ParseDecl.cpp revision 6ee326af4e77e6f05973486097884d7431f2108d
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringSwitch.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// C99 6.7: Declarations.
28//===----------------------------------------------------------------------===//
29
30/// ParseTypeName
31///       type-name: [C99 6.7.6]
32///         specifier-qualifier-list abstract-declarator[opt]
33///
34/// Called type-id in C++.
35TypeResult Parser::ParseTypeName(SourceRange *Range,
36                                 Declarator::TheContext Context,
37                                 AccessSpecifier AS,
38                                 Decl **OwnedType) {
39  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
40
41  // Parse the common declaration-specifiers piece.
42  DeclSpec DS(AttrFactory);
43  ParseSpecifierQualifierList(DS, AS, DSC);
44  if (OwnedType)
45    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
46
47  // Parse the abstract-declarator, if present.
48  Declarator DeclaratorInfo(DS, Context);
49  ParseDeclarator(DeclaratorInfo);
50  if (Range)
51    *Range = DeclaratorInfo.getSourceRange();
52
53  if (DeclaratorInfo.isInvalidType())
54    return true;
55
56  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
57}
58
59
60/// isAttributeLateParsed - Return true if the attribute has arguments that
61/// require late parsing.
62static bool isAttributeLateParsed(const IdentifierInfo &II) {
63    return llvm::StringSwitch<bool>(II.getName())
64#include "clang/Parse/AttrLateParsed.inc"
65        .Default(false);
66}
67
68
69/// ParseGNUAttributes - Parse a non-empty attributes list.
70///
71/// [GNU] attributes:
72///         attribute
73///         attributes attribute
74///
75/// [GNU]  attribute:
76///          '__attribute__' '(' '(' attribute-list ')' ')'
77///
78/// [GNU]  attribute-list:
79///          attrib
80///          attribute_list ',' attrib
81///
82/// [GNU]  attrib:
83///          empty
84///          attrib-name
85///          attrib-name '(' identifier ')'
86///          attrib-name '(' identifier ',' nonempty-expr-list ')'
87///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
88///
89/// [GNU]  attrib-name:
90///          identifier
91///          typespec
92///          typequal
93///          storageclass
94///
95/// FIXME: The GCC grammar/code for this construct implies we need two
96/// token lookahead. Comment from gcc: "If they start with an identifier
97/// which is followed by a comma or close parenthesis, then the arguments
98/// start with that identifier; otherwise they are an expression list."
99///
100/// GCC does not require the ',' between attribs in an attribute-list.
101///
102/// At the moment, I am not doing 2 token lookahead. I am also unaware of
103/// any attributes that don't work (based on my limited testing). Most
104/// attributes are very simple in practice. Until we find a bug, I don't see
105/// a pressing need to implement the 2 token lookahead.
106
107void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
108                                SourceLocation *endLoc,
109                                LateParsedAttrList *LateAttrs) {
110  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
111
112  while (Tok.is(tok::kw___attribute)) {
113    ConsumeToken();
114    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
115                         "attribute")) {
116      SkipUntil(tok::r_paren, true); // skip until ) or ;
117      return;
118    }
119    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
120      SkipUntil(tok::r_paren, true); // skip until ) or ;
121      return;
122    }
123    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
124    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
125           Tok.is(tok::comma)) {
126      if (Tok.is(tok::comma)) {
127        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
128        ConsumeToken();
129        continue;
130      }
131      // we have an identifier or declaration specifier (const, int, etc.)
132      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
133      SourceLocation AttrNameLoc = ConsumeToken();
134
135      if (Tok.is(tok::l_paren)) {
136        // handle "parameterized" attributes
137        if (LateAttrs && isAttributeLateParsed(*AttrName)) {
138          LateParsedAttribute *LA =
139            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
140          LateAttrs->push_back(LA);
141
142          // Attributes in a class are parsed at the end of the class, along
143          // with other late-parsed declarations.
144          if (!ClassStack.empty())
145            getCurrentClass().LateParsedDeclarations.push_back(LA);
146
147          // consume everything up to and including the matching right parens
148          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
149
150          Token Eof;
151          Eof.startToken();
152          Eof.setLocation(Tok.getLocation());
153          LA->Toks.push_back(Eof);
154        } else {
155          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
156        }
157      } else {
158        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
159                     0, SourceLocation(), 0, 0);
160      }
161    }
162    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
163      SkipUntil(tok::r_paren, false);
164    SourceLocation Loc = Tok.getLocation();
165    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
166      SkipUntil(tok::r_paren, false);
167    }
168    if (endLoc)
169      *endLoc = Loc;
170  }
171}
172
173
174/// Parse the arguments to a parameterized GNU attribute
175void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
176                                   SourceLocation AttrNameLoc,
177                                   ParsedAttributes &Attrs,
178                                   SourceLocation *EndLoc) {
179
180  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
181
182  // Availability attributes have their own grammar.
183  if (AttrName->isStr("availability")) {
184    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
185    return;
186  }
187  // Thread safety attributes fit into the FIXME case above, so we
188  // just parse the arguments as a list of expressions
189  if (IsThreadSafetyAttribute(AttrName->getName())) {
190    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
191    return;
192  }
193
194  ConsumeParen(); // ignore the left paren loc for now
195
196  IdentifierInfo *ParmName = 0;
197  SourceLocation ParmLoc;
198  bool BuiltinType = false;
199
200  switch (Tok.getKind()) {
201  case tok::kw_char:
202  case tok::kw_wchar_t:
203  case tok::kw_char16_t:
204  case tok::kw_char32_t:
205  case tok::kw_bool:
206  case tok::kw_short:
207  case tok::kw_int:
208  case tok::kw_long:
209  case tok::kw___int64:
210  case tok::kw___int128:
211  case tok::kw_signed:
212  case tok::kw_unsigned:
213  case tok::kw_float:
214  case tok::kw_double:
215  case tok::kw_void:
216  case tok::kw_typeof:
217    // __attribute__(( vec_type_hint(char) ))
218    // FIXME: Don't just discard the builtin type token.
219    ConsumeToken();
220    BuiltinType = true;
221    break;
222
223  case tok::identifier:
224    ParmName = Tok.getIdentifierInfo();
225    ParmLoc = ConsumeToken();
226    break;
227
228  default:
229    break;
230  }
231
232  ExprVector ArgExprs(Actions);
233
234  if (!BuiltinType &&
235      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
236    // Eat the comma.
237    if (ParmLoc.isValid())
238      ConsumeToken();
239
240    // Parse the non-empty comma-separated list of expressions.
241    while (1) {
242      ExprResult ArgExpr(ParseAssignmentExpression());
243      if (ArgExpr.isInvalid()) {
244        SkipUntil(tok::r_paren);
245        return;
246      }
247      ArgExprs.push_back(ArgExpr.release());
248      if (Tok.isNot(tok::comma))
249        break;
250      ConsumeToken(); // Eat the comma, move to the next argument
251    }
252  }
253  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
254    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
255                          tok::greater)) {
256      while (Tok.is(tok::identifier)) {
257        ConsumeToken();
258        if (Tok.is(tok::greater))
259          break;
260        if (Tok.is(tok::comma)) {
261          ConsumeToken();
262          continue;
263        }
264      }
265      if (Tok.isNot(tok::greater))
266        Diag(Tok, diag::err_iboutletcollection_with_protocol);
267      SkipUntil(tok::r_paren, false, true); // skip until ')'
268    }
269  }
270
271  SourceLocation RParen = Tok.getLocation();
272  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
273    AttributeList *attr =
274      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
275                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
276    if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection)
277      Diag(Tok, diag::err_iboutletcollection_builtintype);
278  }
279}
280
281
282/// ParseMicrosoftDeclSpec - Parse an __declspec construct
283///
284/// [MS] decl-specifier:
285///             __declspec ( extended-decl-modifier-seq )
286///
287/// [MS] extended-decl-modifier-seq:
288///             extended-decl-modifier[opt]
289///             extended-decl-modifier extended-decl-modifier-seq
290
291void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
292  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
293
294  ConsumeToken();
295  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
296                       "declspec")) {
297    SkipUntil(tok::r_paren, true); // skip until ) or ;
298    return;
299  }
300
301  while (Tok.getIdentifierInfo()) {
302    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
303    SourceLocation AttrNameLoc = ConsumeToken();
304
305    // FIXME: Remove this when we have proper __declspec(property()) support.
306    // Just skip everything inside property().
307    if (AttrName->getName() == "property") {
308      ConsumeParen();
309      SkipUntil(tok::r_paren);
310    }
311    if (Tok.is(tok::l_paren)) {
312      ConsumeParen();
313      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
314      // correctly.
315      ExprResult ArgExpr(ParseAssignmentExpression());
316      if (!ArgExpr.isInvalid()) {
317        Expr *ExprList = ArgExpr.take();
318        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
319                     SourceLocation(), &ExprList, 1, true);
320      }
321      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
322        SkipUntil(tok::r_paren, false);
323    } else {
324      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
325                   0, SourceLocation(), 0, 0, true);
326    }
327  }
328  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
329    SkipUntil(tok::r_paren, false);
330  return;
331}
332
333void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
334  // Treat these like attributes
335  // FIXME: Allow Sema to distinguish between these and real attributes!
336  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
337         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
338         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
339         Tok.is(tok::kw___ptr32) ||
340         Tok.is(tok::kw___unaligned)) {
341    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
342    SourceLocation AttrNameLoc = ConsumeToken();
343    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
344        Tok.is(tok::kw___ptr32))
345      // FIXME: Support these properly!
346      continue;
347    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
348                 SourceLocation(), 0, 0, true);
349  }
350}
351
352void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
353  // Treat these like attributes
354  while (Tok.is(tok::kw___pascal)) {
355    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
356    SourceLocation AttrNameLoc = ConsumeToken();
357    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
358                 SourceLocation(), 0, 0, true);
359  }
360}
361
362void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
363  // Treat these like attributes
364  while (Tok.is(tok::kw___kernel)) {
365    SourceLocation AttrNameLoc = ConsumeToken();
366    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
367                 AttrNameLoc, 0, AttrNameLoc, 0,
368                 SourceLocation(), 0, 0, false);
369  }
370}
371
372void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
373  SourceLocation Loc = Tok.getLocation();
374  switch(Tok.getKind()) {
375    // OpenCL qualifiers:
376    case tok::kw___private:
377    case tok::kw_private:
378      DS.getAttributes().addNewInteger(
379          Actions.getASTContext(),
380          PP.getIdentifierInfo("address_space"), Loc, 0);
381      break;
382
383    case tok::kw___global:
384      DS.getAttributes().addNewInteger(
385          Actions.getASTContext(),
386          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
387      break;
388
389    case tok::kw___local:
390      DS.getAttributes().addNewInteger(
391          Actions.getASTContext(),
392          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
393      break;
394
395    case tok::kw___constant:
396      DS.getAttributes().addNewInteger(
397          Actions.getASTContext(),
398          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
399      break;
400
401    case tok::kw___read_only:
402      DS.getAttributes().addNewInteger(
403          Actions.getASTContext(),
404          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
405      break;
406
407    case tok::kw___write_only:
408      DS.getAttributes().addNewInteger(
409          Actions.getASTContext(),
410          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
411      break;
412
413    case tok::kw___read_write:
414      DS.getAttributes().addNewInteger(
415          Actions.getASTContext(),
416          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
417      break;
418    default: break;
419  }
420}
421
422/// \brief Parse a version number.
423///
424/// version:
425///   simple-integer
426///   simple-integer ',' simple-integer
427///   simple-integer ',' simple-integer ',' simple-integer
428VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
429  Range = Tok.getLocation();
430
431  if (!Tok.is(tok::numeric_constant)) {
432    Diag(Tok, diag::err_expected_version);
433    SkipUntil(tok::comma, tok::r_paren, true, true, true);
434    return VersionTuple();
435  }
436
437  // Parse the major (and possibly minor and subminor) versions, which
438  // are stored in the numeric constant. We utilize a quirk of the
439  // lexer, which is that it handles something like 1.2.3 as a single
440  // numeric constant, rather than two separate tokens.
441  SmallString<512> Buffer;
442  Buffer.resize(Tok.getLength()+1);
443  const char *ThisTokBegin = &Buffer[0];
444
445  // Get the spelling of the token, which eliminates trigraphs, etc.
446  bool Invalid = false;
447  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
448  if (Invalid)
449    return VersionTuple();
450
451  // Parse the major version.
452  unsigned AfterMajor = 0;
453  unsigned Major = 0;
454  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
455    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
456    ++AfterMajor;
457  }
458
459  if (AfterMajor == 0) {
460    Diag(Tok, diag::err_expected_version);
461    SkipUntil(tok::comma, tok::r_paren, true, true, true);
462    return VersionTuple();
463  }
464
465  if (AfterMajor == ActualLength) {
466    ConsumeToken();
467
468    // We only had a single version component.
469    if (Major == 0) {
470      Diag(Tok, diag::err_zero_version);
471      return VersionTuple();
472    }
473
474    return VersionTuple(Major);
475  }
476
477  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
478    Diag(Tok, diag::err_expected_version);
479    SkipUntil(tok::comma, tok::r_paren, true, true, true);
480    return VersionTuple();
481  }
482
483  // Parse the minor version.
484  unsigned AfterMinor = AfterMajor + 1;
485  unsigned Minor = 0;
486  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
487    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
488    ++AfterMinor;
489  }
490
491  if (AfterMinor == ActualLength) {
492    ConsumeToken();
493
494    // We had major.minor.
495    if (Major == 0 && Minor == 0) {
496      Diag(Tok, diag::err_zero_version);
497      return VersionTuple();
498    }
499
500    return VersionTuple(Major, Minor);
501  }
502
503  // If what follows is not a '.', we have a problem.
504  if (ThisTokBegin[AfterMinor] != '.') {
505    Diag(Tok, diag::err_expected_version);
506    SkipUntil(tok::comma, tok::r_paren, true, true, true);
507    return VersionTuple();
508  }
509
510  // Parse the subminor version.
511  unsigned AfterSubminor = AfterMinor + 1;
512  unsigned Subminor = 0;
513  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
514    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
515    ++AfterSubminor;
516  }
517
518  if (AfterSubminor != ActualLength) {
519    Diag(Tok, diag::err_expected_version);
520    SkipUntil(tok::comma, tok::r_paren, true, true, true);
521    return VersionTuple();
522  }
523  ConsumeToken();
524  return VersionTuple(Major, Minor, Subminor);
525}
526
527/// \brief Parse the contents of the "availability" attribute.
528///
529/// availability-attribute:
530///   'availability' '(' platform ',' version-arg-list, opt-message')'
531///
532/// platform:
533///   identifier
534///
535/// version-arg-list:
536///   version-arg
537///   version-arg ',' version-arg-list
538///
539/// version-arg:
540///   'introduced' '=' version
541///   'deprecated' '=' version
542///   'obsoleted' = version
543///   'unavailable'
544/// opt-message:
545///   'message' '=' <string>
546void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
547                                        SourceLocation AvailabilityLoc,
548                                        ParsedAttributes &attrs,
549                                        SourceLocation *endLoc) {
550  SourceLocation PlatformLoc;
551  IdentifierInfo *Platform = 0;
552
553  enum { Introduced, Deprecated, Obsoleted, Unknown };
554  AvailabilityChange Changes[Unknown];
555  ExprResult MessageExpr;
556
557  // Opening '('.
558  BalancedDelimiterTracker T(*this, tok::l_paren);
559  if (T.consumeOpen()) {
560    Diag(Tok, diag::err_expected_lparen);
561    return;
562  }
563
564  // Parse the platform name,
565  if (Tok.isNot(tok::identifier)) {
566    Diag(Tok, diag::err_availability_expected_platform);
567    SkipUntil(tok::r_paren);
568    return;
569  }
570  Platform = Tok.getIdentifierInfo();
571  PlatformLoc = ConsumeToken();
572
573  // Parse the ',' following the platform name.
574  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
575    return;
576
577  // If we haven't grabbed the pointers for the identifiers
578  // "introduced", "deprecated", and "obsoleted", do so now.
579  if (!Ident_introduced) {
580    Ident_introduced = PP.getIdentifierInfo("introduced");
581    Ident_deprecated = PP.getIdentifierInfo("deprecated");
582    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
583    Ident_unavailable = PP.getIdentifierInfo("unavailable");
584    Ident_message = PP.getIdentifierInfo("message");
585  }
586
587  // Parse the set of introductions/deprecations/removals.
588  SourceLocation UnavailableLoc;
589  do {
590    if (Tok.isNot(tok::identifier)) {
591      Diag(Tok, diag::err_availability_expected_change);
592      SkipUntil(tok::r_paren);
593      return;
594    }
595    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
596    SourceLocation KeywordLoc = ConsumeToken();
597
598    if (Keyword == Ident_unavailable) {
599      if (UnavailableLoc.isValid()) {
600        Diag(KeywordLoc, diag::err_availability_redundant)
601          << Keyword << SourceRange(UnavailableLoc);
602      }
603      UnavailableLoc = KeywordLoc;
604
605      if (Tok.isNot(tok::comma))
606        break;
607
608      ConsumeToken();
609      continue;
610    }
611
612    if (Tok.isNot(tok::equal)) {
613      Diag(Tok, diag::err_expected_equal_after)
614        << Keyword;
615      SkipUntil(tok::r_paren);
616      return;
617    }
618    ConsumeToken();
619    if (Keyword == Ident_message) {
620      if (!isTokenStringLiteral()) {
621        Diag(Tok, diag::err_expected_string_literal);
622        SkipUntil(tok::r_paren);
623        return;
624      }
625      MessageExpr = ParseStringLiteralExpression();
626      break;
627    }
628
629    SourceRange VersionRange;
630    VersionTuple Version = ParseVersionTuple(VersionRange);
631
632    if (Version.empty()) {
633      SkipUntil(tok::r_paren);
634      return;
635    }
636
637    unsigned Index;
638    if (Keyword == Ident_introduced)
639      Index = Introduced;
640    else if (Keyword == Ident_deprecated)
641      Index = Deprecated;
642    else if (Keyword == Ident_obsoleted)
643      Index = Obsoleted;
644    else
645      Index = Unknown;
646
647    if (Index < Unknown) {
648      if (!Changes[Index].KeywordLoc.isInvalid()) {
649        Diag(KeywordLoc, diag::err_availability_redundant)
650          << Keyword
651          << SourceRange(Changes[Index].KeywordLoc,
652                         Changes[Index].VersionRange.getEnd());
653      }
654
655      Changes[Index].KeywordLoc = KeywordLoc;
656      Changes[Index].Version = Version;
657      Changes[Index].VersionRange = VersionRange;
658    } else {
659      Diag(KeywordLoc, diag::err_availability_unknown_change)
660        << Keyword << VersionRange;
661    }
662
663    if (Tok.isNot(tok::comma))
664      break;
665
666    ConsumeToken();
667  } while (true);
668
669  // Closing ')'.
670  if (T.consumeClose())
671    return;
672
673  if (endLoc)
674    *endLoc = T.getCloseLocation();
675
676  // The 'unavailable' availability cannot be combined with any other
677  // availability changes. Make sure that hasn't happened.
678  if (UnavailableLoc.isValid()) {
679    bool Complained = false;
680    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
681      if (Changes[Index].KeywordLoc.isValid()) {
682        if (!Complained) {
683          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
684            << SourceRange(Changes[Index].KeywordLoc,
685                           Changes[Index].VersionRange.getEnd());
686          Complained = true;
687        }
688
689        // Clear out the availability.
690        Changes[Index] = AvailabilityChange();
691      }
692    }
693  }
694
695  // Record this attribute
696  attrs.addNew(&Availability,
697               SourceRange(AvailabilityLoc, T.getCloseLocation()),
698               0, AvailabilityLoc,
699               Platform, PlatformLoc,
700               Changes[Introduced],
701               Changes[Deprecated],
702               Changes[Obsoleted],
703               UnavailableLoc, MessageExpr.take(),
704               false, false);
705}
706
707
708// Late Parsed Attributes:
709// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
710
711void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
712
713void Parser::LateParsedClass::ParseLexedAttributes() {
714  Self->ParseLexedAttributes(*Class);
715}
716
717void Parser::LateParsedAttribute::ParseLexedAttributes() {
718  Self->ParseLexedAttribute(*this, true, false);
719}
720
721/// Wrapper class which calls ParseLexedAttribute, after setting up the
722/// scope appropriately.
723void Parser::ParseLexedAttributes(ParsingClass &Class) {
724  // Deal with templates
725  // FIXME: Test cases to make sure this does the right thing for templates.
726  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
727  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
728                                HasTemplateScope);
729  if (HasTemplateScope)
730    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
731
732  // Set or update the scope flags to include Scope::ThisScope.
733  bool AlreadyHasClassScope = Class.TopLevelClass;
734  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
735  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
736  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
737
738  // Enter the scope of nested classes
739  if (!AlreadyHasClassScope)
740    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
741                                                Class.TagOrTemplate);
742
743  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
744    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
745  }
746
747  if (!AlreadyHasClassScope)
748    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
749                                                 Class.TagOrTemplate);
750}
751
752
753/// \brief Parse all attributes in LAs, and attach them to Decl D.
754void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
755                                     bool EnterScope, bool OnDefinition) {
756  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
757    LAs[i]->addDecl(D);
758    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
759  }
760  LAs.clear();
761}
762
763
764/// \brief Finish parsing an attribute for which parsing was delayed.
765/// This will be called at the end of parsing a class declaration
766/// for each LateParsedAttribute. We consume the saved tokens and
767/// create an attribute with the arguments filled in. We add this
768/// to the Attribute list for the decl.
769void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
770                                 bool EnterScope, bool OnDefinition) {
771  // Save the current token position.
772  SourceLocation OrigLoc = Tok.getLocation();
773
774  // Append the current token at the end of the new token stream so that it
775  // doesn't get lost.
776  LA.Toks.push_back(Tok);
777  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
778  // Consume the previously pushed token.
779  ConsumeAnyToken();
780
781  if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
782    Diag(Tok, diag::warn_attribute_on_function_definition)
783      << LA.AttrName.getName();
784  }
785
786  ParsedAttributes Attrs(AttrFactory);
787  SourceLocation endLoc;
788
789  if (LA.Decls.size() == 1) {
790    Decl *D = LA.Decls[0];
791
792    // If the Decl is templatized, add template parameters to scope.
793    bool HasTemplateScope = EnterScope && D->isTemplateDecl();
794    ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
795    if (HasTemplateScope)
796      Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
797
798    // If the Decl is on a function, add function parameters to the scope.
799    bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
800    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
801    if (HasFunctionScope)
802      Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
803
804    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
805
806    if (HasFunctionScope) {
807      Actions.ActOnExitFunctionContext();
808      FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
809    }
810    if (HasTemplateScope) {
811      TempScope.Exit();
812    }
813  } else if (LA.Decls.size() > 0) {
814    // If there are multiple decls, then the decl cannot be within the
815    // function scope.
816    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
817  } else {
818    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
819  }
820
821  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
822    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
823  }
824
825  if (Tok.getLocation() != OrigLoc) {
826    // Due to a parsing error, we either went over the cached tokens or
827    // there are still cached tokens left, so we skip the leftover tokens.
828    // Since this is an uncommon situation that should be avoided, use the
829    // expensive isBeforeInTranslationUnit call.
830    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
831                                                        OrigLoc))
832    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
833      ConsumeAnyToken();
834  }
835}
836
837/// \brief Wrapper around a case statement checking if AttrName is
838/// one of the thread safety attributes
839bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
840  return llvm::StringSwitch<bool>(AttrName)
841      .Case("guarded_by", true)
842      .Case("guarded_var", true)
843      .Case("pt_guarded_by", true)
844      .Case("pt_guarded_var", true)
845      .Case("lockable", true)
846      .Case("scoped_lockable", true)
847      .Case("no_thread_safety_analysis", true)
848      .Case("acquired_after", true)
849      .Case("acquired_before", true)
850      .Case("exclusive_lock_function", true)
851      .Case("shared_lock_function", true)
852      .Case("exclusive_trylock_function", true)
853      .Case("shared_trylock_function", true)
854      .Case("unlock_function", true)
855      .Case("lock_returned", true)
856      .Case("locks_excluded", true)
857      .Case("exclusive_locks_required", true)
858      .Case("shared_locks_required", true)
859      .Default(false);
860}
861
862/// \brief Parse the contents of thread safety attributes. These
863/// should always be parsed as an expression list.
864///
865/// We need to special case the parsing due to the fact that if the first token
866/// of the first argument is an identifier, the main parse loop will store
867/// that token as a "parameter" and the rest of
868/// the arguments will be added to a list of "arguments". However,
869/// subsequent tokens in the first argument are lost. We instead parse each
870/// argument as an expression and add all arguments to the list of "arguments".
871/// In future, we will take advantage of this special case to also
872/// deal with some argument scoping issues here (for example, referring to a
873/// function parameter in the attribute on that function).
874void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
875                                        SourceLocation AttrNameLoc,
876                                        ParsedAttributes &Attrs,
877                                        SourceLocation *EndLoc) {
878  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
879
880  BalancedDelimiterTracker T(*this, tok::l_paren);
881  T.consumeOpen();
882
883  ExprVector ArgExprs(Actions);
884  bool ArgExprsOk = true;
885
886  // now parse the list of expressions
887  while (Tok.isNot(tok::r_paren)) {
888    ExprResult ArgExpr(ParseAssignmentExpression());
889    if (ArgExpr.isInvalid()) {
890      ArgExprsOk = false;
891      T.consumeClose();
892      break;
893    } else {
894      ArgExprs.push_back(ArgExpr.release());
895    }
896    if (Tok.isNot(tok::comma))
897      break;
898    ConsumeToken(); // Eat the comma, move to the next argument
899  }
900  // Match the ')'.
901  if (ArgExprsOk && !T.consumeClose()) {
902    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
903                 ArgExprs.take(), ArgExprs.size());
904  }
905  if (EndLoc)
906    *EndLoc = T.getCloseLocation();
907}
908
909/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
910/// of a C++11 attribute-specifier in a location where an attribute is not
911/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
912/// situation.
913///
914/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
915/// this doesn't appear to actually be an attribute-specifier, and the caller
916/// should try to parse it.
917bool Parser::DiagnoseProhibitedCXX11Attribute() {
918  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
919
920  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
921  case CAK_NotAttributeSpecifier:
922    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
923    return false;
924
925  case CAK_InvalidAttributeSpecifier:
926    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
927    return false;
928
929  case CAK_AttributeSpecifier:
930    // Parse and discard the attributes.
931    SourceLocation BeginLoc = ConsumeBracket();
932    ConsumeBracket();
933    SkipUntil(tok::r_square, /*StopAtSemi*/ false);
934    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
935    SourceLocation EndLoc = ConsumeBracket();
936    Diag(BeginLoc, diag::err_attributes_not_allowed)
937      << SourceRange(BeginLoc, EndLoc);
938    return true;
939  }
940}
941
942void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
943  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
944    << attrs.Range;
945}
946
947/// ParseDeclaration - Parse a full 'declaration', which consists of
948/// declaration-specifiers, some number of declarators, and a semicolon.
949/// 'Context' should be a Declarator::TheContext value.  This returns the
950/// location of the semicolon in DeclEnd.
951///
952///       declaration: [C99 6.7]
953///         block-declaration ->
954///           simple-declaration
955///           others                   [FIXME]
956/// [C++]   template-declaration
957/// [C++]   namespace-definition
958/// [C++]   using-directive
959/// [C++]   using-declaration
960/// [C++0x/C11] static_assert-declaration
961///         others... [FIXME]
962///
963Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
964                                                unsigned Context,
965                                                SourceLocation &DeclEnd,
966                                          ParsedAttributesWithRange &attrs) {
967  ParenBraceBracketBalancer BalancerRAIIObj(*this);
968  // Must temporarily exit the objective-c container scope for
969  // parsing c none objective-c decls.
970  ObjCDeclContextSwitch ObjCDC(*this);
971
972  Decl *SingleDecl = 0;
973  Decl *OwnedType = 0;
974  switch (Tok.getKind()) {
975  case tok::kw_template:
976  case tok::kw_export:
977    ProhibitAttributes(attrs);
978    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
979    break;
980  case tok::kw_inline:
981    // Could be the start of an inline namespace. Allowed as an ext in C++03.
982    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
983      ProhibitAttributes(attrs);
984      SourceLocation InlineLoc = ConsumeToken();
985      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
986      break;
987    }
988    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
989                                  true);
990  case tok::kw_namespace:
991    ProhibitAttributes(attrs);
992    SingleDecl = ParseNamespace(Context, DeclEnd);
993    break;
994  case tok::kw_using:
995    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
996                                                  DeclEnd, attrs, &OwnedType);
997    break;
998  case tok::kw_static_assert:
999  case tok::kw__Static_assert:
1000    ProhibitAttributes(attrs);
1001    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1002    break;
1003  default:
1004    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
1005  }
1006
1007  // This routine returns a DeclGroup, if the thing we parsed only contains a
1008  // single decl, convert it now. Alias declarations can also declare a type;
1009  // include that too if it is present.
1010  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1011}
1012
1013///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1014///         declaration-specifiers init-declarator-list[opt] ';'
1015///[C90/C++]init-declarator-list ';'                             [TODO]
1016/// [OMP]   threadprivate-directive                              [TODO]
1017///
1018///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
1019///         attribute-specifier-seq[opt] type-specifier-seq declarator
1020///
1021/// If RequireSemi is false, this does not check for a ';' at the end of the
1022/// declaration.  If it is true, it checks for and eats it.
1023///
1024/// If FRI is non-null, we might be parsing a for-range-declaration instead
1025/// of a simple-declaration. If we find that we are, we also parse the
1026/// for-range-initializer, and place it here.
1027Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
1028                                                      unsigned Context,
1029                                                      SourceLocation &DeclEnd,
1030                                                      ParsedAttributes &attrs,
1031                                                      bool RequireSemi,
1032                                                      ForRangeInit *FRI) {
1033  // Parse the common declaration-specifiers piece.
1034  ParsingDeclSpec DS(*this);
1035  DS.takeAttributesFrom(attrs);
1036
1037  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
1038                             getDeclSpecContextFromDeclaratorContext(Context));
1039
1040  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1041  // declaration-specifiers init-declarator-list[opt] ';'
1042  if (Tok.is(tok::semi)) {
1043    if (RequireSemi) ConsumeToken();
1044    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1045                                                       DS);
1046    DS.complete(TheDecl);
1047    return Actions.ConvertDeclToDeclGroup(TheDecl);
1048  }
1049
1050  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1051}
1052
1053/// Returns true if this might be the start of a declarator, or a common typo
1054/// for a declarator.
1055bool Parser::MightBeDeclarator(unsigned Context) {
1056  switch (Tok.getKind()) {
1057  case tok::annot_cxxscope:
1058  case tok::annot_template_id:
1059  case tok::caret:
1060  case tok::code_completion:
1061  case tok::coloncolon:
1062  case tok::ellipsis:
1063  case tok::kw___attribute:
1064  case tok::kw_operator:
1065  case tok::l_paren:
1066  case tok::star:
1067    return true;
1068
1069  case tok::amp:
1070  case tok::ampamp:
1071    return getLangOpts().CPlusPlus;
1072
1073  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1074    return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x &&
1075           NextToken().is(tok::l_square);
1076
1077  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1078    return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1079
1080  case tok::identifier:
1081    switch (NextToken().getKind()) {
1082    case tok::code_completion:
1083    case tok::coloncolon:
1084    case tok::comma:
1085    case tok::equal:
1086    case tok::equalequal: // Might be a typo for '='.
1087    case tok::kw_alignas:
1088    case tok::kw_asm:
1089    case tok::kw___attribute:
1090    case tok::l_brace:
1091    case tok::l_paren:
1092    case tok::l_square:
1093    case tok::less:
1094    case tok::r_brace:
1095    case tok::r_paren:
1096    case tok::r_square:
1097    case tok::semi:
1098      return true;
1099
1100    case tok::colon:
1101      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1102      // and in block scope it's probably a label. Inside a class definition,
1103      // this is a bit-field.
1104      return Context == Declarator::MemberContext ||
1105             (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1106
1107    case tok::identifier: // Possible virt-specifier.
1108      return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
1109
1110    default:
1111      return false;
1112    }
1113
1114  default:
1115    return false;
1116  }
1117}
1118
1119/// ParseDeclGroup - Having concluded that this is either a function
1120/// definition or a group of object declarations, actually parse the
1121/// result.
1122Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1123                                              unsigned Context,
1124                                              bool AllowFunctionDefinitions,
1125                                              SourceLocation *DeclEnd,
1126                                              ForRangeInit *FRI) {
1127  // Parse the first declarator.
1128  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1129  ParseDeclarator(D);
1130
1131  // Bail out if the first declarator didn't seem well-formed.
1132  if (!D.hasName() && !D.mayOmitIdentifier()) {
1133    // Skip until ; or }.
1134    SkipUntil(tok::r_brace, true, true);
1135    if (Tok.is(tok::semi))
1136      ConsumeToken();
1137    return DeclGroupPtrTy();
1138  }
1139
1140  // Save late-parsed attributes for now; they need to be parsed in the
1141  // appropriate function scope after the function Decl has been constructed.
1142  LateParsedAttrList LateParsedAttrs;
1143  if (D.isFunctionDeclarator())
1144    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1145
1146  // Check to see if we have a function *definition* which must have a body.
1147  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1148      // Look at the next token to make sure that this isn't a function
1149      // declaration.  We have to check this because __attribute__ might be the
1150      // start of a function definition in GCC-extended K&R C.
1151      !isDeclarationAfterDeclarator()) {
1152
1153    if (isStartOfFunctionDefinition(D)) {
1154      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1155        Diag(Tok, diag::err_function_declared_typedef);
1156
1157        // Recover by treating the 'typedef' as spurious.
1158        DS.ClearStorageClassSpecs();
1159      }
1160
1161      Decl *TheDecl =
1162        ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1163      return Actions.ConvertDeclToDeclGroup(TheDecl);
1164    }
1165
1166    if (isDeclarationSpecifier()) {
1167      // If there is an invalid declaration specifier right after the function
1168      // prototype, then we must be in a missing semicolon case where this isn't
1169      // actually a body.  Just fall through into the code that handles it as a
1170      // prototype, and let the top-level code handle the erroneous declspec
1171      // where it would otherwise expect a comma or semicolon.
1172    } else {
1173      Diag(Tok, diag::err_expected_fn_body);
1174      SkipUntil(tok::semi);
1175      return DeclGroupPtrTy();
1176    }
1177  }
1178
1179  if (ParseAsmAttributesAfterDeclarator(D))
1180    return DeclGroupPtrTy();
1181
1182  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1183  // must parse and analyze the for-range-initializer before the declaration is
1184  // analyzed.
1185  if (FRI && Tok.is(tok::colon)) {
1186    FRI->ColonLoc = ConsumeToken();
1187    if (Tok.is(tok::l_brace))
1188      FRI->RangeExpr = ParseBraceInitializer();
1189    else
1190      FRI->RangeExpr = ParseExpression();
1191    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1192    Actions.ActOnCXXForRangeDecl(ThisDecl);
1193    Actions.FinalizeDeclaration(ThisDecl);
1194    D.complete(ThisDecl);
1195    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1196  }
1197
1198  SmallVector<Decl *, 8> DeclsInGroup;
1199  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1200  if (LateParsedAttrs.size() > 0)
1201    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1202  D.complete(FirstDecl);
1203  if (FirstDecl)
1204    DeclsInGroup.push_back(FirstDecl);
1205
1206  bool ExpectSemi = Context != Declarator::ForContext;
1207
1208  // If we don't have a comma, it is either the end of the list (a ';') or an
1209  // error, bail out.
1210  while (Tok.is(tok::comma)) {
1211    SourceLocation CommaLoc = ConsumeToken();
1212
1213    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1214      // This comma was followed by a line-break and something which can't be
1215      // the start of a declarator. The comma was probably a typo for a
1216      // semicolon.
1217      Diag(CommaLoc, diag::err_expected_semi_declaration)
1218        << FixItHint::CreateReplacement(CommaLoc, ";");
1219      ExpectSemi = false;
1220      break;
1221    }
1222
1223    // Parse the next declarator.
1224    D.clear();
1225    D.setCommaLoc(CommaLoc);
1226
1227    // Accept attributes in an init-declarator.  In the first declarator in a
1228    // declaration, these would be part of the declspec.  In subsequent
1229    // declarators, they become part of the declarator itself, so that they
1230    // don't apply to declarators after *this* one.  Examples:
1231    //    short __attribute__((common)) var;    -> declspec
1232    //    short var __attribute__((common));    -> declarator
1233    //    short x, __attribute__((common)) var;    -> declarator
1234    MaybeParseGNUAttributes(D);
1235
1236    ParseDeclarator(D);
1237    if (!D.isInvalidType()) {
1238      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1239      D.complete(ThisDecl);
1240      if (ThisDecl)
1241        DeclsInGroup.push_back(ThisDecl);
1242    }
1243  }
1244
1245  if (DeclEnd)
1246    *DeclEnd = Tok.getLocation();
1247
1248  if (ExpectSemi &&
1249      ExpectAndConsume(tok::semi,
1250                       Context == Declarator::FileContext
1251                         ? diag::err_invalid_token_after_toplevel_declarator
1252                         : diag::err_expected_semi_declaration)) {
1253    // Okay, there was no semicolon and one was expected.  If we see a
1254    // declaration specifier, just assume it was missing and continue parsing.
1255    // Otherwise things are very confused and we skip to recover.
1256    if (!isDeclarationSpecifier()) {
1257      SkipUntil(tok::r_brace, true, true);
1258      if (Tok.is(tok::semi))
1259        ConsumeToken();
1260    }
1261  }
1262
1263  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1264                                         DeclsInGroup.data(),
1265                                         DeclsInGroup.size());
1266}
1267
1268/// Parse an optional simple-asm-expr and attributes, and attach them to a
1269/// declarator. Returns true on an error.
1270bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1271  // If a simple-asm-expr is present, parse it.
1272  if (Tok.is(tok::kw_asm)) {
1273    SourceLocation Loc;
1274    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1275    if (AsmLabel.isInvalid()) {
1276      SkipUntil(tok::semi, true, true);
1277      return true;
1278    }
1279
1280    D.setAsmLabel(AsmLabel.release());
1281    D.SetRangeEnd(Loc);
1282  }
1283
1284  MaybeParseGNUAttributes(D);
1285  return false;
1286}
1287
1288/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1289/// declarator'. This method parses the remainder of the declaration
1290/// (including any attributes or initializer, among other things) and
1291/// finalizes the declaration.
1292///
1293///       init-declarator: [C99 6.7]
1294///         declarator
1295///         declarator '=' initializer
1296/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1297/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1298/// [C++]   declarator initializer[opt]
1299///
1300/// [C++] initializer:
1301/// [C++]   '=' initializer-clause
1302/// [C++]   '(' expression-list ')'
1303/// [C++0x] '=' 'default'                                                [TODO]
1304/// [C++0x] '=' 'delete'
1305/// [C++0x] braced-init-list
1306///
1307/// According to the standard grammar, =default and =delete are function
1308/// definitions, but that definitely doesn't fit with the parser here.
1309///
1310Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1311                                     const ParsedTemplateInfo &TemplateInfo) {
1312  if (ParseAsmAttributesAfterDeclarator(D))
1313    return 0;
1314
1315  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1316}
1317
1318Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1319                                     const ParsedTemplateInfo &TemplateInfo) {
1320  // Inform the current actions module that we just parsed this declarator.
1321  Decl *ThisDecl = 0;
1322  switch (TemplateInfo.Kind) {
1323  case ParsedTemplateInfo::NonTemplate:
1324    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1325    break;
1326
1327  case ParsedTemplateInfo::Template:
1328  case ParsedTemplateInfo::ExplicitSpecialization:
1329    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1330                             MultiTemplateParamsArg(Actions,
1331                                          TemplateInfo.TemplateParams->data(),
1332                                          TemplateInfo.TemplateParams->size()),
1333                                               D);
1334    break;
1335
1336  case ParsedTemplateInfo::ExplicitInstantiation: {
1337    DeclResult ThisRes
1338      = Actions.ActOnExplicitInstantiation(getCurScope(),
1339                                           TemplateInfo.ExternLoc,
1340                                           TemplateInfo.TemplateLoc,
1341                                           D);
1342    if (ThisRes.isInvalid()) {
1343      SkipUntil(tok::semi, true, true);
1344      return 0;
1345    }
1346
1347    ThisDecl = ThisRes.get();
1348    break;
1349    }
1350  }
1351
1352  bool TypeContainsAuto =
1353    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1354
1355  // Parse declarator '=' initializer.
1356  // If a '==' or '+=' is found, suggest a fixit to '='.
1357  if (isTokenEqualOrEqualTypo()) {
1358    ConsumeToken();
1359    if (Tok.is(tok::kw_delete)) {
1360      if (D.isFunctionDeclarator())
1361        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1362          << 1 /* delete */;
1363      else
1364        Diag(ConsumeToken(), diag::err_deleted_non_function);
1365    } else if (Tok.is(tok::kw_default)) {
1366      if (D.isFunctionDeclarator())
1367        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1368          << 0 /* default */;
1369      else
1370        Diag(ConsumeToken(), diag::err_default_special_members);
1371    } else {
1372      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1373        EnterScope(0);
1374        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1375      }
1376
1377      if (Tok.is(tok::code_completion)) {
1378        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1379        cutOffParsing();
1380        return 0;
1381      }
1382
1383      ExprResult Init(ParseInitializer());
1384
1385      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1386        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1387        ExitScope();
1388      }
1389
1390      if (Init.isInvalid()) {
1391        SkipUntil(tok::comma, true, true);
1392        Actions.ActOnInitializerError(ThisDecl);
1393      } else
1394        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1395                                     /*DirectInit=*/false, TypeContainsAuto);
1396    }
1397  } else if (Tok.is(tok::l_paren)) {
1398    // Parse C++ direct initializer: '(' expression-list ')'
1399    BalancedDelimiterTracker T(*this, tok::l_paren);
1400    T.consumeOpen();
1401
1402    ExprVector Exprs(Actions);
1403    CommaLocsTy CommaLocs;
1404
1405    if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1406      EnterScope(0);
1407      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1408    }
1409
1410    if (ParseExpressionList(Exprs, CommaLocs)) {
1411      SkipUntil(tok::r_paren);
1412
1413      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1414        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1415        ExitScope();
1416      }
1417    } else {
1418      // Match the ')'.
1419      T.consumeClose();
1420
1421      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1422             "Unexpected number of commas!");
1423
1424      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1425        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1426        ExitScope();
1427      }
1428
1429      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1430                                                          T.getCloseLocation(),
1431                                                          move_arg(Exprs));
1432      Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
1433                                   /*DirectInit=*/true, TypeContainsAuto);
1434    }
1435  } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1436    // Parse C++0x braced-init-list.
1437    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1438
1439    if (D.getCXXScopeSpec().isSet()) {
1440      EnterScope(0);
1441      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1442    }
1443
1444    ExprResult Init(ParseBraceInitializer());
1445
1446    if (D.getCXXScopeSpec().isSet()) {
1447      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1448      ExitScope();
1449    }
1450
1451    if (Init.isInvalid()) {
1452      Actions.ActOnInitializerError(ThisDecl);
1453    } else
1454      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1455                                   /*DirectInit=*/true, TypeContainsAuto);
1456
1457  } else {
1458    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1459  }
1460
1461  Actions.FinalizeDeclaration(ThisDecl);
1462
1463  return ThisDecl;
1464}
1465
1466/// ParseSpecifierQualifierList
1467///        specifier-qualifier-list:
1468///          type-specifier specifier-qualifier-list[opt]
1469///          type-qualifier specifier-qualifier-list[opt]
1470/// [GNU]    attributes     specifier-qualifier-list[opt]
1471///
1472void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1473                                         DeclSpecContext DSC) {
1474  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1475  /// parse declaration-specifiers and complain about extra stuff.
1476  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1477  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1478
1479  // Validate declspec for type-name.
1480  unsigned Specs = DS.getParsedSpecifiers();
1481  if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) {
1482    Diag(Tok, diag::err_expected_type);
1483    DS.SetTypeSpecError();
1484  } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1485             !DS.hasAttributes()) {
1486    Diag(Tok, diag::err_typename_requires_specqual);
1487    if (!DS.hasTypeSpecifier())
1488      DS.SetTypeSpecError();
1489  }
1490
1491  // Issue diagnostic and remove storage class if present.
1492  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1493    if (DS.getStorageClassSpecLoc().isValid())
1494      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1495    else
1496      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1497    DS.ClearStorageClassSpecs();
1498  }
1499
1500  // Issue diagnostic and remove function specfier if present.
1501  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1502    if (DS.isInlineSpecified())
1503      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1504    if (DS.isVirtualSpecified())
1505      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1506    if (DS.isExplicitSpecified())
1507      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1508    DS.ClearFunctionSpecs();
1509  }
1510
1511  // Issue diagnostic and remove constexpr specfier if present.
1512  if (DS.isConstexprSpecified()) {
1513    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1514    DS.ClearConstexprSpec();
1515  }
1516}
1517
1518/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1519/// specified token is valid after the identifier in a declarator which
1520/// immediately follows the declspec.  For example, these things are valid:
1521///
1522///      int x   [             4];         // direct-declarator
1523///      int x   (             int y);     // direct-declarator
1524///  int(int x   )                         // direct-declarator
1525///      int x   ;                         // simple-declaration
1526///      int x   =             17;         // init-declarator-list
1527///      int x   ,             y;          // init-declarator-list
1528///      int x   __asm__       ("foo");    // init-declarator-list
1529///      int x   :             4;          // struct-declarator
1530///      int x   {             5};         // C++'0x unified initializers
1531///
1532/// This is not, because 'x' does not immediately follow the declspec (though
1533/// ')' happens to be valid anyway).
1534///    int (x)
1535///
1536static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1537  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1538         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1539         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1540}
1541
1542
1543/// ParseImplicitInt - This method is called when we have an non-typename
1544/// identifier in a declspec (which normally terminates the decl spec) when
1545/// the declspec has no type specifier.  In this case, the declspec is either
1546/// malformed or is "implicit int" (in K&R and C89).
1547///
1548/// This method handles diagnosing this prettily and returns false if the
1549/// declspec is done being processed.  If it recovers and thinks there may be
1550/// other pieces of declspec after it, it returns true.
1551///
1552bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1553                              const ParsedTemplateInfo &TemplateInfo,
1554                              AccessSpecifier AS, DeclSpecContext DSC) {
1555  assert(Tok.is(tok::identifier) && "should have identifier");
1556
1557  SourceLocation Loc = Tok.getLocation();
1558  // If we see an identifier that is not a type name, we normally would
1559  // parse it as the identifer being declared.  However, when a typename
1560  // is typo'd or the definition is not included, this will incorrectly
1561  // parse the typename as the identifier name and fall over misparsing
1562  // later parts of the diagnostic.
1563  //
1564  // As such, we try to do some look-ahead in cases where this would
1565  // otherwise be an "implicit-int" case to see if this is invalid.  For
1566  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1567  // an identifier with implicit int, we'd get a parse error because the
1568  // next token is obviously invalid for a type.  Parse these as a case
1569  // with an invalid type specifier.
1570  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1571
1572  // Since we know that this either implicit int (which is rare) or an
1573  // error, do lookahead to try to do better recovery. This never applies within
1574  // a type specifier.
1575  // FIXME: Don't bail out here in languages with no implicit int (like
1576  // C++ with no -fms-extensions). This is much more likely to be an undeclared
1577  // type or typo than a use of implicit int.
1578  if (DSC != DSC_type_specifier &&
1579      isValidAfterIdentifierInDeclarator(NextToken())) {
1580    // If this token is valid for implicit int, e.g. "static x = 4", then
1581    // we just avoid eating the identifier, so it will be parsed as the
1582    // identifier in the declarator.
1583    return false;
1584  }
1585
1586  // Otherwise, if we don't consume this token, we are going to emit an
1587  // error anyway.  Try to recover from various common problems.  Check
1588  // to see if this was a reference to a tag name without a tag specified.
1589  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1590  //
1591  // C++ doesn't need this, and isTagName doesn't take SS.
1592  if (SS == 0) {
1593    const char *TagName = 0, *FixitTagName = 0;
1594    tok::TokenKind TagKind = tok::unknown;
1595
1596    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1597      default: break;
1598      case DeclSpec::TST_enum:
1599        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1600      case DeclSpec::TST_union:
1601        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1602      case DeclSpec::TST_struct:
1603        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1604      case DeclSpec::TST_class:
1605        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1606    }
1607
1608    if (TagName) {
1609      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1610        << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus
1611        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1612
1613      // Parse this as a tag as if the missing tag were present.
1614      if (TagKind == tok::kw_enum)
1615        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
1616      else
1617        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
1618                            /*EnteringContext*/ false, DSC_normal);
1619      return true;
1620    }
1621  }
1622
1623  // This is almost certainly an invalid type name. Let the action emit a
1624  // diagnostic and attempt to recover.
1625  ParsedType T;
1626  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1627                                      getCurScope(), SS, T)) {
1628    // The action emitted a diagnostic, so we don't have to.
1629    if (T) {
1630      // The action has suggested that the type T could be used. Set that as
1631      // the type in the declaration specifiers, consume the would-be type
1632      // name token, and we're done.
1633      const char *PrevSpec;
1634      unsigned DiagID;
1635      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1636      DS.SetRangeEnd(Tok.getLocation());
1637      ConsumeToken();
1638
1639      // There may be other declaration specifiers after this.
1640      return true;
1641    }
1642
1643    // Fall through; the action had no suggestion for us.
1644  } else {
1645    // The action did not emit a diagnostic, so emit one now.
1646    SourceRange R;
1647    if (SS) R = SS->getRange();
1648    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1649  }
1650
1651  // Mark this as an error.
1652  DS.SetTypeSpecError();
1653  DS.SetRangeEnd(Tok.getLocation());
1654  ConsumeToken();
1655
1656  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1657  // avoid rippling error messages on subsequent uses of the same type,
1658  // could be useful if #include was forgotten.
1659  return false;
1660}
1661
1662/// \brief Determine the declaration specifier context from the declarator
1663/// context.
1664///
1665/// \param Context the declarator context, which is one of the
1666/// Declarator::TheContext enumerator values.
1667Parser::DeclSpecContext
1668Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1669  if (Context == Declarator::MemberContext)
1670    return DSC_class;
1671  if (Context == Declarator::FileContext)
1672    return DSC_top_level;
1673  if (Context == Declarator::TrailingReturnContext)
1674    return DSC_trailing;
1675  return DSC_normal;
1676}
1677
1678/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1679///
1680/// FIXME: Simply returns an alignof() expression if the argument is a
1681/// type. Ideally, the type should be propagated directly into Sema.
1682///
1683/// [C11]   type-id
1684/// [C11]   constant-expression
1685/// [C++0x] type-id ...[opt]
1686/// [C++0x] assignment-expression ...[opt]
1687ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1688                                      SourceLocation &EllipsisLoc) {
1689  ExprResult ER;
1690  if (isTypeIdInParens()) {
1691    SourceLocation TypeLoc = Tok.getLocation();
1692    ParsedType Ty = ParseTypeName().get();
1693    SourceRange TypeRange(Start, Tok.getLocation());
1694    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1695                                               Ty.getAsOpaquePtr(), TypeRange);
1696  } else
1697    ER = ParseConstantExpression();
1698
1699  if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis))
1700    EllipsisLoc = ConsumeToken();
1701
1702  return ER;
1703}
1704
1705/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1706/// attribute to Attrs.
1707///
1708/// alignment-specifier:
1709/// [C11]   '_Alignas' '(' type-id ')'
1710/// [C11]   '_Alignas' '(' constant-expression ')'
1711/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1712/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1713void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1714                                     SourceLocation *endLoc) {
1715  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1716         "Not an alignment-specifier!");
1717
1718  SourceLocation KWLoc = Tok.getLocation();
1719  ConsumeToken();
1720
1721  BalancedDelimiterTracker T(*this, tok::l_paren);
1722  if (T.expectAndConsume(diag::err_expected_lparen))
1723    return;
1724
1725  SourceLocation EllipsisLoc;
1726  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1727  if (ArgExpr.isInvalid()) {
1728    SkipUntil(tok::r_paren);
1729    return;
1730  }
1731
1732  T.consumeClose();
1733  if (endLoc)
1734    *endLoc = T.getCloseLocation();
1735
1736  // FIXME: Handle pack-expansions here.
1737  if (EllipsisLoc.isValid()) {
1738    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1739    return;
1740  }
1741
1742  ExprVector ArgExprs(Actions);
1743  ArgExprs.push_back(ArgExpr.release());
1744  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1745               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1746}
1747
1748/// ParseDeclarationSpecifiers
1749///       declaration-specifiers: [C99 6.7]
1750///         storage-class-specifier declaration-specifiers[opt]
1751///         type-specifier declaration-specifiers[opt]
1752/// [C99]   function-specifier declaration-specifiers[opt]
1753/// [C11]   alignment-specifier declaration-specifiers[opt]
1754/// [GNU]   attributes declaration-specifiers[opt]
1755/// [Clang] '__module_private__' declaration-specifiers[opt]
1756///
1757///       storage-class-specifier: [C99 6.7.1]
1758///         'typedef'
1759///         'extern'
1760///         'static'
1761///         'auto'
1762///         'register'
1763/// [C++]   'mutable'
1764/// [GNU]   '__thread'
1765///       function-specifier: [C99 6.7.4]
1766/// [C99]   'inline'
1767/// [C++]   'virtual'
1768/// [C++]   'explicit'
1769/// [OpenCL] '__kernel'
1770///       'friend': [C++ dcl.friend]
1771///       'constexpr': [C++0x dcl.constexpr]
1772
1773///
1774void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1775                                        const ParsedTemplateInfo &TemplateInfo,
1776                                        AccessSpecifier AS,
1777                                        DeclSpecContext DSContext,
1778                                        LateParsedAttrList *LateAttrs) {
1779  if (DS.getSourceRange().isInvalid()) {
1780    DS.SetRangeStart(Tok.getLocation());
1781    DS.SetRangeEnd(Tok.getLocation());
1782  }
1783
1784  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1785  while (1) {
1786    bool isInvalid = false;
1787    const char *PrevSpec = 0;
1788    unsigned DiagID = 0;
1789
1790    SourceLocation Loc = Tok.getLocation();
1791
1792    switch (Tok.getKind()) {
1793    default:
1794    DoneWithDeclSpec:
1795      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1796      MaybeParseCXX0XAttributes(DS.getAttributes());
1797
1798      // If this is not a declaration specifier token, we're done reading decl
1799      // specifiers.  First verify that DeclSpec's are consistent.
1800      DS.Finish(Diags, PP);
1801      return;
1802
1803    case tok::code_completion: {
1804      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1805      if (DS.hasTypeSpecifier()) {
1806        bool AllowNonIdentifiers
1807          = (getCurScope()->getFlags() & (Scope::ControlScope |
1808                                          Scope::BlockScope |
1809                                          Scope::TemplateParamScope |
1810                                          Scope::FunctionPrototypeScope |
1811                                          Scope::AtCatchScope)) == 0;
1812        bool AllowNestedNameSpecifiers
1813          = DSContext == DSC_top_level ||
1814            (DSContext == DSC_class && DS.isFriendSpecified());
1815
1816        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1817                                     AllowNonIdentifiers,
1818                                     AllowNestedNameSpecifiers);
1819        return cutOffParsing();
1820      }
1821
1822      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1823        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1824      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1825        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1826                                    : Sema::PCC_Template;
1827      else if (DSContext == DSC_class)
1828        CCC = Sema::PCC_Class;
1829      else if (CurParsedObjCImpl)
1830        CCC = Sema::PCC_ObjCImplementation;
1831
1832      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1833      return cutOffParsing();
1834    }
1835
1836    case tok::coloncolon: // ::foo::bar
1837      // C++ scope specifier.  Annotate and loop, or bail out on error.
1838      if (TryAnnotateCXXScopeToken(true)) {
1839        if (!DS.hasTypeSpecifier())
1840          DS.SetTypeSpecError();
1841        goto DoneWithDeclSpec;
1842      }
1843      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1844        goto DoneWithDeclSpec;
1845      continue;
1846
1847    case tok::annot_cxxscope: {
1848      if (DS.hasTypeSpecifier())
1849        goto DoneWithDeclSpec;
1850
1851      CXXScopeSpec SS;
1852      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1853                                                   Tok.getAnnotationRange(),
1854                                                   SS);
1855
1856      // We are looking for a qualified typename.
1857      Token Next = NextToken();
1858      if (Next.is(tok::annot_template_id) &&
1859          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1860            ->Kind == TNK_Type_template) {
1861        // We have a qualified template-id, e.g., N::A<int>
1862
1863        // C++ [class.qual]p2:
1864        //   In a lookup in which the constructor is an acceptable lookup
1865        //   result and the nested-name-specifier nominates a class C:
1866        //
1867        //     - if the name specified after the
1868        //       nested-name-specifier, when looked up in C, is the
1869        //       injected-class-name of C (Clause 9), or
1870        //
1871        //     - if the name specified after the nested-name-specifier
1872        //       is the same as the identifier or the
1873        //       simple-template-id's template-name in the last
1874        //       component of the nested-name-specifier,
1875        //
1876        //   the name is instead considered to name the constructor of
1877        //   class C.
1878        //
1879        // Thus, if the template-name is actually the constructor
1880        // name, then the code is ill-formed; this interpretation is
1881        // reinforced by the NAD status of core issue 635.
1882        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1883        if ((DSContext == DSC_top_level ||
1884             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1885            TemplateId->Name &&
1886            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1887          if (isConstructorDeclarator()) {
1888            // The user meant this to be an out-of-line constructor
1889            // definition, but template arguments are not allowed
1890            // there.  Just allow this as a constructor; we'll
1891            // complain about it later.
1892            goto DoneWithDeclSpec;
1893          }
1894
1895          // The user meant this to name a type, but it actually names
1896          // a constructor with some extraneous template
1897          // arguments. Complain, then parse it as a type as the user
1898          // intended.
1899          Diag(TemplateId->TemplateNameLoc,
1900               diag::err_out_of_line_template_id_names_constructor)
1901            << TemplateId->Name;
1902        }
1903
1904        DS.getTypeSpecScope() = SS;
1905        ConsumeToken(); // The C++ scope.
1906        assert(Tok.is(tok::annot_template_id) &&
1907               "ParseOptionalCXXScopeSpecifier not working");
1908        AnnotateTemplateIdTokenAsType();
1909        continue;
1910      }
1911
1912      if (Next.is(tok::annot_typename)) {
1913        DS.getTypeSpecScope() = SS;
1914        ConsumeToken(); // The C++ scope.
1915        if (Tok.getAnnotationValue()) {
1916          ParsedType T = getTypeAnnotation(Tok);
1917          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1918                                         Tok.getAnnotationEndLoc(),
1919                                         PrevSpec, DiagID, T);
1920        }
1921        else
1922          DS.SetTypeSpecError();
1923        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1924        ConsumeToken(); // The typename
1925      }
1926
1927      if (Next.isNot(tok::identifier))
1928        goto DoneWithDeclSpec;
1929
1930      // If we're in a context where the identifier could be a class name,
1931      // check whether this is a constructor declaration.
1932      if ((DSContext == DSC_top_level ||
1933           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1934          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1935                                     &SS)) {
1936        if (isConstructorDeclarator())
1937          goto DoneWithDeclSpec;
1938
1939        // As noted in C++ [class.qual]p2 (cited above), when the name
1940        // of the class is qualified in a context where it could name
1941        // a constructor, its a constructor name. However, we've
1942        // looked at the declarator, and the user probably meant this
1943        // to be a type. Complain that it isn't supposed to be treated
1944        // as a type, then proceed to parse it as a type.
1945        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1946          << Next.getIdentifierInfo();
1947      }
1948
1949      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1950                                               Next.getLocation(),
1951                                               getCurScope(), &SS,
1952                                               false, false, ParsedType(),
1953                                               /*IsCtorOrDtorName=*/false,
1954                                               /*NonTrivialSourceInfo=*/true);
1955
1956      // If the referenced identifier is not a type, then this declspec is
1957      // erroneous: We already checked about that it has no type specifier, and
1958      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1959      // typename.
1960      if (TypeRep == 0) {
1961        ConsumeToken();   // Eat the scope spec so the identifier is current.
1962        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue;
1963        goto DoneWithDeclSpec;
1964      }
1965
1966      DS.getTypeSpecScope() = SS;
1967      ConsumeToken(); // The C++ scope.
1968
1969      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1970                                     DiagID, TypeRep);
1971      if (isInvalid)
1972        break;
1973
1974      DS.SetRangeEnd(Tok.getLocation());
1975      ConsumeToken(); // The typename.
1976
1977      continue;
1978    }
1979
1980    case tok::annot_typename: {
1981      if (Tok.getAnnotationValue()) {
1982        ParsedType T = getTypeAnnotation(Tok);
1983        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1984                                       DiagID, T);
1985      } else
1986        DS.SetTypeSpecError();
1987
1988      if (isInvalid)
1989        break;
1990
1991      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1992      ConsumeToken(); // The typename
1993
1994      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1995      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1996      // Objective-C interface.
1997      if (Tok.is(tok::less) && getLangOpts().ObjC1)
1998        ParseObjCProtocolQualifiers(DS);
1999
2000      continue;
2001    }
2002
2003    case tok::kw___is_signed:
2004      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2005      // typically treats it as a trait. If we see __is_signed as it appears
2006      // in libstdc++, e.g.,
2007      //
2008      //   static const bool __is_signed;
2009      //
2010      // then treat __is_signed as an identifier rather than as a keyword.
2011      if (DS.getTypeSpecType() == TST_bool &&
2012          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2013          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
2014        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
2015        Tok.setKind(tok::identifier);
2016      }
2017
2018      // We're done with the declaration-specifiers.
2019      goto DoneWithDeclSpec;
2020
2021      // typedef-name
2022    case tok::kw_decltype:
2023    case tok::identifier: {
2024      // In C++, check to see if this is a scope specifier like foo::bar::, if
2025      // so handle it as such.  This is important for ctor parsing.
2026      if (getLangOpts().CPlusPlus) {
2027        if (TryAnnotateCXXScopeToken(true)) {
2028          if (!DS.hasTypeSpecifier())
2029            DS.SetTypeSpecError();
2030          goto DoneWithDeclSpec;
2031        }
2032        if (!Tok.is(tok::identifier))
2033          continue;
2034      }
2035
2036      // This identifier can only be a typedef name if we haven't already seen
2037      // a type-specifier.  Without this check we misparse:
2038      //  typedef int X; struct Y { short X; };  as 'short int'.
2039      if (DS.hasTypeSpecifier())
2040        goto DoneWithDeclSpec;
2041
2042      // Check for need to substitute AltiVec keyword tokens.
2043      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2044        break;
2045
2046      ParsedType TypeRep =
2047        Actions.getTypeName(*Tok.getIdentifierInfo(),
2048                            Tok.getLocation(), getCurScope());
2049
2050      // If this is not a typedef name, don't parse it as part of the declspec,
2051      // it must be an implicit int or an error.
2052      if (!TypeRep) {
2053        if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue;
2054        goto DoneWithDeclSpec;
2055      }
2056
2057      // If we're in a context where the identifier could be a class name,
2058      // check whether this is a constructor declaration.
2059      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2060          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2061          isConstructorDeclarator())
2062        goto DoneWithDeclSpec;
2063
2064      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2065                                     DiagID, TypeRep);
2066      if (isInvalid)
2067        break;
2068
2069      DS.SetRangeEnd(Tok.getLocation());
2070      ConsumeToken(); // The identifier
2071
2072      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2073      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2074      // Objective-C interface.
2075      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2076        ParseObjCProtocolQualifiers(DS);
2077
2078      // Need to support trailing type qualifiers (e.g. "id<p> const").
2079      // If a type specifier follows, it will be diagnosed elsewhere.
2080      continue;
2081    }
2082
2083      // type-name
2084    case tok::annot_template_id: {
2085      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2086      if (TemplateId->Kind != TNK_Type_template) {
2087        // This template-id does not refer to a type name, so we're
2088        // done with the type-specifiers.
2089        goto DoneWithDeclSpec;
2090      }
2091
2092      // If we're in a context where the template-id could be a
2093      // constructor name or specialization, check whether this is a
2094      // constructor declaration.
2095      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2096          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2097          isConstructorDeclarator())
2098        goto DoneWithDeclSpec;
2099
2100      // Turn the template-id annotation token into a type annotation
2101      // token, then try again to parse it as a type-specifier.
2102      AnnotateTemplateIdTokenAsType();
2103      continue;
2104    }
2105
2106    // GNU attributes support.
2107    case tok::kw___attribute:
2108      ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
2109      continue;
2110
2111    // Microsoft declspec support.
2112    case tok::kw___declspec:
2113      ParseMicrosoftDeclSpec(DS.getAttributes());
2114      continue;
2115
2116    // Microsoft single token adornments.
2117    case tok::kw___forceinline:
2118      // FIXME: Add handling here!
2119      break;
2120
2121    case tok::kw___ptr64:
2122    case tok::kw___ptr32:
2123    case tok::kw___w64:
2124    case tok::kw___cdecl:
2125    case tok::kw___stdcall:
2126    case tok::kw___fastcall:
2127    case tok::kw___thiscall:
2128    case tok::kw___unaligned:
2129      ParseMicrosoftTypeAttributes(DS.getAttributes());
2130      continue;
2131
2132    // Borland single token adornments.
2133    case tok::kw___pascal:
2134      ParseBorlandTypeAttributes(DS.getAttributes());
2135      continue;
2136
2137    // OpenCL single token adornments.
2138    case tok::kw___kernel:
2139      ParseOpenCLAttributes(DS.getAttributes());
2140      continue;
2141
2142    // storage-class-specifier
2143    case tok::kw_typedef:
2144      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2145                                         PrevSpec, DiagID);
2146      break;
2147    case tok::kw_extern:
2148      if (DS.isThreadSpecified())
2149        Diag(Tok, diag::ext_thread_before) << "extern";
2150      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2151                                         PrevSpec, DiagID);
2152      break;
2153    case tok::kw___private_extern__:
2154      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2155                                         Loc, PrevSpec, DiagID);
2156      break;
2157    case tok::kw_static:
2158      if (DS.isThreadSpecified())
2159        Diag(Tok, diag::ext_thread_before) << "static";
2160      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2161                                         PrevSpec, DiagID);
2162      break;
2163    case tok::kw_auto:
2164      if (getLangOpts().CPlusPlus0x) {
2165        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2166          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2167                                             PrevSpec, DiagID);
2168          if (!isInvalid)
2169            Diag(Tok, diag::ext_auto_storage_class)
2170              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2171        } else
2172          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2173                                         DiagID);
2174      } else
2175        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2176                                           PrevSpec, DiagID);
2177      break;
2178    case tok::kw_register:
2179      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2180                                         PrevSpec, DiagID);
2181      break;
2182    case tok::kw_mutable:
2183      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2184                                         PrevSpec, DiagID);
2185      break;
2186    case tok::kw___thread:
2187      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2188      break;
2189
2190    // function-specifier
2191    case tok::kw_inline:
2192      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2193      break;
2194    case tok::kw_virtual:
2195      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2196      break;
2197    case tok::kw_explicit:
2198      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2199      break;
2200
2201    // alignment-specifier
2202    case tok::kw__Alignas:
2203      if (!getLangOpts().C11)
2204        Diag(Tok, diag::ext_c11_alignas);
2205      ParseAlignmentSpecifier(DS.getAttributes());
2206      continue;
2207
2208    // friend
2209    case tok::kw_friend:
2210      if (DSContext == DSC_class)
2211        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2212      else {
2213        PrevSpec = ""; // not actually used by the diagnostic
2214        DiagID = diag::err_friend_invalid_in_context;
2215        isInvalid = true;
2216      }
2217      break;
2218
2219    // Modules
2220    case tok::kw___module_private__:
2221      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2222      break;
2223
2224    // constexpr
2225    case tok::kw_constexpr:
2226      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2227      break;
2228
2229    // type-specifier
2230    case tok::kw_short:
2231      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2232                                      DiagID);
2233      break;
2234    case tok::kw_long:
2235      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2236        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2237                                        DiagID);
2238      else
2239        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2240                                        DiagID);
2241      break;
2242    case tok::kw___int64:
2243        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2244                                        DiagID);
2245      break;
2246    case tok::kw_signed:
2247      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2248                                     DiagID);
2249      break;
2250    case tok::kw_unsigned:
2251      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2252                                     DiagID);
2253      break;
2254    case tok::kw__Complex:
2255      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2256                                        DiagID);
2257      break;
2258    case tok::kw__Imaginary:
2259      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2260                                        DiagID);
2261      break;
2262    case tok::kw_void:
2263      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2264                                     DiagID);
2265      break;
2266    case tok::kw_char:
2267      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2268                                     DiagID);
2269      break;
2270    case tok::kw_int:
2271      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2272                                     DiagID);
2273      break;
2274    case tok::kw___int128:
2275      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
2276                                     DiagID);
2277      break;
2278    case tok::kw_half:
2279      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2280                                     DiagID);
2281      break;
2282    case tok::kw_float:
2283      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2284                                     DiagID);
2285      break;
2286    case tok::kw_double:
2287      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2288                                     DiagID);
2289      break;
2290    case tok::kw_wchar_t:
2291      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2292                                     DiagID);
2293      break;
2294    case tok::kw_char16_t:
2295      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2296                                     DiagID);
2297      break;
2298    case tok::kw_char32_t:
2299      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2300                                     DiagID);
2301      break;
2302    case tok::kw_bool:
2303    case tok::kw__Bool:
2304      if (Tok.is(tok::kw_bool) &&
2305          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2306          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2307        PrevSpec = ""; // Not used by the diagnostic.
2308        DiagID = diag::err_bool_redeclaration;
2309        // For better error recovery.
2310        Tok.setKind(tok::identifier);
2311        isInvalid = true;
2312      } else {
2313        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2314                                       DiagID);
2315      }
2316      break;
2317    case tok::kw__Decimal32:
2318      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2319                                     DiagID);
2320      break;
2321    case tok::kw__Decimal64:
2322      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2323                                     DiagID);
2324      break;
2325    case tok::kw__Decimal128:
2326      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2327                                     DiagID);
2328      break;
2329    case tok::kw___vector:
2330      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2331      break;
2332    case tok::kw___pixel:
2333      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2334      break;
2335    case tok::kw___unknown_anytype:
2336      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2337                                     PrevSpec, DiagID);
2338      break;
2339
2340    // class-specifier:
2341    case tok::kw_class:
2342    case tok::kw_struct:
2343    case tok::kw_union: {
2344      tok::TokenKind Kind = Tok.getKind();
2345      ConsumeToken();
2346      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
2347                          EnteringContext, DSContext);
2348      continue;
2349    }
2350
2351    // enum-specifier:
2352    case tok::kw_enum:
2353      ConsumeToken();
2354      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
2355      continue;
2356
2357    // cv-qualifier:
2358    case tok::kw_const:
2359      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2360                                 getLangOpts());
2361      break;
2362    case tok::kw_volatile:
2363      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2364                                 getLangOpts());
2365      break;
2366    case tok::kw_restrict:
2367      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2368                                 getLangOpts());
2369      break;
2370
2371    // C++ typename-specifier:
2372    case tok::kw_typename:
2373      if (TryAnnotateTypeOrScopeToken()) {
2374        DS.SetTypeSpecError();
2375        goto DoneWithDeclSpec;
2376      }
2377      if (!Tok.is(tok::kw_typename))
2378        continue;
2379      break;
2380
2381    // GNU typeof support.
2382    case tok::kw_typeof:
2383      ParseTypeofSpecifier(DS);
2384      continue;
2385
2386    case tok::annot_decltype:
2387      ParseDecltypeSpecifier(DS);
2388      continue;
2389
2390    case tok::kw___underlying_type:
2391      ParseUnderlyingTypeSpecifier(DS);
2392      continue;
2393
2394    case tok::kw__Atomic:
2395      ParseAtomicSpecifier(DS);
2396      continue;
2397
2398    // OpenCL qualifiers:
2399    case tok::kw_private:
2400      if (!getLangOpts().OpenCL)
2401        goto DoneWithDeclSpec;
2402    case tok::kw___private:
2403    case tok::kw___global:
2404    case tok::kw___local:
2405    case tok::kw___constant:
2406    case tok::kw___read_only:
2407    case tok::kw___write_only:
2408    case tok::kw___read_write:
2409      ParseOpenCLQualifiers(DS);
2410      break;
2411
2412    case tok::less:
2413      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2414      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2415      // but we support it.
2416      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
2417        goto DoneWithDeclSpec;
2418
2419      if (!ParseObjCProtocolQualifiers(DS))
2420        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2421          << FixItHint::CreateInsertion(Loc, "id")
2422          << SourceRange(Loc, DS.getSourceRange().getEnd());
2423
2424      // Need to support trailing type qualifiers (e.g. "id<p> const").
2425      // If a type specifier follows, it will be diagnosed elsewhere.
2426      continue;
2427    }
2428    // If the specifier wasn't legal, issue a diagnostic.
2429    if (isInvalid) {
2430      assert(PrevSpec && "Method did not return previous specifier!");
2431      assert(DiagID);
2432
2433      if (DiagID == diag::ext_duplicate_declspec)
2434        Diag(Tok, DiagID)
2435          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2436      else
2437        Diag(Tok, DiagID) << PrevSpec;
2438    }
2439
2440    DS.SetRangeEnd(Tok.getLocation());
2441    if (DiagID != diag::err_bool_redeclaration)
2442      ConsumeToken();
2443  }
2444}
2445
2446/// ParseStructDeclaration - Parse a struct declaration without the terminating
2447/// semicolon.
2448///
2449///       struct-declaration:
2450///         specifier-qualifier-list struct-declarator-list
2451/// [GNU]   __extension__ struct-declaration
2452/// [GNU]   specifier-qualifier-list
2453///       struct-declarator-list:
2454///         struct-declarator
2455///         struct-declarator-list ',' struct-declarator
2456/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2457///       struct-declarator:
2458///         declarator
2459/// [GNU]   declarator attributes[opt]
2460///         declarator[opt] ':' constant-expression
2461/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2462///
2463void Parser::
2464ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2465
2466  if (Tok.is(tok::kw___extension__)) {
2467    // __extension__ silences extension warnings in the subexpression.
2468    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2469    ConsumeToken();
2470    return ParseStructDeclaration(DS, Fields);
2471  }
2472
2473  // Parse the common specifier-qualifiers-list piece.
2474  ParseSpecifierQualifierList(DS);
2475
2476  // If there are no declarators, this is a free-standing declaration
2477  // specifier. Let the actions module cope with it.
2478  if (Tok.is(tok::semi)) {
2479    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2480    return;
2481  }
2482
2483  // Read struct-declarators until we find the semicolon.
2484  bool FirstDeclarator = true;
2485  SourceLocation CommaLoc;
2486  while (1) {
2487    ParsingDeclRAIIObject PD(*this);
2488    FieldDeclarator DeclaratorInfo(DS);
2489    DeclaratorInfo.D.setCommaLoc(CommaLoc);
2490
2491    // Attributes are only allowed here on successive declarators.
2492    if (!FirstDeclarator)
2493      MaybeParseGNUAttributes(DeclaratorInfo.D);
2494
2495    /// struct-declarator: declarator
2496    /// struct-declarator: declarator[opt] ':' constant-expression
2497    if (Tok.isNot(tok::colon)) {
2498      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2499      ColonProtectionRAIIObject X(*this);
2500      ParseDeclarator(DeclaratorInfo.D);
2501    }
2502
2503    if (Tok.is(tok::colon)) {
2504      ConsumeToken();
2505      ExprResult Res(ParseConstantExpression());
2506      if (Res.isInvalid())
2507        SkipUntil(tok::semi, true, true);
2508      else
2509        DeclaratorInfo.BitfieldSize = Res.release();
2510    }
2511
2512    // If attributes exist after the declarator, parse them.
2513    MaybeParseGNUAttributes(DeclaratorInfo.D);
2514
2515    // We're done with this declarator;  invoke the callback.
2516    Decl *D = Fields.invoke(DeclaratorInfo);
2517    PD.complete(D);
2518
2519    // If we don't have a comma, it is either the end of the list (a ';')
2520    // or an error, bail out.
2521    if (Tok.isNot(tok::comma))
2522      return;
2523
2524    // Consume the comma.
2525    CommaLoc = ConsumeToken();
2526
2527    FirstDeclarator = false;
2528  }
2529}
2530
2531/// ParseStructUnionBody
2532///       struct-contents:
2533///         struct-declaration-list
2534/// [EXT]   empty
2535/// [GNU]   "struct-declaration-list" without terminatoring ';'
2536///       struct-declaration-list:
2537///         struct-declaration
2538///         struct-declaration-list struct-declaration
2539/// [OBC]   '@' 'defs' '(' class-name ')'
2540///
2541void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2542                                  unsigned TagType, Decl *TagDecl) {
2543  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2544                                      "parsing struct/union body");
2545
2546  BalancedDelimiterTracker T(*this, tok::l_brace);
2547  if (T.consumeOpen())
2548    return;
2549
2550  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2551  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2552
2553  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2554  // C++.
2555  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) {
2556    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2557    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2558  }
2559
2560  SmallVector<Decl *, 32> FieldDecls;
2561
2562  // While we still have something to read, read the declarations in the struct.
2563  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2564    // Each iteration of this loop reads one struct-declaration.
2565
2566    // Check for extraneous top-level semicolon.
2567    if (Tok.is(tok::semi)) {
2568      Diag(Tok, diag::ext_extra_struct_semi)
2569        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2570        << FixItHint::CreateRemoval(Tok.getLocation());
2571      ConsumeToken();
2572      continue;
2573    }
2574
2575    // Parse all the comma separated declarators.
2576    DeclSpec DS(AttrFactory);
2577
2578    if (!Tok.is(tok::at)) {
2579      struct CFieldCallback : FieldCallback {
2580        Parser &P;
2581        Decl *TagDecl;
2582        SmallVectorImpl<Decl *> &FieldDecls;
2583
2584        CFieldCallback(Parser &P, Decl *TagDecl,
2585                       SmallVectorImpl<Decl *> &FieldDecls) :
2586          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2587
2588        virtual Decl *invoke(FieldDeclarator &FD) {
2589          // Install the declarator into the current TagDecl.
2590          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2591                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2592                                                 FD.D, FD.BitfieldSize);
2593          FieldDecls.push_back(Field);
2594          return Field;
2595        }
2596      } Callback(*this, TagDecl, FieldDecls);
2597
2598      ParseStructDeclaration(DS, Callback);
2599    } else { // Handle @defs
2600      ConsumeToken();
2601      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2602        Diag(Tok, diag::err_unexpected_at);
2603        SkipUntil(tok::semi, true);
2604        continue;
2605      }
2606      ConsumeToken();
2607      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2608      if (!Tok.is(tok::identifier)) {
2609        Diag(Tok, diag::err_expected_ident);
2610        SkipUntil(tok::semi, true);
2611        continue;
2612      }
2613      SmallVector<Decl *, 16> Fields;
2614      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2615                        Tok.getIdentifierInfo(), Fields);
2616      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2617      ConsumeToken();
2618      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2619    }
2620
2621    if (Tok.is(tok::semi)) {
2622      ConsumeToken();
2623    } else if (Tok.is(tok::r_brace)) {
2624      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2625      break;
2626    } else {
2627      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2628      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2629      SkipUntil(tok::r_brace, true, true);
2630      // If we stopped at a ';', eat it.
2631      if (Tok.is(tok::semi)) ConsumeToken();
2632    }
2633  }
2634
2635  T.consumeClose();
2636
2637  ParsedAttributes attrs(AttrFactory);
2638  // If attributes exist after struct contents, parse them.
2639  MaybeParseGNUAttributes(attrs);
2640
2641  Actions.ActOnFields(getCurScope(),
2642                      RecordLoc, TagDecl, FieldDecls,
2643                      T.getOpenLocation(), T.getCloseLocation(),
2644                      attrs.getList());
2645  StructScope.Exit();
2646  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2647                                   T.getCloseLocation());
2648}
2649
2650/// ParseEnumSpecifier
2651///       enum-specifier: [C99 6.7.2.2]
2652///         'enum' identifier[opt] '{' enumerator-list '}'
2653///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2654/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2655///                                                 '}' attributes[opt]
2656/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
2657///                                                 '}'
2658///         'enum' identifier
2659/// [GNU]   'enum' attributes[opt] identifier
2660///
2661/// [C++11] enum-head '{' enumerator-list[opt] '}'
2662/// [C++11] enum-head '{' enumerator-list ','  '}'
2663///
2664///       enum-head: [C++11]
2665///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
2666///         enum-key attribute-specifier-seq[opt] nested-name-specifier
2667///             identifier enum-base[opt]
2668///
2669///       enum-key: [C++11]
2670///         'enum'
2671///         'enum' 'class'
2672///         'enum' 'struct'
2673///
2674///       enum-base: [C++11]
2675///         ':' type-specifier-seq
2676///
2677/// [C++] elaborated-type-specifier:
2678/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2679///
2680void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2681                                const ParsedTemplateInfo &TemplateInfo,
2682                                AccessSpecifier AS, DeclSpecContext DSC) {
2683  // Parse the tag portion of this.
2684  if (Tok.is(tok::code_completion)) {
2685    // Code completion for an enum name.
2686    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2687    return cutOffParsing();
2688  }
2689
2690  SourceLocation ScopedEnumKWLoc;
2691  bool IsScopedUsingClassTag = false;
2692
2693  if (getLangOpts().CPlusPlus0x &&
2694      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2695    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2696    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2697    ScopedEnumKWLoc = ConsumeToken();
2698  }
2699
2700  // C++11 [temp.explicit]p12: The usual access controls do not apply to names
2701  // used to specify explicit instantiations. We extend this to also cover
2702  // explicit specializations.
2703  Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
2704    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
2705    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
2706
2707  // If attributes exist after tag, parse them.
2708  ParsedAttributes attrs(AttrFactory);
2709  MaybeParseGNUAttributes(attrs);
2710
2711  // If declspecs exist after tag, parse them.
2712  while (Tok.is(tok::kw___declspec))
2713    ParseMicrosoftDeclSpec(attrs);
2714
2715  // Enum definitions should not be parsed in a trailing-return-type.
2716  bool AllowDeclaration = DSC != DSC_trailing;
2717
2718  bool AllowFixedUnderlyingType = AllowDeclaration &&
2719    (getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt ||
2720     getLangOpts().ObjC2);
2721
2722  CXXScopeSpec &SS = DS.getTypeSpecScope();
2723  if (getLangOpts().CPlusPlus) {
2724    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2725    // if a fixed underlying type is allowed.
2726    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2727
2728    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2729                                       /*EnteringContext=*/false))
2730      return;
2731
2732    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2733      Diag(Tok, diag::err_expected_ident);
2734      if (Tok.isNot(tok::l_brace)) {
2735        // Has no name and is not a definition.
2736        // Skip the rest of this declarator, up until the comma or semicolon.
2737        SkipUntil(tok::comma, true);
2738        return;
2739      }
2740    }
2741  }
2742
2743  // Must have either 'enum name' or 'enum {...}'.
2744  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2745      !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
2746    Diag(Tok, diag::err_expected_ident_lbrace);
2747
2748    // Skip the rest of this declarator, up until the comma or semicolon.
2749    SkipUntil(tok::comma, true);
2750    return;
2751  }
2752
2753  // If an identifier is present, consume and remember it.
2754  IdentifierInfo *Name = 0;
2755  SourceLocation NameLoc;
2756  if (Tok.is(tok::identifier)) {
2757    Name = Tok.getIdentifierInfo();
2758    NameLoc = ConsumeToken();
2759  }
2760
2761  if (!Name && ScopedEnumKWLoc.isValid()) {
2762    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2763    // declaration of a scoped enumeration.
2764    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2765    ScopedEnumKWLoc = SourceLocation();
2766    IsScopedUsingClassTag = false;
2767  }
2768
2769  // Stop suppressing access control now we've parsed the enum name.
2770  SuppressAccess.done();
2771
2772  TypeResult BaseType;
2773
2774  // Parse the fixed underlying type.
2775  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2776    bool PossibleBitfield = false;
2777    if (getCurScope()->getFlags() & Scope::ClassScope) {
2778      // If we're in class scope, this can either be an enum declaration with
2779      // an underlying type, or a declaration of a bitfield member. We try to
2780      // use a simple disambiguation scheme first to catch the common cases
2781      // (integer literal, sizeof); if it's still ambiguous, we then consider
2782      // anything that's a simple-type-specifier followed by '(' as an
2783      // expression. This suffices because function types are not valid
2784      // underlying types anyway.
2785      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2786      // If the next token starts an expression, we know we're parsing a
2787      // bit-field. This is the common case.
2788      if (TPR == TPResult::True())
2789        PossibleBitfield = true;
2790      // If the next token starts a type-specifier-seq, it may be either a
2791      // a fixed underlying type or the start of a function-style cast in C++;
2792      // lookahead one more token to see if it's obvious that we have a
2793      // fixed underlying type.
2794      else if (TPR == TPResult::False() &&
2795               GetLookAheadToken(2).getKind() == tok::semi) {
2796        // Consume the ':'.
2797        ConsumeToken();
2798      } else {
2799        // We have the start of a type-specifier-seq, so we have to perform
2800        // tentative parsing to determine whether we have an expression or a
2801        // type.
2802        TentativeParsingAction TPA(*this);
2803
2804        // Consume the ':'.
2805        ConsumeToken();
2806
2807        // If we see a type specifier followed by an open-brace, we have an
2808        // ambiguity between an underlying type and a C++11 braced
2809        // function-style cast. Resolve this by always treating it as an
2810        // underlying type.
2811        // FIXME: The standard is not entirely clear on how to disambiguate in
2812        // this case.
2813        if ((getLangOpts().CPlusPlus &&
2814             isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
2815            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
2816          // We'll parse this as a bitfield later.
2817          PossibleBitfield = true;
2818          TPA.Revert();
2819        } else {
2820          // We have a type-specifier-seq.
2821          TPA.Commit();
2822        }
2823      }
2824    } else {
2825      // Consume the ':'.
2826      ConsumeToken();
2827    }
2828
2829    if (!PossibleBitfield) {
2830      SourceRange Range;
2831      BaseType = ParseTypeName(&Range);
2832
2833      if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2)
2834        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2835          << Range;
2836      if (getLangOpts().CPlusPlus0x)
2837        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2838    }
2839  }
2840
2841  // There are four options here.  If we have 'friend enum foo;' then this is a
2842  // friend declaration, and cannot have an accompanying definition. If we have
2843  // 'enum foo;', then this is a forward declaration.  If we have
2844  // 'enum foo {...' then this is a definition. Otherwise we have something
2845  // like 'enum foo xyz', a reference.
2846  //
2847  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2848  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2849  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2850  //
2851  Sema::TagUseKind TUK;
2852  if (DS.isFriendSpecified())
2853    TUK = Sema::TUK_Friend;
2854  else if (!AllowDeclaration)
2855    TUK = Sema::TUK_Reference;
2856  else if (Tok.is(tok::l_brace))
2857    TUK = Sema::TUK_Definition;
2858  else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
2859    TUK = Sema::TUK_Declaration;
2860  else
2861    TUK = Sema::TUK_Reference;
2862
2863  MultiTemplateParamsArg TParams;
2864  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2865      TUK != Sema::TUK_Reference) {
2866    if (!getLangOpts().CPlusPlus0x || !SS.isSet()) {
2867      // Skip the rest of this declarator, up until the comma or semicolon.
2868      Diag(Tok, diag::err_enum_template);
2869      SkipUntil(tok::comma, true);
2870      return;
2871    }
2872
2873    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
2874      // Enumerations can't be explicitly instantiated.
2875      DS.SetTypeSpecError();
2876      Diag(StartLoc, diag::err_explicit_instantiation_enum);
2877      return;
2878    }
2879
2880    assert(TemplateInfo.TemplateParams && "no template parameters");
2881    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
2882                                     TemplateInfo.TemplateParams->size());
2883  }
2884
2885  if (!Name && TUK != Sema::TUK_Definition) {
2886    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2887
2888    // Skip the rest of this declarator, up until the comma or semicolon.
2889    SkipUntil(tok::comma, true);
2890    return;
2891  }
2892
2893  bool Owned = false;
2894  bool IsDependent = false;
2895  const char *PrevSpec = 0;
2896  unsigned DiagID;
2897  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2898                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2899                                   AS, DS.getModulePrivateSpecLoc(), TParams,
2900                                   Owned, IsDependent, ScopedEnumKWLoc,
2901                                   IsScopedUsingClassTag, BaseType);
2902
2903  if (IsDependent) {
2904    // This enum has a dependent nested-name-specifier. Handle it as a
2905    // dependent tag.
2906    if (!Name) {
2907      DS.SetTypeSpecError();
2908      Diag(Tok, diag::err_expected_type_name_after_typename);
2909      return;
2910    }
2911
2912    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2913                                                TUK, SS, Name, StartLoc,
2914                                                NameLoc);
2915    if (Type.isInvalid()) {
2916      DS.SetTypeSpecError();
2917      return;
2918    }
2919
2920    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2921                           NameLoc.isValid() ? NameLoc : StartLoc,
2922                           PrevSpec, DiagID, Type.get()))
2923      Diag(StartLoc, DiagID) << PrevSpec;
2924
2925    return;
2926  }
2927
2928  if (!TagDecl) {
2929    // The action failed to produce an enumeration tag. If this is a
2930    // definition, consume the entire definition.
2931    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
2932      ConsumeBrace();
2933      SkipUntil(tok::r_brace);
2934    }
2935
2936    DS.SetTypeSpecError();
2937    return;
2938  }
2939
2940  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
2941    if (TUK == Sema::TUK_Friend) {
2942      Diag(Tok, diag::err_friend_decl_defines_type)
2943        << SourceRange(DS.getFriendSpecLoc());
2944      ConsumeBrace();
2945      SkipUntil(tok::r_brace);
2946    } else {
2947      ParseEnumBody(StartLoc, TagDecl);
2948    }
2949  }
2950
2951  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2952                         NameLoc.isValid() ? NameLoc : StartLoc,
2953                         PrevSpec, DiagID, TagDecl, Owned))
2954    Diag(StartLoc, DiagID) << PrevSpec;
2955}
2956
2957/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2958///       enumerator-list:
2959///         enumerator
2960///         enumerator-list ',' enumerator
2961///       enumerator:
2962///         enumeration-constant
2963///         enumeration-constant '=' constant-expression
2964///       enumeration-constant:
2965///         identifier
2966///
2967void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2968  // Enter the scope of the enum body and start the definition.
2969  ParseScope EnumScope(this, Scope::DeclScope);
2970  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2971
2972  BalancedDelimiterTracker T(*this, tok::l_brace);
2973  T.consumeOpen();
2974
2975  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2976  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
2977    Diag(Tok, diag::error_empty_enum);
2978
2979  SmallVector<Decl *, 32> EnumConstantDecls;
2980
2981  Decl *LastEnumConstDecl = 0;
2982
2983  // Parse the enumerator-list.
2984  while (Tok.is(tok::identifier)) {
2985    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2986    SourceLocation IdentLoc = ConsumeToken();
2987
2988    // If attributes exist after the enumerator, parse them.
2989    ParsedAttributes attrs(AttrFactory);
2990    MaybeParseGNUAttributes(attrs);
2991
2992    SourceLocation EqualLoc;
2993    ExprResult AssignedVal;
2994    ParsingDeclRAIIObject PD(*this);
2995
2996    if (Tok.is(tok::equal)) {
2997      EqualLoc = ConsumeToken();
2998      AssignedVal = ParseConstantExpression();
2999      if (AssignedVal.isInvalid())
3000        SkipUntil(tok::comma, tok::r_brace, true, true);
3001    }
3002
3003    // Install the enumerator constant into EnumDecl.
3004    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3005                                                    LastEnumConstDecl,
3006                                                    IdentLoc, Ident,
3007                                                    attrs.getList(), EqualLoc,
3008                                                    AssignedVal.release());
3009    PD.complete(EnumConstDecl);
3010
3011    EnumConstantDecls.push_back(EnumConstDecl);
3012    LastEnumConstDecl = EnumConstDecl;
3013
3014    if (Tok.is(tok::identifier)) {
3015      // We're missing a comma between enumerators.
3016      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3017      Diag(Loc, diag::err_enumerator_list_missing_comma)
3018        << FixItHint::CreateInsertion(Loc, ", ");
3019      continue;
3020    }
3021
3022    if (Tok.isNot(tok::comma))
3023      break;
3024    SourceLocation CommaLoc = ConsumeToken();
3025
3026    if (Tok.isNot(tok::identifier)) {
3027      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x)
3028        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3029          << getLangOpts().CPlusPlus
3030          << FixItHint::CreateRemoval(CommaLoc);
3031      else if (getLangOpts().CPlusPlus0x)
3032        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3033          << FixItHint::CreateRemoval(CommaLoc);
3034    }
3035  }
3036
3037  // Eat the }.
3038  T.consumeClose();
3039
3040  // If attributes exist after the identifier list, parse them.
3041  ParsedAttributes attrs(AttrFactory);
3042  MaybeParseGNUAttributes(attrs);
3043
3044  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3045                        EnumDecl, EnumConstantDecls.data(),
3046                        EnumConstantDecls.size(), getCurScope(),
3047                        attrs.getList());
3048
3049  EnumScope.Exit();
3050  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3051                                   T.getCloseLocation());
3052}
3053
3054/// isTypeSpecifierQualifier - Return true if the current token could be the
3055/// start of a type-qualifier-list.
3056bool Parser::isTypeQualifier() const {
3057  switch (Tok.getKind()) {
3058  default: return false;
3059
3060    // type-qualifier only in OpenCL
3061  case tok::kw_private:
3062    return getLangOpts().OpenCL;
3063
3064    // type-qualifier
3065  case tok::kw_const:
3066  case tok::kw_volatile:
3067  case tok::kw_restrict:
3068  case tok::kw___private:
3069  case tok::kw___local:
3070  case tok::kw___global:
3071  case tok::kw___constant:
3072  case tok::kw___read_only:
3073  case tok::kw___read_write:
3074  case tok::kw___write_only:
3075    return true;
3076  }
3077}
3078
3079/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3080/// is definitely a type-specifier.  Return false if it isn't part of a type
3081/// specifier or if we're not sure.
3082bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3083  switch (Tok.getKind()) {
3084  default: return false;
3085    // type-specifiers
3086  case tok::kw_short:
3087  case tok::kw_long:
3088  case tok::kw___int64:
3089  case tok::kw___int128:
3090  case tok::kw_signed:
3091  case tok::kw_unsigned:
3092  case tok::kw__Complex:
3093  case tok::kw__Imaginary:
3094  case tok::kw_void:
3095  case tok::kw_char:
3096  case tok::kw_wchar_t:
3097  case tok::kw_char16_t:
3098  case tok::kw_char32_t:
3099  case tok::kw_int:
3100  case tok::kw_half:
3101  case tok::kw_float:
3102  case tok::kw_double:
3103  case tok::kw_bool:
3104  case tok::kw__Bool:
3105  case tok::kw__Decimal32:
3106  case tok::kw__Decimal64:
3107  case tok::kw__Decimal128:
3108  case tok::kw___vector:
3109
3110    // struct-or-union-specifier (C99) or class-specifier (C++)
3111  case tok::kw_class:
3112  case tok::kw_struct:
3113  case tok::kw_union:
3114    // enum-specifier
3115  case tok::kw_enum:
3116
3117    // typedef-name
3118  case tok::annot_typename:
3119    return true;
3120  }
3121}
3122
3123/// isTypeSpecifierQualifier - Return true if the current token could be the
3124/// start of a specifier-qualifier-list.
3125bool Parser::isTypeSpecifierQualifier() {
3126  switch (Tok.getKind()) {
3127  default: return false;
3128
3129  case tok::identifier:   // foo::bar
3130    if (TryAltiVecVectorToken())
3131      return true;
3132    // Fall through.
3133  case tok::kw_typename:  // typename T::type
3134    // Annotate typenames and C++ scope specifiers.  If we get one, just
3135    // recurse to handle whatever we get.
3136    if (TryAnnotateTypeOrScopeToken())
3137      return true;
3138    if (Tok.is(tok::identifier))
3139      return false;
3140    return isTypeSpecifierQualifier();
3141
3142  case tok::coloncolon:   // ::foo::bar
3143    if (NextToken().is(tok::kw_new) ||    // ::new
3144        NextToken().is(tok::kw_delete))   // ::delete
3145      return false;
3146
3147    if (TryAnnotateTypeOrScopeToken())
3148      return true;
3149    return isTypeSpecifierQualifier();
3150
3151    // GNU attributes support.
3152  case tok::kw___attribute:
3153    // GNU typeof support.
3154  case tok::kw_typeof:
3155
3156    // type-specifiers
3157  case tok::kw_short:
3158  case tok::kw_long:
3159  case tok::kw___int64:
3160  case tok::kw___int128:
3161  case tok::kw_signed:
3162  case tok::kw_unsigned:
3163  case tok::kw__Complex:
3164  case tok::kw__Imaginary:
3165  case tok::kw_void:
3166  case tok::kw_char:
3167  case tok::kw_wchar_t:
3168  case tok::kw_char16_t:
3169  case tok::kw_char32_t:
3170  case tok::kw_int:
3171  case tok::kw_half:
3172  case tok::kw_float:
3173  case tok::kw_double:
3174  case tok::kw_bool:
3175  case tok::kw__Bool:
3176  case tok::kw__Decimal32:
3177  case tok::kw__Decimal64:
3178  case tok::kw__Decimal128:
3179  case tok::kw___vector:
3180
3181    // struct-or-union-specifier (C99) or class-specifier (C++)
3182  case tok::kw_class:
3183  case tok::kw_struct:
3184  case tok::kw_union:
3185    // enum-specifier
3186  case tok::kw_enum:
3187
3188    // type-qualifier
3189  case tok::kw_const:
3190  case tok::kw_volatile:
3191  case tok::kw_restrict:
3192
3193    // typedef-name
3194  case tok::annot_typename:
3195    return true;
3196
3197    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3198  case tok::less:
3199    return getLangOpts().ObjC1;
3200
3201  case tok::kw___cdecl:
3202  case tok::kw___stdcall:
3203  case tok::kw___fastcall:
3204  case tok::kw___thiscall:
3205  case tok::kw___w64:
3206  case tok::kw___ptr64:
3207  case tok::kw___ptr32:
3208  case tok::kw___pascal:
3209  case tok::kw___unaligned:
3210
3211  case tok::kw___private:
3212  case tok::kw___local:
3213  case tok::kw___global:
3214  case tok::kw___constant:
3215  case tok::kw___read_only:
3216  case tok::kw___read_write:
3217  case tok::kw___write_only:
3218
3219    return true;
3220
3221  case tok::kw_private:
3222    return getLangOpts().OpenCL;
3223
3224  // C11 _Atomic()
3225  case tok::kw__Atomic:
3226    return true;
3227  }
3228}
3229
3230/// isDeclarationSpecifier() - Return true if the current token is part of a
3231/// declaration specifier.
3232///
3233/// \param DisambiguatingWithExpression True to indicate that the purpose of
3234/// this check is to disambiguate between an expression and a declaration.
3235bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3236  switch (Tok.getKind()) {
3237  default: return false;
3238
3239  case tok::kw_private:
3240    return getLangOpts().OpenCL;
3241
3242  case tok::identifier:   // foo::bar
3243    // Unfortunate hack to support "Class.factoryMethod" notation.
3244    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
3245      return false;
3246    if (TryAltiVecVectorToken())
3247      return true;
3248    // Fall through.
3249  case tok::kw_decltype: // decltype(T())::type
3250  case tok::kw_typename: // typename T::type
3251    // Annotate typenames and C++ scope specifiers.  If we get one, just
3252    // recurse to handle whatever we get.
3253    if (TryAnnotateTypeOrScopeToken())
3254      return true;
3255    if (Tok.is(tok::identifier))
3256      return false;
3257
3258    // If we're in Objective-C and we have an Objective-C class type followed
3259    // by an identifier and then either ':' or ']', in a place where an
3260    // expression is permitted, then this is probably a class message send
3261    // missing the initial '['. In this case, we won't consider this to be
3262    // the start of a declaration.
3263    if (DisambiguatingWithExpression &&
3264        isStartOfObjCClassMessageMissingOpenBracket())
3265      return false;
3266
3267    return isDeclarationSpecifier();
3268
3269  case tok::coloncolon:   // ::foo::bar
3270    if (NextToken().is(tok::kw_new) ||    // ::new
3271        NextToken().is(tok::kw_delete))   // ::delete
3272      return false;
3273
3274    // Annotate typenames and C++ scope specifiers.  If we get one, just
3275    // recurse to handle whatever we get.
3276    if (TryAnnotateTypeOrScopeToken())
3277      return true;
3278    return isDeclarationSpecifier();
3279
3280    // storage-class-specifier
3281  case tok::kw_typedef:
3282  case tok::kw_extern:
3283  case tok::kw___private_extern__:
3284  case tok::kw_static:
3285  case tok::kw_auto:
3286  case tok::kw_register:
3287  case tok::kw___thread:
3288
3289    // Modules
3290  case tok::kw___module_private__:
3291
3292    // type-specifiers
3293  case tok::kw_short:
3294  case tok::kw_long:
3295  case tok::kw___int64:
3296  case tok::kw___int128:
3297  case tok::kw_signed:
3298  case tok::kw_unsigned:
3299  case tok::kw__Complex:
3300  case tok::kw__Imaginary:
3301  case tok::kw_void:
3302  case tok::kw_char:
3303  case tok::kw_wchar_t:
3304  case tok::kw_char16_t:
3305  case tok::kw_char32_t:
3306
3307  case tok::kw_int:
3308  case tok::kw_half:
3309  case tok::kw_float:
3310  case tok::kw_double:
3311  case tok::kw_bool:
3312  case tok::kw__Bool:
3313  case tok::kw__Decimal32:
3314  case tok::kw__Decimal64:
3315  case tok::kw__Decimal128:
3316  case tok::kw___vector:
3317
3318    // struct-or-union-specifier (C99) or class-specifier (C++)
3319  case tok::kw_class:
3320  case tok::kw_struct:
3321  case tok::kw_union:
3322    // enum-specifier
3323  case tok::kw_enum:
3324
3325    // type-qualifier
3326  case tok::kw_const:
3327  case tok::kw_volatile:
3328  case tok::kw_restrict:
3329
3330    // function-specifier
3331  case tok::kw_inline:
3332  case tok::kw_virtual:
3333  case tok::kw_explicit:
3334
3335    // static_assert-declaration
3336  case tok::kw__Static_assert:
3337
3338    // GNU typeof support.
3339  case tok::kw_typeof:
3340
3341    // GNU attributes.
3342  case tok::kw___attribute:
3343    return true;
3344
3345    // C++0x decltype.
3346  case tok::annot_decltype:
3347    return true;
3348
3349    // C11 _Atomic()
3350  case tok::kw__Atomic:
3351    return true;
3352
3353    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3354  case tok::less:
3355    return getLangOpts().ObjC1;
3356
3357    // typedef-name
3358  case tok::annot_typename:
3359    return !DisambiguatingWithExpression ||
3360           !isStartOfObjCClassMessageMissingOpenBracket();
3361
3362  case tok::kw___declspec:
3363  case tok::kw___cdecl:
3364  case tok::kw___stdcall:
3365  case tok::kw___fastcall:
3366  case tok::kw___thiscall:
3367  case tok::kw___w64:
3368  case tok::kw___ptr64:
3369  case tok::kw___ptr32:
3370  case tok::kw___forceinline:
3371  case tok::kw___pascal:
3372  case tok::kw___unaligned:
3373
3374  case tok::kw___private:
3375  case tok::kw___local:
3376  case tok::kw___global:
3377  case tok::kw___constant:
3378  case tok::kw___read_only:
3379  case tok::kw___read_write:
3380  case tok::kw___write_only:
3381
3382    return true;
3383  }
3384}
3385
3386bool Parser::isConstructorDeclarator() {
3387  TentativeParsingAction TPA(*this);
3388
3389  // Parse the C++ scope specifier.
3390  CXXScopeSpec SS;
3391  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3392                                     /*EnteringContext=*/true)) {
3393    TPA.Revert();
3394    return false;
3395  }
3396
3397  // Parse the constructor name.
3398  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3399    // We already know that we have a constructor name; just consume
3400    // the token.
3401    ConsumeToken();
3402  } else {
3403    TPA.Revert();
3404    return false;
3405  }
3406
3407  // Current class name must be followed by a left parenthesis.
3408  if (Tok.isNot(tok::l_paren)) {
3409    TPA.Revert();
3410    return false;
3411  }
3412  ConsumeParen();
3413
3414  // A right parenthesis, or ellipsis followed by a right parenthesis signals
3415  // that we have a constructor.
3416  if (Tok.is(tok::r_paren) ||
3417      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
3418    TPA.Revert();
3419    return true;
3420  }
3421
3422  // If we need to, enter the specified scope.
3423  DeclaratorScopeObj DeclScopeObj(*this, SS);
3424  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3425    DeclScopeObj.EnterDeclaratorScope();
3426
3427  // Optionally skip Microsoft attributes.
3428  ParsedAttributes Attrs(AttrFactory);
3429  MaybeParseMicrosoftAttributes(Attrs);
3430
3431  // Check whether the next token(s) are part of a declaration
3432  // specifier, in which case we have the start of a parameter and,
3433  // therefore, we know that this is a constructor.
3434  bool IsConstructor = false;
3435  if (isDeclarationSpecifier())
3436    IsConstructor = true;
3437  else if (Tok.is(tok::identifier) ||
3438           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
3439    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
3440    // This might be a parenthesized member name, but is more likely to
3441    // be a constructor declaration with an invalid argument type. Keep
3442    // looking.
3443    if (Tok.is(tok::annot_cxxscope))
3444      ConsumeToken();
3445    ConsumeToken();
3446
3447    // If this is not a constructor, we must be parsing a declarator,
3448    // which must have one of the following syntactic forms (see the
3449    // grammar extract at the start of ParseDirectDeclarator):
3450    switch (Tok.getKind()) {
3451    case tok::l_paren:
3452      // C(X   (   int));
3453    case tok::l_square:
3454      // C(X   [   5]);
3455      // C(X   [   [attribute]]);
3456    case tok::coloncolon:
3457      // C(X   ::   Y);
3458      // C(X   ::   *p);
3459    case tok::r_paren:
3460      // C(X   )
3461      // Assume this isn't a constructor, rather than assuming it's a
3462      // constructor with an unnamed parameter of an ill-formed type.
3463      break;
3464
3465    default:
3466      IsConstructor = true;
3467      break;
3468    }
3469  }
3470
3471  TPA.Revert();
3472  return IsConstructor;
3473}
3474
3475/// ParseTypeQualifierListOpt
3476///          type-qualifier-list: [C99 6.7.5]
3477///            type-qualifier
3478/// [vendor]   attributes
3479///              [ only if VendorAttributesAllowed=true ]
3480///            type-qualifier-list type-qualifier
3481/// [vendor]   type-qualifier-list attributes
3482///              [ only if VendorAttributesAllowed=true ]
3483/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3484///              [ only if CXX0XAttributesAllowed=true ]
3485/// Note: vendor can be GNU, MS, etc.
3486///
3487void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3488                                       bool VendorAttributesAllowed,
3489                                       bool CXX0XAttributesAllowed) {
3490  if (getLangOpts().CPlusPlus0x && CXX0XAttributesAllowed &&
3491      isCXX11AttributeSpecifier()) {
3492    ParsedAttributesWithRange attrs(AttrFactory);
3493    ParseCXX0XAttributes(attrs);
3494    DS.takeAttributesFrom(attrs);
3495  }
3496
3497  SourceLocation EndLoc;
3498
3499  while (1) {
3500    bool isInvalid = false;
3501    const char *PrevSpec = 0;
3502    unsigned DiagID = 0;
3503    SourceLocation Loc = Tok.getLocation();
3504
3505    switch (Tok.getKind()) {
3506    case tok::code_completion:
3507      Actions.CodeCompleteTypeQualifiers(DS);
3508      return cutOffParsing();
3509
3510    case tok::kw_const:
3511      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3512                                 getLangOpts());
3513      break;
3514    case tok::kw_volatile:
3515      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3516                                 getLangOpts());
3517      break;
3518    case tok::kw_restrict:
3519      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3520                                 getLangOpts());
3521      break;
3522
3523    // OpenCL qualifiers:
3524    case tok::kw_private:
3525      if (!getLangOpts().OpenCL)
3526        goto DoneWithTypeQuals;
3527    case tok::kw___private:
3528    case tok::kw___global:
3529    case tok::kw___local:
3530    case tok::kw___constant:
3531    case tok::kw___read_only:
3532    case tok::kw___write_only:
3533    case tok::kw___read_write:
3534      ParseOpenCLQualifiers(DS);
3535      break;
3536
3537    case tok::kw___w64:
3538    case tok::kw___ptr64:
3539    case tok::kw___ptr32:
3540    case tok::kw___cdecl:
3541    case tok::kw___stdcall:
3542    case tok::kw___fastcall:
3543    case tok::kw___thiscall:
3544    case tok::kw___unaligned:
3545      if (VendorAttributesAllowed) {
3546        ParseMicrosoftTypeAttributes(DS.getAttributes());
3547        continue;
3548      }
3549      goto DoneWithTypeQuals;
3550    case tok::kw___pascal:
3551      if (VendorAttributesAllowed) {
3552        ParseBorlandTypeAttributes(DS.getAttributes());
3553        continue;
3554      }
3555      goto DoneWithTypeQuals;
3556    case tok::kw___attribute:
3557      if (VendorAttributesAllowed) {
3558        ParseGNUAttributes(DS.getAttributes());
3559        continue; // do *not* consume the next token!
3560      }
3561      // otherwise, FALL THROUGH!
3562    default:
3563      DoneWithTypeQuals:
3564      // If this is not a type-qualifier token, we're done reading type
3565      // qualifiers.  First verify that DeclSpec's are consistent.
3566      DS.Finish(Diags, PP);
3567      if (EndLoc.isValid())
3568        DS.SetRangeEnd(EndLoc);
3569      return;
3570    }
3571
3572    // If the specifier combination wasn't legal, issue a diagnostic.
3573    if (isInvalid) {
3574      assert(PrevSpec && "Method did not return previous specifier!");
3575      Diag(Tok, DiagID) << PrevSpec;
3576    }
3577    EndLoc = ConsumeToken();
3578  }
3579}
3580
3581
3582/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3583///
3584void Parser::ParseDeclarator(Declarator &D) {
3585  /// This implements the 'declarator' production in the C grammar, then checks
3586  /// for well-formedness and issues diagnostics.
3587  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3588}
3589
3590static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
3591  if (Kind == tok::star || Kind == tok::caret)
3592    return true;
3593
3594  // We parse rvalue refs in C++03, because otherwise the errors are scary.
3595  if (!Lang.CPlusPlus)
3596    return false;
3597
3598  return Kind == tok::amp || Kind == tok::ampamp;
3599}
3600
3601/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3602/// is parsed by the function passed to it. Pass null, and the direct-declarator
3603/// isn't parsed at all, making this function effectively parse the C++
3604/// ptr-operator production.
3605///
3606/// If the grammar of this construct is extended, matching changes must also be
3607/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
3608/// isConstructorDeclarator.
3609///
3610///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3611/// [C]     pointer[opt] direct-declarator
3612/// [C++]   direct-declarator
3613/// [C++]   ptr-operator declarator
3614///
3615///       pointer: [C99 6.7.5]
3616///         '*' type-qualifier-list[opt]
3617///         '*' type-qualifier-list[opt] pointer
3618///
3619///       ptr-operator:
3620///         '*' cv-qualifier-seq[opt]
3621///         '&'
3622/// [C++0x] '&&'
3623/// [GNU]   '&' restrict[opt] attributes[opt]
3624/// [GNU?]  '&&' restrict[opt] attributes[opt]
3625///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3626void Parser::ParseDeclaratorInternal(Declarator &D,
3627                                     DirectDeclParseFunction DirectDeclParser) {
3628  if (Diags.hasAllExtensionsSilenced())
3629    D.setExtension();
3630
3631  // C++ member pointers start with a '::' or a nested-name.
3632  // Member pointers get special handling, since there's no place for the
3633  // scope spec in the generic path below.
3634  if (getLangOpts().CPlusPlus &&
3635      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3636       Tok.is(tok::annot_cxxscope))) {
3637    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3638                           D.getContext() == Declarator::MemberContext;
3639    CXXScopeSpec SS;
3640    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3641
3642    if (SS.isNotEmpty()) {
3643      if (Tok.isNot(tok::star)) {
3644        // The scope spec really belongs to the direct-declarator.
3645        D.getCXXScopeSpec() = SS;
3646        if (DirectDeclParser)
3647          (this->*DirectDeclParser)(D);
3648        return;
3649      }
3650
3651      SourceLocation Loc = ConsumeToken();
3652      D.SetRangeEnd(Loc);
3653      DeclSpec DS(AttrFactory);
3654      ParseTypeQualifierListOpt(DS);
3655      D.ExtendWithDeclSpec(DS);
3656
3657      // Recurse to parse whatever is left.
3658      ParseDeclaratorInternal(D, DirectDeclParser);
3659
3660      // Sema will have to catch (syntactically invalid) pointers into global
3661      // scope. It has to catch pointers into namespace scope anyway.
3662      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3663                                                      Loc),
3664                    DS.getAttributes(),
3665                    /* Don't replace range end. */SourceLocation());
3666      return;
3667    }
3668  }
3669
3670  tok::TokenKind Kind = Tok.getKind();
3671  // Not a pointer, C++ reference, or block.
3672  if (!isPtrOperatorToken(Kind, getLangOpts())) {
3673    if (DirectDeclParser)
3674      (this->*DirectDeclParser)(D);
3675    return;
3676  }
3677
3678  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3679  // '&&' -> rvalue reference
3680  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3681  D.SetRangeEnd(Loc);
3682
3683  if (Kind == tok::star || Kind == tok::caret) {
3684    // Is a pointer.
3685    DeclSpec DS(AttrFactory);
3686
3687    // FIXME: GNU attributes are not allowed here in a new-type-id.
3688    ParseTypeQualifierListOpt(DS);
3689    D.ExtendWithDeclSpec(DS);
3690
3691    // Recursively parse the declarator.
3692    ParseDeclaratorInternal(D, DirectDeclParser);
3693    if (Kind == tok::star)
3694      // Remember that we parsed a pointer type, and remember the type-quals.
3695      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3696                                                DS.getConstSpecLoc(),
3697                                                DS.getVolatileSpecLoc(),
3698                                                DS.getRestrictSpecLoc()),
3699                    DS.getAttributes(),
3700                    SourceLocation());
3701    else
3702      // Remember that we parsed a Block type, and remember the type-quals.
3703      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3704                                                     Loc),
3705                    DS.getAttributes(),
3706                    SourceLocation());
3707  } else {
3708    // Is a reference
3709    DeclSpec DS(AttrFactory);
3710
3711    // Complain about rvalue references in C++03, but then go on and build
3712    // the declarator.
3713    if (Kind == tok::ampamp)
3714      Diag(Loc, getLangOpts().CPlusPlus0x ?
3715           diag::warn_cxx98_compat_rvalue_reference :
3716           diag::ext_rvalue_reference);
3717
3718    // GNU-style and C++11 attributes are allowed here, as is restrict.
3719    ParseTypeQualifierListOpt(DS);
3720    D.ExtendWithDeclSpec(DS);
3721
3722    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3723    // cv-qualifiers are introduced through the use of a typedef or of a
3724    // template type argument, in which case the cv-qualifiers are ignored.
3725    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3726      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3727        Diag(DS.getConstSpecLoc(),
3728             diag::err_invalid_reference_qualifier_application) << "const";
3729      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3730        Diag(DS.getVolatileSpecLoc(),
3731             diag::err_invalid_reference_qualifier_application) << "volatile";
3732    }
3733
3734    // Recursively parse the declarator.
3735    ParseDeclaratorInternal(D, DirectDeclParser);
3736
3737    if (D.getNumTypeObjects() > 0) {
3738      // C++ [dcl.ref]p4: There shall be no references to references.
3739      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3740      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3741        if (const IdentifierInfo *II = D.getIdentifier())
3742          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3743           << II;
3744        else
3745          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3746            << "type name";
3747
3748        // Once we've complained about the reference-to-reference, we
3749        // can go ahead and build the (technically ill-formed)
3750        // declarator: reference collapsing will take care of it.
3751      }
3752    }
3753
3754    // Remember that we parsed a reference type. It doesn't have type-quals.
3755    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3756                                                Kind == tok::amp),
3757                  DS.getAttributes(),
3758                  SourceLocation());
3759  }
3760}
3761
3762static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D,
3763                                      SourceLocation EllipsisLoc) {
3764  if (EllipsisLoc.isValid()) {
3765    FixItHint Insertion;
3766    if (!D.getEllipsisLoc().isValid()) {
3767      Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "...");
3768      D.setEllipsisLoc(EllipsisLoc);
3769    }
3770    P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
3771      << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName();
3772  }
3773}
3774
3775/// ParseDirectDeclarator
3776///       direct-declarator: [C99 6.7.5]
3777/// [C99]   identifier
3778///         '(' declarator ')'
3779/// [GNU]   '(' attributes declarator ')'
3780/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3781/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3782/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3783/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3784/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3785/// [C++11] direct-declarator '[' constant-expression[opt] ']'
3786///                    attribute-specifier-seq[opt]
3787///         direct-declarator '(' parameter-type-list ')'
3788///         direct-declarator '(' identifier-list[opt] ')'
3789/// [GNU]   direct-declarator '(' parameter-forward-declarations
3790///                    parameter-type-list[opt] ')'
3791/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3792///                    cv-qualifier-seq[opt] exception-specification[opt]
3793/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
3794///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
3795///                    ref-qualifier[opt] exception-specification[opt]
3796/// [C++]   declarator-id
3797/// [C++11] declarator-id attribute-specifier-seq[opt]
3798///
3799///       declarator-id: [C++ 8]
3800///         '...'[opt] id-expression
3801///         '::'[opt] nested-name-specifier[opt] type-name
3802///
3803///       id-expression: [C++ 5.1]
3804///         unqualified-id
3805///         qualified-id
3806///
3807///       unqualified-id: [C++ 5.1]
3808///         identifier
3809///         operator-function-id
3810///         conversion-function-id
3811///          '~' class-name
3812///         template-id
3813///
3814/// Note, any additional constructs added here may need corresponding changes
3815/// in isConstructorDeclarator.
3816void Parser::ParseDirectDeclarator(Declarator &D) {
3817  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3818
3819  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
3820    // ParseDeclaratorInternal might already have parsed the scope.
3821    if (D.getCXXScopeSpec().isEmpty()) {
3822      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3823                             D.getContext() == Declarator::MemberContext;
3824      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3825                                     EnteringContext);
3826    }
3827
3828    if (D.getCXXScopeSpec().isValid()) {
3829      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3830        // Change the declaration context for name lookup, until this function
3831        // is exited (and the declarator has been parsed).
3832        DeclScopeObj.EnterDeclaratorScope();
3833    }
3834
3835    // C++0x [dcl.fct]p14:
3836    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3837    //   of a parameter-declaration-clause without a preceding comma. In
3838    //   this case, the ellipsis is parsed as part of the
3839    //   abstract-declarator if the type of the parameter names a template
3840    //   parameter pack that has not been expanded; otherwise, it is parsed
3841    //   as part of the parameter-declaration-clause.
3842    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
3843        !((D.getContext() == Declarator::PrototypeContext ||
3844           D.getContext() == Declarator::BlockLiteralContext) &&
3845          NextToken().is(tok::r_paren) &&
3846          !Actions.containsUnexpandedParameterPacks(D))) {
3847      SourceLocation EllipsisLoc = ConsumeToken();
3848      if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
3849        // The ellipsis was put in the wrong place. Recover, and explain to
3850        // the user what they should have done.
3851        ParseDeclarator(D);
3852        diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
3853        return;
3854      } else
3855        D.setEllipsisLoc(EllipsisLoc);
3856
3857      // The ellipsis can't be followed by a parenthesized declarator. We
3858      // check for that in ParseParenDeclarator, after we have disambiguated
3859      // the l_paren token.
3860    }
3861
3862    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3863        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3864      // We found something that indicates the start of an unqualified-id.
3865      // Parse that unqualified-id.
3866      bool AllowConstructorName;
3867      if (D.getDeclSpec().hasTypeSpecifier())
3868        AllowConstructorName = false;
3869      else if (D.getCXXScopeSpec().isSet())
3870        AllowConstructorName =
3871          (D.getContext() == Declarator::FileContext ||
3872           (D.getContext() == Declarator::MemberContext &&
3873            D.getDeclSpec().isFriendSpecified()));
3874      else
3875        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3876
3877      SourceLocation TemplateKWLoc;
3878      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3879                             /*EnteringContext=*/true,
3880                             /*AllowDestructorName=*/true,
3881                             AllowConstructorName,
3882                             ParsedType(),
3883                             TemplateKWLoc,
3884                             D.getName()) ||
3885          // Once we're past the identifier, if the scope was bad, mark the
3886          // whole declarator bad.
3887          D.getCXXScopeSpec().isInvalid()) {
3888        D.SetIdentifier(0, Tok.getLocation());
3889        D.setInvalidType(true);
3890      } else {
3891        // Parsed the unqualified-id; update range information and move along.
3892        if (D.getSourceRange().getBegin().isInvalid())
3893          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3894        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3895      }
3896      goto PastIdentifier;
3897    }
3898  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3899    assert(!getLangOpts().CPlusPlus &&
3900           "There's a C++-specific check for tok::identifier above");
3901    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3902    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3903    ConsumeToken();
3904    goto PastIdentifier;
3905  }
3906
3907  if (Tok.is(tok::l_paren)) {
3908    // direct-declarator: '(' declarator ')'
3909    // direct-declarator: '(' attributes declarator ')'
3910    // Example: 'char (*X)'   or 'int (*XX)(void)'
3911    ParseParenDeclarator(D);
3912
3913    // If the declarator was parenthesized, we entered the declarator
3914    // scope when parsing the parenthesized declarator, then exited
3915    // the scope already. Re-enter the scope, if we need to.
3916    if (D.getCXXScopeSpec().isSet()) {
3917      // If there was an error parsing parenthesized declarator, declarator
3918      // scope may have been entered before. Don't do it again.
3919      if (!D.isInvalidType() &&
3920          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3921        // Change the declaration context for name lookup, until this function
3922        // is exited (and the declarator has been parsed).
3923        DeclScopeObj.EnterDeclaratorScope();
3924    }
3925  } else if (D.mayOmitIdentifier()) {
3926    // This could be something simple like "int" (in which case the declarator
3927    // portion is empty), if an abstract-declarator is allowed.
3928    D.SetIdentifier(0, Tok.getLocation());
3929  } else {
3930    if (D.getContext() == Declarator::MemberContext)
3931      Diag(Tok, diag::err_expected_member_name_or_semi)
3932        << D.getDeclSpec().getSourceRange();
3933    else if (getLangOpts().CPlusPlus)
3934      Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3935    else
3936      Diag(Tok, diag::err_expected_ident_lparen);
3937    D.SetIdentifier(0, Tok.getLocation());
3938    D.setInvalidType(true);
3939  }
3940
3941 PastIdentifier:
3942  assert(D.isPastIdentifier() &&
3943         "Haven't past the location of the identifier yet?");
3944
3945  // Don't parse attributes unless we have parsed an unparenthesized name.
3946  if (D.hasName() && !D.getNumTypeObjects())
3947    MaybeParseCXX0XAttributes(D);
3948
3949  while (1) {
3950    if (Tok.is(tok::l_paren)) {
3951      // Enter function-declaration scope, limiting any declarators to the
3952      // function prototype scope, including parameter declarators.
3953      ParseScope PrototypeScope(this,
3954                                Scope::FunctionPrototypeScope|Scope::DeclScope);
3955      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3956      // In such a case, check if we actually have a function declarator; if it
3957      // is not, the declarator has been fully parsed.
3958      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3959        // When not in file scope, warn for ambiguous function declarators, just
3960        // in case the author intended it as a variable definition.
3961        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3962        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3963          break;
3964      }
3965      ParsedAttributes attrs(AttrFactory);
3966      BalancedDelimiterTracker T(*this, tok::l_paren);
3967      T.consumeOpen();
3968      ParseFunctionDeclarator(D, attrs, T);
3969      PrototypeScope.Exit();
3970    } else if (Tok.is(tok::l_square)) {
3971      ParseBracketDeclarator(D);
3972    } else {
3973      break;
3974    }
3975  }
3976}
3977
3978/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3979/// only called before the identifier, so these are most likely just grouping
3980/// parens for precedence.  If we find that these are actually function
3981/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3982///
3983///       direct-declarator:
3984///         '(' declarator ')'
3985/// [GNU]   '(' attributes declarator ')'
3986///         direct-declarator '(' parameter-type-list ')'
3987///         direct-declarator '(' identifier-list[opt] ')'
3988/// [GNU]   direct-declarator '(' parameter-forward-declarations
3989///                    parameter-type-list[opt] ')'
3990///
3991void Parser::ParseParenDeclarator(Declarator &D) {
3992  BalancedDelimiterTracker T(*this, tok::l_paren);
3993  T.consumeOpen();
3994
3995  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3996
3997  // Eat any attributes before we look at whether this is a grouping or function
3998  // declarator paren.  If this is a grouping paren, the attribute applies to
3999  // the type being built up, for example:
4000  //     int (__attribute__(()) *x)(long y)
4001  // If this ends up not being a grouping paren, the attribute applies to the
4002  // first argument, for example:
4003  //     int (__attribute__(()) int x)
4004  // In either case, we need to eat any attributes to be able to determine what
4005  // sort of paren this is.
4006  //
4007  ParsedAttributes attrs(AttrFactory);
4008  bool RequiresArg = false;
4009  if (Tok.is(tok::kw___attribute)) {
4010    ParseGNUAttributes(attrs);
4011
4012    // We require that the argument list (if this is a non-grouping paren) be
4013    // present even if the attribute list was empty.
4014    RequiresArg = true;
4015  }
4016  // Eat any Microsoft extensions.
4017  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
4018       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
4019       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
4020       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
4021    ParseMicrosoftTypeAttributes(attrs);
4022  }
4023  // Eat any Borland extensions.
4024  if  (Tok.is(tok::kw___pascal))
4025    ParseBorlandTypeAttributes(attrs);
4026
4027  // If we haven't past the identifier yet (or where the identifier would be
4028  // stored, if this is an abstract declarator), then this is probably just
4029  // grouping parens. However, if this could be an abstract-declarator, then
4030  // this could also be the start of function arguments (consider 'void()').
4031  bool isGrouping;
4032
4033  if (!D.mayOmitIdentifier()) {
4034    // If this can't be an abstract-declarator, this *must* be a grouping
4035    // paren, because we haven't seen the identifier yet.
4036    isGrouping = true;
4037  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4038             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
4039              NextToken().is(tok::r_paren)) || // C++ int(...)
4040             isDeclarationSpecifier()) {       // 'int(int)' is a function.
4041    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4042    // considered to be a type, not a K&R identifier-list.
4043    isGrouping = false;
4044  } else {
4045    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4046    isGrouping = true;
4047  }
4048
4049  // If this is a grouping paren, handle:
4050  // direct-declarator: '(' declarator ')'
4051  // direct-declarator: '(' attributes declarator ')'
4052  if (isGrouping) {
4053    SourceLocation EllipsisLoc = D.getEllipsisLoc();
4054    D.setEllipsisLoc(SourceLocation());
4055
4056    bool hadGroupingParens = D.hasGroupingParens();
4057    D.setGroupingParens(true);
4058    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4059    // Match the ')'.
4060    T.consumeClose();
4061    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
4062                                            T.getCloseLocation()),
4063                  attrs, T.getCloseLocation());
4064
4065    D.setGroupingParens(hadGroupingParens);
4066
4067    // An ellipsis cannot be placed outside parentheses.
4068    if (EllipsisLoc.isValid())
4069      diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
4070
4071    return;
4072  }
4073
4074  // Okay, if this wasn't a grouping paren, it must be the start of a function
4075  // argument list.  Recognize that this declarator will never have an
4076  // identifier (and remember where it would have been), then call into
4077  // ParseFunctionDeclarator to handle of argument list.
4078  D.SetIdentifier(0, Tok.getLocation());
4079
4080  // Enter function-declaration scope, limiting any declarators to the
4081  // function prototype scope, including parameter declarators.
4082  ParseScope PrototypeScope(this,
4083                            Scope::FunctionPrototypeScope|Scope::DeclScope);
4084  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4085  PrototypeScope.Exit();
4086}
4087
4088/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4089/// declarator D up to a paren, which indicates that we are parsing function
4090/// arguments.
4091///
4092/// If FirstArgAttrs is non-null, then the caller parsed those arguments
4093/// immediately after the open paren - they should be considered to be the
4094/// first argument of a parameter.
4095///
4096/// If RequiresArg is true, then the first argument of the function is required
4097/// to be present and required to not be an identifier list.
4098///
4099/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
4100/// (C++11) ref-qualifier[opt], exception-specification[opt],
4101/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
4102///
4103/// [C++11] exception-specification:
4104///           dynamic-exception-specification
4105///           noexcept-specification
4106///
4107void Parser::ParseFunctionDeclarator(Declarator &D,
4108                                     ParsedAttributes &FirstArgAttrs,
4109                                     BalancedDelimiterTracker &Tracker,
4110                                     bool RequiresArg) {
4111  assert(getCurScope()->isFunctionPrototypeScope() &&
4112         "Should call from a Function scope");
4113  // lparen is already consumed!
4114  assert(D.isPastIdentifier() && "Should not call before identifier!");
4115
4116  // This should be true when the function has typed arguments.
4117  // Otherwise, it is treated as a K&R-style function.
4118  bool HasProto = false;
4119  // Build up an array of information about the parsed arguments.
4120  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4121  // Remember where we see an ellipsis, if any.
4122  SourceLocation EllipsisLoc;
4123
4124  DeclSpec DS(AttrFactory);
4125  bool RefQualifierIsLValueRef = true;
4126  SourceLocation RefQualifierLoc;
4127  SourceLocation ConstQualifierLoc;
4128  SourceLocation VolatileQualifierLoc;
4129  ExceptionSpecificationType ESpecType = EST_None;
4130  SourceRange ESpecRange;
4131  SmallVector<ParsedType, 2> DynamicExceptions;
4132  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4133  ExprResult NoexceptExpr;
4134  ParsedAttributes FnAttrs(AttrFactory);
4135  ParsedType TrailingReturnType;
4136
4137  Actions.ActOnStartFunctionDeclarator();
4138
4139  SourceLocation EndLoc;
4140  if (isFunctionDeclaratorIdentifierList()) {
4141    if (RequiresArg)
4142      Diag(Tok, diag::err_argument_required_after_attribute);
4143
4144    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4145
4146    Tracker.consumeClose();
4147    EndLoc = Tracker.getCloseLocation();
4148  } else {
4149    if (Tok.isNot(tok::r_paren))
4150      ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
4151    else if (RequiresArg)
4152      Diag(Tok, diag::err_argument_required_after_attribute);
4153
4154    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
4155
4156    // If we have the closing ')', eat it.
4157    Tracker.consumeClose();
4158    EndLoc = Tracker.getCloseLocation();
4159
4160    if (getLangOpts().CPlusPlus) {
4161      // FIXME: Accept these components in any order, and produce fixits to
4162      // correct the order if the user gets it wrong. Ideally we should deal
4163      // with the virt-specifier-seq and pure-specifier in the same way.
4164
4165      // Parse cv-qualifier-seq[opt].
4166      ParseTypeQualifierListOpt(DS, false /*no attributes*/, false);
4167      if (!DS.getSourceRange().getEnd().isInvalid()) {
4168        EndLoc = DS.getSourceRange().getEnd();
4169        ConstQualifierLoc = DS.getConstSpecLoc();
4170        VolatileQualifierLoc = DS.getVolatileSpecLoc();
4171      }
4172
4173      // Parse ref-qualifier[opt].
4174      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4175        Diag(Tok, getLangOpts().CPlusPlus0x ?
4176             diag::warn_cxx98_compat_ref_qualifier :
4177             diag::ext_ref_qualifier);
4178
4179        RefQualifierIsLValueRef = Tok.is(tok::amp);
4180        RefQualifierLoc = ConsumeToken();
4181        EndLoc = RefQualifierLoc;
4182      }
4183
4184      // Parse exception-specification[opt].
4185      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4186                                                   DynamicExceptions,
4187                                                   DynamicExceptionRanges,
4188                                                   NoexceptExpr);
4189      if (ESpecType != EST_None)
4190        EndLoc = ESpecRange.getEnd();
4191
4192      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
4193      // after the exception-specification.
4194      MaybeParseCXX0XAttributes(FnAttrs);
4195
4196      // Parse trailing-return-type[opt].
4197      if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) {
4198        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4199        SourceRange Range;
4200        TrailingReturnType = ParseTrailingReturnType(Range).get();
4201        if (Range.getEnd().isValid())
4202          EndLoc = Range.getEnd();
4203      }
4204    }
4205  }
4206
4207  // Remember that we parsed a function type, and remember the attributes.
4208  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4209                                             /*isVariadic=*/EllipsisLoc.isValid(),
4210                                             EllipsisLoc,
4211                                             ParamInfo.data(), ParamInfo.size(),
4212                                             DS.getTypeQualifiers(),
4213                                             RefQualifierIsLValueRef,
4214                                             RefQualifierLoc, ConstQualifierLoc,
4215                                             VolatileQualifierLoc,
4216                                             /*MutableLoc=*/SourceLocation(),
4217                                             ESpecType, ESpecRange.getBegin(),
4218                                             DynamicExceptions.data(),
4219                                             DynamicExceptionRanges.data(),
4220                                             DynamicExceptions.size(),
4221                                             NoexceptExpr.isUsable() ?
4222                                               NoexceptExpr.get() : 0,
4223                                             Tracker.getOpenLocation(),
4224                                             EndLoc, D,
4225                                             TrailingReturnType),
4226                FnAttrs, EndLoc);
4227
4228  Actions.ActOnEndFunctionDeclarator();
4229}
4230
4231/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4232/// identifier list form for a K&R-style function:  void foo(a,b,c)
4233///
4234/// Note that identifier-lists are only allowed for normal declarators, not for
4235/// abstract-declarators.
4236bool Parser::isFunctionDeclaratorIdentifierList() {
4237  return !getLangOpts().CPlusPlus
4238         && Tok.is(tok::identifier)
4239         && !TryAltiVecVectorToken()
4240         // K&R identifier lists can't have typedefs as identifiers, per C99
4241         // 6.7.5.3p11.
4242         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4243         // Identifier lists follow a really simple grammar: the identifiers can
4244         // be followed *only* by a ", identifier" or ")".  However, K&R
4245         // identifier lists are really rare in the brave new modern world, and
4246         // it is very common for someone to typo a type in a non-K&R style
4247         // list.  If we are presented with something like: "void foo(intptr x,
4248         // float y)", we don't want to start parsing the function declarator as
4249         // though it is a K&R style declarator just because intptr is an
4250         // invalid type.
4251         //
4252         // To handle this, we check to see if the token after the first
4253         // identifier is a "," or ")".  Only then do we parse it as an
4254         // identifier list.
4255         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4256}
4257
4258/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4259/// we found a K&R-style identifier list instead of a typed parameter list.
4260///
4261/// After returning, ParamInfo will hold the parsed parameters.
4262///
4263///       identifier-list: [C99 6.7.5]
4264///         identifier
4265///         identifier-list ',' identifier
4266///
4267void Parser::ParseFunctionDeclaratorIdentifierList(
4268       Declarator &D,
4269       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4270  // If there was no identifier specified for the declarator, either we are in
4271  // an abstract-declarator, or we are in a parameter declarator which was found
4272  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4273  // diagnose this.
4274  if (!D.getIdentifier())
4275    Diag(Tok, diag::ext_ident_list_in_param);
4276
4277  // Maintain an efficient lookup of params we have seen so far.
4278  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4279
4280  while (1) {
4281    // If this isn't an identifier, report the error and skip until ')'.
4282    if (Tok.isNot(tok::identifier)) {
4283      Diag(Tok, diag::err_expected_ident);
4284      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4285      // Forget we parsed anything.
4286      ParamInfo.clear();
4287      return;
4288    }
4289
4290    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4291
4292    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4293    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4294      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4295
4296    // Verify that the argument identifier has not already been mentioned.
4297    if (!ParamsSoFar.insert(ParmII)) {
4298      Diag(Tok, diag::err_param_redefinition) << ParmII;
4299    } else {
4300      // Remember this identifier in ParamInfo.
4301      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4302                                                     Tok.getLocation(),
4303                                                     0));
4304    }
4305
4306    // Eat the identifier.
4307    ConsumeToken();
4308
4309    // The list continues if we see a comma.
4310    if (Tok.isNot(tok::comma))
4311      break;
4312    ConsumeToken();
4313  }
4314}
4315
4316/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4317/// after the opening parenthesis. This function will not parse a K&R-style
4318/// identifier list.
4319///
4320/// D is the declarator being parsed.  If attrs is non-null, then the caller
4321/// parsed those arguments immediately after the open paren - they should be
4322/// considered to be the first argument of a parameter.
4323///
4324/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4325/// be the location of the ellipsis, if any was parsed.
4326///
4327///       parameter-type-list: [C99 6.7.5]
4328///         parameter-list
4329///         parameter-list ',' '...'
4330/// [C++]   parameter-list '...'
4331///
4332///       parameter-list: [C99 6.7.5]
4333///         parameter-declaration
4334///         parameter-list ',' parameter-declaration
4335///
4336///       parameter-declaration: [C99 6.7.5]
4337///         declaration-specifiers declarator
4338/// [C++]   declaration-specifiers declarator '=' assignment-expression
4339/// [C++11]                                       initializer-clause
4340/// [GNU]   declaration-specifiers declarator attributes
4341///         declaration-specifiers abstract-declarator[opt]
4342/// [C++]   declaration-specifiers abstract-declarator[opt]
4343///           '=' assignment-expression
4344/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4345///
4346void Parser::ParseParameterDeclarationClause(
4347       Declarator &D,
4348       ParsedAttributes &attrs,
4349       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4350       SourceLocation &EllipsisLoc) {
4351
4352  while (1) {
4353    if (Tok.is(tok::ellipsis)) {
4354      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4355      break;
4356    }
4357
4358    // Parse the declaration-specifiers.
4359    // Just use the ParsingDeclaration "scope" of the declarator.
4360    DeclSpec DS(AttrFactory);
4361
4362    // Skip any Microsoft attributes before a param.
4363    if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square))
4364      ParseMicrosoftAttributes(DS.getAttributes());
4365
4366    SourceLocation DSStart = Tok.getLocation();
4367
4368    // If the caller parsed attributes for the first argument, add them now.
4369    // Take them so that we only apply the attributes to the first parameter.
4370    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4371    // attributes lost? Should they even be allowed?
4372    // FIXME: If we can leave the attributes in the token stream somehow, we can
4373    // get rid of a parameter (attrs) and this statement. It might be too much
4374    // hassle.
4375    DS.takeAttributesFrom(attrs);
4376
4377    ParseDeclarationSpecifiers(DS);
4378
4379    // Parse the declarator.  This is "PrototypeContext", because we must
4380    // accept either 'declarator' or 'abstract-declarator' here.
4381    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4382    ParseDeclarator(ParmDecl);
4383
4384    // Parse GNU attributes, if present.
4385    MaybeParseGNUAttributes(ParmDecl);
4386
4387    // Remember this parsed parameter in ParamInfo.
4388    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4389
4390    // DefArgToks is used when the parsing of default arguments needs
4391    // to be delayed.
4392    CachedTokens *DefArgToks = 0;
4393
4394    // If no parameter was specified, verify that *something* was specified,
4395    // otherwise we have a missing type and identifier.
4396    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4397        ParmDecl.getNumTypeObjects() == 0) {
4398      // Completely missing, emit error.
4399      Diag(DSStart, diag::err_missing_param);
4400    } else {
4401      // Otherwise, we have something.  Add it and let semantic analysis try
4402      // to grok it and add the result to the ParamInfo we are building.
4403
4404      // Inform the actions module about the parameter declarator, so it gets
4405      // added to the current scope.
4406      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4407
4408      // Parse the default argument, if any. We parse the default
4409      // arguments in all dialects; the semantic analysis in
4410      // ActOnParamDefaultArgument will reject the default argument in
4411      // C.
4412      if (Tok.is(tok::equal)) {
4413        SourceLocation EqualLoc = Tok.getLocation();
4414
4415        // Parse the default argument
4416        if (D.getContext() == Declarator::MemberContext) {
4417          // If we're inside a class definition, cache the tokens
4418          // corresponding to the default argument. We'll actually parse
4419          // them when we see the end of the class definition.
4420          // FIXME: Templates will require something similar.
4421          // FIXME: Can we use a smart pointer for Toks?
4422          DefArgToks = new CachedTokens;
4423
4424          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4425                                    /*StopAtSemi=*/true,
4426                                    /*ConsumeFinalToken=*/false)) {
4427            delete DefArgToks;
4428            DefArgToks = 0;
4429            Actions.ActOnParamDefaultArgumentError(Param);
4430          } else {
4431            // Mark the end of the default argument so that we know when to
4432            // stop when we parse it later on.
4433            Token DefArgEnd;
4434            DefArgEnd.startToken();
4435            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4436            DefArgEnd.setLocation(Tok.getLocation());
4437            DefArgToks->push_back(DefArgEnd);
4438            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4439                                                (*DefArgToks)[1].getLocation());
4440          }
4441        } else {
4442          // Consume the '='.
4443          ConsumeToken();
4444
4445          // The argument isn't actually potentially evaluated unless it is
4446          // used.
4447          EnterExpressionEvaluationContext Eval(Actions,
4448                                              Sema::PotentiallyEvaluatedIfUsed,
4449                                                Param);
4450
4451          ExprResult DefArgResult;
4452          if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
4453            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
4454            DefArgResult = ParseBraceInitializer();
4455          } else
4456            DefArgResult = ParseAssignmentExpression();
4457          if (DefArgResult.isInvalid()) {
4458            Actions.ActOnParamDefaultArgumentError(Param);
4459            SkipUntil(tok::comma, tok::r_paren, true, true);
4460          } else {
4461            // Inform the actions module about the default argument
4462            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4463                                              DefArgResult.take());
4464          }
4465        }
4466      }
4467
4468      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4469                                          ParmDecl.getIdentifierLoc(), Param,
4470                                          DefArgToks));
4471    }
4472
4473    // If the next token is a comma, consume it and keep reading arguments.
4474    if (Tok.isNot(tok::comma)) {
4475      if (Tok.is(tok::ellipsis)) {
4476        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4477
4478        if (!getLangOpts().CPlusPlus) {
4479          // We have ellipsis without a preceding ',', which is ill-formed
4480          // in C. Complain and provide the fix.
4481          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4482            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4483        }
4484      }
4485
4486      break;
4487    }
4488
4489    // Consume the comma.
4490    ConsumeToken();
4491  }
4492
4493}
4494
4495/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4496/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4497/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4498/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4499/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4500/// [C++11] direct-declarator '[' constant-expression[opt] ']'
4501///                           attribute-specifier-seq[opt]
4502void Parser::ParseBracketDeclarator(Declarator &D) {
4503  if (CheckProhibitedCXX11Attribute())
4504    return;
4505
4506  BalancedDelimiterTracker T(*this, tok::l_square);
4507  T.consumeOpen();
4508
4509  // C array syntax has many features, but by-far the most common is [] and [4].
4510  // This code does a fast path to handle some of the most obvious cases.
4511  if (Tok.getKind() == tok::r_square) {
4512    T.consumeClose();
4513    ParsedAttributes attrs(AttrFactory);
4514    MaybeParseCXX0XAttributes(attrs);
4515
4516    // Remember that we parsed the empty array type.
4517    ExprResult NumElements;
4518    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4519                                            T.getOpenLocation(),
4520                                            T.getCloseLocation()),
4521                  attrs, T.getCloseLocation());
4522    return;
4523  } else if (Tok.getKind() == tok::numeric_constant &&
4524             GetLookAheadToken(1).is(tok::r_square)) {
4525    // [4] is very common.  Parse the numeric constant expression.
4526    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
4527    ConsumeToken();
4528
4529    T.consumeClose();
4530    ParsedAttributes attrs(AttrFactory);
4531    MaybeParseCXX0XAttributes(attrs);
4532
4533    // Remember that we parsed a array type, and remember its features.
4534    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4535                                            ExprRes.release(),
4536                                            T.getOpenLocation(),
4537                                            T.getCloseLocation()),
4538                  attrs, T.getCloseLocation());
4539    return;
4540  }
4541
4542  // If valid, this location is the position where we read the 'static' keyword.
4543  SourceLocation StaticLoc;
4544  if (Tok.is(tok::kw_static))
4545    StaticLoc = ConsumeToken();
4546
4547  // If there is a type-qualifier-list, read it now.
4548  // Type qualifiers in an array subscript are a C99 feature.
4549  DeclSpec DS(AttrFactory);
4550  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4551
4552  // If we haven't already read 'static', check to see if there is one after the
4553  // type-qualifier-list.
4554  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4555    StaticLoc = ConsumeToken();
4556
4557  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4558  bool isStar = false;
4559  ExprResult NumElements;
4560
4561  // Handle the case where we have '[*]' as the array size.  However, a leading
4562  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4563  // the the token after the star is a ']'.  Since stars in arrays are
4564  // infrequent, use of lookahead is not costly here.
4565  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4566    ConsumeToken();  // Eat the '*'.
4567
4568    if (StaticLoc.isValid()) {
4569      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4570      StaticLoc = SourceLocation();  // Drop the static.
4571    }
4572    isStar = true;
4573  } else if (Tok.isNot(tok::r_square)) {
4574    // Note, in C89, this production uses the constant-expr production instead
4575    // of assignment-expr.  The only difference is that assignment-expr allows
4576    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4577    // are not i-c-e's, so we don't need to distinguish between the two here.
4578
4579    // Parse the constant-expression or assignment-expression now (depending
4580    // on dialect).
4581    if (getLangOpts().CPlusPlus) {
4582      NumElements = ParseConstantExpression();
4583    } else {
4584      EnterExpressionEvaluationContext Unevaluated(Actions,
4585                                                   Sema::ConstantEvaluated);
4586      NumElements = ParseAssignmentExpression();
4587    }
4588  }
4589
4590  // If there was an error parsing the assignment-expression, recover.
4591  if (NumElements.isInvalid()) {
4592    D.setInvalidType(true);
4593    // If the expression was invalid, skip it.
4594    SkipUntil(tok::r_square);
4595    return;
4596  }
4597
4598  T.consumeClose();
4599
4600  ParsedAttributes attrs(AttrFactory);
4601  MaybeParseCXX0XAttributes(attrs);
4602
4603  // Remember that we parsed a array type, and remember its features.
4604  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4605                                          StaticLoc.isValid(), isStar,
4606                                          NumElements.release(),
4607                                          T.getOpenLocation(),
4608                                          T.getCloseLocation()),
4609                attrs, T.getCloseLocation());
4610}
4611
4612/// [GNU]   typeof-specifier:
4613///           typeof ( expressions )
4614///           typeof ( type-name )
4615/// [GNU/C++] typeof unary-expression
4616///
4617void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4618  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4619  Token OpTok = Tok;
4620  SourceLocation StartLoc = ConsumeToken();
4621
4622  const bool hasParens = Tok.is(tok::l_paren);
4623
4624  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
4625
4626  bool isCastExpr;
4627  ParsedType CastTy;
4628  SourceRange CastRange;
4629  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4630                                                          CastTy, CastRange);
4631  if (hasParens)
4632    DS.setTypeofParensRange(CastRange);
4633
4634  if (CastRange.getEnd().isInvalid())
4635    // FIXME: Not accurate, the range gets one token more than it should.
4636    DS.SetRangeEnd(Tok.getLocation());
4637  else
4638    DS.SetRangeEnd(CastRange.getEnd());
4639
4640  if (isCastExpr) {
4641    if (!CastTy) {
4642      DS.SetTypeSpecError();
4643      return;
4644    }
4645
4646    const char *PrevSpec = 0;
4647    unsigned DiagID;
4648    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4649    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4650                           DiagID, CastTy))
4651      Diag(StartLoc, DiagID) << PrevSpec;
4652    return;
4653  }
4654
4655  // If we get here, the operand to the typeof was an expresion.
4656  if (Operand.isInvalid()) {
4657    DS.SetTypeSpecError();
4658    return;
4659  }
4660
4661  // We might need to transform the operand if it is potentially evaluated.
4662  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
4663  if (Operand.isInvalid()) {
4664    DS.SetTypeSpecError();
4665    return;
4666  }
4667
4668  const char *PrevSpec = 0;
4669  unsigned DiagID;
4670  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4671  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4672                         DiagID, Operand.get()))
4673    Diag(StartLoc, DiagID) << PrevSpec;
4674}
4675
4676/// [C11]   atomic-specifier:
4677///           _Atomic ( type-name )
4678///
4679void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4680  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4681
4682  SourceLocation StartLoc = ConsumeToken();
4683  BalancedDelimiterTracker T(*this, tok::l_paren);
4684  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4685    SkipUntil(tok::r_paren);
4686    return;
4687  }
4688
4689  TypeResult Result = ParseTypeName();
4690  if (Result.isInvalid()) {
4691    SkipUntil(tok::r_paren);
4692    return;
4693  }
4694
4695  // Match the ')'
4696  T.consumeClose();
4697
4698  if (T.getCloseLocation().isInvalid())
4699    return;
4700
4701  DS.setTypeofParensRange(T.getRange());
4702  DS.SetRangeEnd(T.getCloseLocation());
4703
4704  const char *PrevSpec = 0;
4705  unsigned DiagID;
4706  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4707                         DiagID, Result.release()))
4708    Diag(StartLoc, DiagID) << PrevSpec;
4709}
4710
4711
4712/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4713/// from TryAltiVecVectorToken.
4714bool Parser::TryAltiVecVectorTokenOutOfLine() {
4715  Token Next = NextToken();
4716  switch (Next.getKind()) {
4717  default: return false;
4718  case tok::kw_short:
4719  case tok::kw_long:
4720  case tok::kw_signed:
4721  case tok::kw_unsigned:
4722  case tok::kw_void:
4723  case tok::kw_char:
4724  case tok::kw_int:
4725  case tok::kw_float:
4726  case tok::kw_double:
4727  case tok::kw_bool:
4728  case tok::kw___pixel:
4729    Tok.setKind(tok::kw___vector);
4730    return true;
4731  case tok::identifier:
4732    if (Next.getIdentifierInfo() == Ident_pixel) {
4733      Tok.setKind(tok::kw___vector);
4734      return true;
4735    }
4736    return false;
4737  }
4738}
4739
4740bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4741                                      const char *&PrevSpec, unsigned &DiagID,
4742                                      bool &isInvalid) {
4743  if (Tok.getIdentifierInfo() == Ident_vector) {
4744    Token Next = NextToken();
4745    switch (Next.getKind()) {
4746    case tok::kw_short:
4747    case tok::kw_long:
4748    case tok::kw_signed:
4749    case tok::kw_unsigned:
4750    case tok::kw_void:
4751    case tok::kw_char:
4752    case tok::kw_int:
4753    case tok::kw_float:
4754    case tok::kw_double:
4755    case tok::kw_bool:
4756    case tok::kw___pixel:
4757      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4758      return true;
4759    case tok::identifier:
4760      if (Next.getIdentifierInfo() == Ident_pixel) {
4761        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4762        return true;
4763      }
4764      break;
4765    default:
4766      break;
4767    }
4768  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4769             DS.isTypeAltiVecVector()) {
4770    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4771    return true;
4772  }
4773  return false;
4774}
4775