ParseDecl.cpp revision 5ab0640efb436a721d408c853b771932d1a6ffce
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName() {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38
39  if (DeclaratorInfo.isInvalidType())
40    return true;
41
42  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
43}
44
45/// ParseAttributes - Parse a non-empty attributes list.
46///
47/// [GNU] attributes:
48///         attribute
49///         attributes attribute
50///
51/// [GNU]  attribute:
52///          '__attribute__' '(' '(' attribute-list ')' ')'
53///
54/// [GNU]  attribute-list:
55///          attrib
56///          attribute_list ',' attrib
57///
58/// [GNU]  attrib:
59///          empty
60///          attrib-name
61///          attrib-name '(' identifier ')'
62///          attrib-name '(' identifier ',' nonempty-expr-list ')'
63///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
64///
65/// [GNU]  attrib-name:
66///          identifier
67///          typespec
68///          typequal
69///          storageclass
70///
71/// FIXME: The GCC grammar/code for this construct implies we need two
72/// token lookahead. Comment from gcc: "If they start with an identifier
73/// which is followed by a comma or close parenthesis, then the arguments
74/// start with that identifier; otherwise they are an expression list."
75///
76/// At the moment, I am not doing 2 token lookahead. I am also unaware of
77/// any attributes that don't work (based on my limited testing). Most
78/// attributes are very simple in practice. Until we find a bug, I don't see
79/// a pressing need to implement the 2 token lookahead.
80
81AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
82  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
83
84  AttributeList *CurrAttr = 0;
85
86  while (Tok.is(tok::kw___attribute)) {
87    ConsumeToken();
88    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
89                         "attribute")) {
90      SkipUntil(tok::r_paren, true); // skip until ) or ;
91      return CurrAttr;
92    }
93    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return CurrAttr;
96    }
97    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
98    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
99           Tok.is(tok::comma)) {
100
101      if (Tok.is(tok::comma)) {
102        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
103        ConsumeToken();
104        continue;
105      }
106      // we have an identifier or declaration specifier (const, int, etc.)
107      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
108      SourceLocation AttrNameLoc = ConsumeToken();
109
110      // check if we have a "paramterized" attribute
111      if (Tok.is(tok::l_paren)) {
112        ConsumeParen(); // ignore the left paren loc for now
113
114        if (Tok.is(tok::identifier)) {
115          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
116          SourceLocation ParmLoc = ConsumeToken();
117
118          if (Tok.is(tok::r_paren)) {
119            // __attribute__(( mode(byte) ))
120            ConsumeParen(); // ignore the right paren loc for now
121            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
122                                         ParmName, ParmLoc, 0, 0, CurrAttr);
123          } else if (Tok.is(tok::comma)) {
124            ConsumeToken();
125            // __attribute__(( format(printf, 1, 2) ))
126            ExprVector ArgExprs(Actions);
127            bool ArgExprsOk = true;
128
129            // now parse the non-empty comma separated list of expressions
130            while (1) {
131              OwningExprResult ArgExpr(ParseAssignmentExpression());
132              if (ArgExpr.isInvalid()) {
133                ArgExprsOk = false;
134                SkipUntil(tok::r_paren);
135                break;
136              } else {
137                ArgExprs.push_back(ArgExpr.release());
138              }
139              if (Tok.isNot(tok::comma))
140                break;
141              ConsumeToken(); // Eat the comma, move to the next argument
142            }
143            if (ArgExprsOk && Tok.is(tok::r_paren)) {
144              ConsumeParen(); // ignore the right paren loc for now
145              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
146                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
147            }
148          }
149        } else { // not an identifier
150          // parse a possibly empty comma separated list of expressions
151          if (Tok.is(tok::r_paren)) {
152            // __attribute__(( nonnull() ))
153            ConsumeParen(); // ignore the right paren loc for now
154            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
155                                         0, SourceLocation(), 0, 0, CurrAttr);
156          } else {
157            // __attribute__(( aligned(16) ))
158            ExprVector ArgExprs(Actions);
159            bool ArgExprsOk = true;
160
161            // now parse the list of expressions
162            while (1) {
163              OwningExprResult ArgExpr(ParseAssignmentExpression());
164              if (ArgExpr.isInvalid()) {
165                ArgExprsOk = false;
166                SkipUntil(tok::r_paren);
167                break;
168              } else {
169                ArgExprs.push_back(ArgExpr.release());
170              }
171              if (Tok.isNot(tok::comma))
172                break;
173              ConsumeToken(); // Eat the comma, move to the next argument
174            }
175            // Match the ')'.
176            if (ArgExprsOk && Tok.is(tok::r_paren)) {
177              ConsumeParen(); // ignore the right paren loc for now
178              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
179                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
180                           CurrAttr);
181            }
182          }
183        }
184      } else {
185        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
186                                     0, SourceLocation(), 0, 0, CurrAttr);
187      }
188    }
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191    SourceLocation Loc = Tok.getLocation();;
192    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
193      SkipUntil(tok::r_paren, false);
194    }
195    if (EndLoc)
196      *EndLoc = Loc;
197  }
198  return CurrAttr;
199}
200
201/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
202/// routine is called to skip/ignore tokens that comprise the MS declspec.
203void Parser::FuzzyParseMicrosoftDeclSpec() {
204  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
205  ConsumeToken();
206  if (Tok.is(tok::l_paren)) {
207    unsigned short savedParenCount = ParenCount;
208    do {
209      ConsumeAnyToken();
210    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
211  }
212  return;
213}
214
215/// ParseDeclaration - Parse a full 'declaration', which consists of
216/// declaration-specifiers, some number of declarators, and a semicolon.
217/// 'Context' should be a Declarator::TheContext value.  This returns the
218/// location of the semicolon in DeclEnd.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
232                                                SourceLocation &DeclEnd) {
233  DeclPtrTy SingleDecl;
234  switch (Tok.getKind()) {
235  case tok::kw_template:
236  case tok::kw_export:
237    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
238    break;
239  case tok::kw_namespace:
240    SingleDecl = ParseNamespace(Context, DeclEnd);
241    break;
242  case tok::kw_using:
243    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
244    break;
245  case tok::kw_static_assert:
246    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
247    break;
248  default:
249    return ParseSimpleDeclaration(Context, DeclEnd);
250  }
251
252  // This routine returns a DeclGroup, if the thing we parsed only contains a
253  // single decl, convert it now.
254  return Actions.ConvertDeclToDeclGroup(SingleDecl);
255}
256
257///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
258///         declaration-specifiers init-declarator-list[opt] ';'
259///[C90/C++]init-declarator-list ';'                             [TODO]
260/// [OMP]   threadprivate-directive                              [TODO]
261///
262/// If RequireSemi is false, this does not check for a ';' at the end of the
263/// declaration.
264Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
265                                                      SourceLocation &DeclEnd,
266                                                      bool RequireSemi) {
267  // Parse the common declaration-specifiers piece.
268  DeclSpec DS;
269  ParseDeclarationSpecifiers(DS);
270
271  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
272  // declaration-specifiers init-declarator-list[opt] ';'
273  if (Tok.is(tok::semi)) {
274    ConsumeToken();
275    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
276    return Actions.ConvertDeclToDeclGroup(TheDecl);
277  }
278
279  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
280  ParseDeclarator(DeclaratorInfo);
281
282  DeclGroupPtrTy DG =
283    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
284
285  DeclEnd = Tok.getLocation();
286
287  // If the client wants to check what comes after the declaration, just return
288  // immediately without checking anything!
289  if (!RequireSemi) return DG;
290
291  if (Tok.is(tok::semi)) {
292    ConsumeToken();
293    return DG;
294  }
295
296  Diag(Tok, diag::err_expected_semi_declation);
297  // Skip to end of block or statement
298  SkipUntil(tok::r_brace, true, true);
299  if (Tok.is(tok::semi))
300    ConsumeToken();
301  return DG;
302}
303
304/// \brief Parse 'declaration' after parsing 'declaration-specifiers
305/// declarator'. This method parses the remainder of the declaration
306/// (including any attributes or initializer, among other things) and
307/// finalizes the declaration.
308///
309///       init-declarator: [C99 6.7]
310///         declarator
311///         declarator '=' initializer
312/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
313/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
314/// [C++]   declarator initializer[opt]
315///
316/// [C++] initializer:
317/// [C++]   '=' initializer-clause
318/// [C++]   '(' expression-list ')'
319/// [C++0x] '=' 'default'                                                [TODO]
320/// [C++0x] '=' 'delete'
321///
322/// According to the standard grammar, =default and =delete are function
323/// definitions, but that definitely doesn't fit with the parser here.
324///
325Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D) {
326  // If a simple-asm-expr is present, parse it.
327  if (Tok.is(tok::kw_asm)) {
328    SourceLocation Loc;
329    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
330    if (AsmLabel.isInvalid()) {
331      SkipUntil(tok::semi, true, true);
332      return DeclPtrTy();
333    }
334
335    D.setAsmLabel(AsmLabel.release());
336    D.SetRangeEnd(Loc);
337  }
338
339  // If attributes are present, parse them.
340  if (Tok.is(tok::kw___attribute)) {
341    SourceLocation Loc;
342    AttributeList *AttrList = ParseAttributes(&Loc);
343    D.AddAttributes(AttrList, Loc);
344  }
345
346  // Inform the current actions module that we just parsed this declarator.
347  DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
348
349  // Parse declarator '=' initializer.
350  if (Tok.is(tok::equal)) {
351    ConsumeToken();
352    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
353      SourceLocation DelLoc = ConsumeToken();
354      Actions.SetDeclDeleted(ThisDecl, DelLoc);
355    } else {
356      OwningExprResult Init(ParseInitializer());
357      if (Init.isInvalid()) {
358        SkipUntil(tok::semi, true, true);
359        return DeclPtrTy();
360      }
361      Actions.AddInitializerToDecl(ThisDecl, move(Init));
362    }
363  } else if (Tok.is(tok::l_paren)) {
364    // Parse C++ direct initializer: '(' expression-list ')'
365    SourceLocation LParenLoc = ConsumeParen();
366    ExprVector Exprs(Actions);
367    CommaLocsTy CommaLocs;
368
369    if (ParseExpressionList(Exprs, CommaLocs)) {
370      SkipUntil(tok::r_paren);
371    } else {
372      // Match the ')'.
373      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
374
375      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
376             "Unexpected number of commas!");
377      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
378                                            move_arg(Exprs),
379                                            CommaLocs.data(), RParenLoc);
380    }
381  } else {
382    Actions.ActOnUninitializedDecl(ThisDecl);
383  }
384
385  return ThisDecl;
386}
387
388/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
389/// parsing 'declaration-specifiers declarator'.  This method is split out this
390/// way to handle the ambiguity between top-level function-definitions and
391/// declarations.
392///
393///       init-declarator-list: [C99 6.7]
394///         init-declarator
395///         init-declarator-list ',' init-declarator
396///
397/// According to the standard grammar, =default and =delete are function
398/// definitions, but that definitely doesn't fit with the parser here.
399///
400Parser::DeclGroupPtrTy Parser::
401ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
402  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
403  // that we parse together here.
404  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
405
406  // At this point, we know that it is not a function definition.  Parse the
407  // rest of the init-declarator-list.
408  while (1) {
409    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
410    if (ThisDecl.get())
411      DeclsInGroup.push_back(ThisDecl);
412
413    // If we don't have a comma, it is either the end of the list (a ';') or an
414    // error, bail out.
415    if (Tok.isNot(tok::comma))
416      break;
417
418    // Consume the comma.
419    ConsumeToken();
420
421    // Parse the next declarator.
422    D.clear();
423
424    // Accept attributes in an init-declarator.  In the first declarator in a
425    // declaration, these would be part of the declspec.  In subsequent
426    // declarators, they become part of the declarator itself, so that they
427    // don't apply to declarators after *this* one.  Examples:
428    //    short __attribute__((common)) var;    -> declspec
429    //    short var __attribute__((common));    -> declarator
430    //    short x, __attribute__((common)) var;    -> declarator
431    if (Tok.is(tok::kw___attribute)) {
432      SourceLocation Loc;
433      AttributeList *AttrList = ParseAttributes(&Loc);
434      D.AddAttributes(AttrList, Loc);
435    }
436
437    ParseDeclarator(D);
438  }
439
440  return Actions.FinalizeDeclaratorGroup(CurScope, DeclsInGroup.data(),
441                                         DeclsInGroup.size());
442}
443
444/// ParseSpecifierQualifierList
445///        specifier-qualifier-list:
446///          type-specifier specifier-qualifier-list[opt]
447///          type-qualifier specifier-qualifier-list[opt]
448/// [GNU]    attributes     specifier-qualifier-list[opt]
449///
450void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
451  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
452  /// parse declaration-specifiers and complain about extra stuff.
453  ParseDeclarationSpecifiers(DS);
454
455  // Validate declspec for type-name.
456  unsigned Specs = DS.getParsedSpecifiers();
457  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
458      !DS.getAttributes())
459    Diag(Tok, diag::err_typename_requires_specqual);
460
461  // Issue diagnostic and remove storage class if present.
462  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
463    if (DS.getStorageClassSpecLoc().isValid())
464      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
465    else
466      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
467    DS.ClearStorageClassSpecs();
468  }
469
470  // Issue diagnostic and remove function specfier if present.
471  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
472    if (DS.isInlineSpecified())
473      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
474    if (DS.isVirtualSpecified())
475      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
476    if (DS.isExplicitSpecified())
477      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
478    DS.ClearFunctionSpecs();
479  }
480}
481
482/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
483/// specified token is valid after the identifier in a declarator which
484/// immediately follows the declspec.  For example, these things are valid:
485///
486///      int x   [             4];         // direct-declarator
487///      int x   (             int y);     // direct-declarator
488///  int(int x   )                         // direct-declarator
489///      int x   ;                         // simple-declaration
490///      int x   =             17;         // init-declarator-list
491///      int x   ,             y;          // init-declarator-list
492///      int x   __asm__       ("foo");    // init-declarator-list
493///      int x   :             4;          // struct-declarator
494///      int x   {             5};         // C++'0x unified initializers
495///
496/// This is not, because 'x' does not immediately follow the declspec (though
497/// ')' happens to be valid anyway).
498///    int (x)
499///
500static bool isValidAfterIdentifierInDeclarator(const Token &T) {
501  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
502         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
503         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
504}
505
506
507/// ParseImplicitInt - This method is called when we have an non-typename
508/// identifier in a declspec (which normally terminates the decl spec) when
509/// the declspec has no type specifier.  In this case, the declspec is either
510/// malformed or is "implicit int" (in K&R and C89).
511///
512/// This method handles diagnosing this prettily and returns false if the
513/// declspec is done being processed.  If it recovers and thinks there may be
514/// other pieces of declspec after it, it returns true.
515///
516bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
517                              const ParsedTemplateInfo &TemplateInfo,
518                              AccessSpecifier AS) {
519  assert(Tok.is(tok::identifier) && "should have identifier");
520
521  SourceLocation Loc = Tok.getLocation();
522  // If we see an identifier that is not a type name, we normally would
523  // parse it as the identifer being declared.  However, when a typename
524  // is typo'd or the definition is not included, this will incorrectly
525  // parse the typename as the identifier name and fall over misparsing
526  // later parts of the diagnostic.
527  //
528  // As such, we try to do some look-ahead in cases where this would
529  // otherwise be an "implicit-int" case to see if this is invalid.  For
530  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
531  // an identifier with implicit int, we'd get a parse error because the
532  // next token is obviously invalid for a type.  Parse these as a case
533  // with an invalid type specifier.
534  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
535
536  // Since we know that this either implicit int (which is rare) or an
537  // error, we'd do lookahead to try to do better recovery.
538  if (isValidAfterIdentifierInDeclarator(NextToken())) {
539    // If this token is valid for implicit int, e.g. "static x = 4", then
540    // we just avoid eating the identifier, so it will be parsed as the
541    // identifier in the declarator.
542    return false;
543  }
544
545  // Otherwise, if we don't consume this token, we are going to emit an
546  // error anyway.  Try to recover from various common problems.  Check
547  // to see if this was a reference to a tag name without a tag specified.
548  // This is a common problem in C (saying 'foo' instead of 'struct foo').
549  //
550  // C++ doesn't need this, and isTagName doesn't take SS.
551  if (SS == 0) {
552    const char *TagName = 0;
553    tok::TokenKind TagKind = tok::unknown;
554
555    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
556      default: break;
557      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
558      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
559      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
560      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
561    }
562
563    if (TagName) {
564      Diag(Loc, diag::err_use_of_tag_name_without_tag)
565        << Tok.getIdentifierInfo() << TagName
566        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
567
568      // Parse this as a tag as if the missing tag were present.
569      if (TagKind == tok::kw_enum)
570        ParseEnumSpecifier(Loc, DS, AS);
571      else
572        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
573      return true;
574    }
575  }
576
577  // Since this is almost certainly an invalid type name, emit a
578  // diagnostic that says it, eat the token, and mark the declspec as
579  // invalid.
580  SourceRange R;
581  if (SS) R = SS->getRange();
582
583  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
584  const char *PrevSpec;
585  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
586  DS.SetRangeEnd(Tok.getLocation());
587  ConsumeToken();
588
589  // TODO: Could inject an invalid typedef decl in an enclosing scope to
590  // avoid rippling error messages on subsequent uses of the same type,
591  // could be useful if #include was forgotten.
592  return false;
593}
594
595/// ParseDeclarationSpecifiers
596///       declaration-specifiers: [C99 6.7]
597///         storage-class-specifier declaration-specifiers[opt]
598///         type-specifier declaration-specifiers[opt]
599/// [C99]   function-specifier declaration-specifiers[opt]
600/// [GNU]   attributes declaration-specifiers[opt]
601///
602///       storage-class-specifier: [C99 6.7.1]
603///         'typedef'
604///         'extern'
605///         'static'
606///         'auto'
607///         'register'
608/// [C++]   'mutable'
609/// [GNU]   '__thread'
610///       function-specifier: [C99 6.7.4]
611/// [C99]   'inline'
612/// [C++]   'virtual'
613/// [C++]   'explicit'
614///       'friend': [C++ dcl.friend]
615
616///
617void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
618                                        const ParsedTemplateInfo &TemplateInfo,
619                                        AccessSpecifier AS) {
620  DS.SetRangeStart(Tok.getLocation());
621  while (1) {
622    int isInvalid = false;
623    const char *PrevSpec = 0;
624    SourceLocation Loc = Tok.getLocation();
625
626    switch (Tok.getKind()) {
627    default:
628    DoneWithDeclSpec:
629      // If this is not a declaration specifier token, we're done reading decl
630      // specifiers.  First verify that DeclSpec's are consistent.
631      DS.Finish(Diags, PP);
632      return;
633
634    case tok::coloncolon: // ::foo::bar
635      // Annotate C++ scope specifiers.  If we get one, loop.
636      if (TryAnnotateCXXScopeToken())
637        continue;
638      goto DoneWithDeclSpec;
639
640    case tok::annot_cxxscope: {
641      if (DS.hasTypeSpecifier())
642        goto DoneWithDeclSpec;
643
644      // We are looking for a qualified typename.
645      Token Next = NextToken();
646      if (Next.is(tok::annot_template_id) &&
647          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
648            ->Kind == TNK_Type_template) {
649        // We have a qualified template-id, e.g., N::A<int>
650        CXXScopeSpec SS;
651        ParseOptionalCXXScopeSpecifier(SS);
652        assert(Tok.is(tok::annot_template_id) &&
653               "ParseOptionalCXXScopeSpecifier not working");
654        AnnotateTemplateIdTokenAsType(&SS);
655        continue;
656      }
657
658      if (Next.isNot(tok::identifier))
659        goto DoneWithDeclSpec;
660
661      CXXScopeSpec SS;
662      SS.setScopeRep(Tok.getAnnotationValue());
663      SS.setRange(Tok.getAnnotationRange());
664
665      // If the next token is the name of the class type that the C++ scope
666      // denotes, followed by a '(', then this is a constructor declaration.
667      // We're done with the decl-specifiers.
668      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
669                                     CurScope, &SS) &&
670          GetLookAheadToken(2).is(tok::l_paren))
671        goto DoneWithDeclSpec;
672
673      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
674                                            Next.getLocation(), CurScope, &SS);
675
676      // If the referenced identifier is not a type, then this declspec is
677      // erroneous: We already checked about that it has no type specifier, and
678      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
679      // typename.
680      if (TypeRep == 0) {
681        ConsumeToken();   // Eat the scope spec so the identifier is current.
682        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
683        goto DoneWithDeclSpec;
684      }
685
686      ConsumeToken(); // The C++ scope.
687
688      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
689                                     TypeRep);
690      if (isInvalid)
691        break;
692
693      DS.SetRangeEnd(Tok.getLocation());
694      ConsumeToken(); // The typename.
695
696      continue;
697    }
698
699    case tok::annot_typename: {
700      if (Tok.getAnnotationValue())
701        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
702                                       Tok.getAnnotationValue());
703      else
704        DS.SetTypeSpecError();
705      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
706      ConsumeToken(); // The typename
707
708      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
709      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
710      // Objective-C interface.  If we don't have Objective-C or a '<', this is
711      // just a normal reference to a typedef name.
712      if (!Tok.is(tok::less) || !getLang().ObjC1)
713        continue;
714
715      SourceLocation EndProtoLoc;
716      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
717      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
718      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
719
720      DS.SetRangeEnd(EndProtoLoc);
721      continue;
722    }
723
724      // typedef-name
725    case tok::identifier: {
726      // In C++, check to see if this is a scope specifier like foo::bar::, if
727      // so handle it as such.  This is important for ctor parsing.
728      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
729        continue;
730
731      // This identifier can only be a typedef name if we haven't already seen
732      // a type-specifier.  Without this check we misparse:
733      //  typedef int X; struct Y { short X; };  as 'short int'.
734      if (DS.hasTypeSpecifier())
735        goto DoneWithDeclSpec;
736
737      // It has to be available as a typedef too!
738      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
739                                            Tok.getLocation(), CurScope);
740
741      // If this is not a typedef name, don't parse it as part of the declspec,
742      // it must be an implicit int or an error.
743      if (TypeRep == 0) {
744        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
745        goto DoneWithDeclSpec;
746      }
747
748      // C++: If the identifier is actually the name of the class type
749      // being defined and the next token is a '(', then this is a
750      // constructor declaration. We're done with the decl-specifiers
751      // and will treat this token as an identifier.
752      if (getLang().CPlusPlus && CurScope->isClassScope() &&
753          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
754          NextToken().getKind() == tok::l_paren)
755        goto DoneWithDeclSpec;
756
757      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
758                                     TypeRep);
759      if (isInvalid)
760        break;
761
762      DS.SetRangeEnd(Tok.getLocation());
763      ConsumeToken(); // The identifier
764
765      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
766      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
767      // Objective-C interface.  If we don't have Objective-C or a '<', this is
768      // just a normal reference to a typedef name.
769      if (!Tok.is(tok::less) || !getLang().ObjC1)
770        continue;
771
772      SourceLocation EndProtoLoc;
773      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
774      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
775      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
776
777      DS.SetRangeEnd(EndProtoLoc);
778
779      // Need to support trailing type qualifiers (e.g. "id<p> const").
780      // If a type specifier follows, it will be diagnosed elsewhere.
781      continue;
782    }
783
784      // type-name
785    case tok::annot_template_id: {
786      TemplateIdAnnotation *TemplateId
787        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
788      if (TemplateId->Kind != TNK_Type_template) {
789        // This template-id does not refer to a type name, so we're
790        // done with the type-specifiers.
791        goto DoneWithDeclSpec;
792      }
793
794      // Turn the template-id annotation token into a type annotation
795      // token, then try again to parse it as a type-specifier.
796      AnnotateTemplateIdTokenAsType();
797      continue;
798    }
799
800    // GNU attributes support.
801    case tok::kw___attribute:
802      DS.AddAttributes(ParseAttributes());
803      continue;
804
805    // Microsoft declspec support.
806    case tok::kw___declspec:
807      if (!PP.getLangOptions().Microsoft)
808        goto DoneWithDeclSpec;
809      FuzzyParseMicrosoftDeclSpec();
810      continue;
811
812    // Microsoft single token adornments.
813    case tok::kw___forceinline:
814    case tok::kw___w64:
815    case tok::kw___cdecl:
816    case tok::kw___stdcall:
817    case tok::kw___fastcall:
818      if (!PP.getLangOptions().Microsoft)
819        goto DoneWithDeclSpec;
820      // Just ignore it.
821      break;
822
823    // storage-class-specifier
824    case tok::kw_typedef:
825      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
826      break;
827    case tok::kw_extern:
828      if (DS.isThreadSpecified())
829        Diag(Tok, diag::ext_thread_before) << "extern";
830      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
831      break;
832    case tok::kw___private_extern__:
833      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
834                                         PrevSpec);
835      break;
836    case tok::kw_static:
837      if (DS.isThreadSpecified())
838        Diag(Tok, diag::ext_thread_before) << "static";
839      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
840      break;
841    case tok::kw_auto:
842      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
843      break;
844    case tok::kw_register:
845      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
846      break;
847    case tok::kw_mutable:
848      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
849      break;
850    case tok::kw___thread:
851      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
852      break;
853
854    // function-specifier
855    case tok::kw_inline:
856      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
857      break;
858    case tok::kw_virtual:
859      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
860      break;
861    case tok::kw_explicit:
862      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
863      break;
864
865    // friend
866    case tok::kw_friend:
867      isInvalid = DS.SetFriendSpec(Loc, PrevSpec);
868      break;
869
870    // type-specifier
871    case tok::kw_short:
872      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
873      break;
874    case tok::kw_long:
875      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
876        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
877      else
878        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
879      break;
880    case tok::kw_signed:
881      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
882      break;
883    case tok::kw_unsigned:
884      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
885      break;
886    case tok::kw__Complex:
887      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
888      break;
889    case tok::kw__Imaginary:
890      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
891      break;
892    case tok::kw_void:
893      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
894      break;
895    case tok::kw_char:
896      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
897      break;
898    case tok::kw_int:
899      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
900      break;
901    case tok::kw_float:
902      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
903      break;
904    case tok::kw_double:
905      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
906      break;
907    case tok::kw_wchar_t:
908      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
909      break;
910    case tok::kw_bool:
911    case tok::kw__Bool:
912      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
913      break;
914    case tok::kw__Decimal32:
915      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
916      break;
917    case tok::kw__Decimal64:
918      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
919      break;
920    case tok::kw__Decimal128:
921      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
922      break;
923
924    // class-specifier:
925    case tok::kw_class:
926    case tok::kw_struct:
927    case tok::kw_union: {
928      tok::TokenKind Kind = Tok.getKind();
929      ConsumeToken();
930      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
931      continue;
932    }
933
934    // enum-specifier:
935    case tok::kw_enum:
936      ConsumeToken();
937      ParseEnumSpecifier(Loc, DS, AS);
938      continue;
939
940    // cv-qualifier:
941    case tok::kw_const:
942      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
943      break;
944    case tok::kw_volatile:
945      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
946                                 getLang())*2;
947      break;
948    case tok::kw_restrict:
949      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
950                                 getLang())*2;
951      break;
952
953    // C++ typename-specifier:
954    case tok::kw_typename:
955      if (TryAnnotateTypeOrScopeToken())
956        continue;
957      break;
958
959    // GNU typeof support.
960    case tok::kw_typeof:
961      ParseTypeofSpecifier(DS);
962      continue;
963
964    case tok::less:
965      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
966      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
967      // but we support it.
968      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
969        goto DoneWithDeclSpec;
970
971      {
972        SourceLocation EndProtoLoc;
973        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
974        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
975        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
976        DS.SetRangeEnd(EndProtoLoc);
977
978        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
979          << CodeModificationHint::CreateInsertion(Loc, "id")
980          << SourceRange(Loc, EndProtoLoc);
981        // Need to support trailing type qualifiers (e.g. "id<p> const").
982        // If a type specifier follows, it will be diagnosed elsewhere.
983        continue;
984      }
985    }
986    // If the specifier combination wasn't legal, issue a diagnostic.
987    if (isInvalid) {
988      assert(PrevSpec && "Method did not return previous specifier!");
989      // Pick between error or extwarn.
990      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
991                                       : diag::ext_duplicate_declspec;
992      Diag(Tok, DiagID) << PrevSpec;
993    }
994    DS.SetRangeEnd(Tok.getLocation());
995    ConsumeToken();
996  }
997}
998
999/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1000/// primarily follow the C++ grammar with additions for C99 and GNU,
1001/// which together subsume the C grammar. Note that the C++
1002/// type-specifier also includes the C type-qualifier (for const,
1003/// volatile, and C99 restrict). Returns true if a type-specifier was
1004/// found (and parsed), false otherwise.
1005///
1006///       type-specifier: [C++ 7.1.5]
1007///         simple-type-specifier
1008///         class-specifier
1009///         enum-specifier
1010///         elaborated-type-specifier  [TODO]
1011///         cv-qualifier
1012///
1013///       cv-qualifier: [C++ 7.1.5.1]
1014///         'const'
1015///         'volatile'
1016/// [C99]   'restrict'
1017///
1018///       simple-type-specifier: [ C++ 7.1.5.2]
1019///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1020///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1021///         'char'
1022///         'wchar_t'
1023///         'bool'
1024///         'short'
1025///         'int'
1026///         'long'
1027///         'signed'
1028///         'unsigned'
1029///         'float'
1030///         'double'
1031///         'void'
1032/// [C99]   '_Bool'
1033/// [C99]   '_Complex'
1034/// [C99]   '_Imaginary'  // Removed in TC2?
1035/// [GNU]   '_Decimal32'
1036/// [GNU]   '_Decimal64'
1037/// [GNU]   '_Decimal128'
1038/// [GNU]   typeof-specifier
1039/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1040/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1041bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
1042                                        const char *&PrevSpec,
1043                                      const ParsedTemplateInfo &TemplateInfo) {
1044  SourceLocation Loc = Tok.getLocation();
1045
1046  switch (Tok.getKind()) {
1047  case tok::identifier:   // foo::bar
1048  case tok::kw_typename:  // typename foo::bar
1049    // Annotate typenames and C++ scope specifiers.  If we get one, just
1050    // recurse to handle whatever we get.
1051    if (TryAnnotateTypeOrScopeToken())
1052      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1053    // Otherwise, not a type specifier.
1054    return false;
1055  case tok::coloncolon:   // ::foo::bar
1056    if (NextToken().is(tok::kw_new) ||    // ::new
1057        NextToken().is(tok::kw_delete))   // ::delete
1058      return false;
1059
1060    // Annotate typenames and C++ scope specifiers.  If we get one, just
1061    // recurse to handle whatever we get.
1062    if (TryAnnotateTypeOrScopeToken())
1063      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1064    // Otherwise, not a type specifier.
1065    return false;
1066
1067  // simple-type-specifier:
1068  case tok::annot_typename: {
1069    if (Tok.getAnnotationValue())
1070      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1071                                     Tok.getAnnotationValue());
1072    else
1073      DS.SetTypeSpecError();
1074    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1075    ConsumeToken(); // The typename
1076
1077    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1078    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1079    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1080    // just a normal reference to a typedef name.
1081    if (!Tok.is(tok::less) || !getLang().ObjC1)
1082      return true;
1083
1084    SourceLocation EndProtoLoc;
1085    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1086    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1087    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1088
1089    DS.SetRangeEnd(EndProtoLoc);
1090    return true;
1091  }
1092
1093  case tok::kw_short:
1094    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1095    break;
1096  case tok::kw_long:
1097    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1098      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1099    else
1100      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1101    break;
1102  case tok::kw_signed:
1103    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1104    break;
1105  case tok::kw_unsigned:
1106    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1107    break;
1108  case tok::kw__Complex:
1109    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1110    break;
1111  case tok::kw__Imaginary:
1112    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1113    break;
1114  case tok::kw_void:
1115    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1116    break;
1117  case tok::kw_char:
1118    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1119    break;
1120  case tok::kw_int:
1121    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1122    break;
1123  case tok::kw_float:
1124    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1125    break;
1126  case tok::kw_double:
1127    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1128    break;
1129  case tok::kw_wchar_t:
1130    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1131    break;
1132  case tok::kw_bool:
1133  case tok::kw__Bool:
1134    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1135    break;
1136  case tok::kw__Decimal32:
1137    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1138    break;
1139  case tok::kw__Decimal64:
1140    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1141    break;
1142  case tok::kw__Decimal128:
1143    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1144    break;
1145
1146  // class-specifier:
1147  case tok::kw_class:
1148  case tok::kw_struct:
1149  case tok::kw_union: {
1150    tok::TokenKind Kind = Tok.getKind();
1151    ConsumeToken();
1152    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1153    return true;
1154  }
1155
1156  // enum-specifier:
1157  case tok::kw_enum:
1158    ConsumeToken();
1159    ParseEnumSpecifier(Loc, DS);
1160    return true;
1161
1162  // cv-qualifier:
1163  case tok::kw_const:
1164    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1165                               getLang())*2;
1166    break;
1167  case tok::kw_volatile:
1168    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1169                               getLang())*2;
1170    break;
1171  case tok::kw_restrict:
1172    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1173                               getLang())*2;
1174    break;
1175
1176  // GNU typeof support.
1177  case tok::kw_typeof:
1178    ParseTypeofSpecifier(DS);
1179    return true;
1180
1181  case tok::kw___cdecl:
1182  case tok::kw___stdcall:
1183  case tok::kw___fastcall:
1184    if (!PP.getLangOptions().Microsoft) return false;
1185    ConsumeToken();
1186    return true;
1187
1188  default:
1189    // Not a type-specifier; do nothing.
1190    return false;
1191  }
1192
1193  // If the specifier combination wasn't legal, issue a diagnostic.
1194  if (isInvalid) {
1195    assert(PrevSpec && "Method did not return previous specifier!");
1196    // Pick between error or extwarn.
1197    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1198                                     : diag::ext_duplicate_declspec;
1199    Diag(Tok, DiagID) << PrevSpec;
1200  }
1201  DS.SetRangeEnd(Tok.getLocation());
1202  ConsumeToken(); // whatever we parsed above.
1203  return true;
1204}
1205
1206/// ParseStructDeclaration - Parse a struct declaration without the terminating
1207/// semicolon.
1208///
1209///       struct-declaration:
1210///         specifier-qualifier-list struct-declarator-list
1211/// [GNU]   __extension__ struct-declaration
1212/// [GNU]   specifier-qualifier-list
1213///       struct-declarator-list:
1214///         struct-declarator
1215///         struct-declarator-list ',' struct-declarator
1216/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1217///       struct-declarator:
1218///         declarator
1219/// [GNU]   declarator attributes[opt]
1220///         declarator[opt] ':' constant-expression
1221/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1222///
1223void Parser::
1224ParseStructDeclaration(DeclSpec &DS,
1225                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1226  if (Tok.is(tok::kw___extension__)) {
1227    // __extension__ silences extension warnings in the subexpression.
1228    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1229    ConsumeToken();
1230    return ParseStructDeclaration(DS, Fields);
1231  }
1232
1233  // Parse the common specifier-qualifiers-list piece.
1234  SourceLocation DSStart = Tok.getLocation();
1235  ParseSpecifierQualifierList(DS);
1236
1237  // If there are no declarators, this is a free-standing declaration
1238  // specifier. Let the actions module cope with it.
1239  if (Tok.is(tok::semi)) {
1240    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1241    return;
1242  }
1243
1244  // Read struct-declarators until we find the semicolon.
1245  Fields.push_back(FieldDeclarator(DS));
1246  while (1) {
1247    FieldDeclarator &DeclaratorInfo = Fields.back();
1248
1249    /// struct-declarator: declarator
1250    /// struct-declarator: declarator[opt] ':' constant-expression
1251    if (Tok.isNot(tok::colon))
1252      ParseDeclarator(DeclaratorInfo.D);
1253
1254    if (Tok.is(tok::colon)) {
1255      ConsumeToken();
1256      OwningExprResult Res(ParseConstantExpression());
1257      if (Res.isInvalid())
1258        SkipUntil(tok::semi, true, true);
1259      else
1260        DeclaratorInfo.BitfieldSize = Res.release();
1261    }
1262
1263    // If attributes exist after the declarator, parse them.
1264    if (Tok.is(tok::kw___attribute)) {
1265      SourceLocation Loc;
1266      AttributeList *AttrList = ParseAttributes(&Loc);
1267      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1268    }
1269
1270    // If we don't have a comma, it is either the end of the list (a ';')
1271    // or an error, bail out.
1272    if (Tok.isNot(tok::comma))
1273      return;
1274
1275    // Consume the comma.
1276    ConsumeToken();
1277
1278    // Parse the next declarator.
1279    Fields.push_back(FieldDeclarator(DS));
1280
1281    // Attributes are only allowed on the second declarator.
1282    if (Tok.is(tok::kw___attribute)) {
1283      SourceLocation Loc;
1284      AttributeList *AttrList = ParseAttributes(&Loc);
1285      Fields.back().D.AddAttributes(AttrList, Loc);
1286    }
1287  }
1288}
1289
1290/// ParseStructUnionBody
1291///       struct-contents:
1292///         struct-declaration-list
1293/// [EXT]   empty
1294/// [GNU]   "struct-declaration-list" without terminatoring ';'
1295///       struct-declaration-list:
1296///         struct-declaration
1297///         struct-declaration-list struct-declaration
1298/// [OBC]   '@' 'defs' '(' class-name ')'
1299///
1300void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1301                                  unsigned TagType, DeclPtrTy TagDecl) {
1302  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1303                                        PP.getSourceManager(),
1304                                        "parsing struct/union body");
1305
1306  SourceLocation LBraceLoc = ConsumeBrace();
1307
1308  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1309  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1310
1311  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1312  // C++.
1313  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1314    Diag(Tok, diag::ext_empty_struct_union_enum)
1315      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1316
1317  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1318  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1319
1320  // While we still have something to read, read the declarations in the struct.
1321  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1322    // Each iteration of this loop reads one struct-declaration.
1323
1324    // Check for extraneous top-level semicolon.
1325    if (Tok.is(tok::semi)) {
1326      Diag(Tok, diag::ext_extra_struct_semi)
1327        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1328      ConsumeToken();
1329      continue;
1330    }
1331
1332    // Parse all the comma separated declarators.
1333    DeclSpec DS;
1334    FieldDeclarators.clear();
1335    if (!Tok.is(tok::at)) {
1336      ParseStructDeclaration(DS, FieldDeclarators);
1337
1338      // Convert them all to fields.
1339      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1340        FieldDeclarator &FD = FieldDeclarators[i];
1341        // Install the declarator into the current TagDecl.
1342        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1343                                             DS.getSourceRange().getBegin(),
1344                                             FD.D, FD.BitfieldSize);
1345        FieldDecls.push_back(Field);
1346      }
1347    } else { // Handle @defs
1348      ConsumeToken();
1349      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1350        Diag(Tok, diag::err_unexpected_at);
1351        SkipUntil(tok::semi, true, true);
1352        continue;
1353      }
1354      ConsumeToken();
1355      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1356      if (!Tok.is(tok::identifier)) {
1357        Diag(Tok, diag::err_expected_ident);
1358        SkipUntil(tok::semi, true, true);
1359        continue;
1360      }
1361      llvm::SmallVector<DeclPtrTy, 16> Fields;
1362      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1363                        Tok.getIdentifierInfo(), Fields);
1364      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1365      ConsumeToken();
1366      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1367    }
1368
1369    if (Tok.is(tok::semi)) {
1370      ConsumeToken();
1371    } else if (Tok.is(tok::r_brace)) {
1372      Diag(Tok, diag::ext_expected_semi_decl_list);
1373      break;
1374    } else {
1375      Diag(Tok, diag::err_expected_semi_decl_list);
1376      // Skip to end of block or statement
1377      SkipUntil(tok::r_brace, true, true);
1378    }
1379  }
1380
1381  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1382
1383  AttributeList *AttrList = 0;
1384  // If attributes exist after struct contents, parse them.
1385  if (Tok.is(tok::kw___attribute))
1386    AttrList = ParseAttributes();
1387
1388  Actions.ActOnFields(CurScope,
1389                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1390                      LBraceLoc, RBraceLoc,
1391                      AttrList);
1392  StructScope.Exit();
1393  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1394}
1395
1396
1397/// ParseEnumSpecifier
1398///       enum-specifier: [C99 6.7.2.2]
1399///         'enum' identifier[opt] '{' enumerator-list '}'
1400///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1401/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1402///                                                 '}' attributes[opt]
1403///         'enum' identifier
1404/// [GNU]   'enum' attributes[opt] identifier
1405///
1406/// [C++] elaborated-type-specifier:
1407/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1408///
1409void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1410                                AccessSpecifier AS) {
1411  // Parse the tag portion of this.
1412
1413  AttributeList *Attr = 0;
1414  // If attributes exist after tag, parse them.
1415  if (Tok.is(tok::kw___attribute))
1416    Attr = ParseAttributes();
1417
1418  CXXScopeSpec SS;
1419  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1420    if (Tok.isNot(tok::identifier)) {
1421      Diag(Tok, diag::err_expected_ident);
1422      if (Tok.isNot(tok::l_brace)) {
1423        // Has no name and is not a definition.
1424        // Skip the rest of this declarator, up until the comma or semicolon.
1425        SkipUntil(tok::comma, true);
1426        return;
1427      }
1428    }
1429  }
1430
1431  // Must have either 'enum name' or 'enum {...}'.
1432  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1433    Diag(Tok, diag::err_expected_ident_lbrace);
1434
1435    // Skip the rest of this declarator, up until the comma or semicolon.
1436    SkipUntil(tok::comma, true);
1437    return;
1438  }
1439
1440  // If an identifier is present, consume and remember it.
1441  IdentifierInfo *Name = 0;
1442  SourceLocation NameLoc;
1443  if (Tok.is(tok::identifier)) {
1444    Name = Tok.getIdentifierInfo();
1445    NameLoc = ConsumeToken();
1446  }
1447
1448  // There are three options here.  If we have 'enum foo;', then this is a
1449  // forward declaration.  If we have 'enum foo {...' then this is a
1450  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1451  //
1452  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1453  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1454  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1455  //
1456  Action::TagKind TK;
1457  if (Tok.is(tok::l_brace))
1458    TK = Action::TK_Definition;
1459  else if (Tok.is(tok::semi))
1460    TK = Action::TK_Declaration;
1461  else
1462    TK = Action::TK_Reference;
1463  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1464                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1465
1466  if (Tok.is(tok::l_brace))
1467    ParseEnumBody(StartLoc, TagDecl);
1468
1469  // TODO: semantic analysis on the declspec for enums.
1470  const char *PrevSpec = 0;
1471  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1472                         TagDecl.getAs<void>()))
1473    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1474}
1475
1476/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1477///       enumerator-list:
1478///         enumerator
1479///         enumerator-list ',' enumerator
1480///       enumerator:
1481///         enumeration-constant
1482///         enumeration-constant '=' constant-expression
1483///       enumeration-constant:
1484///         identifier
1485///
1486void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1487  // Enter the scope of the enum body and start the definition.
1488  ParseScope EnumScope(this, Scope::DeclScope);
1489  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1490
1491  SourceLocation LBraceLoc = ConsumeBrace();
1492
1493  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1494  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1495    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1496
1497  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1498
1499  DeclPtrTy LastEnumConstDecl;
1500
1501  // Parse the enumerator-list.
1502  while (Tok.is(tok::identifier)) {
1503    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1504    SourceLocation IdentLoc = ConsumeToken();
1505
1506    SourceLocation EqualLoc;
1507    OwningExprResult AssignedVal(Actions);
1508    if (Tok.is(tok::equal)) {
1509      EqualLoc = ConsumeToken();
1510      AssignedVal = ParseConstantExpression();
1511      if (AssignedVal.isInvalid())
1512        SkipUntil(tok::comma, tok::r_brace, true, true);
1513    }
1514
1515    // Install the enumerator constant into EnumDecl.
1516    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1517                                                        LastEnumConstDecl,
1518                                                        IdentLoc, Ident,
1519                                                        EqualLoc,
1520                                                        AssignedVal.release());
1521    EnumConstantDecls.push_back(EnumConstDecl);
1522    LastEnumConstDecl = EnumConstDecl;
1523
1524    if (Tok.isNot(tok::comma))
1525      break;
1526    SourceLocation CommaLoc = ConsumeToken();
1527
1528    if (Tok.isNot(tok::identifier) &&
1529        !(getLang().C99 || getLang().CPlusPlus0x))
1530      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1531        << getLang().CPlusPlus
1532        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1533  }
1534
1535  // Eat the }.
1536  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1537
1538  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1539                        EnumConstantDecls.data(), EnumConstantDecls.size());
1540
1541  Action::AttrTy *AttrList = 0;
1542  // If attributes exist after the identifier list, parse them.
1543  if (Tok.is(tok::kw___attribute))
1544    AttrList = ParseAttributes(); // FIXME: where do they do?
1545
1546  EnumScope.Exit();
1547  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1548}
1549
1550/// isTypeSpecifierQualifier - Return true if the current token could be the
1551/// start of a type-qualifier-list.
1552bool Parser::isTypeQualifier() const {
1553  switch (Tok.getKind()) {
1554  default: return false;
1555    // type-qualifier
1556  case tok::kw_const:
1557  case tok::kw_volatile:
1558  case tok::kw_restrict:
1559    return true;
1560  }
1561}
1562
1563/// isTypeSpecifierQualifier - Return true if the current token could be the
1564/// start of a specifier-qualifier-list.
1565bool Parser::isTypeSpecifierQualifier() {
1566  switch (Tok.getKind()) {
1567  default: return false;
1568
1569  case tok::identifier:   // foo::bar
1570  case tok::kw_typename:  // typename T::type
1571    // Annotate typenames and C++ scope specifiers.  If we get one, just
1572    // recurse to handle whatever we get.
1573    if (TryAnnotateTypeOrScopeToken())
1574      return isTypeSpecifierQualifier();
1575    // Otherwise, not a type specifier.
1576    return false;
1577
1578  case tok::coloncolon:   // ::foo::bar
1579    if (NextToken().is(tok::kw_new) ||    // ::new
1580        NextToken().is(tok::kw_delete))   // ::delete
1581      return false;
1582
1583    // Annotate typenames and C++ scope specifiers.  If we get one, just
1584    // recurse to handle whatever we get.
1585    if (TryAnnotateTypeOrScopeToken())
1586      return isTypeSpecifierQualifier();
1587    // Otherwise, not a type specifier.
1588    return false;
1589
1590    // GNU attributes support.
1591  case tok::kw___attribute:
1592    // GNU typeof support.
1593  case tok::kw_typeof:
1594
1595    // type-specifiers
1596  case tok::kw_short:
1597  case tok::kw_long:
1598  case tok::kw_signed:
1599  case tok::kw_unsigned:
1600  case tok::kw__Complex:
1601  case tok::kw__Imaginary:
1602  case tok::kw_void:
1603  case tok::kw_char:
1604  case tok::kw_wchar_t:
1605  case tok::kw_int:
1606  case tok::kw_float:
1607  case tok::kw_double:
1608  case tok::kw_bool:
1609  case tok::kw__Bool:
1610  case tok::kw__Decimal32:
1611  case tok::kw__Decimal64:
1612  case tok::kw__Decimal128:
1613
1614    // struct-or-union-specifier (C99) or class-specifier (C++)
1615  case tok::kw_class:
1616  case tok::kw_struct:
1617  case tok::kw_union:
1618    // enum-specifier
1619  case tok::kw_enum:
1620
1621    // type-qualifier
1622  case tok::kw_const:
1623  case tok::kw_volatile:
1624  case tok::kw_restrict:
1625
1626    // typedef-name
1627  case tok::annot_typename:
1628    return true;
1629
1630    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1631  case tok::less:
1632    return getLang().ObjC1;
1633
1634  case tok::kw___cdecl:
1635  case tok::kw___stdcall:
1636  case tok::kw___fastcall:
1637    return PP.getLangOptions().Microsoft;
1638  }
1639}
1640
1641/// isDeclarationSpecifier() - Return true if the current token is part of a
1642/// declaration specifier.
1643bool Parser::isDeclarationSpecifier() {
1644  switch (Tok.getKind()) {
1645  default: return false;
1646
1647  case tok::identifier:   // foo::bar
1648    // Unfortunate hack to support "Class.factoryMethod" notation.
1649    if (getLang().ObjC1 && NextToken().is(tok::period))
1650      return false;
1651    // Fall through
1652
1653  case tok::kw_typename: // typename T::type
1654    // Annotate typenames and C++ scope specifiers.  If we get one, just
1655    // recurse to handle whatever we get.
1656    if (TryAnnotateTypeOrScopeToken())
1657      return isDeclarationSpecifier();
1658    // Otherwise, not a declaration specifier.
1659    return false;
1660  case tok::coloncolon:   // ::foo::bar
1661    if (NextToken().is(tok::kw_new) ||    // ::new
1662        NextToken().is(tok::kw_delete))   // ::delete
1663      return false;
1664
1665    // Annotate typenames and C++ scope specifiers.  If we get one, just
1666    // recurse to handle whatever we get.
1667    if (TryAnnotateTypeOrScopeToken())
1668      return isDeclarationSpecifier();
1669    // Otherwise, not a declaration specifier.
1670    return false;
1671
1672    // storage-class-specifier
1673  case tok::kw_typedef:
1674  case tok::kw_extern:
1675  case tok::kw___private_extern__:
1676  case tok::kw_static:
1677  case tok::kw_auto:
1678  case tok::kw_register:
1679  case tok::kw___thread:
1680
1681    // type-specifiers
1682  case tok::kw_short:
1683  case tok::kw_long:
1684  case tok::kw_signed:
1685  case tok::kw_unsigned:
1686  case tok::kw__Complex:
1687  case tok::kw__Imaginary:
1688  case tok::kw_void:
1689  case tok::kw_char:
1690  case tok::kw_wchar_t:
1691  case tok::kw_int:
1692  case tok::kw_float:
1693  case tok::kw_double:
1694  case tok::kw_bool:
1695  case tok::kw__Bool:
1696  case tok::kw__Decimal32:
1697  case tok::kw__Decimal64:
1698  case tok::kw__Decimal128:
1699
1700    // struct-or-union-specifier (C99) or class-specifier (C++)
1701  case tok::kw_class:
1702  case tok::kw_struct:
1703  case tok::kw_union:
1704    // enum-specifier
1705  case tok::kw_enum:
1706
1707    // type-qualifier
1708  case tok::kw_const:
1709  case tok::kw_volatile:
1710  case tok::kw_restrict:
1711
1712    // function-specifier
1713  case tok::kw_inline:
1714  case tok::kw_virtual:
1715  case tok::kw_explicit:
1716
1717    // typedef-name
1718  case tok::annot_typename:
1719
1720    // GNU typeof support.
1721  case tok::kw_typeof:
1722
1723    // GNU attributes.
1724  case tok::kw___attribute:
1725    return true;
1726
1727    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1728  case tok::less:
1729    return getLang().ObjC1;
1730
1731  case tok::kw___declspec:
1732  case tok::kw___cdecl:
1733  case tok::kw___stdcall:
1734  case tok::kw___fastcall:
1735    return PP.getLangOptions().Microsoft;
1736  }
1737}
1738
1739
1740/// ParseTypeQualifierListOpt
1741///       type-qualifier-list: [C99 6.7.5]
1742///         type-qualifier
1743/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1744///         type-qualifier-list type-qualifier
1745/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1746///
1747void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1748  while (1) {
1749    int isInvalid = false;
1750    const char *PrevSpec = 0;
1751    SourceLocation Loc = Tok.getLocation();
1752
1753    switch (Tok.getKind()) {
1754    case tok::kw_const:
1755      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1756                                 getLang())*2;
1757      break;
1758    case tok::kw_volatile:
1759      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1760                                 getLang())*2;
1761      break;
1762    case tok::kw_restrict:
1763      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1764                                 getLang())*2;
1765      break;
1766    case tok::kw___ptr64:
1767    case tok::kw___cdecl:
1768    case tok::kw___stdcall:
1769    case tok::kw___fastcall:
1770      if (!PP.getLangOptions().Microsoft)
1771        goto DoneWithTypeQuals;
1772      // Just ignore it.
1773      break;
1774    case tok::kw___attribute:
1775      if (AttributesAllowed) {
1776        DS.AddAttributes(ParseAttributes());
1777        continue; // do *not* consume the next token!
1778      }
1779      // otherwise, FALL THROUGH!
1780    default:
1781      DoneWithTypeQuals:
1782      // If this is not a type-qualifier token, we're done reading type
1783      // qualifiers.  First verify that DeclSpec's are consistent.
1784      DS.Finish(Diags, PP);
1785      return;
1786    }
1787
1788    // If the specifier combination wasn't legal, issue a diagnostic.
1789    if (isInvalid) {
1790      assert(PrevSpec && "Method did not return previous specifier!");
1791      // Pick between error or extwarn.
1792      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1793                                      : diag::ext_duplicate_declspec;
1794      Diag(Tok, DiagID) << PrevSpec;
1795    }
1796    ConsumeToken();
1797  }
1798}
1799
1800
1801/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1802///
1803void Parser::ParseDeclarator(Declarator &D) {
1804  /// This implements the 'declarator' production in the C grammar, then checks
1805  /// for well-formedness and issues diagnostics.
1806  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1807}
1808
1809/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1810/// is parsed by the function passed to it. Pass null, and the direct-declarator
1811/// isn't parsed at all, making this function effectively parse the C++
1812/// ptr-operator production.
1813///
1814///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1815/// [C]     pointer[opt] direct-declarator
1816/// [C++]   direct-declarator
1817/// [C++]   ptr-operator declarator
1818///
1819///       pointer: [C99 6.7.5]
1820///         '*' type-qualifier-list[opt]
1821///         '*' type-qualifier-list[opt] pointer
1822///
1823///       ptr-operator:
1824///         '*' cv-qualifier-seq[opt]
1825///         '&'
1826/// [C++0x] '&&'
1827/// [GNU]   '&' restrict[opt] attributes[opt]
1828/// [GNU?]  '&&' restrict[opt] attributes[opt]
1829///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1830void Parser::ParseDeclaratorInternal(Declarator &D,
1831                                     DirectDeclParseFunction DirectDeclParser) {
1832
1833  // C++ member pointers start with a '::' or a nested-name.
1834  // Member pointers get special handling, since there's no place for the
1835  // scope spec in the generic path below.
1836  if (getLang().CPlusPlus &&
1837      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1838       Tok.is(tok::annot_cxxscope))) {
1839    CXXScopeSpec SS;
1840    if (ParseOptionalCXXScopeSpecifier(SS)) {
1841      if(Tok.isNot(tok::star)) {
1842        // The scope spec really belongs to the direct-declarator.
1843        D.getCXXScopeSpec() = SS;
1844        if (DirectDeclParser)
1845          (this->*DirectDeclParser)(D);
1846        return;
1847      }
1848
1849      SourceLocation Loc = ConsumeToken();
1850      D.SetRangeEnd(Loc);
1851      DeclSpec DS;
1852      ParseTypeQualifierListOpt(DS);
1853      D.ExtendWithDeclSpec(DS);
1854
1855      // Recurse to parse whatever is left.
1856      ParseDeclaratorInternal(D, DirectDeclParser);
1857
1858      // Sema will have to catch (syntactically invalid) pointers into global
1859      // scope. It has to catch pointers into namespace scope anyway.
1860      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1861                                                      Loc, DS.TakeAttributes()),
1862                    /* Don't replace range end. */SourceLocation());
1863      return;
1864    }
1865  }
1866
1867  tok::TokenKind Kind = Tok.getKind();
1868  // Not a pointer, C++ reference, or block.
1869  if (Kind != tok::star && Kind != tok::caret &&
1870      (Kind != tok::amp || !getLang().CPlusPlus) &&
1871      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1872      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1873    if (DirectDeclParser)
1874      (this->*DirectDeclParser)(D);
1875    return;
1876  }
1877
1878  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1879  // '&&' -> rvalue reference
1880  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1881  D.SetRangeEnd(Loc);
1882
1883  if (Kind == tok::star || Kind == tok::caret) {
1884    // Is a pointer.
1885    DeclSpec DS;
1886
1887    ParseTypeQualifierListOpt(DS);
1888    D.ExtendWithDeclSpec(DS);
1889
1890    // Recursively parse the declarator.
1891    ParseDeclaratorInternal(D, DirectDeclParser);
1892    if (Kind == tok::star)
1893      // Remember that we parsed a pointer type, and remember the type-quals.
1894      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1895                                                DS.TakeAttributes()),
1896                    SourceLocation());
1897    else
1898      // Remember that we parsed a Block type, and remember the type-quals.
1899      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1900                                                     Loc, DS.TakeAttributes()),
1901                    SourceLocation());
1902  } else {
1903    // Is a reference
1904    DeclSpec DS;
1905
1906    // Complain about rvalue references in C++03, but then go on and build
1907    // the declarator.
1908    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1909      Diag(Loc, diag::err_rvalue_reference);
1910
1911    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1912    // cv-qualifiers are introduced through the use of a typedef or of a
1913    // template type argument, in which case the cv-qualifiers are ignored.
1914    //
1915    // [GNU] Retricted references are allowed.
1916    // [GNU] Attributes on references are allowed.
1917    ParseTypeQualifierListOpt(DS);
1918    D.ExtendWithDeclSpec(DS);
1919
1920    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1921      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1922        Diag(DS.getConstSpecLoc(),
1923             diag::err_invalid_reference_qualifier_application) << "const";
1924      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1925        Diag(DS.getVolatileSpecLoc(),
1926             diag::err_invalid_reference_qualifier_application) << "volatile";
1927    }
1928
1929    // Recursively parse the declarator.
1930    ParseDeclaratorInternal(D, DirectDeclParser);
1931
1932    if (D.getNumTypeObjects() > 0) {
1933      // C++ [dcl.ref]p4: There shall be no references to references.
1934      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1935      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1936        if (const IdentifierInfo *II = D.getIdentifier())
1937          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1938           << II;
1939        else
1940          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1941            << "type name";
1942
1943        // Once we've complained about the reference-to-reference, we
1944        // can go ahead and build the (technically ill-formed)
1945        // declarator: reference collapsing will take care of it.
1946      }
1947    }
1948
1949    // Remember that we parsed a reference type. It doesn't have type-quals.
1950    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1951                                                DS.TakeAttributes(),
1952                                                Kind == tok::amp),
1953                  SourceLocation());
1954  }
1955}
1956
1957/// ParseDirectDeclarator
1958///       direct-declarator: [C99 6.7.5]
1959/// [C99]   identifier
1960///         '(' declarator ')'
1961/// [GNU]   '(' attributes declarator ')'
1962/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1963/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1964/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1965/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1966/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1967///         direct-declarator '(' parameter-type-list ')'
1968///         direct-declarator '(' identifier-list[opt] ')'
1969/// [GNU]   direct-declarator '(' parameter-forward-declarations
1970///                    parameter-type-list[opt] ')'
1971/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1972///                    cv-qualifier-seq[opt] exception-specification[opt]
1973/// [C++]   declarator-id
1974///
1975///       declarator-id: [C++ 8]
1976///         id-expression
1977///         '::'[opt] nested-name-specifier[opt] type-name
1978///
1979///       id-expression: [C++ 5.1]
1980///         unqualified-id
1981///         qualified-id            [TODO]
1982///
1983///       unqualified-id: [C++ 5.1]
1984///         identifier
1985///         operator-function-id
1986///         conversion-function-id  [TODO]
1987///          '~' class-name
1988///         template-id
1989///
1990void Parser::ParseDirectDeclarator(Declarator &D) {
1991  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1992
1993  if (getLang().CPlusPlus) {
1994    if (D.mayHaveIdentifier()) {
1995      // ParseDeclaratorInternal might already have parsed the scope.
1996      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1997        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1998      if (afterCXXScope) {
1999        // Change the declaration context for name lookup, until this function
2000        // is exited (and the declarator has been parsed).
2001        DeclScopeObj.EnterDeclaratorScope();
2002      }
2003
2004      if (Tok.is(tok::identifier)) {
2005        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2006
2007        // If this identifier is the name of the current class, it's a
2008        // constructor name.
2009        if (!D.getDeclSpec().hasTypeSpecifier() &&
2010            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2011          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2012                                               Tok.getLocation(), CurScope),
2013                           Tok.getLocation());
2014        // This is a normal identifier.
2015        } else
2016          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2017        ConsumeToken();
2018        goto PastIdentifier;
2019      } else if (Tok.is(tok::annot_template_id)) {
2020        TemplateIdAnnotation *TemplateId
2021          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2022
2023        // FIXME: Could this template-id name a constructor?
2024
2025        // FIXME: This is an egregious hack, where we silently ignore
2026        // the specialization (which should be a function template
2027        // specialization name) and use the name instead. This hack
2028        // will go away when we have support for function
2029        // specializations.
2030        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2031        TemplateId->Destroy();
2032        ConsumeToken();
2033        goto PastIdentifier;
2034      } else if (Tok.is(tok::kw_operator)) {
2035        SourceLocation OperatorLoc = Tok.getLocation();
2036        SourceLocation EndLoc;
2037
2038        // First try the name of an overloaded operator
2039        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2040          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2041        } else {
2042          // This must be a conversion function (C++ [class.conv.fct]).
2043          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2044            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2045          else {
2046            D.SetIdentifier(0, Tok.getLocation());
2047          }
2048        }
2049        goto PastIdentifier;
2050      } else if (Tok.is(tok::tilde)) {
2051        // This should be a C++ destructor.
2052        SourceLocation TildeLoc = ConsumeToken();
2053        if (Tok.is(tok::identifier)) {
2054          // FIXME: Inaccurate.
2055          SourceLocation NameLoc = Tok.getLocation();
2056          SourceLocation EndLoc;
2057          TypeResult Type = ParseClassName(EndLoc);
2058          if (Type.isInvalid())
2059            D.SetIdentifier(0, TildeLoc);
2060          else
2061            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2062        } else {
2063          Diag(Tok, diag::err_expected_class_name);
2064          D.SetIdentifier(0, TildeLoc);
2065        }
2066        goto PastIdentifier;
2067      }
2068
2069      // If we reached this point, token is not identifier and not '~'.
2070
2071      if (afterCXXScope) {
2072        Diag(Tok, diag::err_expected_unqualified_id);
2073        D.SetIdentifier(0, Tok.getLocation());
2074        D.setInvalidType(true);
2075        goto PastIdentifier;
2076      }
2077    }
2078  }
2079
2080  // If we reached this point, we are either in C/ObjC or the token didn't
2081  // satisfy any of the C++-specific checks.
2082  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2083    assert(!getLang().CPlusPlus &&
2084           "There's a C++-specific check for tok::identifier above");
2085    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2086    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2087    ConsumeToken();
2088  } else if (Tok.is(tok::l_paren)) {
2089    // direct-declarator: '(' declarator ')'
2090    // direct-declarator: '(' attributes declarator ')'
2091    // Example: 'char (*X)'   or 'int (*XX)(void)'
2092    ParseParenDeclarator(D);
2093  } else if (D.mayOmitIdentifier()) {
2094    // This could be something simple like "int" (in which case the declarator
2095    // portion is empty), if an abstract-declarator is allowed.
2096    D.SetIdentifier(0, Tok.getLocation());
2097  } else {
2098    if (D.getContext() == Declarator::MemberContext)
2099      Diag(Tok, diag::err_expected_member_name_or_semi)
2100        << D.getDeclSpec().getSourceRange();
2101    else if (getLang().CPlusPlus)
2102      Diag(Tok, diag::err_expected_unqualified_id);
2103    else
2104      Diag(Tok, diag::err_expected_ident_lparen);
2105    D.SetIdentifier(0, Tok.getLocation());
2106    D.setInvalidType(true);
2107  }
2108
2109 PastIdentifier:
2110  assert(D.isPastIdentifier() &&
2111         "Haven't past the location of the identifier yet?");
2112
2113  while (1) {
2114    if (Tok.is(tok::l_paren)) {
2115      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2116      // In such a case, check if we actually have a function declarator; if it
2117      // is not, the declarator has been fully parsed.
2118      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2119        // When not in file scope, warn for ambiguous function declarators, just
2120        // in case the author intended it as a variable definition.
2121        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2122        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2123          break;
2124      }
2125      ParseFunctionDeclarator(ConsumeParen(), D);
2126    } else if (Tok.is(tok::l_square)) {
2127      ParseBracketDeclarator(D);
2128    } else {
2129      break;
2130    }
2131  }
2132}
2133
2134/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2135/// only called before the identifier, so these are most likely just grouping
2136/// parens for precedence.  If we find that these are actually function
2137/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2138///
2139///       direct-declarator:
2140///         '(' declarator ')'
2141/// [GNU]   '(' attributes declarator ')'
2142///         direct-declarator '(' parameter-type-list ')'
2143///         direct-declarator '(' identifier-list[opt] ')'
2144/// [GNU]   direct-declarator '(' parameter-forward-declarations
2145///                    parameter-type-list[opt] ')'
2146///
2147void Parser::ParseParenDeclarator(Declarator &D) {
2148  SourceLocation StartLoc = ConsumeParen();
2149  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2150
2151  // Eat any attributes before we look at whether this is a grouping or function
2152  // declarator paren.  If this is a grouping paren, the attribute applies to
2153  // the type being built up, for example:
2154  //     int (__attribute__(()) *x)(long y)
2155  // If this ends up not being a grouping paren, the attribute applies to the
2156  // first argument, for example:
2157  //     int (__attribute__(()) int x)
2158  // In either case, we need to eat any attributes to be able to determine what
2159  // sort of paren this is.
2160  //
2161  AttributeList *AttrList = 0;
2162  bool RequiresArg = false;
2163  if (Tok.is(tok::kw___attribute)) {
2164    AttrList = ParseAttributes();
2165
2166    // We require that the argument list (if this is a non-grouping paren) be
2167    // present even if the attribute list was empty.
2168    RequiresArg = true;
2169  }
2170  // Eat any Microsoft extensions.
2171  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2172          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2173    ConsumeToken();
2174
2175  // If we haven't past the identifier yet (or where the identifier would be
2176  // stored, if this is an abstract declarator), then this is probably just
2177  // grouping parens. However, if this could be an abstract-declarator, then
2178  // this could also be the start of function arguments (consider 'void()').
2179  bool isGrouping;
2180
2181  if (!D.mayOmitIdentifier()) {
2182    // If this can't be an abstract-declarator, this *must* be a grouping
2183    // paren, because we haven't seen the identifier yet.
2184    isGrouping = true;
2185  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2186             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2187             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2188    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2189    // considered to be a type, not a K&R identifier-list.
2190    isGrouping = false;
2191  } else {
2192    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2193    isGrouping = true;
2194  }
2195
2196  // If this is a grouping paren, handle:
2197  // direct-declarator: '(' declarator ')'
2198  // direct-declarator: '(' attributes declarator ')'
2199  if (isGrouping) {
2200    bool hadGroupingParens = D.hasGroupingParens();
2201    D.setGroupingParens(true);
2202    if (AttrList)
2203      D.AddAttributes(AttrList, SourceLocation());
2204
2205    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2206    // Match the ')'.
2207    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2208
2209    D.setGroupingParens(hadGroupingParens);
2210    D.SetRangeEnd(Loc);
2211    return;
2212  }
2213
2214  // Okay, if this wasn't a grouping paren, it must be the start of a function
2215  // argument list.  Recognize that this declarator will never have an
2216  // identifier (and remember where it would have been), then call into
2217  // ParseFunctionDeclarator to handle of argument list.
2218  D.SetIdentifier(0, Tok.getLocation());
2219
2220  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2221}
2222
2223/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2224/// declarator D up to a paren, which indicates that we are parsing function
2225/// arguments.
2226///
2227/// If AttrList is non-null, then the caller parsed those arguments immediately
2228/// after the open paren - they should be considered to be the first argument of
2229/// a parameter.  If RequiresArg is true, then the first argument of the
2230/// function is required to be present and required to not be an identifier
2231/// list.
2232///
2233/// This method also handles this portion of the grammar:
2234///       parameter-type-list: [C99 6.7.5]
2235///         parameter-list
2236///         parameter-list ',' '...'
2237///
2238///       parameter-list: [C99 6.7.5]
2239///         parameter-declaration
2240///         parameter-list ',' parameter-declaration
2241///
2242///       parameter-declaration: [C99 6.7.5]
2243///         declaration-specifiers declarator
2244/// [C++]   declaration-specifiers declarator '=' assignment-expression
2245/// [GNU]   declaration-specifiers declarator attributes
2246///         declaration-specifiers abstract-declarator[opt]
2247/// [C++]   declaration-specifiers abstract-declarator[opt]
2248///           '=' assignment-expression
2249/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2250///
2251/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2252/// and "exception-specification[opt]".
2253///
2254void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2255                                     AttributeList *AttrList,
2256                                     bool RequiresArg) {
2257  // lparen is already consumed!
2258  assert(D.isPastIdentifier() && "Should not call before identifier!");
2259
2260  // This parameter list may be empty.
2261  if (Tok.is(tok::r_paren)) {
2262    if (RequiresArg) {
2263      Diag(Tok, diag::err_argument_required_after_attribute);
2264      delete AttrList;
2265    }
2266
2267    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2268
2269    // cv-qualifier-seq[opt].
2270    DeclSpec DS;
2271    bool hasExceptionSpec = false;
2272    bool hasAnyExceptionSpec = false;
2273    // FIXME: Does an empty vector ever allocate? Exception specifications are
2274    // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2275    std::vector<TypeTy*> Exceptions;
2276    if (getLang().CPlusPlus) {
2277      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2278      if (!DS.getSourceRange().getEnd().isInvalid())
2279        Loc = DS.getSourceRange().getEnd();
2280
2281      // Parse exception-specification[opt].
2282      if (Tok.is(tok::kw_throw)) {
2283        hasExceptionSpec = true;
2284        ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2285      }
2286    }
2287
2288    // Remember that we parsed a function type, and remember the attributes.
2289    // int() -> no prototype, no '...'.
2290    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2291                                               /*variadic*/ false,
2292                                               SourceLocation(),
2293                                               /*arglist*/ 0, 0,
2294                                               DS.getTypeQualifiers(),
2295                                               hasExceptionSpec,
2296                                               hasAnyExceptionSpec,
2297                                               Exceptions.empty() ? 0 :
2298                                                 &Exceptions[0],
2299                                               Exceptions.size(),
2300                                               LParenLoc, D),
2301                  Loc);
2302    return;
2303  }
2304
2305  // Alternatively, this parameter list may be an identifier list form for a
2306  // K&R-style function:  void foo(a,b,c)
2307  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2308    if (!TryAnnotateTypeOrScopeToken()) {
2309      // K&R identifier lists can't have typedefs as identifiers, per
2310      // C99 6.7.5.3p11.
2311      if (RequiresArg) {
2312        Diag(Tok, diag::err_argument_required_after_attribute);
2313        delete AttrList;
2314      }
2315      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2316      // normal declarators, not for abstract-declarators.
2317      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2318    }
2319  }
2320
2321  // Finally, a normal, non-empty parameter type list.
2322
2323  // Build up an array of information about the parsed arguments.
2324  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2325
2326  // Enter function-declaration scope, limiting any declarators to the
2327  // function prototype scope, including parameter declarators.
2328  ParseScope PrototypeScope(this,
2329                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2330
2331  bool IsVariadic = false;
2332  SourceLocation EllipsisLoc;
2333  while (1) {
2334    if (Tok.is(tok::ellipsis)) {
2335      IsVariadic = true;
2336      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2337      break;
2338    }
2339
2340    SourceLocation DSStart = Tok.getLocation();
2341
2342    // Parse the declaration-specifiers.
2343    DeclSpec DS;
2344
2345    // If the caller parsed attributes for the first argument, add them now.
2346    if (AttrList) {
2347      DS.AddAttributes(AttrList);
2348      AttrList = 0;  // Only apply the attributes to the first parameter.
2349    }
2350    ParseDeclarationSpecifiers(DS);
2351
2352    // Parse the declarator.  This is "PrototypeContext", because we must
2353    // accept either 'declarator' or 'abstract-declarator' here.
2354    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2355    ParseDeclarator(ParmDecl);
2356
2357    // Parse GNU attributes, if present.
2358    if (Tok.is(tok::kw___attribute)) {
2359      SourceLocation Loc;
2360      AttributeList *AttrList = ParseAttributes(&Loc);
2361      ParmDecl.AddAttributes(AttrList, Loc);
2362    }
2363
2364    // Remember this parsed parameter in ParamInfo.
2365    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2366
2367    // DefArgToks is used when the parsing of default arguments needs
2368    // to be delayed.
2369    CachedTokens *DefArgToks = 0;
2370
2371    // If no parameter was specified, verify that *something* was specified,
2372    // otherwise we have a missing type and identifier.
2373    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2374        ParmDecl.getNumTypeObjects() == 0) {
2375      // Completely missing, emit error.
2376      Diag(DSStart, diag::err_missing_param);
2377    } else {
2378      // Otherwise, we have something.  Add it and let semantic analysis try
2379      // to grok it and add the result to the ParamInfo we are building.
2380
2381      // Inform the actions module about the parameter declarator, so it gets
2382      // added to the current scope.
2383      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2384
2385      // Parse the default argument, if any. We parse the default
2386      // arguments in all dialects; the semantic analysis in
2387      // ActOnParamDefaultArgument will reject the default argument in
2388      // C.
2389      if (Tok.is(tok::equal)) {
2390        SourceLocation EqualLoc = Tok.getLocation();
2391
2392        // Parse the default argument
2393        if (D.getContext() == Declarator::MemberContext) {
2394          // If we're inside a class definition, cache the tokens
2395          // corresponding to the default argument. We'll actually parse
2396          // them when we see the end of the class definition.
2397          // FIXME: Templates will require something similar.
2398          // FIXME: Can we use a smart pointer for Toks?
2399          DefArgToks = new CachedTokens;
2400
2401          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2402                                    tok::semi, false)) {
2403            delete DefArgToks;
2404            DefArgToks = 0;
2405            Actions.ActOnParamDefaultArgumentError(Param);
2406          } else
2407            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2408        } else {
2409          // Consume the '='.
2410          ConsumeToken();
2411
2412          OwningExprResult DefArgResult(ParseAssignmentExpression());
2413          if (DefArgResult.isInvalid()) {
2414            Actions.ActOnParamDefaultArgumentError(Param);
2415            SkipUntil(tok::comma, tok::r_paren, true, true);
2416          } else {
2417            // Inform the actions module about the default argument
2418            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2419                                              move(DefArgResult));
2420          }
2421        }
2422      }
2423
2424      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2425                                          ParmDecl.getIdentifierLoc(), Param,
2426                                          DefArgToks));
2427    }
2428
2429    // If the next token is a comma, consume it and keep reading arguments.
2430    if (Tok.isNot(tok::comma)) break;
2431
2432    // Consume the comma.
2433    ConsumeToken();
2434  }
2435
2436  // Leave prototype scope.
2437  PrototypeScope.Exit();
2438
2439  // If we have the closing ')', eat it.
2440  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2441
2442  DeclSpec DS;
2443  bool hasExceptionSpec = false;
2444  bool hasAnyExceptionSpec = false;
2445  // FIXME: Does an empty vector ever allocate? Exception specifications are
2446  // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2447  std::vector<TypeTy*> Exceptions;
2448  if (getLang().CPlusPlus) {
2449    // Parse cv-qualifier-seq[opt].
2450    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2451      if (!DS.getSourceRange().getEnd().isInvalid())
2452        Loc = DS.getSourceRange().getEnd();
2453
2454    // Parse exception-specification[opt].
2455    if (Tok.is(tok::kw_throw)) {
2456      hasExceptionSpec = true;
2457      ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2458    }
2459  }
2460
2461  // Remember that we parsed a function type, and remember the attributes.
2462  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2463                                             EllipsisLoc,
2464                                             ParamInfo.data(), ParamInfo.size(),
2465                                             DS.getTypeQualifiers(),
2466                                             hasExceptionSpec,
2467                                             hasAnyExceptionSpec,
2468                                             Exceptions.empty() ? 0 :
2469                                               &Exceptions[0],
2470                                             Exceptions.size(), LParenLoc, D),
2471                Loc);
2472}
2473
2474/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2475/// we found a K&R-style identifier list instead of a type argument list.  The
2476/// current token is known to be the first identifier in the list.
2477///
2478///       identifier-list: [C99 6.7.5]
2479///         identifier
2480///         identifier-list ',' identifier
2481///
2482void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2483                                                   Declarator &D) {
2484  // Build up an array of information about the parsed arguments.
2485  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2486  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2487
2488  // If there was no identifier specified for the declarator, either we are in
2489  // an abstract-declarator, or we are in a parameter declarator which was found
2490  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2491  // diagnose this.
2492  if (!D.getIdentifier())
2493    Diag(Tok, diag::ext_ident_list_in_param);
2494
2495  // Tok is known to be the first identifier in the list.  Remember this
2496  // identifier in ParamInfo.
2497  ParamsSoFar.insert(Tok.getIdentifierInfo());
2498  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2499                                                 Tok.getLocation(),
2500                                                 DeclPtrTy()));
2501
2502  ConsumeToken();  // eat the first identifier.
2503
2504  while (Tok.is(tok::comma)) {
2505    // Eat the comma.
2506    ConsumeToken();
2507
2508    // If this isn't an identifier, report the error and skip until ')'.
2509    if (Tok.isNot(tok::identifier)) {
2510      Diag(Tok, diag::err_expected_ident);
2511      SkipUntil(tok::r_paren);
2512      return;
2513    }
2514
2515    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2516
2517    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2518    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2519      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2520
2521    // Verify that the argument identifier has not already been mentioned.
2522    if (!ParamsSoFar.insert(ParmII)) {
2523      Diag(Tok, diag::err_param_redefinition) << ParmII;
2524    } else {
2525      // Remember this identifier in ParamInfo.
2526      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2527                                                     Tok.getLocation(),
2528                                                     DeclPtrTy()));
2529    }
2530
2531    // Eat the identifier.
2532    ConsumeToken();
2533  }
2534
2535  // If we have the closing ')', eat it and we're done.
2536  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2537
2538  // Remember that we parsed a function type, and remember the attributes.  This
2539  // function type is always a K&R style function type, which is not varargs and
2540  // has no prototype.
2541  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2542                                             SourceLocation(),
2543                                             &ParamInfo[0], ParamInfo.size(),
2544                                             /*TypeQuals*/0,
2545                                             /*exception*/false, false, 0, 0,
2546                                             LParenLoc, D),
2547                RLoc);
2548}
2549
2550/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2551/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2552/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2553/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2554/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2555void Parser::ParseBracketDeclarator(Declarator &D) {
2556  SourceLocation StartLoc = ConsumeBracket();
2557
2558  // C array syntax has many features, but by-far the most common is [] and [4].
2559  // This code does a fast path to handle some of the most obvious cases.
2560  if (Tok.getKind() == tok::r_square) {
2561    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2562    // Remember that we parsed the empty array type.
2563    OwningExprResult NumElements(Actions);
2564    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2565                  EndLoc);
2566    return;
2567  } else if (Tok.getKind() == tok::numeric_constant &&
2568             GetLookAheadToken(1).is(tok::r_square)) {
2569    // [4] is very common.  Parse the numeric constant expression.
2570    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2571    ConsumeToken();
2572
2573    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2574
2575    // If there was an error parsing the assignment-expression, recover.
2576    if (ExprRes.isInvalid())
2577      ExprRes.release();  // Deallocate expr, just use [].
2578
2579    // Remember that we parsed a array type, and remember its features.
2580    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2581                                            ExprRes.release(), StartLoc),
2582                  EndLoc);
2583    return;
2584  }
2585
2586  // If valid, this location is the position where we read the 'static' keyword.
2587  SourceLocation StaticLoc;
2588  if (Tok.is(tok::kw_static))
2589    StaticLoc = ConsumeToken();
2590
2591  // If there is a type-qualifier-list, read it now.
2592  // Type qualifiers in an array subscript are a C99 feature.
2593  DeclSpec DS;
2594  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2595
2596  // If we haven't already read 'static', check to see if there is one after the
2597  // type-qualifier-list.
2598  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2599    StaticLoc = ConsumeToken();
2600
2601  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2602  bool isStar = false;
2603  OwningExprResult NumElements(Actions);
2604
2605  // Handle the case where we have '[*]' as the array size.  However, a leading
2606  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2607  // the the token after the star is a ']'.  Since stars in arrays are
2608  // infrequent, use of lookahead is not costly here.
2609  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2610    ConsumeToken();  // Eat the '*'.
2611
2612    if (StaticLoc.isValid()) {
2613      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2614      StaticLoc = SourceLocation();  // Drop the static.
2615    }
2616    isStar = true;
2617  } else if (Tok.isNot(tok::r_square)) {
2618    // Note, in C89, this production uses the constant-expr production instead
2619    // of assignment-expr.  The only difference is that assignment-expr allows
2620    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2621    // are not i-c-e's, so we don't need to distinguish between the two here.
2622
2623    // Parse the assignment-expression now.
2624    NumElements = ParseAssignmentExpression();
2625  }
2626
2627  // If there was an error parsing the assignment-expression, recover.
2628  if (NumElements.isInvalid()) {
2629    D.setInvalidType(true);
2630    // If the expression was invalid, skip it.
2631    SkipUntil(tok::r_square);
2632    return;
2633  }
2634
2635  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2636
2637  // Remember that we parsed a array type, and remember its features.
2638  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2639                                          StaticLoc.isValid(), isStar,
2640                                          NumElements.release(), StartLoc),
2641                EndLoc);
2642}
2643
2644/// [GNU]   typeof-specifier:
2645///           typeof ( expressions )
2646///           typeof ( type-name )
2647/// [GNU/C++] typeof unary-expression
2648///
2649void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2650  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2651  Token OpTok = Tok;
2652  SourceLocation StartLoc = ConsumeToken();
2653
2654  bool isCastExpr;
2655  TypeTy *CastTy;
2656  SourceRange CastRange;
2657  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2658                                                               isCastExpr,
2659                                                               CastTy,
2660                                                               CastRange);
2661
2662  if (CastRange.getEnd().isInvalid())
2663    // FIXME: Not accurate, the range gets one token more than it should.
2664    DS.SetRangeEnd(Tok.getLocation());
2665  else
2666    DS.SetRangeEnd(CastRange.getEnd());
2667
2668  if (isCastExpr) {
2669    if (!CastTy) {
2670      DS.SetTypeSpecError();
2671      return;
2672    }
2673
2674    const char *PrevSpec = 0;
2675    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2676    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2677                           CastTy))
2678      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2679    return;
2680  }
2681
2682  // If we get here, the operand to the typeof was an expresion.
2683  if (Operand.isInvalid()) {
2684    DS.SetTypeSpecError();
2685    return;
2686  }
2687
2688  const char *PrevSpec = 0;
2689  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2690  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2691                         Operand.release()))
2692    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2693}
2694