ParseDecl.cpp revision 69730c115c2d0fec2f20609d905d920a5a41b29b
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringSwitch.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// C99 6.7: Declarations.
28//===----------------------------------------------------------------------===//
29
30/// ParseTypeName
31///       type-name: [C99 6.7.6]
32///         specifier-qualifier-list abstract-declarator[opt]
33///
34/// Called type-id in C++.
35TypeResult Parser::ParseTypeName(SourceRange *Range,
36                                 Declarator::TheContext Context,
37                                 AccessSpecifier AS,
38                                 Decl **OwnedType) {
39  // Parse the common declaration-specifiers piece.
40  DeclSpec DS(AttrFactory);
41  ParseSpecifierQualifierList(DS, AS);
42  if (OwnedType)
43    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
44
45  // Parse the abstract-declarator, if present.
46  Declarator DeclaratorInfo(DS, Context);
47  ParseDeclarator(DeclaratorInfo);
48  if (Range)
49    *Range = DeclaratorInfo.getSourceRange();
50
51  if (DeclaratorInfo.isInvalidType())
52    return true;
53
54  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
55}
56
57
58/// isAttributeLateParsed - Return true if the attribute has arguments that
59/// require late parsing.
60static bool isAttributeLateParsed(const IdentifierInfo &II) {
61    return llvm::StringSwitch<bool>(II.getName())
62#include "clang/Parse/AttrLateParsed.inc"
63        .Default(false);
64}
65
66
67/// ParseGNUAttributes - Parse a non-empty attributes list.
68///
69/// [GNU] attributes:
70///         attribute
71///         attributes attribute
72///
73/// [GNU]  attribute:
74///          '__attribute__' '(' '(' attribute-list ')' ')'
75///
76/// [GNU]  attribute-list:
77///          attrib
78///          attribute_list ',' attrib
79///
80/// [GNU]  attrib:
81///          empty
82///          attrib-name
83///          attrib-name '(' identifier ')'
84///          attrib-name '(' identifier ',' nonempty-expr-list ')'
85///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
86///
87/// [GNU]  attrib-name:
88///          identifier
89///          typespec
90///          typequal
91///          storageclass
92///
93/// FIXME: The GCC grammar/code for this construct implies we need two
94/// token lookahead. Comment from gcc: "If they start with an identifier
95/// which is followed by a comma or close parenthesis, then the arguments
96/// start with that identifier; otherwise they are an expression list."
97///
98/// GCC does not require the ',' between attribs in an attribute-list.
99///
100/// At the moment, I am not doing 2 token lookahead. I am also unaware of
101/// any attributes that don't work (based on my limited testing). Most
102/// attributes are very simple in practice. Until we find a bug, I don't see
103/// a pressing need to implement the 2 token lookahead.
104
105void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
106                                SourceLocation *endLoc,
107                                LateParsedAttrList *LateAttrs) {
108  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
109
110  while (Tok.is(tok::kw___attribute)) {
111    ConsumeToken();
112    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
113                         "attribute")) {
114      SkipUntil(tok::r_paren, true); // skip until ) or ;
115      return;
116    }
117    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
118      SkipUntil(tok::r_paren, true); // skip until ) or ;
119      return;
120    }
121    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
122    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
123           Tok.is(tok::comma)) {
124      if (Tok.is(tok::comma)) {
125        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
126        ConsumeToken();
127        continue;
128      }
129      // we have an identifier or declaration specifier (const, int, etc.)
130      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
131      SourceLocation AttrNameLoc = ConsumeToken();
132
133      if (Tok.is(tok::l_paren)) {
134        // handle "parameterized" attributes
135        if (LateAttrs && isAttributeLateParsed(*AttrName)) {
136          LateParsedAttribute *LA =
137            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
138          LateAttrs->push_back(LA);
139
140          // Attributes in a class are parsed at the end of the class, along
141          // with other late-parsed declarations.
142          if (!ClassStack.empty())
143            getCurrentClass().LateParsedDeclarations.push_back(LA);
144
145          // consume everything up to and including the matching right parens
146          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
147
148          Token Eof;
149          Eof.startToken();
150          Eof.setLocation(Tok.getLocation());
151          LA->Toks.push_back(Eof);
152        } else {
153          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
154        }
155      } else {
156        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
157                     0, SourceLocation(), 0, 0);
158      }
159    }
160    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
161      SkipUntil(tok::r_paren, false);
162    SourceLocation Loc = Tok.getLocation();
163    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
164      SkipUntil(tok::r_paren, false);
165    }
166    if (endLoc)
167      *endLoc = Loc;
168  }
169}
170
171
172/// Parse the arguments to a parameterized GNU attribute
173void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
174                                   SourceLocation AttrNameLoc,
175                                   ParsedAttributes &Attrs,
176                                   SourceLocation *EndLoc) {
177
178  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
179
180  // Availability attributes have their own grammar.
181  if (AttrName->isStr("availability")) {
182    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
183    return;
184  }
185  // Thread safety attributes fit into the FIXME case above, so we
186  // just parse the arguments as a list of expressions
187  if (IsThreadSafetyAttribute(AttrName->getName())) {
188    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
189    return;
190  }
191
192  ConsumeParen(); // ignore the left paren loc for now
193
194  IdentifierInfo *ParmName = 0;
195  SourceLocation ParmLoc;
196  bool BuiltinType = false;
197
198  switch (Tok.getKind()) {
199  case tok::kw_char:
200  case tok::kw_wchar_t:
201  case tok::kw_char16_t:
202  case tok::kw_char32_t:
203  case tok::kw_bool:
204  case tok::kw_short:
205  case tok::kw_int:
206  case tok::kw_long:
207  case tok::kw___int64:
208  case tok::kw_signed:
209  case tok::kw_unsigned:
210  case tok::kw_float:
211  case tok::kw_double:
212  case tok::kw_void:
213  case tok::kw_typeof:
214    // __attribute__(( vec_type_hint(char) ))
215    // FIXME: Don't just discard the builtin type token.
216    ConsumeToken();
217    BuiltinType = true;
218    break;
219
220  case tok::identifier:
221    ParmName = Tok.getIdentifierInfo();
222    ParmLoc = ConsumeToken();
223    break;
224
225  default:
226    break;
227  }
228
229  ExprVector ArgExprs(Actions);
230
231  if (!BuiltinType &&
232      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
233    // Eat the comma.
234    if (ParmLoc.isValid())
235      ConsumeToken();
236
237    // Parse the non-empty comma-separated list of expressions.
238    while (1) {
239      ExprResult ArgExpr(ParseAssignmentExpression());
240      if (ArgExpr.isInvalid()) {
241        SkipUntil(tok::r_paren);
242        return;
243      }
244      ArgExprs.push_back(ArgExpr.release());
245      if (Tok.isNot(tok::comma))
246        break;
247      ConsumeToken(); // Eat the comma, move to the next argument
248    }
249  }
250  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
251    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
252                          tok::greater)) {
253      while (Tok.is(tok::identifier)) {
254        ConsumeToken();
255        if (Tok.is(tok::greater))
256          break;
257        if (Tok.is(tok::comma)) {
258          ConsumeToken();
259          continue;
260        }
261      }
262      if (Tok.isNot(tok::greater))
263        Diag(Tok, diag::err_iboutletcollection_with_protocol);
264      SkipUntil(tok::r_paren, false, true); // skip until ')'
265    }
266  }
267
268  SourceLocation RParen = Tok.getLocation();
269  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
270    AttributeList *attr =
271      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
272                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
273    if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection)
274      Diag(Tok, diag::err_iboutletcollection_builtintype);
275  }
276}
277
278
279/// ParseMicrosoftDeclSpec - Parse an __declspec construct
280///
281/// [MS] decl-specifier:
282///             __declspec ( extended-decl-modifier-seq )
283///
284/// [MS] extended-decl-modifier-seq:
285///             extended-decl-modifier[opt]
286///             extended-decl-modifier extended-decl-modifier-seq
287
288void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
289  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
290
291  ConsumeToken();
292  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
293                       "declspec")) {
294    SkipUntil(tok::r_paren, true); // skip until ) or ;
295    return;
296  }
297
298  while (Tok.getIdentifierInfo()) {
299    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
300    SourceLocation AttrNameLoc = ConsumeToken();
301
302    // FIXME: Remove this when we have proper __declspec(property()) support.
303    // Just skip everything inside property().
304    if (AttrName->getName() == "property") {
305      ConsumeParen();
306      SkipUntil(tok::r_paren);
307    }
308    if (Tok.is(tok::l_paren)) {
309      ConsumeParen();
310      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
311      // correctly.
312      ExprResult ArgExpr(ParseAssignmentExpression());
313      if (!ArgExpr.isInvalid()) {
314        Expr *ExprList = ArgExpr.take();
315        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
316                     SourceLocation(), &ExprList, 1, true);
317      }
318      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
319        SkipUntil(tok::r_paren, false);
320    } else {
321      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
322                   0, SourceLocation(), 0, 0, true);
323    }
324  }
325  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
326    SkipUntil(tok::r_paren, false);
327  return;
328}
329
330void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
331  // Treat these like attributes
332  // FIXME: Allow Sema to distinguish between these and real attributes!
333  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
334         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
335         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
336         Tok.is(tok::kw___ptr32) ||
337         Tok.is(tok::kw___unaligned)) {
338    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
339    SourceLocation AttrNameLoc = ConsumeToken();
340    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
341        Tok.is(tok::kw___ptr32))
342      // FIXME: Support these properly!
343      continue;
344    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
345                 SourceLocation(), 0, 0, true);
346  }
347}
348
349void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
350  // Treat these like attributes
351  while (Tok.is(tok::kw___pascal)) {
352    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
353    SourceLocation AttrNameLoc = ConsumeToken();
354    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
355                 SourceLocation(), 0, 0, true);
356  }
357}
358
359void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
360  // Treat these like attributes
361  while (Tok.is(tok::kw___kernel)) {
362    SourceLocation AttrNameLoc = ConsumeToken();
363    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
364                 AttrNameLoc, 0, AttrNameLoc, 0,
365                 SourceLocation(), 0, 0, false);
366  }
367}
368
369void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
370  SourceLocation Loc = Tok.getLocation();
371  switch(Tok.getKind()) {
372    // OpenCL qualifiers:
373    case tok::kw___private:
374    case tok::kw_private:
375      DS.getAttributes().addNewInteger(
376          Actions.getASTContext(),
377          PP.getIdentifierInfo("address_space"), Loc, 0);
378      break;
379
380    case tok::kw___global:
381      DS.getAttributes().addNewInteger(
382          Actions.getASTContext(),
383          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
384      break;
385
386    case tok::kw___local:
387      DS.getAttributes().addNewInteger(
388          Actions.getASTContext(),
389          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
390      break;
391
392    case tok::kw___constant:
393      DS.getAttributes().addNewInteger(
394          Actions.getASTContext(),
395          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
396      break;
397
398    case tok::kw___read_only:
399      DS.getAttributes().addNewInteger(
400          Actions.getASTContext(),
401          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
402      break;
403
404    case tok::kw___write_only:
405      DS.getAttributes().addNewInteger(
406          Actions.getASTContext(),
407          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
408      break;
409
410    case tok::kw___read_write:
411      DS.getAttributes().addNewInteger(
412          Actions.getASTContext(),
413          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
414      break;
415    default: break;
416  }
417}
418
419/// \brief Parse a version number.
420///
421/// version:
422///   simple-integer
423///   simple-integer ',' simple-integer
424///   simple-integer ',' simple-integer ',' simple-integer
425VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
426  Range = Tok.getLocation();
427
428  if (!Tok.is(tok::numeric_constant)) {
429    Diag(Tok, diag::err_expected_version);
430    SkipUntil(tok::comma, tok::r_paren, true, true, true);
431    return VersionTuple();
432  }
433
434  // Parse the major (and possibly minor and subminor) versions, which
435  // are stored in the numeric constant. We utilize a quirk of the
436  // lexer, which is that it handles something like 1.2.3 as a single
437  // numeric constant, rather than two separate tokens.
438  SmallString<512> Buffer;
439  Buffer.resize(Tok.getLength()+1);
440  const char *ThisTokBegin = &Buffer[0];
441
442  // Get the spelling of the token, which eliminates trigraphs, etc.
443  bool Invalid = false;
444  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
445  if (Invalid)
446    return VersionTuple();
447
448  // Parse the major version.
449  unsigned AfterMajor = 0;
450  unsigned Major = 0;
451  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
452    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
453    ++AfterMajor;
454  }
455
456  if (AfterMajor == 0) {
457    Diag(Tok, diag::err_expected_version);
458    SkipUntil(tok::comma, tok::r_paren, true, true, true);
459    return VersionTuple();
460  }
461
462  if (AfterMajor == ActualLength) {
463    ConsumeToken();
464
465    // We only had a single version component.
466    if (Major == 0) {
467      Diag(Tok, diag::err_zero_version);
468      return VersionTuple();
469    }
470
471    return VersionTuple(Major);
472  }
473
474  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
475    Diag(Tok, diag::err_expected_version);
476    SkipUntil(tok::comma, tok::r_paren, true, true, true);
477    return VersionTuple();
478  }
479
480  // Parse the minor version.
481  unsigned AfterMinor = AfterMajor + 1;
482  unsigned Minor = 0;
483  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
484    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
485    ++AfterMinor;
486  }
487
488  if (AfterMinor == ActualLength) {
489    ConsumeToken();
490
491    // We had major.minor.
492    if (Major == 0 && Minor == 0) {
493      Diag(Tok, diag::err_zero_version);
494      return VersionTuple();
495    }
496
497    return VersionTuple(Major, Minor);
498  }
499
500  // If what follows is not a '.', we have a problem.
501  if (ThisTokBegin[AfterMinor] != '.') {
502    Diag(Tok, diag::err_expected_version);
503    SkipUntil(tok::comma, tok::r_paren, true, true, true);
504    return VersionTuple();
505  }
506
507  // Parse the subminor version.
508  unsigned AfterSubminor = AfterMinor + 1;
509  unsigned Subminor = 0;
510  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
511    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
512    ++AfterSubminor;
513  }
514
515  if (AfterSubminor != ActualLength) {
516    Diag(Tok, diag::err_expected_version);
517    SkipUntil(tok::comma, tok::r_paren, true, true, true);
518    return VersionTuple();
519  }
520  ConsumeToken();
521  return VersionTuple(Major, Minor, Subminor);
522}
523
524/// \brief Parse the contents of the "availability" attribute.
525///
526/// availability-attribute:
527///   'availability' '(' platform ',' version-arg-list, opt-message')'
528///
529/// platform:
530///   identifier
531///
532/// version-arg-list:
533///   version-arg
534///   version-arg ',' version-arg-list
535///
536/// version-arg:
537///   'introduced' '=' version
538///   'deprecated' '=' version
539///   'obsoleted' = version
540///   'unavailable'
541/// opt-message:
542///   'message' '=' <string>
543void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
544                                        SourceLocation AvailabilityLoc,
545                                        ParsedAttributes &attrs,
546                                        SourceLocation *endLoc) {
547  SourceLocation PlatformLoc;
548  IdentifierInfo *Platform = 0;
549
550  enum { Introduced, Deprecated, Obsoleted, Unknown };
551  AvailabilityChange Changes[Unknown];
552  ExprResult MessageExpr;
553
554  // Opening '('.
555  BalancedDelimiterTracker T(*this, tok::l_paren);
556  if (T.consumeOpen()) {
557    Diag(Tok, diag::err_expected_lparen);
558    return;
559  }
560
561  // Parse the platform name,
562  if (Tok.isNot(tok::identifier)) {
563    Diag(Tok, diag::err_availability_expected_platform);
564    SkipUntil(tok::r_paren);
565    return;
566  }
567  Platform = Tok.getIdentifierInfo();
568  PlatformLoc = ConsumeToken();
569
570  // Parse the ',' following the platform name.
571  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
572    return;
573
574  // If we haven't grabbed the pointers for the identifiers
575  // "introduced", "deprecated", and "obsoleted", do so now.
576  if (!Ident_introduced) {
577    Ident_introduced = PP.getIdentifierInfo("introduced");
578    Ident_deprecated = PP.getIdentifierInfo("deprecated");
579    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
580    Ident_unavailable = PP.getIdentifierInfo("unavailable");
581    Ident_message = PP.getIdentifierInfo("message");
582  }
583
584  // Parse the set of introductions/deprecations/removals.
585  SourceLocation UnavailableLoc;
586  do {
587    if (Tok.isNot(tok::identifier)) {
588      Diag(Tok, diag::err_availability_expected_change);
589      SkipUntil(tok::r_paren);
590      return;
591    }
592    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
593    SourceLocation KeywordLoc = ConsumeToken();
594
595    if (Keyword == Ident_unavailable) {
596      if (UnavailableLoc.isValid()) {
597        Diag(KeywordLoc, diag::err_availability_redundant)
598          << Keyword << SourceRange(UnavailableLoc);
599      }
600      UnavailableLoc = KeywordLoc;
601
602      if (Tok.isNot(tok::comma))
603        break;
604
605      ConsumeToken();
606      continue;
607    }
608
609    if (Tok.isNot(tok::equal)) {
610      Diag(Tok, diag::err_expected_equal_after)
611        << Keyword;
612      SkipUntil(tok::r_paren);
613      return;
614    }
615    ConsumeToken();
616    if (Keyword == Ident_message) {
617      if (!isTokenStringLiteral()) {
618        Diag(Tok, diag::err_expected_string_literal);
619        SkipUntil(tok::r_paren);
620        return;
621      }
622      MessageExpr = ParseStringLiteralExpression();
623      break;
624    }
625
626    SourceRange VersionRange;
627    VersionTuple Version = ParseVersionTuple(VersionRange);
628
629    if (Version.empty()) {
630      SkipUntil(tok::r_paren);
631      return;
632    }
633
634    unsigned Index;
635    if (Keyword == Ident_introduced)
636      Index = Introduced;
637    else if (Keyword == Ident_deprecated)
638      Index = Deprecated;
639    else if (Keyword == Ident_obsoleted)
640      Index = Obsoleted;
641    else
642      Index = Unknown;
643
644    if (Index < Unknown) {
645      if (!Changes[Index].KeywordLoc.isInvalid()) {
646        Diag(KeywordLoc, diag::err_availability_redundant)
647          << Keyword
648          << SourceRange(Changes[Index].KeywordLoc,
649                         Changes[Index].VersionRange.getEnd());
650      }
651
652      Changes[Index].KeywordLoc = KeywordLoc;
653      Changes[Index].Version = Version;
654      Changes[Index].VersionRange = VersionRange;
655    } else {
656      Diag(KeywordLoc, diag::err_availability_unknown_change)
657        << Keyword << VersionRange;
658    }
659
660    if (Tok.isNot(tok::comma))
661      break;
662
663    ConsumeToken();
664  } while (true);
665
666  // Closing ')'.
667  if (T.consumeClose())
668    return;
669
670  if (endLoc)
671    *endLoc = T.getCloseLocation();
672
673  // The 'unavailable' availability cannot be combined with any other
674  // availability changes. Make sure that hasn't happened.
675  if (UnavailableLoc.isValid()) {
676    bool Complained = false;
677    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
678      if (Changes[Index].KeywordLoc.isValid()) {
679        if (!Complained) {
680          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
681            << SourceRange(Changes[Index].KeywordLoc,
682                           Changes[Index].VersionRange.getEnd());
683          Complained = true;
684        }
685
686        // Clear out the availability.
687        Changes[Index] = AvailabilityChange();
688      }
689    }
690  }
691
692  // Record this attribute
693  attrs.addNew(&Availability,
694               SourceRange(AvailabilityLoc, T.getCloseLocation()),
695               0, AvailabilityLoc,
696               Platform, PlatformLoc,
697               Changes[Introduced],
698               Changes[Deprecated],
699               Changes[Obsoleted],
700               UnavailableLoc, MessageExpr.take(),
701               false, false);
702}
703
704
705// Late Parsed Attributes:
706// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
707
708void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
709
710void Parser::LateParsedClass::ParseLexedAttributes() {
711  Self->ParseLexedAttributes(*Class);
712}
713
714void Parser::LateParsedAttribute::ParseLexedAttributes() {
715  Self->ParseLexedAttribute(*this, true, false);
716}
717
718/// Wrapper class which calls ParseLexedAttribute, after setting up the
719/// scope appropriately.
720void Parser::ParseLexedAttributes(ParsingClass &Class) {
721  // Deal with templates
722  // FIXME: Test cases to make sure this does the right thing for templates.
723  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
724  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
725                                HasTemplateScope);
726  if (HasTemplateScope)
727    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
728
729  // Set or update the scope flags to include Scope::ThisScope.
730  bool AlreadyHasClassScope = Class.TopLevelClass;
731  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
732  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
733  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
734
735  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
736    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
737  }
738}
739
740
741/// \brief Parse all attributes in LAs, and attach them to Decl D.
742void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
743                                     bool EnterScope, bool OnDefinition) {
744  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
745    LAs[i]->addDecl(D);
746    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
747  }
748  LAs.clear();
749}
750
751
752/// \brief Finish parsing an attribute for which parsing was delayed.
753/// This will be called at the end of parsing a class declaration
754/// for each LateParsedAttribute. We consume the saved tokens and
755/// create an attribute with the arguments filled in. We add this
756/// to the Attribute list for the decl.
757void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
758                                 bool EnterScope, bool OnDefinition) {
759  // Save the current token position.
760  SourceLocation OrigLoc = Tok.getLocation();
761
762  // Append the current token at the end of the new token stream so that it
763  // doesn't get lost.
764  LA.Toks.push_back(Tok);
765  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
766  // Consume the previously pushed token.
767  ConsumeAnyToken();
768
769  if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
770    Diag(Tok, diag::warn_attribute_on_function_definition)
771      << LA.AttrName.getName();
772  }
773
774  ParsedAttributes Attrs(AttrFactory);
775  SourceLocation endLoc;
776
777  if (LA.Decls.size() == 1) {
778    Decl *D = LA.Decls[0];
779
780    // If the Decl is templatized, add template parameters to scope.
781    bool HasTemplateScope = EnterScope && D->isTemplateDecl();
782    ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
783    if (HasTemplateScope)
784      Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
785
786    // If the Decl is on a function, add function parameters to the scope.
787    bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
788    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
789    if (HasFunctionScope)
790      Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
791
792    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
793
794    if (HasFunctionScope) {
795      Actions.ActOnExitFunctionContext();
796      FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
797    }
798    if (HasTemplateScope) {
799      TempScope.Exit();
800    }
801  } else if (LA.Decls.size() > 0) {
802    // If there are multiple decls, then the decl cannot be within the
803    // function scope.
804    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
805  } else {
806    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
807  }
808
809  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
810    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
811  }
812
813  if (Tok.getLocation() != OrigLoc) {
814    // Due to a parsing error, we either went over the cached tokens or
815    // there are still cached tokens left, so we skip the leftover tokens.
816    // Since this is an uncommon situation that should be avoided, use the
817    // expensive isBeforeInTranslationUnit call.
818    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
819                                                        OrigLoc))
820    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
821      ConsumeAnyToken();
822  }
823}
824
825/// \brief Wrapper around a case statement checking if AttrName is
826/// one of the thread safety attributes
827bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
828  return llvm::StringSwitch<bool>(AttrName)
829      .Case("guarded_by", true)
830      .Case("guarded_var", true)
831      .Case("pt_guarded_by", true)
832      .Case("pt_guarded_var", true)
833      .Case("lockable", true)
834      .Case("scoped_lockable", true)
835      .Case("no_thread_safety_analysis", true)
836      .Case("acquired_after", true)
837      .Case("acquired_before", true)
838      .Case("exclusive_lock_function", true)
839      .Case("shared_lock_function", true)
840      .Case("exclusive_trylock_function", true)
841      .Case("shared_trylock_function", true)
842      .Case("unlock_function", true)
843      .Case("lock_returned", true)
844      .Case("locks_excluded", true)
845      .Case("exclusive_locks_required", true)
846      .Case("shared_locks_required", true)
847      .Default(false);
848}
849
850/// \brief Parse the contents of thread safety attributes. These
851/// should always be parsed as an expression list.
852///
853/// We need to special case the parsing due to the fact that if the first token
854/// of the first argument is an identifier, the main parse loop will store
855/// that token as a "parameter" and the rest of
856/// the arguments will be added to a list of "arguments". However,
857/// subsequent tokens in the first argument are lost. We instead parse each
858/// argument as an expression and add all arguments to the list of "arguments".
859/// In future, we will take advantage of this special case to also
860/// deal with some argument scoping issues here (for example, referring to a
861/// function parameter in the attribute on that function).
862void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
863                                        SourceLocation AttrNameLoc,
864                                        ParsedAttributes &Attrs,
865                                        SourceLocation *EndLoc) {
866  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
867
868  BalancedDelimiterTracker T(*this, tok::l_paren);
869  T.consumeOpen();
870
871  ExprVector ArgExprs(Actions);
872  bool ArgExprsOk = true;
873
874  // now parse the list of expressions
875  while (Tok.isNot(tok::r_paren)) {
876    ExprResult ArgExpr(ParseAssignmentExpression());
877    if (ArgExpr.isInvalid()) {
878      ArgExprsOk = false;
879      T.consumeClose();
880      break;
881    } else {
882      ArgExprs.push_back(ArgExpr.release());
883    }
884    if (Tok.isNot(tok::comma))
885      break;
886    ConsumeToken(); // Eat the comma, move to the next argument
887  }
888  // Match the ')'.
889  if (ArgExprsOk && !T.consumeClose()) {
890    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
891                 ArgExprs.take(), ArgExprs.size());
892  }
893  if (EndLoc)
894    *EndLoc = T.getCloseLocation();
895}
896
897void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
898  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
899    << attrs.Range;
900}
901
902/// ParseDeclaration - Parse a full 'declaration', which consists of
903/// declaration-specifiers, some number of declarators, and a semicolon.
904/// 'Context' should be a Declarator::TheContext value.  This returns the
905/// location of the semicolon in DeclEnd.
906///
907///       declaration: [C99 6.7]
908///         block-declaration ->
909///           simple-declaration
910///           others                   [FIXME]
911/// [C++]   template-declaration
912/// [C++]   namespace-definition
913/// [C++]   using-directive
914/// [C++]   using-declaration
915/// [C++0x/C11] static_assert-declaration
916///         others... [FIXME]
917///
918Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
919                                                unsigned Context,
920                                                SourceLocation &DeclEnd,
921                                          ParsedAttributesWithRange &attrs) {
922  ParenBraceBracketBalancer BalancerRAIIObj(*this);
923  // Must temporarily exit the objective-c container scope for
924  // parsing c none objective-c decls.
925  ObjCDeclContextSwitch ObjCDC(*this);
926
927  Decl *SingleDecl = 0;
928  Decl *OwnedType = 0;
929  switch (Tok.getKind()) {
930  case tok::kw_template:
931  case tok::kw_export:
932    ProhibitAttributes(attrs);
933    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
934    break;
935  case tok::kw_inline:
936    // Could be the start of an inline namespace. Allowed as an ext in C++03.
937    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
938      ProhibitAttributes(attrs);
939      SourceLocation InlineLoc = ConsumeToken();
940      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
941      break;
942    }
943    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
944                                  true);
945  case tok::kw_namespace:
946    ProhibitAttributes(attrs);
947    SingleDecl = ParseNamespace(Context, DeclEnd);
948    break;
949  case tok::kw_using:
950    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
951                                                  DeclEnd, attrs, &OwnedType);
952    break;
953  case tok::kw_static_assert:
954  case tok::kw__Static_assert:
955    ProhibitAttributes(attrs);
956    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
957    break;
958  default:
959    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
960  }
961
962  // This routine returns a DeclGroup, if the thing we parsed only contains a
963  // single decl, convert it now. Alias declarations can also declare a type;
964  // include that too if it is present.
965  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
966}
967
968///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
969///         declaration-specifiers init-declarator-list[opt] ';'
970///[C90/C++]init-declarator-list ';'                             [TODO]
971/// [OMP]   threadprivate-directive                              [TODO]
972///
973///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
974///         attribute-specifier-seq[opt] type-specifier-seq declarator
975///
976/// If RequireSemi is false, this does not check for a ';' at the end of the
977/// declaration.  If it is true, it checks for and eats it.
978///
979/// If FRI is non-null, we might be parsing a for-range-declaration instead
980/// of a simple-declaration. If we find that we are, we also parse the
981/// for-range-initializer, and place it here.
982Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
983                                                      unsigned Context,
984                                                      SourceLocation &DeclEnd,
985                                                      ParsedAttributes &attrs,
986                                                      bool RequireSemi,
987                                                      ForRangeInit *FRI) {
988  // Parse the common declaration-specifiers piece.
989  ParsingDeclSpec DS(*this);
990  DS.takeAttributesFrom(attrs);
991
992  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
993                             getDeclSpecContextFromDeclaratorContext(Context));
994
995  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
996  // declaration-specifiers init-declarator-list[opt] ';'
997  if (Tok.is(tok::semi)) {
998    if (RequireSemi) ConsumeToken();
999    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1000                                                       DS);
1001    DS.complete(TheDecl);
1002    return Actions.ConvertDeclToDeclGroup(TheDecl);
1003  }
1004
1005  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1006}
1007
1008/// Returns true if this might be the start of a declarator, or a common typo
1009/// for a declarator.
1010bool Parser::MightBeDeclarator(unsigned Context) {
1011  switch (Tok.getKind()) {
1012  case tok::annot_cxxscope:
1013  case tok::annot_template_id:
1014  case tok::caret:
1015  case tok::code_completion:
1016  case tok::coloncolon:
1017  case tok::ellipsis:
1018  case tok::kw___attribute:
1019  case tok::kw_operator:
1020  case tok::l_paren:
1021  case tok::star:
1022    return true;
1023
1024  case tok::amp:
1025  case tok::ampamp:
1026    return getLangOpts().CPlusPlus;
1027
1028  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1029    return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x &&
1030           NextToken().is(tok::l_square);
1031
1032  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1033    return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1034
1035  case tok::identifier:
1036    switch (NextToken().getKind()) {
1037    case tok::code_completion:
1038    case tok::coloncolon:
1039    case tok::comma:
1040    case tok::equal:
1041    case tok::equalequal: // Might be a typo for '='.
1042    case tok::kw_alignas:
1043    case tok::kw_asm:
1044    case tok::kw___attribute:
1045    case tok::l_brace:
1046    case tok::l_paren:
1047    case tok::l_square:
1048    case tok::less:
1049    case tok::r_brace:
1050    case tok::r_paren:
1051    case tok::r_square:
1052    case tok::semi:
1053      return true;
1054
1055    case tok::colon:
1056      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1057      // and in block scope it's probably a label. Inside a class definition,
1058      // this is a bit-field.
1059      return Context == Declarator::MemberContext ||
1060             (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1061
1062    case tok::identifier: // Possible virt-specifier.
1063      return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
1064
1065    default:
1066      return false;
1067    }
1068
1069  default:
1070    return false;
1071  }
1072}
1073
1074/// ParseDeclGroup - Having concluded that this is either a function
1075/// definition or a group of object declarations, actually parse the
1076/// result.
1077Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1078                                              unsigned Context,
1079                                              bool AllowFunctionDefinitions,
1080                                              SourceLocation *DeclEnd,
1081                                              ForRangeInit *FRI) {
1082  // Parse the first declarator.
1083  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1084  ParseDeclarator(D);
1085
1086  // Bail out if the first declarator didn't seem well-formed.
1087  if (!D.hasName() && !D.mayOmitIdentifier()) {
1088    // Skip until ; or }.
1089    SkipUntil(tok::r_brace, true, true);
1090    if (Tok.is(tok::semi))
1091      ConsumeToken();
1092    return DeclGroupPtrTy();
1093  }
1094
1095  // Save late-parsed attributes for now; they need to be parsed in the
1096  // appropriate function scope after the function Decl has been constructed.
1097  LateParsedAttrList LateParsedAttrs;
1098  if (D.isFunctionDeclarator())
1099    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1100
1101  // Check to see if we have a function *definition* which must have a body.
1102  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1103      // Look at the next token to make sure that this isn't a function
1104      // declaration.  We have to check this because __attribute__ might be the
1105      // start of a function definition in GCC-extended K&R C.
1106      !isDeclarationAfterDeclarator()) {
1107
1108    if (isStartOfFunctionDefinition(D)) {
1109      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1110        Diag(Tok, diag::err_function_declared_typedef);
1111
1112        // Recover by treating the 'typedef' as spurious.
1113        DS.ClearStorageClassSpecs();
1114      }
1115
1116      Decl *TheDecl =
1117        ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1118      return Actions.ConvertDeclToDeclGroup(TheDecl);
1119    }
1120
1121    if (isDeclarationSpecifier()) {
1122      // If there is an invalid declaration specifier right after the function
1123      // prototype, then we must be in a missing semicolon case where this isn't
1124      // actually a body.  Just fall through into the code that handles it as a
1125      // prototype, and let the top-level code handle the erroneous declspec
1126      // where it would otherwise expect a comma or semicolon.
1127    } else {
1128      Diag(Tok, diag::err_expected_fn_body);
1129      SkipUntil(tok::semi);
1130      return DeclGroupPtrTy();
1131    }
1132  }
1133
1134  if (ParseAsmAttributesAfterDeclarator(D))
1135    return DeclGroupPtrTy();
1136
1137  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1138  // must parse and analyze the for-range-initializer before the declaration is
1139  // analyzed.
1140  if (FRI && Tok.is(tok::colon)) {
1141    FRI->ColonLoc = ConsumeToken();
1142    if (Tok.is(tok::l_brace))
1143      FRI->RangeExpr = ParseBraceInitializer();
1144    else
1145      FRI->RangeExpr = ParseExpression();
1146    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1147    Actions.ActOnCXXForRangeDecl(ThisDecl);
1148    Actions.FinalizeDeclaration(ThisDecl);
1149    D.complete(ThisDecl);
1150    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1151  }
1152
1153  SmallVector<Decl *, 8> DeclsInGroup;
1154  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1155  if (LateParsedAttrs.size() > 0)
1156    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1157  D.complete(FirstDecl);
1158  if (FirstDecl)
1159    DeclsInGroup.push_back(FirstDecl);
1160
1161  bool ExpectSemi = Context != Declarator::ForContext;
1162
1163  // If we don't have a comma, it is either the end of the list (a ';') or an
1164  // error, bail out.
1165  while (Tok.is(tok::comma)) {
1166    SourceLocation CommaLoc = ConsumeToken();
1167
1168    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1169      // This comma was followed by a line-break and something which can't be
1170      // the start of a declarator. The comma was probably a typo for a
1171      // semicolon.
1172      Diag(CommaLoc, diag::err_expected_semi_declaration)
1173        << FixItHint::CreateReplacement(CommaLoc, ";");
1174      ExpectSemi = false;
1175      break;
1176    }
1177
1178    // Parse the next declarator.
1179    D.clear();
1180    D.setCommaLoc(CommaLoc);
1181
1182    // Accept attributes in an init-declarator.  In the first declarator in a
1183    // declaration, these would be part of the declspec.  In subsequent
1184    // declarators, they become part of the declarator itself, so that they
1185    // don't apply to declarators after *this* one.  Examples:
1186    //    short __attribute__((common)) var;    -> declspec
1187    //    short var __attribute__((common));    -> declarator
1188    //    short x, __attribute__((common)) var;    -> declarator
1189    MaybeParseGNUAttributes(D);
1190
1191    ParseDeclarator(D);
1192    if (!D.isInvalidType()) {
1193      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1194      D.complete(ThisDecl);
1195      if (ThisDecl)
1196        DeclsInGroup.push_back(ThisDecl);
1197    }
1198  }
1199
1200  if (DeclEnd)
1201    *DeclEnd = Tok.getLocation();
1202
1203  if (ExpectSemi &&
1204      ExpectAndConsume(tok::semi,
1205                       Context == Declarator::FileContext
1206                         ? diag::err_invalid_token_after_toplevel_declarator
1207                         : diag::err_expected_semi_declaration)) {
1208    // Okay, there was no semicolon and one was expected.  If we see a
1209    // declaration specifier, just assume it was missing and continue parsing.
1210    // Otherwise things are very confused and we skip to recover.
1211    if (!isDeclarationSpecifier()) {
1212      SkipUntil(tok::r_brace, true, true);
1213      if (Tok.is(tok::semi))
1214        ConsumeToken();
1215    }
1216  }
1217
1218  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1219                                         DeclsInGroup.data(),
1220                                         DeclsInGroup.size());
1221}
1222
1223/// Parse an optional simple-asm-expr and attributes, and attach them to a
1224/// declarator. Returns true on an error.
1225bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1226  // If a simple-asm-expr is present, parse it.
1227  if (Tok.is(tok::kw_asm)) {
1228    SourceLocation Loc;
1229    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1230    if (AsmLabel.isInvalid()) {
1231      SkipUntil(tok::semi, true, true);
1232      return true;
1233    }
1234
1235    D.setAsmLabel(AsmLabel.release());
1236    D.SetRangeEnd(Loc);
1237  }
1238
1239  MaybeParseGNUAttributes(D);
1240  return false;
1241}
1242
1243/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1244/// declarator'. This method parses the remainder of the declaration
1245/// (including any attributes or initializer, among other things) and
1246/// finalizes the declaration.
1247///
1248///       init-declarator: [C99 6.7]
1249///         declarator
1250///         declarator '=' initializer
1251/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1252/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1253/// [C++]   declarator initializer[opt]
1254///
1255/// [C++] initializer:
1256/// [C++]   '=' initializer-clause
1257/// [C++]   '(' expression-list ')'
1258/// [C++0x] '=' 'default'                                                [TODO]
1259/// [C++0x] '=' 'delete'
1260/// [C++0x] braced-init-list
1261///
1262/// According to the standard grammar, =default and =delete are function
1263/// definitions, but that definitely doesn't fit with the parser here.
1264///
1265Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1266                                     const ParsedTemplateInfo &TemplateInfo) {
1267  if (ParseAsmAttributesAfterDeclarator(D))
1268    return 0;
1269
1270  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1271}
1272
1273Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1274                                     const ParsedTemplateInfo &TemplateInfo) {
1275  // Inform the current actions module that we just parsed this declarator.
1276  Decl *ThisDecl = 0;
1277  switch (TemplateInfo.Kind) {
1278  case ParsedTemplateInfo::NonTemplate:
1279    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1280    break;
1281
1282  case ParsedTemplateInfo::Template:
1283  case ParsedTemplateInfo::ExplicitSpecialization:
1284    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1285                             MultiTemplateParamsArg(Actions,
1286                                          TemplateInfo.TemplateParams->data(),
1287                                          TemplateInfo.TemplateParams->size()),
1288                                               D);
1289    break;
1290
1291  case ParsedTemplateInfo::ExplicitInstantiation: {
1292    DeclResult ThisRes
1293      = Actions.ActOnExplicitInstantiation(getCurScope(),
1294                                           TemplateInfo.ExternLoc,
1295                                           TemplateInfo.TemplateLoc,
1296                                           D);
1297    if (ThisRes.isInvalid()) {
1298      SkipUntil(tok::semi, true, true);
1299      return 0;
1300    }
1301
1302    ThisDecl = ThisRes.get();
1303    break;
1304    }
1305  }
1306
1307  bool TypeContainsAuto =
1308    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1309
1310  // Parse declarator '=' initializer.
1311  // If a '==' or '+=' is found, suggest a fixit to '='.
1312  if (isTokenEqualOrEqualTypo()) {
1313    ConsumeToken();
1314    if (Tok.is(tok::kw_delete)) {
1315      if (D.isFunctionDeclarator())
1316        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1317          << 1 /* delete */;
1318      else
1319        Diag(ConsumeToken(), diag::err_deleted_non_function);
1320    } else if (Tok.is(tok::kw_default)) {
1321      if (D.isFunctionDeclarator())
1322        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1323          << 0 /* default */;
1324      else
1325        Diag(ConsumeToken(), diag::err_default_special_members);
1326    } else {
1327      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1328        EnterScope(0);
1329        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1330      }
1331
1332      if (Tok.is(tok::code_completion)) {
1333        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1334        cutOffParsing();
1335        return 0;
1336      }
1337
1338      ExprResult Init(ParseInitializer());
1339
1340      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1341        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1342        ExitScope();
1343      }
1344
1345      if (Init.isInvalid()) {
1346        SkipUntil(tok::comma, true, true);
1347        Actions.ActOnInitializerError(ThisDecl);
1348      } else
1349        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1350                                     /*DirectInit=*/false, TypeContainsAuto);
1351    }
1352  } else if (Tok.is(tok::l_paren)) {
1353    // Parse C++ direct initializer: '(' expression-list ')'
1354    BalancedDelimiterTracker T(*this, tok::l_paren);
1355    T.consumeOpen();
1356
1357    ExprVector Exprs(Actions);
1358    CommaLocsTy CommaLocs;
1359
1360    if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1361      EnterScope(0);
1362      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1363    }
1364
1365    if (ParseExpressionList(Exprs, CommaLocs)) {
1366      SkipUntil(tok::r_paren);
1367
1368      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1369        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1370        ExitScope();
1371      }
1372    } else {
1373      // Match the ')'.
1374      T.consumeClose();
1375
1376      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1377             "Unexpected number of commas!");
1378
1379      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1380        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1381        ExitScope();
1382      }
1383
1384      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1385                                                          T.getCloseLocation(),
1386                                                          move_arg(Exprs));
1387      Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
1388                                   /*DirectInit=*/true, TypeContainsAuto);
1389    }
1390  } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1391    // Parse C++0x braced-init-list.
1392    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1393
1394    if (D.getCXXScopeSpec().isSet()) {
1395      EnterScope(0);
1396      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1397    }
1398
1399    ExprResult Init(ParseBraceInitializer());
1400
1401    if (D.getCXXScopeSpec().isSet()) {
1402      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1403      ExitScope();
1404    }
1405
1406    if (Init.isInvalid()) {
1407      Actions.ActOnInitializerError(ThisDecl);
1408    } else
1409      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1410                                   /*DirectInit=*/true, TypeContainsAuto);
1411
1412  } else {
1413    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1414  }
1415
1416  Actions.FinalizeDeclaration(ThisDecl);
1417
1418  return ThisDecl;
1419}
1420
1421/// ParseSpecifierQualifierList
1422///        specifier-qualifier-list:
1423///          type-specifier specifier-qualifier-list[opt]
1424///          type-qualifier specifier-qualifier-list[opt]
1425/// [GNU]    attributes     specifier-qualifier-list[opt]
1426///
1427void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1428                                         DeclSpecContext DSC) {
1429  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1430  /// parse declaration-specifiers and complain about extra stuff.
1431  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1432  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1433
1434  // Validate declspec for type-name.
1435  unsigned Specs = DS.getParsedSpecifiers();
1436  if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) {
1437    Diag(Tok, diag::err_expected_type);
1438    DS.SetTypeSpecError();
1439  } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1440             !DS.hasAttributes()) {
1441    Diag(Tok, diag::err_typename_requires_specqual);
1442    if (!DS.hasTypeSpecifier())
1443      DS.SetTypeSpecError();
1444  }
1445
1446  // Issue diagnostic and remove storage class if present.
1447  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1448    if (DS.getStorageClassSpecLoc().isValid())
1449      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1450    else
1451      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1452    DS.ClearStorageClassSpecs();
1453  }
1454
1455  // Issue diagnostic and remove function specfier if present.
1456  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1457    if (DS.isInlineSpecified())
1458      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1459    if (DS.isVirtualSpecified())
1460      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1461    if (DS.isExplicitSpecified())
1462      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1463    DS.ClearFunctionSpecs();
1464  }
1465
1466  // Issue diagnostic and remove constexpr specfier if present.
1467  if (DS.isConstexprSpecified()) {
1468    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1469    DS.ClearConstexprSpec();
1470  }
1471}
1472
1473/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1474/// specified token is valid after the identifier in a declarator which
1475/// immediately follows the declspec.  For example, these things are valid:
1476///
1477///      int x   [             4];         // direct-declarator
1478///      int x   (             int y);     // direct-declarator
1479///  int(int x   )                         // direct-declarator
1480///      int x   ;                         // simple-declaration
1481///      int x   =             17;         // init-declarator-list
1482///      int x   ,             y;          // init-declarator-list
1483///      int x   __asm__       ("foo");    // init-declarator-list
1484///      int x   :             4;          // struct-declarator
1485///      int x   {             5};         // C++'0x unified initializers
1486///
1487/// This is not, because 'x' does not immediately follow the declspec (though
1488/// ')' happens to be valid anyway).
1489///    int (x)
1490///
1491static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1492  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1493         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1494         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1495}
1496
1497
1498/// ParseImplicitInt - This method is called when we have an non-typename
1499/// identifier in a declspec (which normally terminates the decl spec) when
1500/// the declspec has no type specifier.  In this case, the declspec is either
1501/// malformed or is "implicit int" (in K&R and C89).
1502///
1503/// This method handles diagnosing this prettily and returns false if the
1504/// declspec is done being processed.  If it recovers and thinks there may be
1505/// other pieces of declspec after it, it returns true.
1506///
1507bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1508                              const ParsedTemplateInfo &TemplateInfo,
1509                              AccessSpecifier AS, DeclSpecContext DSC) {
1510  assert(Tok.is(tok::identifier) && "should have identifier");
1511
1512  SourceLocation Loc = Tok.getLocation();
1513  // If we see an identifier that is not a type name, we normally would
1514  // parse it as the identifer being declared.  However, when a typename
1515  // is typo'd or the definition is not included, this will incorrectly
1516  // parse the typename as the identifier name and fall over misparsing
1517  // later parts of the diagnostic.
1518  //
1519  // As such, we try to do some look-ahead in cases where this would
1520  // otherwise be an "implicit-int" case to see if this is invalid.  For
1521  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1522  // an identifier with implicit int, we'd get a parse error because the
1523  // next token is obviously invalid for a type.  Parse these as a case
1524  // with an invalid type specifier.
1525  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1526
1527  // Since we know that this either implicit int (which is rare) or an
1528  // error, do lookahead to try to do better recovery. This never applies within
1529  // a type specifier.
1530  // FIXME: Don't bail out here in languages with no implicit int (like
1531  // C++ with no -fms-extensions). This is much more likely to be an undeclared
1532  // type or typo than a use of implicit int.
1533  if (DSC != DSC_type_specifier &&
1534      isValidAfterIdentifierInDeclarator(NextToken())) {
1535    // If this token is valid for implicit int, e.g. "static x = 4", then
1536    // we just avoid eating the identifier, so it will be parsed as the
1537    // identifier in the declarator.
1538    return false;
1539  }
1540
1541  // Otherwise, if we don't consume this token, we are going to emit an
1542  // error anyway.  Try to recover from various common problems.  Check
1543  // to see if this was a reference to a tag name without a tag specified.
1544  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1545  //
1546  // C++ doesn't need this, and isTagName doesn't take SS.
1547  if (SS == 0) {
1548    const char *TagName = 0, *FixitTagName = 0;
1549    tok::TokenKind TagKind = tok::unknown;
1550
1551    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1552      default: break;
1553      case DeclSpec::TST_enum:
1554        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1555      case DeclSpec::TST_union:
1556        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1557      case DeclSpec::TST_struct:
1558        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1559      case DeclSpec::TST_class:
1560        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1561    }
1562
1563    if (TagName) {
1564      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1565        << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus
1566        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1567
1568      // Parse this as a tag as if the missing tag were present.
1569      if (TagKind == tok::kw_enum)
1570        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
1571      else
1572        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
1573                            /*EnteringContext*/ false, DSC_normal);
1574      return true;
1575    }
1576  }
1577
1578  // This is almost certainly an invalid type name. Let the action emit a
1579  // diagnostic and attempt to recover.
1580  ParsedType T;
1581  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1582                                      getCurScope(), SS, T)) {
1583    // The action emitted a diagnostic, so we don't have to.
1584    if (T) {
1585      // The action has suggested that the type T could be used. Set that as
1586      // the type in the declaration specifiers, consume the would-be type
1587      // name token, and we're done.
1588      const char *PrevSpec;
1589      unsigned DiagID;
1590      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1591      DS.SetRangeEnd(Tok.getLocation());
1592      ConsumeToken();
1593
1594      // There may be other declaration specifiers after this.
1595      return true;
1596    }
1597
1598    // Fall through; the action had no suggestion for us.
1599  } else {
1600    // The action did not emit a diagnostic, so emit one now.
1601    SourceRange R;
1602    if (SS) R = SS->getRange();
1603    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1604  }
1605
1606  // Mark this as an error.
1607  DS.SetTypeSpecError();
1608  DS.SetRangeEnd(Tok.getLocation());
1609  ConsumeToken();
1610
1611  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1612  // avoid rippling error messages on subsequent uses of the same type,
1613  // could be useful if #include was forgotten.
1614  return false;
1615}
1616
1617/// \brief Determine the declaration specifier context from the declarator
1618/// context.
1619///
1620/// \param Context the declarator context, which is one of the
1621/// Declarator::TheContext enumerator values.
1622Parser::DeclSpecContext
1623Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1624  if (Context == Declarator::MemberContext)
1625    return DSC_class;
1626  if (Context == Declarator::FileContext)
1627    return DSC_top_level;
1628  return DSC_normal;
1629}
1630
1631/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1632///
1633/// FIXME: Simply returns an alignof() expression if the argument is a
1634/// type. Ideally, the type should be propagated directly into Sema.
1635///
1636/// [C11]   type-id
1637/// [C11]   constant-expression
1638/// [C++0x] type-id ...[opt]
1639/// [C++0x] assignment-expression ...[opt]
1640ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1641                                      SourceLocation &EllipsisLoc) {
1642  ExprResult ER;
1643  if (isTypeIdInParens()) {
1644    SourceLocation TypeLoc = Tok.getLocation();
1645    ParsedType Ty = ParseTypeName().get();
1646    SourceRange TypeRange(Start, Tok.getLocation());
1647    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1648                                               Ty.getAsOpaquePtr(), TypeRange);
1649  } else
1650    ER = ParseConstantExpression();
1651
1652  if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis))
1653    EllipsisLoc = ConsumeToken();
1654
1655  return ER;
1656}
1657
1658/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1659/// attribute to Attrs.
1660///
1661/// alignment-specifier:
1662/// [C11]   '_Alignas' '(' type-id ')'
1663/// [C11]   '_Alignas' '(' constant-expression ')'
1664/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1665/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1666void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1667                                     SourceLocation *endLoc) {
1668  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1669         "Not an alignment-specifier!");
1670
1671  SourceLocation KWLoc = Tok.getLocation();
1672  ConsumeToken();
1673
1674  BalancedDelimiterTracker T(*this, tok::l_paren);
1675  if (T.expectAndConsume(diag::err_expected_lparen))
1676    return;
1677
1678  SourceLocation EllipsisLoc;
1679  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1680  if (ArgExpr.isInvalid()) {
1681    SkipUntil(tok::r_paren);
1682    return;
1683  }
1684
1685  T.consumeClose();
1686  if (endLoc)
1687    *endLoc = T.getCloseLocation();
1688
1689  // FIXME: Handle pack-expansions here.
1690  if (EllipsisLoc.isValid()) {
1691    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1692    return;
1693  }
1694
1695  ExprVector ArgExprs(Actions);
1696  ArgExprs.push_back(ArgExpr.release());
1697  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1698               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1699}
1700
1701/// ParseDeclarationSpecifiers
1702///       declaration-specifiers: [C99 6.7]
1703///         storage-class-specifier declaration-specifiers[opt]
1704///         type-specifier declaration-specifiers[opt]
1705/// [C99]   function-specifier declaration-specifiers[opt]
1706/// [C11]   alignment-specifier declaration-specifiers[opt]
1707/// [GNU]   attributes declaration-specifiers[opt]
1708/// [Clang] '__module_private__' declaration-specifiers[opt]
1709///
1710///       storage-class-specifier: [C99 6.7.1]
1711///         'typedef'
1712///         'extern'
1713///         'static'
1714///         'auto'
1715///         'register'
1716/// [C++]   'mutable'
1717/// [GNU]   '__thread'
1718///       function-specifier: [C99 6.7.4]
1719/// [C99]   'inline'
1720/// [C++]   'virtual'
1721/// [C++]   'explicit'
1722/// [OpenCL] '__kernel'
1723///       'friend': [C++ dcl.friend]
1724///       'constexpr': [C++0x dcl.constexpr]
1725
1726///
1727void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1728                                        const ParsedTemplateInfo &TemplateInfo,
1729                                        AccessSpecifier AS,
1730                                        DeclSpecContext DSContext,
1731                                        LateParsedAttrList *LateAttrs) {
1732  if (DS.getSourceRange().isInvalid()) {
1733    DS.SetRangeStart(Tok.getLocation());
1734    DS.SetRangeEnd(Tok.getLocation());
1735  }
1736
1737  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1738  while (1) {
1739    bool isInvalid = false;
1740    const char *PrevSpec = 0;
1741    unsigned DiagID = 0;
1742
1743    SourceLocation Loc = Tok.getLocation();
1744
1745    switch (Tok.getKind()) {
1746    default:
1747    DoneWithDeclSpec:
1748      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1749      MaybeParseCXX0XAttributes(DS.getAttributes());
1750
1751      // If this is not a declaration specifier token, we're done reading decl
1752      // specifiers.  First verify that DeclSpec's are consistent.
1753      DS.Finish(Diags, PP);
1754      return;
1755
1756    case tok::code_completion: {
1757      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1758      if (DS.hasTypeSpecifier()) {
1759        bool AllowNonIdentifiers
1760          = (getCurScope()->getFlags() & (Scope::ControlScope |
1761                                          Scope::BlockScope |
1762                                          Scope::TemplateParamScope |
1763                                          Scope::FunctionPrototypeScope |
1764                                          Scope::AtCatchScope)) == 0;
1765        bool AllowNestedNameSpecifiers
1766          = DSContext == DSC_top_level ||
1767            (DSContext == DSC_class && DS.isFriendSpecified());
1768
1769        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1770                                     AllowNonIdentifiers,
1771                                     AllowNestedNameSpecifiers);
1772        return cutOffParsing();
1773      }
1774
1775      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1776        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1777      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1778        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1779                                    : Sema::PCC_Template;
1780      else if (DSContext == DSC_class)
1781        CCC = Sema::PCC_Class;
1782      else if (CurParsedObjCImpl)
1783        CCC = Sema::PCC_ObjCImplementation;
1784
1785      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1786      return cutOffParsing();
1787    }
1788
1789    case tok::coloncolon: // ::foo::bar
1790      // C++ scope specifier.  Annotate and loop, or bail out on error.
1791      if (TryAnnotateCXXScopeToken(true)) {
1792        if (!DS.hasTypeSpecifier())
1793          DS.SetTypeSpecError();
1794        goto DoneWithDeclSpec;
1795      }
1796      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1797        goto DoneWithDeclSpec;
1798      continue;
1799
1800    case tok::annot_cxxscope: {
1801      if (DS.hasTypeSpecifier())
1802        goto DoneWithDeclSpec;
1803
1804      CXXScopeSpec SS;
1805      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1806                                                   Tok.getAnnotationRange(),
1807                                                   SS);
1808
1809      // We are looking for a qualified typename.
1810      Token Next = NextToken();
1811      if (Next.is(tok::annot_template_id) &&
1812          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1813            ->Kind == TNK_Type_template) {
1814        // We have a qualified template-id, e.g., N::A<int>
1815
1816        // C++ [class.qual]p2:
1817        //   In a lookup in which the constructor is an acceptable lookup
1818        //   result and the nested-name-specifier nominates a class C:
1819        //
1820        //     - if the name specified after the
1821        //       nested-name-specifier, when looked up in C, is the
1822        //       injected-class-name of C (Clause 9), or
1823        //
1824        //     - if the name specified after the nested-name-specifier
1825        //       is the same as the identifier or the
1826        //       simple-template-id's template-name in the last
1827        //       component of the nested-name-specifier,
1828        //
1829        //   the name is instead considered to name the constructor of
1830        //   class C.
1831        //
1832        // Thus, if the template-name is actually the constructor
1833        // name, then the code is ill-formed; this interpretation is
1834        // reinforced by the NAD status of core issue 635.
1835        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1836        if ((DSContext == DSC_top_level ||
1837             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1838            TemplateId->Name &&
1839            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1840          if (isConstructorDeclarator()) {
1841            // The user meant this to be an out-of-line constructor
1842            // definition, but template arguments are not allowed
1843            // there.  Just allow this as a constructor; we'll
1844            // complain about it later.
1845            goto DoneWithDeclSpec;
1846          }
1847
1848          // The user meant this to name a type, but it actually names
1849          // a constructor with some extraneous template
1850          // arguments. Complain, then parse it as a type as the user
1851          // intended.
1852          Diag(TemplateId->TemplateNameLoc,
1853               diag::err_out_of_line_template_id_names_constructor)
1854            << TemplateId->Name;
1855        }
1856
1857        DS.getTypeSpecScope() = SS;
1858        ConsumeToken(); // The C++ scope.
1859        assert(Tok.is(tok::annot_template_id) &&
1860               "ParseOptionalCXXScopeSpecifier not working");
1861        AnnotateTemplateIdTokenAsType();
1862        continue;
1863      }
1864
1865      if (Next.is(tok::annot_typename)) {
1866        DS.getTypeSpecScope() = SS;
1867        ConsumeToken(); // The C++ scope.
1868        if (Tok.getAnnotationValue()) {
1869          ParsedType T = getTypeAnnotation(Tok);
1870          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1871                                         Tok.getAnnotationEndLoc(),
1872                                         PrevSpec, DiagID, T);
1873        }
1874        else
1875          DS.SetTypeSpecError();
1876        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1877        ConsumeToken(); // The typename
1878      }
1879
1880      if (Next.isNot(tok::identifier))
1881        goto DoneWithDeclSpec;
1882
1883      // If we're in a context where the identifier could be a class name,
1884      // check whether this is a constructor declaration.
1885      if ((DSContext == DSC_top_level ||
1886           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1887          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1888                                     &SS)) {
1889        if (isConstructorDeclarator())
1890          goto DoneWithDeclSpec;
1891
1892        // As noted in C++ [class.qual]p2 (cited above), when the name
1893        // of the class is qualified in a context where it could name
1894        // a constructor, its a constructor name. However, we've
1895        // looked at the declarator, and the user probably meant this
1896        // to be a type. Complain that it isn't supposed to be treated
1897        // as a type, then proceed to parse it as a type.
1898        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1899          << Next.getIdentifierInfo();
1900      }
1901
1902      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1903                                               Next.getLocation(),
1904                                               getCurScope(), &SS,
1905                                               false, false, ParsedType(),
1906                                               /*IsCtorOrDtorName=*/false,
1907                                               /*NonTrivialSourceInfo=*/true);
1908
1909      // If the referenced identifier is not a type, then this declspec is
1910      // erroneous: We already checked about that it has no type specifier, and
1911      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1912      // typename.
1913      if (TypeRep == 0) {
1914        ConsumeToken();   // Eat the scope spec so the identifier is current.
1915        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue;
1916        goto DoneWithDeclSpec;
1917      }
1918
1919      DS.getTypeSpecScope() = SS;
1920      ConsumeToken(); // The C++ scope.
1921
1922      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1923                                     DiagID, TypeRep);
1924      if (isInvalid)
1925        break;
1926
1927      DS.SetRangeEnd(Tok.getLocation());
1928      ConsumeToken(); // The typename.
1929
1930      continue;
1931    }
1932
1933    case tok::annot_typename: {
1934      if (Tok.getAnnotationValue()) {
1935        ParsedType T = getTypeAnnotation(Tok);
1936        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1937                                       DiagID, T);
1938      } else
1939        DS.SetTypeSpecError();
1940
1941      if (isInvalid)
1942        break;
1943
1944      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1945      ConsumeToken(); // The typename
1946
1947      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1948      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1949      // Objective-C interface.
1950      if (Tok.is(tok::less) && getLangOpts().ObjC1)
1951        ParseObjCProtocolQualifiers(DS);
1952
1953      continue;
1954    }
1955
1956    case tok::kw___is_signed:
1957      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1958      // typically treats it as a trait. If we see __is_signed as it appears
1959      // in libstdc++, e.g.,
1960      //
1961      //   static const bool __is_signed;
1962      //
1963      // then treat __is_signed as an identifier rather than as a keyword.
1964      if (DS.getTypeSpecType() == TST_bool &&
1965          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1966          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1967        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1968        Tok.setKind(tok::identifier);
1969      }
1970
1971      // We're done with the declaration-specifiers.
1972      goto DoneWithDeclSpec;
1973
1974      // typedef-name
1975    case tok::kw_decltype:
1976    case tok::identifier: {
1977      // In C++, check to see if this is a scope specifier like foo::bar::, if
1978      // so handle it as such.  This is important for ctor parsing.
1979      if (getLangOpts().CPlusPlus) {
1980        if (TryAnnotateCXXScopeToken(true)) {
1981          if (!DS.hasTypeSpecifier())
1982            DS.SetTypeSpecError();
1983          goto DoneWithDeclSpec;
1984        }
1985        if (!Tok.is(tok::identifier))
1986          continue;
1987      }
1988
1989      // This identifier can only be a typedef name if we haven't already seen
1990      // a type-specifier.  Without this check we misparse:
1991      //  typedef int X; struct Y { short X; };  as 'short int'.
1992      if (DS.hasTypeSpecifier())
1993        goto DoneWithDeclSpec;
1994
1995      // Check for need to substitute AltiVec keyword tokens.
1996      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1997        break;
1998
1999      ParsedType TypeRep =
2000        Actions.getTypeName(*Tok.getIdentifierInfo(),
2001                            Tok.getLocation(), getCurScope());
2002
2003      // If this is not a typedef name, don't parse it as part of the declspec,
2004      // it must be an implicit int or an error.
2005      if (!TypeRep) {
2006        if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue;
2007        goto DoneWithDeclSpec;
2008      }
2009
2010      // If we're in a context where the identifier could be a class name,
2011      // check whether this is a constructor declaration.
2012      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2013          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2014          isConstructorDeclarator())
2015        goto DoneWithDeclSpec;
2016
2017      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2018                                     DiagID, TypeRep);
2019      if (isInvalid)
2020        break;
2021
2022      DS.SetRangeEnd(Tok.getLocation());
2023      ConsumeToken(); // The identifier
2024
2025      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2026      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2027      // Objective-C interface.
2028      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2029        ParseObjCProtocolQualifiers(DS);
2030
2031      // Need to support trailing type qualifiers (e.g. "id<p> const").
2032      // If a type specifier follows, it will be diagnosed elsewhere.
2033      continue;
2034    }
2035
2036      // type-name
2037    case tok::annot_template_id: {
2038      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2039      if (TemplateId->Kind != TNK_Type_template) {
2040        // This template-id does not refer to a type name, so we're
2041        // done with the type-specifiers.
2042        goto DoneWithDeclSpec;
2043      }
2044
2045      // If we're in a context where the template-id could be a
2046      // constructor name or specialization, check whether this is a
2047      // constructor declaration.
2048      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2049          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2050          isConstructorDeclarator())
2051        goto DoneWithDeclSpec;
2052
2053      // Turn the template-id annotation token into a type annotation
2054      // token, then try again to parse it as a type-specifier.
2055      AnnotateTemplateIdTokenAsType();
2056      continue;
2057    }
2058
2059    // GNU attributes support.
2060    case tok::kw___attribute:
2061      ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
2062      continue;
2063
2064    // Microsoft declspec support.
2065    case tok::kw___declspec:
2066      ParseMicrosoftDeclSpec(DS.getAttributes());
2067      continue;
2068
2069    // Microsoft single token adornments.
2070    case tok::kw___forceinline:
2071      // FIXME: Add handling here!
2072      break;
2073
2074    case tok::kw___ptr64:
2075    case tok::kw___ptr32:
2076    case tok::kw___w64:
2077    case tok::kw___cdecl:
2078    case tok::kw___stdcall:
2079    case tok::kw___fastcall:
2080    case tok::kw___thiscall:
2081    case tok::kw___unaligned:
2082      ParseMicrosoftTypeAttributes(DS.getAttributes());
2083      continue;
2084
2085    // Borland single token adornments.
2086    case tok::kw___pascal:
2087      ParseBorlandTypeAttributes(DS.getAttributes());
2088      continue;
2089
2090    // OpenCL single token adornments.
2091    case tok::kw___kernel:
2092      ParseOpenCLAttributes(DS.getAttributes());
2093      continue;
2094
2095    // storage-class-specifier
2096    case tok::kw_typedef:
2097      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2098                                         PrevSpec, DiagID);
2099      break;
2100    case tok::kw_extern:
2101      if (DS.isThreadSpecified())
2102        Diag(Tok, diag::ext_thread_before) << "extern";
2103      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2104                                         PrevSpec, DiagID);
2105      break;
2106    case tok::kw___private_extern__:
2107      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2108                                         Loc, PrevSpec, DiagID);
2109      break;
2110    case tok::kw_static:
2111      if (DS.isThreadSpecified())
2112        Diag(Tok, diag::ext_thread_before) << "static";
2113      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2114                                         PrevSpec, DiagID);
2115      break;
2116    case tok::kw_auto:
2117      if (getLangOpts().CPlusPlus0x) {
2118        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2119          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2120                                             PrevSpec, DiagID);
2121          if (!isInvalid)
2122            Diag(Tok, diag::ext_auto_storage_class)
2123              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2124        } else
2125          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2126                                         DiagID);
2127      } else
2128        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2129                                           PrevSpec, DiagID);
2130      break;
2131    case tok::kw_register:
2132      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2133                                         PrevSpec, DiagID);
2134      break;
2135    case tok::kw_mutable:
2136      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2137                                         PrevSpec, DiagID);
2138      break;
2139    case tok::kw___thread:
2140      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2141      break;
2142
2143    // function-specifier
2144    case tok::kw_inline:
2145      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2146      break;
2147    case tok::kw_virtual:
2148      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2149      break;
2150    case tok::kw_explicit:
2151      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2152      break;
2153
2154    // alignment-specifier
2155    case tok::kw__Alignas:
2156      if (!getLangOpts().C11)
2157        Diag(Tok, diag::ext_c11_alignas);
2158      ParseAlignmentSpecifier(DS.getAttributes());
2159      continue;
2160
2161    // friend
2162    case tok::kw_friend:
2163      if (DSContext == DSC_class)
2164        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2165      else {
2166        PrevSpec = ""; // not actually used by the diagnostic
2167        DiagID = diag::err_friend_invalid_in_context;
2168        isInvalid = true;
2169      }
2170      break;
2171
2172    // Modules
2173    case tok::kw___module_private__:
2174      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2175      break;
2176
2177    // constexpr
2178    case tok::kw_constexpr:
2179      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2180      break;
2181
2182    // type-specifier
2183    case tok::kw_short:
2184      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2185                                      DiagID);
2186      break;
2187    case tok::kw_long:
2188      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2189        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2190                                        DiagID);
2191      else
2192        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2193                                        DiagID);
2194      break;
2195    case tok::kw___int64:
2196        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2197                                        DiagID);
2198      break;
2199    case tok::kw_signed:
2200      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2201                                     DiagID);
2202      break;
2203    case tok::kw_unsigned:
2204      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2205                                     DiagID);
2206      break;
2207    case tok::kw__Complex:
2208      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2209                                        DiagID);
2210      break;
2211    case tok::kw__Imaginary:
2212      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2213                                        DiagID);
2214      break;
2215    case tok::kw_void:
2216      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2217                                     DiagID);
2218      break;
2219    case tok::kw_char:
2220      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2221                                     DiagID);
2222      break;
2223    case tok::kw_int:
2224      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2225                                     DiagID);
2226      break;
2227     case tok::kw_half:
2228       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2229                                      DiagID);
2230       break;
2231    case tok::kw_float:
2232      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2233                                     DiagID);
2234      break;
2235    case tok::kw_double:
2236      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2237                                     DiagID);
2238      break;
2239    case tok::kw_wchar_t:
2240      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2241                                     DiagID);
2242      break;
2243    case tok::kw_char16_t:
2244      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2245                                     DiagID);
2246      break;
2247    case tok::kw_char32_t:
2248      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2249                                     DiagID);
2250      break;
2251    case tok::kw_bool:
2252    case tok::kw__Bool:
2253      if (Tok.is(tok::kw_bool) &&
2254          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2255          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2256        PrevSpec = ""; // Not used by the diagnostic.
2257        DiagID = diag::err_bool_redeclaration;
2258        // For better error recovery.
2259        Tok.setKind(tok::identifier);
2260        isInvalid = true;
2261      } else {
2262        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2263                                       DiagID);
2264      }
2265      break;
2266    case tok::kw__Decimal32:
2267      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2268                                     DiagID);
2269      break;
2270    case tok::kw__Decimal64:
2271      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2272                                     DiagID);
2273      break;
2274    case tok::kw__Decimal128:
2275      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2276                                     DiagID);
2277      break;
2278    case tok::kw___vector:
2279      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2280      break;
2281    case tok::kw___pixel:
2282      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2283      break;
2284    case tok::kw___unknown_anytype:
2285      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2286                                     PrevSpec, DiagID);
2287      break;
2288
2289    // class-specifier:
2290    case tok::kw_class:
2291    case tok::kw_struct:
2292    case tok::kw_union: {
2293      tok::TokenKind Kind = Tok.getKind();
2294      ConsumeToken();
2295      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
2296                          EnteringContext, DSContext);
2297      continue;
2298    }
2299
2300    // enum-specifier:
2301    case tok::kw_enum:
2302      ConsumeToken();
2303      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
2304      continue;
2305
2306    // cv-qualifier:
2307    case tok::kw_const:
2308      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2309                                 getLangOpts());
2310      break;
2311    case tok::kw_volatile:
2312      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2313                                 getLangOpts());
2314      break;
2315    case tok::kw_restrict:
2316      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2317                                 getLangOpts());
2318      break;
2319
2320    // C++ typename-specifier:
2321    case tok::kw_typename:
2322      if (TryAnnotateTypeOrScopeToken()) {
2323        DS.SetTypeSpecError();
2324        goto DoneWithDeclSpec;
2325      }
2326      if (!Tok.is(tok::kw_typename))
2327        continue;
2328      break;
2329
2330    // GNU typeof support.
2331    case tok::kw_typeof:
2332      ParseTypeofSpecifier(DS);
2333      continue;
2334
2335    case tok::annot_decltype:
2336      ParseDecltypeSpecifier(DS);
2337      continue;
2338
2339    case tok::kw___underlying_type:
2340      ParseUnderlyingTypeSpecifier(DS);
2341      continue;
2342
2343    case tok::kw__Atomic:
2344      ParseAtomicSpecifier(DS);
2345      continue;
2346
2347    // OpenCL qualifiers:
2348    case tok::kw_private:
2349      if (!getLangOpts().OpenCL)
2350        goto DoneWithDeclSpec;
2351    case tok::kw___private:
2352    case tok::kw___global:
2353    case tok::kw___local:
2354    case tok::kw___constant:
2355    case tok::kw___read_only:
2356    case tok::kw___write_only:
2357    case tok::kw___read_write:
2358      ParseOpenCLQualifiers(DS);
2359      break;
2360
2361    case tok::less:
2362      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2363      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2364      // but we support it.
2365      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
2366        goto DoneWithDeclSpec;
2367
2368      if (!ParseObjCProtocolQualifiers(DS))
2369        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2370          << FixItHint::CreateInsertion(Loc, "id")
2371          << SourceRange(Loc, DS.getSourceRange().getEnd());
2372
2373      // Need to support trailing type qualifiers (e.g. "id<p> const").
2374      // If a type specifier follows, it will be diagnosed elsewhere.
2375      continue;
2376    }
2377    // If the specifier wasn't legal, issue a diagnostic.
2378    if (isInvalid) {
2379      assert(PrevSpec && "Method did not return previous specifier!");
2380      assert(DiagID);
2381
2382      if (DiagID == diag::ext_duplicate_declspec)
2383        Diag(Tok, DiagID)
2384          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2385      else
2386        Diag(Tok, DiagID) << PrevSpec;
2387    }
2388
2389    DS.SetRangeEnd(Tok.getLocation());
2390    if (DiagID != diag::err_bool_redeclaration)
2391      ConsumeToken();
2392  }
2393}
2394
2395/// ParseStructDeclaration - Parse a struct declaration without the terminating
2396/// semicolon.
2397///
2398///       struct-declaration:
2399///         specifier-qualifier-list struct-declarator-list
2400/// [GNU]   __extension__ struct-declaration
2401/// [GNU]   specifier-qualifier-list
2402///       struct-declarator-list:
2403///         struct-declarator
2404///         struct-declarator-list ',' struct-declarator
2405/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2406///       struct-declarator:
2407///         declarator
2408/// [GNU]   declarator attributes[opt]
2409///         declarator[opt] ':' constant-expression
2410/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2411///
2412void Parser::
2413ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2414
2415  if (Tok.is(tok::kw___extension__)) {
2416    // __extension__ silences extension warnings in the subexpression.
2417    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2418    ConsumeToken();
2419    return ParseStructDeclaration(DS, Fields);
2420  }
2421
2422  // Parse the common specifier-qualifiers-list piece.
2423  ParseSpecifierQualifierList(DS);
2424
2425  // If there are no declarators, this is a free-standing declaration
2426  // specifier. Let the actions module cope with it.
2427  if (Tok.is(tok::semi)) {
2428    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2429    return;
2430  }
2431
2432  // Read struct-declarators until we find the semicolon.
2433  bool FirstDeclarator = true;
2434  SourceLocation CommaLoc;
2435  while (1) {
2436    ParsingDeclRAIIObject PD(*this);
2437    FieldDeclarator DeclaratorInfo(DS);
2438    DeclaratorInfo.D.setCommaLoc(CommaLoc);
2439
2440    // Attributes are only allowed here on successive declarators.
2441    if (!FirstDeclarator)
2442      MaybeParseGNUAttributes(DeclaratorInfo.D);
2443
2444    /// struct-declarator: declarator
2445    /// struct-declarator: declarator[opt] ':' constant-expression
2446    if (Tok.isNot(tok::colon)) {
2447      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2448      ColonProtectionRAIIObject X(*this);
2449      ParseDeclarator(DeclaratorInfo.D);
2450    }
2451
2452    if (Tok.is(tok::colon)) {
2453      ConsumeToken();
2454      ExprResult Res(ParseConstantExpression());
2455      if (Res.isInvalid())
2456        SkipUntil(tok::semi, true, true);
2457      else
2458        DeclaratorInfo.BitfieldSize = Res.release();
2459    }
2460
2461    // If attributes exist after the declarator, parse them.
2462    MaybeParseGNUAttributes(DeclaratorInfo.D);
2463
2464    // We're done with this declarator;  invoke the callback.
2465    Decl *D = Fields.invoke(DeclaratorInfo);
2466    PD.complete(D);
2467
2468    // If we don't have a comma, it is either the end of the list (a ';')
2469    // or an error, bail out.
2470    if (Tok.isNot(tok::comma))
2471      return;
2472
2473    // Consume the comma.
2474    CommaLoc = ConsumeToken();
2475
2476    FirstDeclarator = false;
2477  }
2478}
2479
2480/// ParseStructUnionBody
2481///       struct-contents:
2482///         struct-declaration-list
2483/// [EXT]   empty
2484/// [GNU]   "struct-declaration-list" without terminatoring ';'
2485///       struct-declaration-list:
2486///         struct-declaration
2487///         struct-declaration-list struct-declaration
2488/// [OBC]   '@' 'defs' '(' class-name ')'
2489///
2490void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2491                                  unsigned TagType, Decl *TagDecl) {
2492  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2493                                      "parsing struct/union body");
2494
2495  BalancedDelimiterTracker T(*this, tok::l_brace);
2496  if (T.consumeOpen())
2497    return;
2498
2499  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2500  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2501
2502  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2503  // C++.
2504  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) {
2505    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2506    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2507  }
2508
2509  SmallVector<Decl *, 32> FieldDecls;
2510
2511  // While we still have something to read, read the declarations in the struct.
2512  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2513    // Each iteration of this loop reads one struct-declaration.
2514
2515    // Check for extraneous top-level semicolon.
2516    if (Tok.is(tok::semi)) {
2517      Diag(Tok, diag::ext_extra_struct_semi)
2518        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2519        << FixItHint::CreateRemoval(Tok.getLocation());
2520      ConsumeToken();
2521      continue;
2522    }
2523
2524    // Parse all the comma separated declarators.
2525    DeclSpec DS(AttrFactory);
2526
2527    if (!Tok.is(tok::at)) {
2528      struct CFieldCallback : FieldCallback {
2529        Parser &P;
2530        Decl *TagDecl;
2531        SmallVectorImpl<Decl *> &FieldDecls;
2532
2533        CFieldCallback(Parser &P, Decl *TagDecl,
2534                       SmallVectorImpl<Decl *> &FieldDecls) :
2535          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2536
2537        virtual Decl *invoke(FieldDeclarator &FD) {
2538          // Install the declarator into the current TagDecl.
2539          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2540                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2541                                                 FD.D, FD.BitfieldSize);
2542          FieldDecls.push_back(Field);
2543          return Field;
2544        }
2545      } Callback(*this, TagDecl, FieldDecls);
2546
2547      ParseStructDeclaration(DS, Callback);
2548    } else { // Handle @defs
2549      ConsumeToken();
2550      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2551        Diag(Tok, diag::err_unexpected_at);
2552        SkipUntil(tok::semi, true);
2553        continue;
2554      }
2555      ConsumeToken();
2556      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2557      if (!Tok.is(tok::identifier)) {
2558        Diag(Tok, diag::err_expected_ident);
2559        SkipUntil(tok::semi, true);
2560        continue;
2561      }
2562      SmallVector<Decl *, 16> Fields;
2563      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2564                        Tok.getIdentifierInfo(), Fields);
2565      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2566      ConsumeToken();
2567      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2568    }
2569
2570    if (Tok.is(tok::semi)) {
2571      ConsumeToken();
2572    } else if (Tok.is(tok::r_brace)) {
2573      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2574      break;
2575    } else {
2576      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2577      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2578      SkipUntil(tok::r_brace, true, true);
2579      // If we stopped at a ';', eat it.
2580      if (Tok.is(tok::semi)) ConsumeToken();
2581    }
2582  }
2583
2584  T.consumeClose();
2585
2586  ParsedAttributes attrs(AttrFactory);
2587  // If attributes exist after struct contents, parse them.
2588  MaybeParseGNUAttributes(attrs);
2589
2590  Actions.ActOnFields(getCurScope(),
2591                      RecordLoc, TagDecl, FieldDecls,
2592                      T.getOpenLocation(), T.getCloseLocation(),
2593                      attrs.getList());
2594  StructScope.Exit();
2595  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2596                                   T.getCloseLocation());
2597}
2598
2599/// ParseEnumSpecifier
2600///       enum-specifier: [C99 6.7.2.2]
2601///         'enum' identifier[opt] '{' enumerator-list '}'
2602///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2603/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2604///                                                 '}' attributes[opt]
2605/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
2606///                                                 '}'
2607///         'enum' identifier
2608/// [GNU]   'enum' attributes[opt] identifier
2609///
2610/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2611/// [C++0x] enum-head '{' enumerator-list ','  '}'
2612///
2613///       enum-head: [C++0x]
2614///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2615///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2616///
2617///       enum-key: [C++0x]
2618///         'enum'
2619///         'enum' 'class'
2620///         'enum' 'struct'
2621///
2622///       enum-base: [C++0x]
2623///         ':' type-specifier-seq
2624///
2625/// [C++] elaborated-type-specifier:
2626/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2627///
2628void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2629                                const ParsedTemplateInfo &TemplateInfo,
2630                                AccessSpecifier AS, DeclSpecContext DSC) {
2631  // Parse the tag portion of this.
2632  if (Tok.is(tok::code_completion)) {
2633    // Code completion for an enum name.
2634    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2635    return cutOffParsing();
2636  }
2637
2638  SourceLocation ScopedEnumKWLoc;
2639  bool IsScopedUsingClassTag = false;
2640
2641  if (getLangOpts().CPlusPlus0x &&
2642      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2643    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2644    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2645    ScopedEnumKWLoc = ConsumeToken();
2646  }
2647
2648  // If attributes exist after tag, parse them.
2649  ParsedAttributes attrs(AttrFactory);
2650  MaybeParseGNUAttributes(attrs);
2651
2652  // If declspecs exist after tag, parse them.
2653  while (Tok.is(tok::kw___declspec))
2654    ParseMicrosoftDeclSpec(attrs);
2655
2656  bool AllowFixedUnderlyingType
2657    = getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt || getLangOpts().ObjC2;
2658
2659  CXXScopeSpec &SS = DS.getTypeSpecScope();
2660  if (getLangOpts().CPlusPlus) {
2661    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2662    // if a fixed underlying type is allowed.
2663    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2664
2665    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2666                                       /*EnteringContext=*/false))
2667      return;
2668
2669    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2670      Diag(Tok, diag::err_expected_ident);
2671      if (Tok.isNot(tok::l_brace)) {
2672        // Has no name and is not a definition.
2673        // Skip the rest of this declarator, up until the comma or semicolon.
2674        SkipUntil(tok::comma, true);
2675        return;
2676      }
2677    }
2678  }
2679
2680  // Must have either 'enum name' or 'enum {...}'.
2681  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2682      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2683    Diag(Tok, diag::err_expected_ident_lbrace);
2684
2685    // Skip the rest of this declarator, up until the comma or semicolon.
2686    SkipUntil(tok::comma, true);
2687    return;
2688  }
2689
2690  // If an identifier is present, consume and remember it.
2691  IdentifierInfo *Name = 0;
2692  SourceLocation NameLoc;
2693  if (Tok.is(tok::identifier)) {
2694    Name = Tok.getIdentifierInfo();
2695    NameLoc = ConsumeToken();
2696  }
2697
2698  if (!Name && ScopedEnumKWLoc.isValid()) {
2699    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2700    // declaration of a scoped enumeration.
2701    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2702    ScopedEnumKWLoc = SourceLocation();
2703    IsScopedUsingClassTag = false;
2704  }
2705
2706  TypeResult BaseType;
2707
2708  // Parse the fixed underlying type.
2709  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2710    bool PossibleBitfield = false;
2711    if (getCurScope()->getFlags() & Scope::ClassScope) {
2712      // If we're in class scope, this can either be an enum declaration with
2713      // an underlying type, or a declaration of a bitfield member. We try to
2714      // use a simple disambiguation scheme first to catch the common cases
2715      // (integer literal, sizeof); if it's still ambiguous, we then consider
2716      // anything that's a simple-type-specifier followed by '(' as an
2717      // expression. This suffices because function types are not valid
2718      // underlying types anyway.
2719      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2720      // If the next token starts an expression, we know we're parsing a
2721      // bit-field. This is the common case.
2722      if (TPR == TPResult::True())
2723        PossibleBitfield = true;
2724      // If the next token starts a type-specifier-seq, it may be either a
2725      // a fixed underlying type or the start of a function-style cast in C++;
2726      // lookahead one more token to see if it's obvious that we have a
2727      // fixed underlying type.
2728      else if (TPR == TPResult::False() &&
2729               GetLookAheadToken(2).getKind() == tok::semi) {
2730        // Consume the ':'.
2731        ConsumeToken();
2732      } else {
2733        // We have the start of a type-specifier-seq, so we have to perform
2734        // tentative parsing to determine whether we have an expression or a
2735        // type.
2736        TentativeParsingAction TPA(*this);
2737
2738        // Consume the ':'.
2739        ConsumeToken();
2740
2741        // If we see a type specifier followed by an open-brace, we have an
2742        // ambiguity between an underlying type and a C++11 braced
2743        // function-style cast. Resolve this by always treating it as an
2744        // underlying type.
2745        // FIXME: The standard is not entirely clear on how to disambiguate in
2746        // this case.
2747        if ((getLangOpts().CPlusPlus &&
2748             isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
2749            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
2750          // We'll parse this as a bitfield later.
2751          PossibleBitfield = true;
2752          TPA.Revert();
2753        } else {
2754          // We have a type-specifier-seq.
2755          TPA.Commit();
2756        }
2757      }
2758    } else {
2759      // Consume the ':'.
2760      ConsumeToken();
2761    }
2762
2763    if (!PossibleBitfield) {
2764      SourceRange Range;
2765      BaseType = ParseTypeName(&Range);
2766
2767      if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2)
2768        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2769          << Range;
2770      if (getLangOpts().CPlusPlus0x)
2771        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2772    }
2773  }
2774
2775  // There are four options here.  If we have 'friend enum foo;' then this is a
2776  // friend declaration, and cannot have an accompanying definition. If we have
2777  // 'enum foo;', then this is a forward declaration.  If we have
2778  // 'enum foo {...' then this is a definition. Otherwise we have something
2779  // like 'enum foo xyz', a reference.
2780  //
2781  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2782  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2783  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2784  //
2785  Sema::TagUseKind TUK;
2786  if (DS.isFriendSpecified())
2787    TUK = Sema::TUK_Friend;
2788  else if (Tok.is(tok::l_brace))
2789    TUK = Sema::TUK_Definition;
2790  else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
2791    TUK = Sema::TUK_Declaration;
2792  else
2793    TUK = Sema::TUK_Reference;
2794
2795  // enums cannot be templates, although they can be referenced from a
2796  // template.
2797  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2798      TUK != Sema::TUK_Reference) {
2799    Diag(Tok, diag::err_enum_template);
2800
2801    // Skip the rest of this declarator, up until the comma or semicolon.
2802    SkipUntil(tok::comma, true);
2803    return;
2804  }
2805
2806  if (!Name && TUK != Sema::TUK_Definition) {
2807    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2808
2809    // Skip the rest of this declarator, up until the comma or semicolon.
2810    SkipUntil(tok::comma, true);
2811    return;
2812  }
2813
2814  bool Owned = false;
2815  bool IsDependent = false;
2816  const char *PrevSpec = 0;
2817  unsigned DiagID;
2818  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2819                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2820                                   AS, DS.getModulePrivateSpecLoc(),
2821                                   MultiTemplateParamsArg(Actions),
2822                                   Owned, IsDependent, ScopedEnumKWLoc,
2823                                   IsScopedUsingClassTag, BaseType);
2824
2825  if (IsDependent) {
2826    // This enum has a dependent nested-name-specifier. Handle it as a
2827    // dependent tag.
2828    if (!Name) {
2829      DS.SetTypeSpecError();
2830      Diag(Tok, diag::err_expected_type_name_after_typename);
2831      return;
2832    }
2833
2834    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2835                                                TUK, SS, Name, StartLoc,
2836                                                NameLoc);
2837    if (Type.isInvalid()) {
2838      DS.SetTypeSpecError();
2839      return;
2840    }
2841
2842    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2843                           NameLoc.isValid() ? NameLoc : StartLoc,
2844                           PrevSpec, DiagID, Type.get()))
2845      Diag(StartLoc, DiagID) << PrevSpec;
2846
2847    return;
2848  }
2849
2850  if (!TagDecl) {
2851    // The action failed to produce an enumeration tag. If this is a
2852    // definition, consume the entire definition.
2853    if (Tok.is(tok::l_brace)) {
2854      ConsumeBrace();
2855      SkipUntil(tok::r_brace);
2856    }
2857
2858    DS.SetTypeSpecError();
2859    return;
2860  }
2861
2862  if (Tok.is(tok::l_brace)) {
2863    if (TUK == Sema::TUK_Friend)
2864      Diag(Tok, diag::err_friend_decl_defines_type)
2865        << SourceRange(DS.getFriendSpecLoc());
2866    ParseEnumBody(StartLoc, TagDecl);
2867  }
2868
2869  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2870                         NameLoc.isValid() ? NameLoc : StartLoc,
2871                         PrevSpec, DiagID, TagDecl, Owned))
2872    Diag(StartLoc, DiagID) << PrevSpec;
2873}
2874
2875/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2876///       enumerator-list:
2877///         enumerator
2878///         enumerator-list ',' enumerator
2879///       enumerator:
2880///         enumeration-constant
2881///         enumeration-constant '=' constant-expression
2882///       enumeration-constant:
2883///         identifier
2884///
2885void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2886  // Enter the scope of the enum body and start the definition.
2887  ParseScope EnumScope(this, Scope::DeclScope);
2888  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2889
2890  BalancedDelimiterTracker T(*this, tok::l_brace);
2891  T.consumeOpen();
2892
2893  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2894  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
2895    Diag(Tok, diag::error_empty_enum);
2896
2897  SmallVector<Decl *, 32> EnumConstantDecls;
2898
2899  Decl *LastEnumConstDecl = 0;
2900
2901  // Parse the enumerator-list.
2902  while (Tok.is(tok::identifier)) {
2903    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2904    SourceLocation IdentLoc = ConsumeToken();
2905
2906    // If attributes exist after the enumerator, parse them.
2907    ParsedAttributes attrs(AttrFactory);
2908    MaybeParseGNUAttributes(attrs);
2909
2910    SourceLocation EqualLoc;
2911    ExprResult AssignedVal;
2912    ParsingDeclRAIIObject PD(*this);
2913
2914    if (Tok.is(tok::equal)) {
2915      EqualLoc = ConsumeToken();
2916      AssignedVal = ParseConstantExpression();
2917      if (AssignedVal.isInvalid())
2918        SkipUntil(tok::comma, tok::r_brace, true, true);
2919    }
2920
2921    // Install the enumerator constant into EnumDecl.
2922    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2923                                                    LastEnumConstDecl,
2924                                                    IdentLoc, Ident,
2925                                                    attrs.getList(), EqualLoc,
2926                                                    AssignedVal.release());
2927    PD.complete(EnumConstDecl);
2928
2929    EnumConstantDecls.push_back(EnumConstDecl);
2930    LastEnumConstDecl = EnumConstDecl;
2931
2932    if (Tok.is(tok::identifier)) {
2933      // We're missing a comma between enumerators.
2934      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2935      Diag(Loc, diag::err_enumerator_list_missing_comma)
2936        << FixItHint::CreateInsertion(Loc, ", ");
2937      continue;
2938    }
2939
2940    if (Tok.isNot(tok::comma))
2941      break;
2942    SourceLocation CommaLoc = ConsumeToken();
2943
2944    if (Tok.isNot(tok::identifier)) {
2945      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x)
2946        Diag(CommaLoc, diag::ext_enumerator_list_comma)
2947          << getLangOpts().CPlusPlus
2948          << FixItHint::CreateRemoval(CommaLoc);
2949      else if (getLangOpts().CPlusPlus0x)
2950        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
2951          << FixItHint::CreateRemoval(CommaLoc);
2952    }
2953  }
2954
2955  // Eat the }.
2956  T.consumeClose();
2957
2958  // If attributes exist after the identifier list, parse them.
2959  ParsedAttributes attrs(AttrFactory);
2960  MaybeParseGNUAttributes(attrs);
2961
2962  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
2963                        EnumDecl, EnumConstantDecls.data(),
2964                        EnumConstantDecls.size(), getCurScope(),
2965                        attrs.getList());
2966
2967  EnumScope.Exit();
2968  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
2969                                   T.getCloseLocation());
2970}
2971
2972/// isTypeSpecifierQualifier - Return true if the current token could be the
2973/// start of a type-qualifier-list.
2974bool Parser::isTypeQualifier() const {
2975  switch (Tok.getKind()) {
2976  default: return false;
2977
2978    // type-qualifier only in OpenCL
2979  case tok::kw_private:
2980    return getLangOpts().OpenCL;
2981
2982    // type-qualifier
2983  case tok::kw_const:
2984  case tok::kw_volatile:
2985  case tok::kw_restrict:
2986  case tok::kw___private:
2987  case tok::kw___local:
2988  case tok::kw___global:
2989  case tok::kw___constant:
2990  case tok::kw___read_only:
2991  case tok::kw___read_write:
2992  case tok::kw___write_only:
2993    return true;
2994  }
2995}
2996
2997/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2998/// is definitely a type-specifier.  Return false if it isn't part of a type
2999/// specifier or if we're not sure.
3000bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3001  switch (Tok.getKind()) {
3002  default: return false;
3003    // type-specifiers
3004  case tok::kw_short:
3005  case tok::kw_long:
3006  case tok::kw___int64:
3007  case tok::kw_signed:
3008  case tok::kw_unsigned:
3009  case tok::kw__Complex:
3010  case tok::kw__Imaginary:
3011  case tok::kw_void:
3012  case tok::kw_char:
3013  case tok::kw_wchar_t:
3014  case tok::kw_char16_t:
3015  case tok::kw_char32_t:
3016  case tok::kw_int:
3017  case tok::kw_half:
3018  case tok::kw_float:
3019  case tok::kw_double:
3020  case tok::kw_bool:
3021  case tok::kw__Bool:
3022  case tok::kw__Decimal32:
3023  case tok::kw__Decimal64:
3024  case tok::kw__Decimal128:
3025  case tok::kw___vector:
3026
3027    // struct-or-union-specifier (C99) or class-specifier (C++)
3028  case tok::kw_class:
3029  case tok::kw_struct:
3030  case tok::kw_union:
3031    // enum-specifier
3032  case tok::kw_enum:
3033
3034    // typedef-name
3035  case tok::annot_typename:
3036    return true;
3037  }
3038}
3039
3040/// isTypeSpecifierQualifier - Return true if the current token could be the
3041/// start of a specifier-qualifier-list.
3042bool Parser::isTypeSpecifierQualifier() {
3043  switch (Tok.getKind()) {
3044  default: return false;
3045
3046  case tok::identifier:   // foo::bar
3047    if (TryAltiVecVectorToken())
3048      return true;
3049    // Fall through.
3050  case tok::kw_typename:  // typename T::type
3051    // Annotate typenames and C++ scope specifiers.  If we get one, just
3052    // recurse to handle whatever we get.
3053    if (TryAnnotateTypeOrScopeToken())
3054      return true;
3055    if (Tok.is(tok::identifier))
3056      return false;
3057    return isTypeSpecifierQualifier();
3058
3059  case tok::coloncolon:   // ::foo::bar
3060    if (NextToken().is(tok::kw_new) ||    // ::new
3061        NextToken().is(tok::kw_delete))   // ::delete
3062      return false;
3063
3064    if (TryAnnotateTypeOrScopeToken())
3065      return true;
3066    return isTypeSpecifierQualifier();
3067
3068    // GNU attributes support.
3069  case tok::kw___attribute:
3070    // GNU typeof support.
3071  case tok::kw_typeof:
3072
3073    // type-specifiers
3074  case tok::kw_short:
3075  case tok::kw_long:
3076  case tok::kw___int64:
3077  case tok::kw_signed:
3078  case tok::kw_unsigned:
3079  case tok::kw__Complex:
3080  case tok::kw__Imaginary:
3081  case tok::kw_void:
3082  case tok::kw_char:
3083  case tok::kw_wchar_t:
3084  case tok::kw_char16_t:
3085  case tok::kw_char32_t:
3086  case tok::kw_int:
3087  case tok::kw_half:
3088  case tok::kw_float:
3089  case tok::kw_double:
3090  case tok::kw_bool:
3091  case tok::kw__Bool:
3092  case tok::kw__Decimal32:
3093  case tok::kw__Decimal64:
3094  case tok::kw__Decimal128:
3095  case tok::kw___vector:
3096
3097    // struct-or-union-specifier (C99) or class-specifier (C++)
3098  case tok::kw_class:
3099  case tok::kw_struct:
3100  case tok::kw_union:
3101    // enum-specifier
3102  case tok::kw_enum:
3103
3104    // type-qualifier
3105  case tok::kw_const:
3106  case tok::kw_volatile:
3107  case tok::kw_restrict:
3108
3109    // typedef-name
3110  case tok::annot_typename:
3111    return true;
3112
3113    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3114  case tok::less:
3115    return getLangOpts().ObjC1;
3116
3117  case tok::kw___cdecl:
3118  case tok::kw___stdcall:
3119  case tok::kw___fastcall:
3120  case tok::kw___thiscall:
3121  case tok::kw___w64:
3122  case tok::kw___ptr64:
3123  case tok::kw___ptr32:
3124  case tok::kw___pascal:
3125  case tok::kw___unaligned:
3126
3127  case tok::kw___private:
3128  case tok::kw___local:
3129  case tok::kw___global:
3130  case tok::kw___constant:
3131  case tok::kw___read_only:
3132  case tok::kw___read_write:
3133  case tok::kw___write_only:
3134
3135    return true;
3136
3137  case tok::kw_private:
3138    return getLangOpts().OpenCL;
3139
3140  // C11 _Atomic()
3141  case tok::kw__Atomic:
3142    return true;
3143  }
3144}
3145
3146/// isDeclarationSpecifier() - Return true if the current token is part of a
3147/// declaration specifier.
3148///
3149/// \param DisambiguatingWithExpression True to indicate that the purpose of
3150/// this check is to disambiguate between an expression and a declaration.
3151bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3152  switch (Tok.getKind()) {
3153  default: return false;
3154
3155  case tok::kw_private:
3156    return getLangOpts().OpenCL;
3157
3158  case tok::identifier:   // foo::bar
3159    // Unfortunate hack to support "Class.factoryMethod" notation.
3160    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
3161      return false;
3162    if (TryAltiVecVectorToken())
3163      return true;
3164    // Fall through.
3165  case tok::kw_decltype: // decltype(T())::type
3166  case tok::kw_typename: // typename T::type
3167    // Annotate typenames and C++ scope specifiers.  If we get one, just
3168    // recurse to handle whatever we get.
3169    if (TryAnnotateTypeOrScopeToken())
3170      return true;
3171    if (Tok.is(tok::identifier))
3172      return false;
3173
3174    // If we're in Objective-C and we have an Objective-C class type followed
3175    // by an identifier and then either ':' or ']', in a place where an
3176    // expression is permitted, then this is probably a class message send
3177    // missing the initial '['. In this case, we won't consider this to be
3178    // the start of a declaration.
3179    if (DisambiguatingWithExpression &&
3180        isStartOfObjCClassMessageMissingOpenBracket())
3181      return false;
3182
3183    return isDeclarationSpecifier();
3184
3185  case tok::coloncolon:   // ::foo::bar
3186    if (NextToken().is(tok::kw_new) ||    // ::new
3187        NextToken().is(tok::kw_delete))   // ::delete
3188      return false;
3189
3190    // Annotate typenames and C++ scope specifiers.  If we get one, just
3191    // recurse to handle whatever we get.
3192    if (TryAnnotateTypeOrScopeToken())
3193      return true;
3194    return isDeclarationSpecifier();
3195
3196    // storage-class-specifier
3197  case tok::kw_typedef:
3198  case tok::kw_extern:
3199  case tok::kw___private_extern__:
3200  case tok::kw_static:
3201  case tok::kw_auto:
3202  case tok::kw_register:
3203  case tok::kw___thread:
3204
3205    // Modules
3206  case tok::kw___module_private__:
3207
3208    // type-specifiers
3209  case tok::kw_short:
3210  case tok::kw_long:
3211  case tok::kw___int64:
3212  case tok::kw_signed:
3213  case tok::kw_unsigned:
3214  case tok::kw__Complex:
3215  case tok::kw__Imaginary:
3216  case tok::kw_void:
3217  case tok::kw_char:
3218  case tok::kw_wchar_t:
3219  case tok::kw_char16_t:
3220  case tok::kw_char32_t:
3221
3222  case tok::kw_int:
3223  case tok::kw_half:
3224  case tok::kw_float:
3225  case tok::kw_double:
3226  case tok::kw_bool:
3227  case tok::kw__Bool:
3228  case tok::kw__Decimal32:
3229  case tok::kw__Decimal64:
3230  case tok::kw__Decimal128:
3231  case tok::kw___vector:
3232
3233    // struct-or-union-specifier (C99) or class-specifier (C++)
3234  case tok::kw_class:
3235  case tok::kw_struct:
3236  case tok::kw_union:
3237    // enum-specifier
3238  case tok::kw_enum:
3239
3240    // type-qualifier
3241  case tok::kw_const:
3242  case tok::kw_volatile:
3243  case tok::kw_restrict:
3244
3245    // function-specifier
3246  case tok::kw_inline:
3247  case tok::kw_virtual:
3248  case tok::kw_explicit:
3249
3250    // static_assert-declaration
3251  case tok::kw__Static_assert:
3252
3253    // GNU typeof support.
3254  case tok::kw_typeof:
3255
3256    // GNU attributes.
3257  case tok::kw___attribute:
3258    return true;
3259
3260    // C++0x decltype.
3261  case tok::annot_decltype:
3262    return true;
3263
3264    // C11 _Atomic()
3265  case tok::kw__Atomic:
3266    return true;
3267
3268    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3269  case tok::less:
3270    return getLangOpts().ObjC1;
3271
3272    // typedef-name
3273  case tok::annot_typename:
3274    return !DisambiguatingWithExpression ||
3275           !isStartOfObjCClassMessageMissingOpenBracket();
3276
3277  case tok::kw___declspec:
3278  case tok::kw___cdecl:
3279  case tok::kw___stdcall:
3280  case tok::kw___fastcall:
3281  case tok::kw___thiscall:
3282  case tok::kw___w64:
3283  case tok::kw___ptr64:
3284  case tok::kw___ptr32:
3285  case tok::kw___forceinline:
3286  case tok::kw___pascal:
3287  case tok::kw___unaligned:
3288
3289  case tok::kw___private:
3290  case tok::kw___local:
3291  case tok::kw___global:
3292  case tok::kw___constant:
3293  case tok::kw___read_only:
3294  case tok::kw___read_write:
3295  case tok::kw___write_only:
3296
3297    return true;
3298  }
3299}
3300
3301bool Parser::isConstructorDeclarator() {
3302  TentativeParsingAction TPA(*this);
3303
3304  // Parse the C++ scope specifier.
3305  CXXScopeSpec SS;
3306  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3307                                     /*EnteringContext=*/true)) {
3308    TPA.Revert();
3309    return false;
3310  }
3311
3312  // Parse the constructor name.
3313  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3314    // We already know that we have a constructor name; just consume
3315    // the token.
3316    ConsumeToken();
3317  } else {
3318    TPA.Revert();
3319    return false;
3320  }
3321
3322  // Current class name must be followed by a left parentheses.
3323  if (Tok.isNot(tok::l_paren)) {
3324    TPA.Revert();
3325    return false;
3326  }
3327  ConsumeParen();
3328
3329  // A right parentheses or ellipsis signals that we have a constructor.
3330  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3331    TPA.Revert();
3332    return true;
3333  }
3334
3335  // If we need to, enter the specified scope.
3336  DeclaratorScopeObj DeclScopeObj(*this, SS);
3337  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3338    DeclScopeObj.EnterDeclaratorScope();
3339
3340  // Optionally skip Microsoft attributes.
3341  ParsedAttributes Attrs(AttrFactory);
3342  MaybeParseMicrosoftAttributes(Attrs);
3343
3344  // Check whether the next token(s) are part of a declaration
3345  // specifier, in which case we have the start of a parameter and,
3346  // therefore, we know that this is a constructor.
3347  bool IsConstructor = isDeclarationSpecifier();
3348  TPA.Revert();
3349  return IsConstructor;
3350}
3351
3352/// ParseTypeQualifierListOpt
3353///          type-qualifier-list: [C99 6.7.5]
3354///            type-qualifier
3355/// [vendor]   attributes
3356///              [ only if VendorAttributesAllowed=true ]
3357///            type-qualifier-list type-qualifier
3358/// [vendor]   type-qualifier-list attributes
3359///              [ only if VendorAttributesAllowed=true ]
3360/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3361///              [ only if CXX0XAttributesAllowed=true ]
3362/// Note: vendor can be GNU, MS, etc.
3363///
3364void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3365                                       bool VendorAttributesAllowed,
3366                                       bool CXX0XAttributesAllowed) {
3367  if (getLangOpts().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3368    SourceLocation Loc = Tok.getLocation();
3369    ParsedAttributesWithRange attrs(AttrFactory);
3370    ParseCXX0XAttributes(attrs);
3371    if (CXX0XAttributesAllowed)
3372      DS.takeAttributesFrom(attrs);
3373    else
3374      Diag(Loc, diag::err_attributes_not_allowed);
3375  }
3376
3377  SourceLocation EndLoc;
3378
3379  while (1) {
3380    bool isInvalid = false;
3381    const char *PrevSpec = 0;
3382    unsigned DiagID = 0;
3383    SourceLocation Loc = Tok.getLocation();
3384
3385    switch (Tok.getKind()) {
3386    case tok::code_completion:
3387      Actions.CodeCompleteTypeQualifiers(DS);
3388      return cutOffParsing();
3389
3390    case tok::kw_const:
3391      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3392                                 getLangOpts());
3393      break;
3394    case tok::kw_volatile:
3395      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3396                                 getLangOpts());
3397      break;
3398    case tok::kw_restrict:
3399      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3400                                 getLangOpts());
3401      break;
3402
3403    // OpenCL qualifiers:
3404    case tok::kw_private:
3405      if (!getLangOpts().OpenCL)
3406        goto DoneWithTypeQuals;
3407    case tok::kw___private:
3408    case tok::kw___global:
3409    case tok::kw___local:
3410    case tok::kw___constant:
3411    case tok::kw___read_only:
3412    case tok::kw___write_only:
3413    case tok::kw___read_write:
3414      ParseOpenCLQualifiers(DS);
3415      break;
3416
3417    case tok::kw___w64:
3418    case tok::kw___ptr64:
3419    case tok::kw___ptr32:
3420    case tok::kw___cdecl:
3421    case tok::kw___stdcall:
3422    case tok::kw___fastcall:
3423    case tok::kw___thiscall:
3424    case tok::kw___unaligned:
3425      if (VendorAttributesAllowed) {
3426        ParseMicrosoftTypeAttributes(DS.getAttributes());
3427        continue;
3428      }
3429      goto DoneWithTypeQuals;
3430    case tok::kw___pascal:
3431      if (VendorAttributesAllowed) {
3432        ParseBorlandTypeAttributes(DS.getAttributes());
3433        continue;
3434      }
3435      goto DoneWithTypeQuals;
3436    case tok::kw___attribute:
3437      if (VendorAttributesAllowed) {
3438        ParseGNUAttributes(DS.getAttributes());
3439        continue; // do *not* consume the next token!
3440      }
3441      // otherwise, FALL THROUGH!
3442    default:
3443      DoneWithTypeQuals:
3444      // If this is not a type-qualifier token, we're done reading type
3445      // qualifiers.  First verify that DeclSpec's are consistent.
3446      DS.Finish(Diags, PP);
3447      if (EndLoc.isValid())
3448        DS.SetRangeEnd(EndLoc);
3449      return;
3450    }
3451
3452    // If the specifier combination wasn't legal, issue a diagnostic.
3453    if (isInvalid) {
3454      assert(PrevSpec && "Method did not return previous specifier!");
3455      Diag(Tok, DiagID) << PrevSpec;
3456    }
3457    EndLoc = ConsumeToken();
3458  }
3459}
3460
3461
3462/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3463///
3464void Parser::ParseDeclarator(Declarator &D) {
3465  /// This implements the 'declarator' production in the C grammar, then checks
3466  /// for well-formedness and issues diagnostics.
3467  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3468}
3469
3470/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3471/// is parsed by the function passed to it. Pass null, and the direct-declarator
3472/// isn't parsed at all, making this function effectively parse the C++
3473/// ptr-operator production.
3474///
3475/// If the grammar of this construct is extended, matching changes must also be
3476/// made to TryParseDeclarator and MightBeDeclarator.
3477///
3478///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3479/// [C]     pointer[opt] direct-declarator
3480/// [C++]   direct-declarator
3481/// [C++]   ptr-operator declarator
3482///
3483///       pointer: [C99 6.7.5]
3484///         '*' type-qualifier-list[opt]
3485///         '*' type-qualifier-list[opt] pointer
3486///
3487///       ptr-operator:
3488///         '*' cv-qualifier-seq[opt]
3489///         '&'
3490/// [C++0x] '&&'
3491/// [GNU]   '&' restrict[opt] attributes[opt]
3492/// [GNU?]  '&&' restrict[opt] attributes[opt]
3493///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3494void Parser::ParseDeclaratorInternal(Declarator &D,
3495                                     DirectDeclParseFunction DirectDeclParser) {
3496  if (Diags.hasAllExtensionsSilenced())
3497    D.setExtension();
3498
3499  // C++ member pointers start with a '::' or a nested-name.
3500  // Member pointers get special handling, since there's no place for the
3501  // scope spec in the generic path below.
3502  if (getLangOpts().CPlusPlus &&
3503      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3504       Tok.is(tok::annot_cxxscope))) {
3505    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3506                           D.getContext() == Declarator::MemberContext;
3507    CXXScopeSpec SS;
3508    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3509
3510    if (SS.isNotEmpty()) {
3511      if (Tok.isNot(tok::star)) {
3512        // The scope spec really belongs to the direct-declarator.
3513        D.getCXXScopeSpec() = SS;
3514        if (DirectDeclParser)
3515          (this->*DirectDeclParser)(D);
3516        return;
3517      }
3518
3519      SourceLocation Loc = ConsumeToken();
3520      D.SetRangeEnd(Loc);
3521      DeclSpec DS(AttrFactory);
3522      ParseTypeQualifierListOpt(DS);
3523      D.ExtendWithDeclSpec(DS);
3524
3525      // Recurse to parse whatever is left.
3526      ParseDeclaratorInternal(D, DirectDeclParser);
3527
3528      // Sema will have to catch (syntactically invalid) pointers into global
3529      // scope. It has to catch pointers into namespace scope anyway.
3530      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3531                                                      Loc),
3532                    DS.getAttributes(),
3533                    /* Don't replace range end. */SourceLocation());
3534      return;
3535    }
3536  }
3537
3538  tok::TokenKind Kind = Tok.getKind();
3539  // Not a pointer, C++ reference, or block.
3540  if (Kind != tok::star && Kind != tok::caret &&
3541      (Kind != tok::amp || !getLangOpts().CPlusPlus) &&
3542      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3543      (Kind != tok::ampamp || !getLangOpts().CPlusPlus)) {
3544    if (DirectDeclParser)
3545      (this->*DirectDeclParser)(D);
3546    return;
3547  }
3548
3549  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3550  // '&&' -> rvalue reference
3551  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3552  D.SetRangeEnd(Loc);
3553
3554  if (Kind == tok::star || Kind == tok::caret) {
3555    // Is a pointer.
3556    DeclSpec DS(AttrFactory);
3557
3558    ParseTypeQualifierListOpt(DS);
3559    D.ExtendWithDeclSpec(DS);
3560
3561    // Recursively parse the declarator.
3562    ParseDeclaratorInternal(D, DirectDeclParser);
3563    if (Kind == tok::star)
3564      // Remember that we parsed a pointer type, and remember the type-quals.
3565      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3566                                                DS.getConstSpecLoc(),
3567                                                DS.getVolatileSpecLoc(),
3568                                                DS.getRestrictSpecLoc()),
3569                    DS.getAttributes(),
3570                    SourceLocation());
3571    else
3572      // Remember that we parsed a Block type, and remember the type-quals.
3573      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3574                                                     Loc),
3575                    DS.getAttributes(),
3576                    SourceLocation());
3577  } else {
3578    // Is a reference
3579    DeclSpec DS(AttrFactory);
3580
3581    // Complain about rvalue references in C++03, but then go on and build
3582    // the declarator.
3583    if (Kind == tok::ampamp)
3584      Diag(Loc, getLangOpts().CPlusPlus0x ?
3585           diag::warn_cxx98_compat_rvalue_reference :
3586           diag::ext_rvalue_reference);
3587
3588    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3589    // cv-qualifiers are introduced through the use of a typedef or of a
3590    // template type argument, in which case the cv-qualifiers are ignored.
3591    //
3592    // [GNU] Retricted references are allowed.
3593    // [GNU] Attributes on references are allowed.
3594    // [C++0x] Attributes on references are not allowed.
3595    ParseTypeQualifierListOpt(DS, true, false);
3596    D.ExtendWithDeclSpec(DS);
3597
3598    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3599      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3600        Diag(DS.getConstSpecLoc(),
3601             diag::err_invalid_reference_qualifier_application) << "const";
3602      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3603        Diag(DS.getVolatileSpecLoc(),
3604             diag::err_invalid_reference_qualifier_application) << "volatile";
3605    }
3606
3607    // Recursively parse the declarator.
3608    ParseDeclaratorInternal(D, DirectDeclParser);
3609
3610    if (D.getNumTypeObjects() > 0) {
3611      // C++ [dcl.ref]p4: There shall be no references to references.
3612      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3613      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3614        if (const IdentifierInfo *II = D.getIdentifier())
3615          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3616           << II;
3617        else
3618          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3619            << "type name";
3620
3621        // Once we've complained about the reference-to-reference, we
3622        // can go ahead and build the (technically ill-formed)
3623        // declarator: reference collapsing will take care of it.
3624      }
3625    }
3626
3627    // Remember that we parsed a reference type. It doesn't have type-quals.
3628    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3629                                                Kind == tok::amp),
3630                  DS.getAttributes(),
3631                  SourceLocation());
3632  }
3633}
3634
3635/// ParseDirectDeclarator
3636///       direct-declarator: [C99 6.7.5]
3637/// [C99]   identifier
3638///         '(' declarator ')'
3639/// [GNU]   '(' attributes declarator ')'
3640/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3641/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3642/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3643/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3644/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3645///         direct-declarator '(' parameter-type-list ')'
3646///         direct-declarator '(' identifier-list[opt] ')'
3647/// [GNU]   direct-declarator '(' parameter-forward-declarations
3648///                    parameter-type-list[opt] ')'
3649/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3650///                    cv-qualifier-seq[opt] exception-specification[opt]
3651/// [C++]   declarator-id
3652///
3653///       declarator-id: [C++ 8]
3654///         '...'[opt] id-expression
3655///         '::'[opt] nested-name-specifier[opt] type-name
3656///
3657///       id-expression: [C++ 5.1]
3658///         unqualified-id
3659///         qualified-id
3660///
3661///       unqualified-id: [C++ 5.1]
3662///         identifier
3663///         operator-function-id
3664///         conversion-function-id
3665///          '~' class-name
3666///         template-id
3667///
3668void Parser::ParseDirectDeclarator(Declarator &D) {
3669  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3670
3671  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
3672    // ParseDeclaratorInternal might already have parsed the scope.
3673    if (D.getCXXScopeSpec().isEmpty()) {
3674      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3675                             D.getContext() == Declarator::MemberContext;
3676      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3677                                     EnteringContext);
3678    }
3679
3680    if (D.getCXXScopeSpec().isValid()) {
3681      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3682        // Change the declaration context for name lookup, until this function
3683        // is exited (and the declarator has been parsed).
3684        DeclScopeObj.EnterDeclaratorScope();
3685    }
3686
3687    // C++0x [dcl.fct]p14:
3688    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3689    //   of a parameter-declaration-clause without a preceding comma. In
3690    //   this case, the ellipsis is parsed as part of the
3691    //   abstract-declarator if the type of the parameter names a template
3692    //   parameter pack that has not been expanded; otherwise, it is parsed
3693    //   as part of the parameter-declaration-clause.
3694    if (Tok.is(tok::ellipsis) &&
3695        !((D.getContext() == Declarator::PrototypeContext ||
3696           D.getContext() == Declarator::BlockLiteralContext) &&
3697          NextToken().is(tok::r_paren) &&
3698          !Actions.containsUnexpandedParameterPacks(D)))
3699      D.setEllipsisLoc(ConsumeToken());
3700
3701    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3702        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3703      // We found something that indicates the start of an unqualified-id.
3704      // Parse that unqualified-id.
3705      bool AllowConstructorName;
3706      if (D.getDeclSpec().hasTypeSpecifier())
3707        AllowConstructorName = false;
3708      else if (D.getCXXScopeSpec().isSet())
3709        AllowConstructorName =
3710          (D.getContext() == Declarator::FileContext ||
3711           (D.getContext() == Declarator::MemberContext &&
3712            D.getDeclSpec().isFriendSpecified()));
3713      else
3714        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3715
3716      SourceLocation TemplateKWLoc;
3717      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3718                             /*EnteringContext=*/true,
3719                             /*AllowDestructorName=*/true,
3720                             AllowConstructorName,
3721                             ParsedType(),
3722                             TemplateKWLoc,
3723                             D.getName()) ||
3724          // Once we're past the identifier, if the scope was bad, mark the
3725          // whole declarator bad.
3726          D.getCXXScopeSpec().isInvalid()) {
3727        D.SetIdentifier(0, Tok.getLocation());
3728        D.setInvalidType(true);
3729      } else {
3730        // Parsed the unqualified-id; update range information and move along.
3731        if (D.getSourceRange().getBegin().isInvalid())
3732          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3733        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3734      }
3735      goto PastIdentifier;
3736    }
3737  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3738    assert(!getLangOpts().CPlusPlus &&
3739           "There's a C++-specific check for tok::identifier above");
3740    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3741    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3742    ConsumeToken();
3743    goto PastIdentifier;
3744  }
3745
3746  if (Tok.is(tok::l_paren)) {
3747    // direct-declarator: '(' declarator ')'
3748    // direct-declarator: '(' attributes declarator ')'
3749    // Example: 'char (*X)'   or 'int (*XX)(void)'
3750    ParseParenDeclarator(D);
3751
3752    // If the declarator was parenthesized, we entered the declarator
3753    // scope when parsing the parenthesized declarator, then exited
3754    // the scope already. Re-enter the scope, if we need to.
3755    if (D.getCXXScopeSpec().isSet()) {
3756      // If there was an error parsing parenthesized declarator, declarator
3757      // scope may have been enterred before. Don't do it again.
3758      if (!D.isInvalidType() &&
3759          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3760        // Change the declaration context for name lookup, until this function
3761        // is exited (and the declarator has been parsed).
3762        DeclScopeObj.EnterDeclaratorScope();
3763    }
3764  } else if (D.mayOmitIdentifier()) {
3765    // This could be something simple like "int" (in which case the declarator
3766    // portion is empty), if an abstract-declarator is allowed.
3767    D.SetIdentifier(0, Tok.getLocation());
3768  } else {
3769    if (D.getContext() == Declarator::MemberContext)
3770      Diag(Tok, diag::err_expected_member_name_or_semi)
3771        << D.getDeclSpec().getSourceRange();
3772    else if (getLangOpts().CPlusPlus)
3773      Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3774    else
3775      Diag(Tok, diag::err_expected_ident_lparen);
3776    D.SetIdentifier(0, Tok.getLocation());
3777    D.setInvalidType(true);
3778  }
3779
3780 PastIdentifier:
3781  assert(D.isPastIdentifier() &&
3782         "Haven't past the location of the identifier yet?");
3783
3784  // Don't parse attributes unless we have an identifier.
3785  if (D.getIdentifier())
3786    MaybeParseCXX0XAttributes(D);
3787
3788  while (1) {
3789    if (Tok.is(tok::l_paren)) {
3790      // Enter function-declaration scope, limiting any declarators to the
3791      // function prototype scope, including parameter declarators.
3792      ParseScope PrototypeScope(this,
3793                                Scope::FunctionPrototypeScope|Scope::DeclScope);
3794      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3795      // In such a case, check if we actually have a function declarator; if it
3796      // is not, the declarator has been fully parsed.
3797      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3798        // When not in file scope, warn for ambiguous function declarators, just
3799        // in case the author intended it as a variable definition.
3800        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3801        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3802          break;
3803      }
3804      ParsedAttributes attrs(AttrFactory);
3805      BalancedDelimiterTracker T(*this, tok::l_paren);
3806      T.consumeOpen();
3807      ParseFunctionDeclarator(D, attrs, T);
3808      PrototypeScope.Exit();
3809    } else if (Tok.is(tok::l_square)) {
3810      ParseBracketDeclarator(D);
3811    } else {
3812      break;
3813    }
3814  }
3815}
3816
3817/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3818/// only called before the identifier, so these are most likely just grouping
3819/// parens for precedence.  If we find that these are actually function
3820/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3821///
3822///       direct-declarator:
3823///         '(' declarator ')'
3824/// [GNU]   '(' attributes declarator ')'
3825///         direct-declarator '(' parameter-type-list ')'
3826///         direct-declarator '(' identifier-list[opt] ')'
3827/// [GNU]   direct-declarator '(' parameter-forward-declarations
3828///                    parameter-type-list[opt] ')'
3829///
3830void Parser::ParseParenDeclarator(Declarator &D) {
3831  BalancedDelimiterTracker T(*this, tok::l_paren);
3832  T.consumeOpen();
3833
3834  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3835
3836  // Eat any attributes before we look at whether this is a grouping or function
3837  // declarator paren.  If this is a grouping paren, the attribute applies to
3838  // the type being built up, for example:
3839  //     int (__attribute__(()) *x)(long y)
3840  // If this ends up not being a grouping paren, the attribute applies to the
3841  // first argument, for example:
3842  //     int (__attribute__(()) int x)
3843  // In either case, we need to eat any attributes to be able to determine what
3844  // sort of paren this is.
3845  //
3846  ParsedAttributes attrs(AttrFactory);
3847  bool RequiresArg = false;
3848  if (Tok.is(tok::kw___attribute)) {
3849    ParseGNUAttributes(attrs);
3850
3851    // We require that the argument list (if this is a non-grouping paren) be
3852    // present even if the attribute list was empty.
3853    RequiresArg = true;
3854  }
3855  // Eat any Microsoft extensions.
3856  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3857       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3858       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
3859       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
3860    ParseMicrosoftTypeAttributes(attrs);
3861  }
3862  // Eat any Borland extensions.
3863  if  (Tok.is(tok::kw___pascal))
3864    ParseBorlandTypeAttributes(attrs);
3865
3866  // If we haven't past the identifier yet (or where the identifier would be
3867  // stored, if this is an abstract declarator), then this is probably just
3868  // grouping parens. However, if this could be an abstract-declarator, then
3869  // this could also be the start of function arguments (consider 'void()').
3870  bool isGrouping;
3871
3872  if (!D.mayOmitIdentifier()) {
3873    // If this can't be an abstract-declarator, this *must* be a grouping
3874    // paren, because we haven't seen the identifier yet.
3875    isGrouping = true;
3876  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3877             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3878             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3879    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3880    // considered to be a type, not a K&R identifier-list.
3881    isGrouping = false;
3882  } else {
3883    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3884    isGrouping = true;
3885  }
3886
3887  // If this is a grouping paren, handle:
3888  // direct-declarator: '(' declarator ')'
3889  // direct-declarator: '(' attributes declarator ')'
3890  if (isGrouping) {
3891    bool hadGroupingParens = D.hasGroupingParens();
3892    D.setGroupingParens(true);
3893
3894    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3895    // Match the ')'.
3896    T.consumeClose();
3897    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
3898                                            T.getCloseLocation()),
3899                  attrs, T.getCloseLocation());
3900
3901    D.setGroupingParens(hadGroupingParens);
3902    return;
3903  }
3904
3905  // Okay, if this wasn't a grouping paren, it must be the start of a function
3906  // argument list.  Recognize that this declarator will never have an
3907  // identifier (and remember where it would have been), then call into
3908  // ParseFunctionDeclarator to handle of argument list.
3909  D.SetIdentifier(0, Tok.getLocation());
3910
3911  // Enter function-declaration scope, limiting any declarators to the
3912  // function prototype scope, including parameter declarators.
3913  ParseScope PrototypeScope(this,
3914                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3915  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
3916  PrototypeScope.Exit();
3917}
3918
3919/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3920/// declarator D up to a paren, which indicates that we are parsing function
3921/// arguments.
3922///
3923/// If attrs is non-null, then the caller parsed those arguments immediately
3924/// after the open paren - they should be considered to be the first argument of
3925/// a parameter.  If RequiresArg is true, then the first argument of the
3926/// function is required to be present and required to not be an identifier
3927/// list.
3928///
3929/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
3930/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
3931/// (C++0x) trailing-return-type[opt].
3932///
3933/// [C++0x] exception-specification:
3934///           dynamic-exception-specification
3935///           noexcept-specification
3936///
3937void Parser::ParseFunctionDeclarator(Declarator &D,
3938                                     ParsedAttributes &attrs,
3939                                     BalancedDelimiterTracker &Tracker,
3940                                     bool RequiresArg) {
3941  assert(getCurScope()->isFunctionPrototypeScope() &&
3942         "Should call from a Function scope");
3943  // lparen is already consumed!
3944  assert(D.isPastIdentifier() && "Should not call before identifier!");
3945
3946  // This should be true when the function has typed arguments.
3947  // Otherwise, it is treated as a K&R-style function.
3948  bool HasProto = false;
3949  // Build up an array of information about the parsed arguments.
3950  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3951  // Remember where we see an ellipsis, if any.
3952  SourceLocation EllipsisLoc;
3953
3954  DeclSpec DS(AttrFactory);
3955  bool RefQualifierIsLValueRef = true;
3956  SourceLocation RefQualifierLoc;
3957  SourceLocation ConstQualifierLoc;
3958  SourceLocation VolatileQualifierLoc;
3959  ExceptionSpecificationType ESpecType = EST_None;
3960  SourceRange ESpecRange;
3961  SmallVector<ParsedType, 2> DynamicExceptions;
3962  SmallVector<SourceRange, 2> DynamicExceptionRanges;
3963  ExprResult NoexceptExpr;
3964  ParsedType TrailingReturnType;
3965
3966  Actions.ActOnStartFunctionDeclarator();
3967
3968  SourceLocation EndLoc;
3969  if (isFunctionDeclaratorIdentifierList()) {
3970    if (RequiresArg)
3971      Diag(Tok, diag::err_argument_required_after_attribute);
3972
3973    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
3974
3975    Tracker.consumeClose();
3976    EndLoc = Tracker.getCloseLocation();
3977  } else {
3978    if (Tok.isNot(tok::r_paren))
3979      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
3980    else if (RequiresArg)
3981      Diag(Tok, diag::err_argument_required_after_attribute);
3982
3983    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
3984
3985    // If we have the closing ')', eat it.
3986    Tracker.consumeClose();
3987    EndLoc = Tracker.getCloseLocation();
3988
3989    if (getLangOpts().CPlusPlus) {
3990      MaybeParseCXX0XAttributes(attrs);
3991
3992      // Parse cv-qualifier-seq[opt].
3993      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3994        if (!DS.getSourceRange().getEnd().isInvalid()) {
3995          EndLoc = DS.getSourceRange().getEnd();
3996          ConstQualifierLoc = DS.getConstSpecLoc();
3997          VolatileQualifierLoc = DS.getVolatileSpecLoc();
3998        }
3999
4000      // Parse ref-qualifier[opt].
4001      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4002        Diag(Tok, getLangOpts().CPlusPlus0x ?
4003             diag::warn_cxx98_compat_ref_qualifier :
4004             diag::ext_ref_qualifier);
4005
4006        RefQualifierIsLValueRef = Tok.is(tok::amp);
4007        RefQualifierLoc = ConsumeToken();
4008        EndLoc = RefQualifierLoc;
4009      }
4010
4011      // Parse exception-specification[opt].
4012      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4013                                                   DynamicExceptions,
4014                                                   DynamicExceptionRanges,
4015                                                   NoexceptExpr);
4016      if (ESpecType != EST_None)
4017        EndLoc = ESpecRange.getEnd();
4018
4019      // Parse trailing-return-type[opt].
4020      if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) {
4021        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4022        SourceRange Range;
4023        TrailingReturnType = ParseTrailingReturnType(Range).get();
4024        if (Range.getEnd().isValid())
4025          EndLoc = Range.getEnd();
4026      }
4027    }
4028  }
4029
4030  // Remember that we parsed a function type, and remember the attributes.
4031  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4032                                             /*isVariadic=*/EllipsisLoc.isValid(),
4033                                             EllipsisLoc,
4034                                             ParamInfo.data(), ParamInfo.size(),
4035                                             DS.getTypeQualifiers(),
4036                                             RefQualifierIsLValueRef,
4037                                             RefQualifierLoc, ConstQualifierLoc,
4038                                             VolatileQualifierLoc,
4039                                             /*MutableLoc=*/SourceLocation(),
4040                                             ESpecType, ESpecRange.getBegin(),
4041                                             DynamicExceptions.data(),
4042                                             DynamicExceptionRanges.data(),
4043                                             DynamicExceptions.size(),
4044                                             NoexceptExpr.isUsable() ?
4045                                               NoexceptExpr.get() : 0,
4046                                             Tracker.getOpenLocation(),
4047                                             EndLoc, D,
4048                                             TrailingReturnType),
4049                attrs, EndLoc);
4050
4051  Actions.ActOnEndFunctionDeclarator();
4052}
4053
4054/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4055/// identifier list form for a K&R-style function:  void foo(a,b,c)
4056///
4057/// Note that identifier-lists are only allowed for normal declarators, not for
4058/// abstract-declarators.
4059bool Parser::isFunctionDeclaratorIdentifierList() {
4060  return !getLangOpts().CPlusPlus
4061         && Tok.is(tok::identifier)
4062         && !TryAltiVecVectorToken()
4063         // K&R identifier lists can't have typedefs as identifiers, per C99
4064         // 6.7.5.3p11.
4065         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4066         // Identifier lists follow a really simple grammar: the identifiers can
4067         // be followed *only* by a ", identifier" or ")".  However, K&R
4068         // identifier lists are really rare in the brave new modern world, and
4069         // it is very common for someone to typo a type in a non-K&R style
4070         // list.  If we are presented with something like: "void foo(intptr x,
4071         // float y)", we don't want to start parsing the function declarator as
4072         // though it is a K&R style declarator just because intptr is an
4073         // invalid type.
4074         //
4075         // To handle this, we check to see if the token after the first
4076         // identifier is a "," or ")".  Only then do we parse it as an
4077         // identifier list.
4078         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4079}
4080
4081/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4082/// we found a K&R-style identifier list instead of a typed parameter list.
4083///
4084/// After returning, ParamInfo will hold the parsed parameters.
4085///
4086///       identifier-list: [C99 6.7.5]
4087///         identifier
4088///         identifier-list ',' identifier
4089///
4090void Parser::ParseFunctionDeclaratorIdentifierList(
4091       Declarator &D,
4092       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4093  // If there was no identifier specified for the declarator, either we are in
4094  // an abstract-declarator, or we are in a parameter declarator which was found
4095  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4096  // diagnose this.
4097  if (!D.getIdentifier())
4098    Diag(Tok, diag::ext_ident_list_in_param);
4099
4100  // Maintain an efficient lookup of params we have seen so far.
4101  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4102
4103  while (1) {
4104    // If this isn't an identifier, report the error and skip until ')'.
4105    if (Tok.isNot(tok::identifier)) {
4106      Diag(Tok, diag::err_expected_ident);
4107      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4108      // Forget we parsed anything.
4109      ParamInfo.clear();
4110      return;
4111    }
4112
4113    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4114
4115    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4116    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4117      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4118
4119    // Verify that the argument identifier has not already been mentioned.
4120    if (!ParamsSoFar.insert(ParmII)) {
4121      Diag(Tok, diag::err_param_redefinition) << ParmII;
4122    } else {
4123      // Remember this identifier in ParamInfo.
4124      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4125                                                     Tok.getLocation(),
4126                                                     0));
4127    }
4128
4129    // Eat the identifier.
4130    ConsumeToken();
4131
4132    // The list continues if we see a comma.
4133    if (Tok.isNot(tok::comma))
4134      break;
4135    ConsumeToken();
4136  }
4137}
4138
4139/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4140/// after the opening parenthesis. This function will not parse a K&R-style
4141/// identifier list.
4142///
4143/// D is the declarator being parsed.  If attrs is non-null, then the caller
4144/// parsed those arguments immediately after the open paren - they should be
4145/// considered to be the first argument of a parameter.
4146///
4147/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4148/// be the location of the ellipsis, if any was parsed.
4149///
4150///       parameter-type-list: [C99 6.7.5]
4151///         parameter-list
4152///         parameter-list ',' '...'
4153/// [C++]   parameter-list '...'
4154///
4155///       parameter-list: [C99 6.7.5]
4156///         parameter-declaration
4157///         parameter-list ',' parameter-declaration
4158///
4159///       parameter-declaration: [C99 6.7.5]
4160///         declaration-specifiers declarator
4161/// [C++]   declaration-specifiers declarator '=' assignment-expression
4162/// [GNU]   declaration-specifiers declarator attributes
4163///         declaration-specifiers abstract-declarator[opt]
4164/// [C++]   declaration-specifiers abstract-declarator[opt]
4165///           '=' assignment-expression
4166/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4167///
4168void Parser::ParseParameterDeclarationClause(
4169       Declarator &D,
4170       ParsedAttributes &attrs,
4171       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4172       SourceLocation &EllipsisLoc) {
4173
4174  while (1) {
4175    if (Tok.is(tok::ellipsis)) {
4176      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4177      break;
4178    }
4179
4180    // Parse the declaration-specifiers.
4181    // Just use the ParsingDeclaration "scope" of the declarator.
4182    DeclSpec DS(AttrFactory);
4183
4184    // Skip any Microsoft attributes before a param.
4185    if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square))
4186      ParseMicrosoftAttributes(DS.getAttributes());
4187
4188    SourceLocation DSStart = Tok.getLocation();
4189
4190    // If the caller parsed attributes for the first argument, add them now.
4191    // Take them so that we only apply the attributes to the first parameter.
4192    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4193    // attributes lost? Should they even be allowed?
4194    // FIXME: If we can leave the attributes in the token stream somehow, we can
4195    // get rid of a parameter (attrs) and this statement. It might be too much
4196    // hassle.
4197    DS.takeAttributesFrom(attrs);
4198
4199    ParseDeclarationSpecifiers(DS);
4200
4201    // Parse the declarator.  This is "PrototypeContext", because we must
4202    // accept either 'declarator' or 'abstract-declarator' here.
4203    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4204    ParseDeclarator(ParmDecl);
4205
4206    // Parse GNU attributes, if present.
4207    MaybeParseGNUAttributes(ParmDecl);
4208
4209    // Remember this parsed parameter in ParamInfo.
4210    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4211
4212    // DefArgToks is used when the parsing of default arguments needs
4213    // to be delayed.
4214    CachedTokens *DefArgToks = 0;
4215
4216    // If no parameter was specified, verify that *something* was specified,
4217    // otherwise we have a missing type and identifier.
4218    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4219        ParmDecl.getNumTypeObjects() == 0) {
4220      // Completely missing, emit error.
4221      Diag(DSStart, diag::err_missing_param);
4222    } else {
4223      // Otherwise, we have something.  Add it and let semantic analysis try
4224      // to grok it and add the result to the ParamInfo we are building.
4225
4226      // Inform the actions module about the parameter declarator, so it gets
4227      // added to the current scope.
4228      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4229
4230      // Parse the default argument, if any. We parse the default
4231      // arguments in all dialects; the semantic analysis in
4232      // ActOnParamDefaultArgument will reject the default argument in
4233      // C.
4234      if (Tok.is(tok::equal)) {
4235        SourceLocation EqualLoc = Tok.getLocation();
4236
4237        // Parse the default argument
4238        if (D.getContext() == Declarator::MemberContext) {
4239          // If we're inside a class definition, cache the tokens
4240          // corresponding to the default argument. We'll actually parse
4241          // them when we see the end of the class definition.
4242          // FIXME: Templates will require something similar.
4243          // FIXME: Can we use a smart pointer for Toks?
4244          DefArgToks = new CachedTokens;
4245
4246          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4247                                    /*StopAtSemi=*/true,
4248                                    /*ConsumeFinalToken=*/false)) {
4249            delete DefArgToks;
4250            DefArgToks = 0;
4251            Actions.ActOnParamDefaultArgumentError(Param);
4252          } else {
4253            // Mark the end of the default argument so that we know when to
4254            // stop when we parse it later on.
4255            Token DefArgEnd;
4256            DefArgEnd.startToken();
4257            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4258            DefArgEnd.setLocation(Tok.getLocation());
4259            DefArgToks->push_back(DefArgEnd);
4260            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4261                                                (*DefArgToks)[1].getLocation());
4262          }
4263        } else {
4264          // Consume the '='.
4265          ConsumeToken();
4266
4267          // The argument isn't actually potentially evaluated unless it is
4268          // used.
4269          EnterExpressionEvaluationContext Eval(Actions,
4270                                              Sema::PotentiallyEvaluatedIfUsed,
4271                                                Param);
4272
4273          ExprResult DefArgResult(ParseAssignmentExpression());
4274          if (DefArgResult.isInvalid()) {
4275            Actions.ActOnParamDefaultArgumentError(Param);
4276            SkipUntil(tok::comma, tok::r_paren, true, true);
4277          } else {
4278            // Inform the actions module about the default argument
4279            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4280                                              DefArgResult.take());
4281          }
4282        }
4283      }
4284
4285      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4286                                          ParmDecl.getIdentifierLoc(), Param,
4287                                          DefArgToks));
4288    }
4289
4290    // If the next token is a comma, consume it and keep reading arguments.
4291    if (Tok.isNot(tok::comma)) {
4292      if (Tok.is(tok::ellipsis)) {
4293        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4294
4295        if (!getLangOpts().CPlusPlus) {
4296          // We have ellipsis without a preceding ',', which is ill-formed
4297          // in C. Complain and provide the fix.
4298          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4299            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4300        }
4301      }
4302
4303      break;
4304    }
4305
4306    // Consume the comma.
4307    ConsumeToken();
4308  }
4309
4310}
4311
4312/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4313/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4314/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4315/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4316/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4317void Parser::ParseBracketDeclarator(Declarator &D) {
4318  BalancedDelimiterTracker T(*this, tok::l_square);
4319  T.consumeOpen();
4320
4321  // C array syntax has many features, but by-far the most common is [] and [4].
4322  // This code does a fast path to handle some of the most obvious cases.
4323  if (Tok.getKind() == tok::r_square) {
4324    T.consumeClose();
4325    ParsedAttributes attrs(AttrFactory);
4326    MaybeParseCXX0XAttributes(attrs);
4327
4328    // Remember that we parsed the empty array type.
4329    ExprResult NumElements;
4330    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4331                                            T.getOpenLocation(),
4332                                            T.getCloseLocation()),
4333                  attrs, T.getCloseLocation());
4334    return;
4335  } else if (Tok.getKind() == tok::numeric_constant &&
4336             GetLookAheadToken(1).is(tok::r_square)) {
4337    // [4] is very common.  Parse the numeric constant expression.
4338    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
4339    ConsumeToken();
4340
4341    T.consumeClose();
4342    ParsedAttributes attrs(AttrFactory);
4343    MaybeParseCXX0XAttributes(attrs);
4344
4345    // Remember that we parsed a array type, and remember its features.
4346    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4347                                            ExprRes.release(),
4348                                            T.getOpenLocation(),
4349                                            T.getCloseLocation()),
4350                  attrs, T.getCloseLocation());
4351    return;
4352  }
4353
4354  // If valid, this location is the position where we read the 'static' keyword.
4355  SourceLocation StaticLoc;
4356  if (Tok.is(tok::kw_static))
4357    StaticLoc = ConsumeToken();
4358
4359  // If there is a type-qualifier-list, read it now.
4360  // Type qualifiers in an array subscript are a C99 feature.
4361  DeclSpec DS(AttrFactory);
4362  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4363
4364  // If we haven't already read 'static', check to see if there is one after the
4365  // type-qualifier-list.
4366  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4367    StaticLoc = ConsumeToken();
4368
4369  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4370  bool isStar = false;
4371  ExprResult NumElements;
4372
4373  // Handle the case where we have '[*]' as the array size.  However, a leading
4374  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4375  // the the token after the star is a ']'.  Since stars in arrays are
4376  // infrequent, use of lookahead is not costly here.
4377  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4378    ConsumeToken();  // Eat the '*'.
4379
4380    if (StaticLoc.isValid()) {
4381      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4382      StaticLoc = SourceLocation();  // Drop the static.
4383    }
4384    isStar = true;
4385  } else if (Tok.isNot(tok::r_square)) {
4386    // Note, in C89, this production uses the constant-expr production instead
4387    // of assignment-expr.  The only difference is that assignment-expr allows
4388    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4389    // are not i-c-e's, so we don't need to distinguish between the two here.
4390
4391    // Parse the constant-expression or assignment-expression now (depending
4392    // on dialect).
4393    if (getLangOpts().CPlusPlus) {
4394      NumElements = ParseConstantExpression();
4395    } else {
4396      EnterExpressionEvaluationContext Unevaluated(Actions,
4397                                                   Sema::ConstantEvaluated);
4398      NumElements = ParseAssignmentExpression();
4399    }
4400  }
4401
4402  // If there was an error parsing the assignment-expression, recover.
4403  if (NumElements.isInvalid()) {
4404    D.setInvalidType(true);
4405    // If the expression was invalid, skip it.
4406    SkipUntil(tok::r_square);
4407    return;
4408  }
4409
4410  T.consumeClose();
4411
4412  ParsedAttributes attrs(AttrFactory);
4413  MaybeParseCXX0XAttributes(attrs);
4414
4415  // Remember that we parsed a array type, and remember its features.
4416  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4417                                          StaticLoc.isValid(), isStar,
4418                                          NumElements.release(),
4419                                          T.getOpenLocation(),
4420                                          T.getCloseLocation()),
4421                attrs, T.getCloseLocation());
4422}
4423
4424/// [GNU]   typeof-specifier:
4425///           typeof ( expressions )
4426///           typeof ( type-name )
4427/// [GNU/C++] typeof unary-expression
4428///
4429void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4430  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4431  Token OpTok = Tok;
4432  SourceLocation StartLoc = ConsumeToken();
4433
4434  const bool hasParens = Tok.is(tok::l_paren);
4435
4436  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
4437
4438  bool isCastExpr;
4439  ParsedType CastTy;
4440  SourceRange CastRange;
4441  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4442                                                          CastTy, CastRange);
4443  if (hasParens)
4444    DS.setTypeofParensRange(CastRange);
4445
4446  if (CastRange.getEnd().isInvalid())
4447    // FIXME: Not accurate, the range gets one token more than it should.
4448    DS.SetRangeEnd(Tok.getLocation());
4449  else
4450    DS.SetRangeEnd(CastRange.getEnd());
4451
4452  if (isCastExpr) {
4453    if (!CastTy) {
4454      DS.SetTypeSpecError();
4455      return;
4456    }
4457
4458    const char *PrevSpec = 0;
4459    unsigned DiagID;
4460    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4461    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4462                           DiagID, CastTy))
4463      Diag(StartLoc, DiagID) << PrevSpec;
4464    return;
4465  }
4466
4467  // If we get here, the operand to the typeof was an expresion.
4468  if (Operand.isInvalid()) {
4469    DS.SetTypeSpecError();
4470    return;
4471  }
4472
4473  // We might need to transform the operand if it is potentially evaluated.
4474  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
4475  if (Operand.isInvalid()) {
4476    DS.SetTypeSpecError();
4477    return;
4478  }
4479
4480  const char *PrevSpec = 0;
4481  unsigned DiagID;
4482  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4483  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4484                         DiagID, Operand.get()))
4485    Diag(StartLoc, DiagID) << PrevSpec;
4486}
4487
4488/// [C11]   atomic-specifier:
4489///           _Atomic ( type-name )
4490///
4491void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4492  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4493
4494  SourceLocation StartLoc = ConsumeToken();
4495  BalancedDelimiterTracker T(*this, tok::l_paren);
4496  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4497    SkipUntil(tok::r_paren);
4498    return;
4499  }
4500
4501  TypeResult Result = ParseTypeName();
4502  if (Result.isInvalid()) {
4503    SkipUntil(tok::r_paren);
4504    return;
4505  }
4506
4507  // Match the ')'
4508  T.consumeClose();
4509
4510  if (T.getCloseLocation().isInvalid())
4511    return;
4512
4513  DS.setTypeofParensRange(T.getRange());
4514  DS.SetRangeEnd(T.getCloseLocation());
4515
4516  const char *PrevSpec = 0;
4517  unsigned DiagID;
4518  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4519                         DiagID, Result.release()))
4520    Diag(StartLoc, DiagID) << PrevSpec;
4521}
4522
4523
4524/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4525/// from TryAltiVecVectorToken.
4526bool Parser::TryAltiVecVectorTokenOutOfLine() {
4527  Token Next = NextToken();
4528  switch (Next.getKind()) {
4529  default: return false;
4530  case tok::kw_short:
4531  case tok::kw_long:
4532  case tok::kw_signed:
4533  case tok::kw_unsigned:
4534  case tok::kw_void:
4535  case tok::kw_char:
4536  case tok::kw_int:
4537  case tok::kw_float:
4538  case tok::kw_double:
4539  case tok::kw_bool:
4540  case tok::kw___pixel:
4541    Tok.setKind(tok::kw___vector);
4542    return true;
4543  case tok::identifier:
4544    if (Next.getIdentifierInfo() == Ident_pixel) {
4545      Tok.setKind(tok::kw___vector);
4546      return true;
4547    }
4548    return false;
4549  }
4550}
4551
4552bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4553                                      const char *&PrevSpec, unsigned &DiagID,
4554                                      bool &isInvalid) {
4555  if (Tok.getIdentifierInfo() == Ident_vector) {
4556    Token Next = NextToken();
4557    switch (Next.getKind()) {
4558    case tok::kw_short:
4559    case tok::kw_long:
4560    case tok::kw_signed:
4561    case tok::kw_unsigned:
4562    case tok::kw_void:
4563    case tok::kw_char:
4564    case tok::kw_int:
4565    case tok::kw_float:
4566    case tok::kw_double:
4567    case tok::kw_bool:
4568    case tok::kw___pixel:
4569      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4570      return true;
4571    case tok::identifier:
4572      if (Next.getIdentifierInfo() == Ident_pixel) {
4573        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4574        return true;
4575      }
4576      break;
4577    default:
4578      break;
4579    }
4580  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4581             DS.isTypeAltiVecVector()) {
4582    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4583    return true;
4584  }
4585  return false;
4586}
4587