Tok.getKind()) {
1201  default: return false;
1202    // type-qualifier
1203  case tok::kw_const:
1204  case tok::kw_volatile:
1205  case tok::kw_restrict:
1206    return true;
1207  }
1208}
1209
1210/// isTypeSpecifierQualifier - Return true if the current token could be the
1211/// start of a specifier-qualifier-list.
1212bool Parser::isTypeSpecifierQualifier() {
1213  switch (Tok.getKind()) {
1214  default: return false;
1215
1216  case tok::identifier:   // foo::bar
1217    // Annotate typenames and C++ scope specifiers.  If we get one, just
1218    // recurse to handle whatever we get.
1219    if (TryAnnotateTypeOrScopeToken())
1220      return isTypeSpecifierQualifier();
1221    // Otherwise, not a type specifier.
1222    return false;
1223  case tok::coloncolon:   // ::foo::bar
1224    if (NextToken().is(tok::kw_new) ||    // ::new
1225        NextToken().is(tok::kw_delete))   // ::delete
1226      return false;
1227
1228    // Annotate typenames and C++ scope specifiers.  If we get one, just
1229    // recurse to handle whatever we get.
1230    if (TryAnnotateTypeOrScopeToken())
1231      return isTypeSpecifierQualifier();
1232    // Otherwise, not a type specifier.
1233    return false;
1234
1235    // GNU attributes support.
1236  case tok::kw___attribute:
1237    // GNU typeof support.
1238  case tok::kw_typeof:
1239
1240    // type-specifiers
1241  case tok::kw_short:
1242  case tok::kw_long:
1243  case tok::kw_signed:
1244  case tok::kw_unsigned:
1245  case tok::kw__Complex:
1246  case tok::kw__Imaginary:
1247  case tok::kw_void:
1248  case tok::kw_char:
1249  case tok::kw_wchar_t:
1250  case tok::kw_int:
1251  case tok::kw_float:
1252  case tok::kw_double:
1253  case tok::kw_bool:
1254  case tok::kw__Bool:
1255  case tok::kw__Decimal32:
1256  case tok::kw__Decimal64:
1257  case tok::kw__Decimal128:
1258
1259    // struct-or-union-specifier (C99) or class-specifier (C++)
1260  case tok::kw_class:
1261  case tok::kw_struct:
1262  case tok::kw_union:
1263    // enum-specifier
1264  case tok::kw_enum:
1265
1266    // type-qualifier
1267  case tok::kw_const:
1268  case tok::kw_volatile:
1269  case tok::kw_restrict:
1270
1271    // typedef-name
1272  case tok::annot_typename:
1273    return true;
1274
1275    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1276  case tok::less:
1277    return getLang().ObjC1;
1278
1279  case tok::kw___cdecl:
1280  case tok::kw___stdcall:
1281  case tok::kw___fastcall:
1282    return PP.getLangOptions().Microsoft;
1283  }
1284}
1285
1286/// isDeclarationSpecifier() - Return true if the current token is part of a
1287/// declaration specifier.
1288bool Parser::isDeclarationSpecifier() {
1289  switch (Tok.getKind()) {
1290  default: return false;
1291
1292  case tok::identifier:   // foo::bar
1293    // Annotate typenames and C++ scope specifiers.  If we get one, just
1294    // recurse to handle whatever we get.
1295    if (TryAnnotateTypeOrScopeToken())
1296      return isDeclarationSpecifier();
1297    // Otherwise, not a declaration specifier.
1298    return false;
1299  case tok::coloncolon:   // ::foo::bar
1300    if (NextToken().is(tok::kw_new) ||    // ::new
1301        NextToken().is(tok::kw_delete))   // ::delete
1302      return false;
1303
1304    // Annotate typenames and C++ scope specifiers.  If we get one, just
1305    // recurse to handle whatever we get.
1306    if (TryAnnotateTypeOrScopeToken())
1307      return isDeclarationSpecifier();
1308    // Otherwise, not a declaration specifier.
1309    return false;
1310
1311    // storage-class-specifier
1312  case tok::kw_typedef:
1313  case tok::kw_extern:
1314  case tok::kw___private_extern__:
1315  case tok::kw_static:
1316  case tok::kw_auto:
1317  case tok::kw_register:
1318  case tok::kw___thread:
1319
1320    // type-specifiers
1321  case tok::kw_short:
1322  case tok::kw_long:
1323  case tok::kw_signed:
1324  case tok::kw_unsigned:
1325  case tok::kw__Complex:
1326  case tok::kw__Imaginary:
1327  case tok::kw_void:
1328  case tok::kw_char:
1329  case tok::kw_wchar_t:
1330  case tok::kw_int:
1331  case tok::kw_float:
1332  case tok::kw_double:
1333  case tok::kw_bool:
1334  case tok::kw__Bool:
1335  case tok::kw__Decimal32:
1336  case tok::kw__Decimal64:
1337  case tok::kw__Decimal128:
1338
1339    // struct-or-union-specifier (C99) or class-specifier (C++)
1340  case tok::kw_class:
1341  case tok::kw_struct:
1342  case tok::kw_union:
1343    // enum-specifier
1344  case tok::kw_enum:
1345
1346    // type-qualifier
1347  case tok::kw_const:
1348  case tok::kw_volatile:
1349  case tok::kw_restrict:
1350
1351    // function-specifier
1352  case tok::kw_inline:
1353  case tok::kw_virtual:
1354  case tok::kw_explicit:
1355
1356    // typedef-name
1357  case tok::annot_typename:
1358
1359    // GNU typeof support.
1360  case tok::kw_typeof:
1361
1362    // GNU attributes.
1363  case tok::kw___attribute:
1364    return true;
1365
1366    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1367  case tok::less:
1368    return getLang().ObjC1;
1369
1370  case tok::kw___declspec:
1371  case tok::kw___cdecl:
1372  case tok::kw___stdcall:
1373  case tok::kw___fastcall:
1374    return PP.getLangOptions().Microsoft;
1375  }
1376}
1377
1378
1379/// ParseTypeQualifierListOpt
1380///       type-qualifier-list: [C99 6.7.5]
1381///         type-qualifier
1382/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1383///         type-qualifier-list type-qualifier
1384/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1385///
1386void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1387  while (1) {
1388    int isInvalid = false;
1389    const char *PrevSpec = 0;
1390    SourceLocation Loc = Tok.getLocation();
1391
1392    switch (Tok.getKind()) {
1393    case tok::kw_const:
1394      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1395                                 getLang())*2;
1396      break;
1397    case tok::kw_volatile:
1398      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1399                                 getLang())*2;
1400      break;
1401    case tok::kw_restrict:
1402      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1403                                 getLang())*2;
1404      break;
1405    case tok::kw___ptr64:
1406    case tok::kw___cdecl:
1407    case tok::kw___stdcall:
1408    case tok::kw___fastcall:
1409      if (!PP.getLangOptions().Microsoft)
1410        goto DoneWithTypeQuals;
1411      // Just ignore it.
1412      break;
1413    case tok::kw___attribute:
1414      if (AttributesAllowed) {
1415        DS.AddAttributes(ParseAttributes());
1416        continue; // do *not* consume the next token!
1417      }
1418      // otherwise, FALL THROUGH!
1419    default:
1420      DoneWithTypeQuals:
1421      // If this is not a type-qualifier token, we're done reading type
1422      // qualifiers.  First verify that DeclSpec's are consistent.
1423      DS.Finish(Diags, PP.getSourceManager(), getLang());
1424      return;
1425    }
1426
1427    // If the specifier combination wasn't legal, issue a diagnostic.
1428    if (isInvalid) {
1429      assert(PrevSpec && "Method did not return previous specifier!");
1430      // Pick between error or extwarn.
1431      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1432                                      : diag::ext_duplicate_declspec;
1433      Diag(Tok, DiagID) << PrevSpec;
1434    }
1435    ConsumeToken();
1436  }
1437}
1438
1439
1440/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1441///
1442void Parser::ParseDeclarator(Declarator &D) {
1443  /// This implements the 'declarator' production in the C grammar, then checks
1444  /// for well-formedness and issues diagnostics.
1445  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1446}
1447
1448/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1449/// is parsed by the function passed to it. Pass null, and the direct-declarator
1450/// isn't parsed at all, making this function effectively parse the C++
1451/// ptr-operator production.
1452///
1453///       declarator: [C99 6.7.5]
1454///         pointer[opt] direct-declarator
1455/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1456/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1457///
1458///       pointer: [C99 6.7.5]
1459///         '*' type-qualifier-list[opt]
1460///         '*' type-qualifier-list[opt] pointer
1461///
1462///       ptr-operator:
1463///         '*' cv-qualifier-seq[opt]
1464///         '&'
1465/// [GNU]   '&' restrict[opt] attributes[opt]
1466///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1467void Parser::ParseDeclaratorInternal(Declarator &D,
1468                                     DirectDeclParseFunction DirectDeclParser) {
1469  tok::TokenKind Kind = Tok.getKind();
1470
1471  // Not a pointer, C++ reference, or block.
1472  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1473      (Kind != tok::caret || !getLang().Blocks)) {
1474    if (DirectDeclParser)
1475      (this->*DirectDeclParser)(D);
1476    return;
1477  }
1478
1479  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1480  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1481
1482  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1483    // Is a pointer.
1484    DeclSpec DS;
1485
1486    ParseTypeQualifierListOpt(DS);
1487
1488    // Recursively parse the declarator.
1489    ParseDeclaratorInternal(D, DirectDeclParser);
1490    if (Kind == tok::star)
1491      // Remember that we parsed a pointer type, and remember the type-quals.
1492      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1493                                                DS.TakeAttributes()));
1494    else
1495      // Remember that we parsed a Block type, and remember the type-quals.
1496      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1497                                                     Loc));
1498  } else {
1499    // Is a reference
1500    DeclSpec DS;
1501
1502    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1503    // cv-qualifiers are introduced through the use of a typedef or of a
1504    // template type argument, in which case the cv-qualifiers are ignored.
1505    //
1506    // [GNU] Retricted references are allowed.
1507    // [GNU] Attributes on references are allowed.
1508    ParseTypeQualifierListOpt(DS);
1509
1510    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1511      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1512        Diag(DS.getConstSpecLoc(),
1513             diag::err_invalid_reference_qualifier_application) << "const";
1514      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1515        Diag(DS.getVolatileSpecLoc(),
1516             diag::err_invalid_reference_qualifier_application) << "volatile";
1517    }
1518
1519    // Recursively parse the declarator.
1520    ParseDeclaratorInternal(D, DirectDeclParser);
1521
1522    if (D.getNumTypeObjects() > 0) {
1523      // C++ [dcl.ref]p4: There shall be no references to references.
1524      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1525      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1526        if (const IdentifierInfo *II = D.getIdentifier())
1527          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1528           << II;
1529        else
1530          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1531            << "type name";
1532
1533        // Once we've complained about the reference-to-reference, we
1534        // can go ahead and build the (technically ill-formed)
1535        // declarator: reference collapsing will take care of it.
1536      }
1537    }
1538
1539    // Remember that we parsed a reference type. It doesn't have type-quals.
1540    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1541                                                DS.TakeAttributes()));
1542  }
1543}
1544
1545/// ParseDirectDeclarator
1546///       direct-declarator: [C99 6.7.5]
1547/// [C99]   identifier
1548///         '(' declarator ')'
1549/// [GNU]   '(' attributes declarator ')'
1550/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1551/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1552/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1553/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1554/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1555///         direct-declarator '(' parameter-type-list ')'
1556///         direct-declarator '(' identifier-list[opt] ')'
1557/// [GNU]   direct-declarator '(' parameter-forward-declarations
1558///                    parameter-type-list[opt] ')'
1559/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1560///                    cv-qualifier-seq[opt] exception-specification[opt]
1561/// [C++]   declarator-id
1562///
1563///       declarator-id: [C++ 8]
1564///         id-expression
1565///         '::'[opt] nested-name-specifier[opt] type-name
1566///
1567///       id-expression: [C++ 5.1]
1568///         unqualified-id
1569///         qualified-id            [TODO]
1570///
1571///       unqualified-id: [C++ 5.1]
1572///         identifier
1573///         operator-function-id
1574///         conversion-function-id  [TODO]
1575///          '~' class-name
1576///         template-id             [TODO]
1577///
1578void Parser::ParseDirectDeclarator(Declarator &D) {
1579  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1580
1581  if (getLang().CPlusPlus) {
1582    if (D.mayHaveIdentifier()) {
1583      bool afterCXXScope = ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1584      if (afterCXXScope) {
1585        // Change the declaration context for name lookup, until this function
1586        // is exited (and the declarator has been parsed).
1587        DeclScopeObj.EnterDeclaratorScope();
1588      }
1589
1590      if (Tok.is(tok::identifier)) {
1591        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1592
1593        // If this identifier is followed by a '<', we may have a template-id.
1594        DeclTy *Template;
1595        if (NextToken().is(tok::less) &&
1596            (Template = Actions.isTemplateName(*Tok.getIdentifierInfo(),
1597                                               CurScope))) {
1598          IdentifierInfo *II = Tok.getIdentifierInfo();
1599          AnnotateTemplateIdToken(Template, 0);
1600          // FIXME: Set the declarator to a template-id. How? I don't
1601          // know... for now, just use the identifier.
1602          D.SetIdentifier(II, Tok.getLocation());
1603        }
1604        // If this identifier is the name of the current class, it's a
1605        // constructor name.
1606        else if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1607          D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(),
1608                                              CurScope),
1609                           Tok.getLocation());
1610        // This is a normal identifier.
1611        else
1612          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1613        ConsumeToken();
1614        goto PastIdentifier;
1615      } else if (Tok.is(tok::kw_operator)) {
1616        SourceLocation OperatorLoc = Tok.getLocation();
1617
1618        // First try the name of an overloaded operator
1619        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1620          D.setOverloadedOperator(Op, OperatorLoc);
1621        } else {
1622          // This must be a conversion function (C++ [class.conv.fct]).
1623          if (TypeTy *ConvType = ParseConversionFunctionId())
1624            D.setConversionFunction(ConvType, OperatorLoc);
1625          else
1626            D.SetIdentifier(0, Tok.getLocation());
1627        }
1628        goto PastIdentifier;
1629      } else if (Tok.is(tok::tilde)) {
1630        // This should be a C++ destructor.
1631        SourceLocation TildeLoc = ConsumeToken();
1632        if (Tok.is(tok::identifier)) {
1633          if (TypeTy *Type = ParseClassName())
1634            D.setDestructor(Type, TildeLoc);
1635          else
1636            D.SetIdentifier(0, TildeLoc);
1637        } else {
1638          Diag(Tok, diag::err_expected_class_name);
1639          D.SetIdentifier(0, TildeLoc);
1640        }
1641        goto PastIdentifier;
1642      }
1643
1644      // If we reached this point, token is not identifier and not '~'.
1645
1646      if (afterCXXScope) {
1647        Diag(Tok, diag::err_expected_unqualified_id);
1648        D.SetIdentifier(0, Tok.getLocation());
1649        D.setInvalidType(true);
1650        goto PastIdentifier;
1651      }
1652    }
1653  }
1654
1655  // If we reached this point, we are either in C/ObjC or the token didn't
1656  // satisfy any of the C++-specific checks.
1657
1658  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1659    assert(!getLang().CPlusPlus &&
1660           "There's a C++-specific check for tok::identifier above");
1661    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1662    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1663    ConsumeToken();
1664  } else if (Tok.is(tok::l_paren)) {
1665    // direct-declarator: '(' declarator ')'
1666    // direct-declarator: '(' attributes declarator ')'
1667    // Example: 'char (*X)'   or 'int (*XX)(void)'
1668    ParseParenDeclarator(D);
1669  } else if (D.mayOmitIdentifier()) {
1670    // This could be something simple like "int" (in which case the declarator
1671    // portion is empty), if an abstract-declarator is allowed.
1672    D.SetIdentifier(0, Tok.getLocation());
1673  } else {
1674    if (getLang().CPlusPlus)
1675      Diag(Tok, diag::err_expected_unqualified_id);
1676    else
1677      Diag(Tok, diag::err_expected_ident_lparen);
1678    D.SetIdentifier(0, Tok.getLocation());
1679    D.setInvalidType(true);
1680  }
1681
1682 PastIdentifier:
1683  assert(D.isPastIdentifier() &&
1684         "Haven't past the location of the identifier yet?");
1685
1686  while (1) {
1687    if (Tok.is(tok::l_paren)) {
1688      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1689      // In such a case, check if we actually have a function declarator; if it
1690      // is not, the declarator has been fully parsed.
1691      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1692        // When not in file scope, warn for ambiguous function declarators, just
1693        // in case the author intended it as a variable definition.
1694        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1695        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1696          break;
1697      }
1698      ParseFunctionDeclarator(ConsumeParen(), D);
1699    } else if (Tok.is(tok::l_square)) {
1700      ParseBracketDeclarator(D);
1701    } else {
1702      break;
1703    }
1704  }
1705}
1706
1707/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1708/// only called before the identifier, so these are most likely just grouping
1709/// parens for precedence.  If we find that these are actually function
1710/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1711///
1712///       direct-declarator:
1713///         '(' declarator ')'
1714/// [GNU]   '(' attributes declarator ')'
1715///         direct-declarator '(' parameter-type-list ')'
1716///         direct-declarator '(' identifier-list[opt] ')'
1717/// [GNU]   direct-declarator '(' parameter-forward-declarations
1718///                    parameter-type-list[opt] ')'
1719///
1720void Parser::ParseParenDeclarator(Declarator &D) {
1721  SourceLocation StartLoc = ConsumeParen();
1722  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1723
1724  // Eat any attributes before we look at whether this is a grouping or function
1725  // declarator paren.  If this is a grouping paren, the attribute applies to
1726  // the type being built up, for example:
1727  //     int (__attribute__(()) *x)(long y)
1728  // If this ends up not being a grouping paren, the attribute applies to the
1729  // first argument, for example:
1730  //     int (__attribute__(()) int x)
1731  // In either case, we need to eat any attributes to be able to determine what
1732  // sort of paren this is.
1733  //
1734  AttributeList *AttrList = 0;
1735  bool RequiresArg = false;
1736  if (Tok.is(tok::kw___attribute)) {
1737    AttrList = ParseAttributes();
1738
1739    // We require that the argument list (if this is a non-grouping paren) be
1740    // present even if the attribute list was empty.
1741    RequiresArg = true;
1742  }
1743  // Eat any Microsoft extensions.
1744  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1745          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1746    ConsumeToken();
1747
1748  // If we haven't past the identifier yet (or where the identifier would be
1749  // stored, if this is an abstract declarator), then this is probably just
1750  // grouping parens. However, if this could be an abstract-declarator, then
1751  // this could also be the start of function arguments (consider 'void()').
1752  bool isGrouping;
1753
1754  if (!D.mayOmitIdentifier()) {
1755    // If this can't be an abstract-declarator, this *must* be a grouping
1756    // paren, because we haven't seen the identifier yet.
1757    isGrouping = true;
1758  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1759             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1760             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1761    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1762    // considered to be a type, not a K&R identifier-list.
1763    isGrouping = false;
1764  } else {
1765    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1766    isGrouping = true;
1767  }
1768
1769  // If this is a grouping paren, handle:
1770  // direct-declarator: '(' declarator ')'
1771  // direct-declarator: '(' attributes declarator ')'
1772  if (isGrouping) {
1773    bool hadGroupingParens = D.hasGroupingParens();
1774    D.setGroupingParens(true);
1775    if (AttrList)
1776      D.AddAttributes(AttrList);
1777
1778    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1779    // Match the ')'.
1780    MatchRHSPunctuation(tok::r_paren, StartLoc);
1781
1782    D.setGroupingParens(hadGroupingParens);
1783    return;
1784  }
1785
1786  // Okay, if this wasn't a grouping paren, it must be the start of a function
1787  // argument list.  Recognize that this declarator will never have an
1788  // identifier (and remember where it would have been), then call into
1789  // ParseFunctionDeclarator to handle of argument list.
1790  D.SetIdentifier(0, Tok.getLocation());
1791
1792  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1793}
1794
1795/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1796/// declarator D up to a paren, which indicates that we are parsing function
1797/// arguments.
1798///
1799/// If AttrList is non-null, then the caller parsed those arguments immediately
1800/// after the open paren - they should be considered to be the first argument of
1801/// a parameter.  If RequiresArg is true, then the first argument of the
1802/// function is required to be present and required to not be an identifier
1803/// list.
1804///
1805/// This method also handles this portion of the grammar:
1806///       parameter-type-list: [C99 6.7.5]
1807///         parameter-list
1808///         parameter-list ',' '...'
1809///
1810///       parameter-list: [C99 6.7.5]
1811///         parameter-declaration
1812///         parameter-list ',' parameter-declaration
1813///
1814///       parameter-declaration: [C99 6.7.5]
1815///         declaration-specifiers declarator
1816/// [C++]   declaration-specifiers declarator '=' assignment-expression
1817/// [GNU]   declaration-specifiers declarator attributes
1818///         declaration-specifiers abstract-declarator[opt]
1819/// [C++]   declaration-specifiers abstract-declarator[opt]
1820///           '=' assignment-expression
1821/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1822///
1823/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1824/// and "exception-specification[opt]"(TODO).
1825///
1826void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1827                                     AttributeList *AttrList,
1828                                     bool RequiresArg) {
1829  // lparen is already consumed!
1830  assert(D.isPastIdentifier() && "Should not call before identifier!");
1831
1832  // This parameter list may be empty.
1833  if (Tok.is(tok::r_paren)) {
1834    if (RequiresArg) {
1835      Diag(Tok, diag::err_argument_required_after_attribute);
1836      delete AttrList;
1837    }
1838
1839    ConsumeParen();  // Eat the closing ')'.
1840
1841    // cv-qualifier-seq[opt].
1842    DeclSpec DS;
1843    if (getLang().CPlusPlus) {
1844      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1845
1846      // Parse exception-specification[opt].
1847      if (Tok.is(tok::kw_throw))
1848        ParseExceptionSpecification();
1849    }
1850
1851    // Remember that we parsed a function type, and remember the attributes.
1852    // int() -> no prototype, no '...'.
1853    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1854                                               /*variadic*/ false,
1855                                               /*arglist*/ 0, 0,
1856                                               DS.getTypeQualifiers(),
1857                                               LParenLoc));
1858    return;
1859  }
1860
1861  // Alternatively, this parameter list may be an identifier list form for a
1862  // K&R-style function:  void foo(a,b,c)
1863  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1864      // K&R identifier lists can't have typedefs as identifiers, per
1865      // C99 6.7.5.3p11.
1866      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1867    if (RequiresArg) {
1868      Diag(Tok, diag::err_argument_required_after_attribute);
1869      delete AttrList;
1870    }
1871
1872    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1873    // normal declarators, not for abstract-declarators.
1874    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1875  }
1876
1877  // Finally, a normal, non-empty parameter type list.
1878
1879  // Build up an array of information about the parsed arguments.
1880  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1881
1882  // Enter function-declaration scope, limiting any declarators to the
1883  // function prototype scope, including parameter declarators.
1884  ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope);
1885
1886  bool IsVariadic = false;
1887  while (1) {
1888    if (Tok.is(tok::ellipsis)) {
1889      IsVariadic = true;
1890
1891      // Check to see if this is "void(...)" which is not allowed.
1892      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1893        // Otherwise, parse parameter type list.  If it starts with an
1894        // ellipsis,  diagnose the malformed function.
1895        Diag(Tok, diag::err_ellipsis_first_arg);
1896        IsVariadic = false;       // Treat this like 'void()'.
1897      }
1898
1899      ConsumeToken();     // Consume the ellipsis.
1900      break;
1901    }
1902
1903    SourceLocation DSStart = Tok.getLocation();
1904
1905    // Parse the declaration-specifiers.
1906    DeclSpec DS;
1907
1908    // If the caller parsed attributes for the first argument, add them now.
1909    if (AttrList) {
1910      DS.AddAttributes(AttrList);
1911      AttrList = 0;  // Only apply the attributes to the first parameter.
1912    }
1913    ParseDeclarationSpecifiers(DS);
1914
1915    // Parse the declarator.  This is "PrototypeContext", because we must
1916    // accept either 'declarator' or 'abstract-declarator' here.
1917    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1918    ParseDeclarator(ParmDecl);
1919
1920    // Parse GNU attributes, if present.
1921    if (Tok.is(tok::kw___attribute))
1922      ParmDecl.AddAttributes(ParseAttributes());
1923
1924    // Remember this parsed parameter in ParamInfo.
1925    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1926
1927    // DefArgToks is used when the parsing of default arguments needs
1928    // to be delayed.
1929    CachedTokens *DefArgToks = 0;
1930
1931    // If no parameter was specified, verify that *something* was specified,
1932    // otherwise we have a missing type and identifier.
1933    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1934        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1935      // Completely missing, emit error.
1936      Diag(DSStart, diag::err_missing_param);
1937    } else {
1938      // Otherwise, we have something.  Add it and let semantic analysis try
1939      // to grok it and add the result to the ParamInfo we are building.
1940
1941      // Inform the actions module about the parameter declarator, so it gets
1942      // added to the current scope.
1943      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1944
1945      // Parse the default argument, if any. We parse the default
1946      // arguments in all dialects; the semantic analysis in
1947      // ActOnParamDefaultArgument will reject the default argument in
1948      // C.
1949      if (Tok.is(tok::equal)) {
1950        SourceLocation EqualLoc = Tok.getLocation();
1951
1952        // Parse the default argument
1953        if (D.getContext() == Declarator::MemberContext) {
1954          // If we're inside a class definition, cache the tokens
1955          // corresponding to the default argument. We'll actually parse
1956          // them when we see the end of the class definition.
1957          // FIXME: Templates will require something similar.
1958          // FIXME: Can we use a smart pointer for Toks?
1959          DefArgToks = new CachedTokens;
1960
1961          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
1962                                    tok::semi, false)) {
1963            delete DefArgToks;
1964            DefArgToks = 0;
1965            Actions.ActOnParamDefaultArgumentError(Param);
1966          } else
1967            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
1968        } else {
1969          // Consume the '='.
1970          ConsumeToken();
1971
1972          OwningExprResult DefArgResult(ParseAssignmentExpression());
1973          if (DefArgResult.isInvalid()) {
1974            Actions.ActOnParamDefaultArgumentError(Param);
1975            SkipUntil(tok::comma, tok::r_paren, true, true);
1976          } else {
1977            // Inform the actions module about the default argument
1978            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
1979                                              DefArgResult.release());
1980          }
1981        }
1982      }
1983
1984      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1985                                          ParmDecl.getIdentifierLoc(), Param,
1986                                          DefArgToks));
1987    }
1988
1989    // If the next token is a comma, consume it and keep reading arguments.
1990    if (Tok.isNot(tok::comma)) break;
1991
1992    // Consume the comma.
1993    ConsumeToken();
1994  }
1995
1996  // Leave prototype scope.
1997  PrototypeScope.Exit();
1998
1999  // If we have the closing ')', eat it.
2000  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2001
2002  DeclSpec DS;
2003  if (getLang().CPlusPlus) {
2004    // Parse cv-qualifier-seq[opt].
2005    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2006
2007    // Parse exception-specification[opt].
2008    if (Tok.is(tok::kw_throw))
2009      ParseExceptionSpecification();
2010  }
2011
2012  // Remember that we parsed a function type, and remember the attributes.
2013  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2014                                             &ParamInfo[0], ParamInfo.size(),
2015                                             DS.getTypeQualifiers(),
2016                                             LParenLoc));
2017}
2018
2019/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2020/// we found a K&R-style identifier list instead of a type argument list.  The
2021/// current token is known to be the first identifier in the list.
2022///
2023///       identifier-list: [C99 6.7.5]
2024///         identifier
2025///         identifier-list ',' identifier
2026///
2027void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2028                                                   Declarator &D) {
2029  // Build up an array of information about the parsed arguments.
2030  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2031  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2032
2033  // If there was no identifier specified for the declarator, either we are in
2034  // an abstract-declarator, or we are in a parameter declarator which was found
2035  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2036  // diagnose this.
2037  if (!D.getIdentifier())
2038    Diag(Tok, diag::ext_ident_list_in_param);
2039
2040  // Tok is known to be the first identifier in the list.  Remember this
2041  // identifier in ParamInfo.
2042  ParamsSoFar.insert(Tok.getIdentifierInfo());
2043  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2044                                                 Tok.getLocation(), 0));
2045
2046  ConsumeToken();  // eat the first identifier.
2047
2048  while (Tok.is(tok::comma)) {
2049    // Eat the comma.
2050    ConsumeToken();
2051
2052    // If this isn't an identifier, report the error and skip until ')'.
2053    if (Tok.isNot(tok::identifier)) {
2054      Diag(Tok, diag::err_expected_ident);
2055      SkipUntil(tok::r_paren);
2056      return;
2057    }
2058
2059    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2060
2061    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2062    if (Actions.isTypeName(*ParmII, CurScope))
2063      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2064
2065    // Verify that the argument identifier has not already been mentioned.
2066    if (!ParamsSoFar.insert(ParmII)) {
2067      Diag(Tok, diag::err_param_redefinition) << ParmII;
2068    } else {
2069      // Remember this identifier in ParamInfo.
2070      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2071                                                     Tok.getLocation(), 0));
2072    }
2073
2074    // Eat the identifier.
2075    ConsumeToken();
2076  }
2077
2078  // Remember that we parsed a function type, and remember the attributes.  This
2079  // function type is always a K&R style function type, which is not varargs and
2080  // has no prototype.
2081  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2082                                             &ParamInfo[0], ParamInfo.size(),
2083                                             /*TypeQuals*/0, LParenLoc));
2084
2085  // If we have the closing ')', eat it and we're done.
2086  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2087}
2088
2089/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2090/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2091/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2092/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2093/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2094void Parser::ParseBracketDeclarator(Declarator &D) {
2095  SourceLocation StartLoc = ConsumeBracket();
2096
2097  // C array syntax has many features, but by-far the most common is [] and [4].
2098  // This code does a fast path to handle some of the most obvious cases.
2099  if (Tok.getKind() == tok::r_square) {
2100    MatchRHSPunctuation(tok::r_square, StartLoc);
2101    // Remember that we parsed the empty array type.
2102    OwningExprResult NumElements(Actions);
2103    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc));
2104    return;
2105  } else if (Tok.getKind() == tok::numeric_constant &&
2106             GetLookAheadToken(1).is(tok::r_square)) {
2107    // [4] is very common.  Parse the numeric constant expression.
2108    OwningExprResult ExprRes(Actions, Actions.ActOnNumericConstant(Tok));
2109    ConsumeToken();
2110
2111    MatchRHSPunctuation(tok::r_square, StartLoc);
2112
2113    // If there was an error parsing the assignment-expression, recover.
2114    if (ExprRes.isInvalid())
2115      ExprRes.release();  // Deallocate expr, just use [].
2116
2117    // Remember that we parsed a array type, and remember its features.
2118    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2119                                            ExprRes.release(), StartLoc));
2120    return;
2121  }
2122
2123  // If valid, this location is the position where we read the 'static' keyword.
2124  SourceLocation StaticLoc;
2125  if (Tok.is(tok::kw_static))
2126    StaticLoc = ConsumeToken();
2127
2128  // If there is a type-qualifier-list, read it now.
2129  // Type qualifiers in an array subscript are a C99 feature.
2130  DeclSpec DS;
2131  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2132
2133  // If we haven't already read 'static', check to see if there is one after the
2134  // type-qualifier-list.
2135  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2136    StaticLoc = ConsumeToken();
2137
2138  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2139  bool isStar = false;
2140  OwningExprResult NumElements(Actions);
2141
2142  // Handle the case where we have '[*]' as the array size.  However, a leading
2143  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2144  // the the token after the star is a ']'.  Since stars in arrays are
2145  // infrequent, use of lookahead is not costly here.
2146  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2147    ConsumeToken();  // Eat the '*'.
2148
2149    if (StaticLoc.isValid()) {
2150      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2151      StaticLoc = SourceLocation();  // Drop the static.
2152    }
2153    isStar = true;
2154  } else if (Tok.isNot(tok::r_square)) {
2155    // Note, in C89, this production uses the constant-expr production instead
2156    // of assignment-expr.  The only difference is that assignment-expr allows
2157    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2158    // are not i-c-e's, so we don't need to distinguish between the two here.
2159
2160    // Parse the assignment-expression now.
2161    NumElements = ParseAssignmentExpression();
2162  }
2163
2164  // If there was an error parsing the assignment-expression, recover.
2165  if (NumElements.isInvalid()) {
2166    // If the expression was invalid, skip it.
2167    SkipUntil(tok::r_square);
2168    return;
2169  }
2170
2171  MatchRHSPunctuation(tok::r_square, StartLoc);
2172
2173  // Remember that we parsed a array type, and remember its features.
2174  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2175                                          StaticLoc.isValid(), isStar,
2176                                          NumElements.release(), StartLoc));
2177}
2178
2179/// [GNU]   typeof-specifier:
2180///           typeof ( expressions )
2181///           typeof ( type-name )
2182/// [GNU/C++] typeof unary-expression
2183///
2184void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2185  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2186  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2187  SourceLocation StartLoc = ConsumeToken();
2188
2189  if (Tok.isNot(tok::l_paren)) {
2190    if (!getLang().CPlusPlus) {
2191      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2192      return;
2193    }
2194
2195    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2196    if (Result.isInvalid())
2197      return;
2198
2199    const char *PrevSpec = 0;
2200    // Check for duplicate type specifiers.
2201    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2202                           Result.release()))
2203      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2204
2205    // FIXME: Not accurate, the range gets one token more than it should.
2206    DS.SetRangeEnd(Tok.getLocation());
2207    return;
2208  }
2209
2210  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2211
2212  if (isTypeIdInParens()) {
2213    TypeTy *Ty = ParseTypeName();
2214
2215    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
2216
2217    if (Tok.isNot(tok::r_paren)) {
2218      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2219      return;
2220    }
2221    RParenLoc = ConsumeParen();
2222    const char *PrevSpec = 0;
2223    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2224    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
2225      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2226  } else { // we have an expression.
2227    OwningExprResult Result(ParseExpression());
2228
2229    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2230      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2231      return;
2232    }
2233    RParenLoc = ConsumeParen();
2234    const char *PrevSpec = 0;
2235    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2236    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2237                           Result.release()))
2238      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2239  }
2240  DS.SetRangeEnd(RParenLoc);
2241}
2242
2243
2244