ParseDecl.cpp revision 74e2fc332e07c76d4e69ccbd0e9e47a0bafd3908
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringSwitch.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// C99 6.7: Declarations.
28//===----------------------------------------------------------------------===//
29
30/// ParseTypeName
31///       type-name: [C99 6.7.6]
32///         specifier-qualifier-list abstract-declarator[opt]
33///
34/// Called type-id in C++.
35TypeResult Parser::ParseTypeName(SourceRange *Range,
36                                 Declarator::TheContext Context,
37                                 AccessSpecifier AS,
38                                 Decl **OwnedType) {
39  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
40
41  // Parse the common declaration-specifiers piece.
42  DeclSpec DS(AttrFactory);
43  ParseSpecifierQualifierList(DS, AS, DSC);
44  if (OwnedType)
45    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
46
47  // Parse the abstract-declarator, if present.
48  Declarator DeclaratorInfo(DS, Context);
49  ParseDeclarator(DeclaratorInfo);
50  if (Range)
51    *Range = DeclaratorInfo.getSourceRange();
52
53  if (DeclaratorInfo.isInvalidType())
54    return true;
55
56  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
57}
58
59
60/// isAttributeLateParsed - Return true if the attribute has arguments that
61/// require late parsing.
62static bool isAttributeLateParsed(const IdentifierInfo &II) {
63    return llvm::StringSwitch<bool>(II.getName())
64#include "clang/Parse/AttrLateParsed.inc"
65        .Default(false);
66}
67
68
69/// ParseGNUAttributes - Parse a non-empty attributes list.
70///
71/// [GNU] attributes:
72///         attribute
73///         attributes attribute
74///
75/// [GNU]  attribute:
76///          '__attribute__' '(' '(' attribute-list ')' ')'
77///
78/// [GNU]  attribute-list:
79///          attrib
80///          attribute_list ',' attrib
81///
82/// [GNU]  attrib:
83///          empty
84///          attrib-name
85///          attrib-name '(' identifier ')'
86///          attrib-name '(' identifier ',' nonempty-expr-list ')'
87///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
88///
89/// [GNU]  attrib-name:
90///          identifier
91///          typespec
92///          typequal
93///          storageclass
94///
95/// FIXME: The GCC grammar/code for this construct implies we need two
96/// token lookahead. Comment from gcc: "If they start with an identifier
97/// which is followed by a comma or close parenthesis, then the arguments
98/// start with that identifier; otherwise they are an expression list."
99///
100/// GCC does not require the ',' between attribs in an attribute-list.
101///
102/// At the moment, I am not doing 2 token lookahead. I am also unaware of
103/// any attributes that don't work (based on my limited testing). Most
104/// attributes are very simple in practice. Until we find a bug, I don't see
105/// a pressing need to implement the 2 token lookahead.
106
107void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
108                                SourceLocation *endLoc,
109                                LateParsedAttrList *LateAttrs) {
110  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
111
112  while (Tok.is(tok::kw___attribute)) {
113    ConsumeToken();
114    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
115                         "attribute")) {
116      SkipUntil(tok::r_paren, true); // skip until ) or ;
117      return;
118    }
119    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
120      SkipUntil(tok::r_paren, true); // skip until ) or ;
121      return;
122    }
123    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
124    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
125           Tok.is(tok::comma)) {
126      if (Tok.is(tok::comma)) {
127        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
128        ConsumeToken();
129        continue;
130      }
131      // we have an identifier or declaration specifier (const, int, etc.)
132      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
133      SourceLocation AttrNameLoc = ConsumeToken();
134
135      if (Tok.is(tok::l_paren)) {
136        // handle "parameterized" attributes
137        if (LateAttrs && isAttributeLateParsed(*AttrName)) {
138          LateParsedAttribute *LA =
139            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
140          LateAttrs->push_back(LA);
141
142          // Attributes in a class are parsed at the end of the class, along
143          // with other late-parsed declarations.
144          if (!ClassStack.empty())
145            getCurrentClass().LateParsedDeclarations.push_back(LA);
146
147          // consume everything up to and including the matching right parens
148          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
149
150          Token Eof;
151          Eof.startToken();
152          Eof.setLocation(Tok.getLocation());
153          LA->Toks.push_back(Eof);
154        } else {
155          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
156        }
157      } else {
158        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
159                     0, SourceLocation(), 0, 0);
160      }
161    }
162    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
163      SkipUntil(tok::r_paren, false);
164    SourceLocation Loc = Tok.getLocation();
165    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
166      SkipUntil(tok::r_paren, false);
167    }
168    if (endLoc)
169      *endLoc = Loc;
170  }
171}
172
173
174/// Parse the arguments to a parameterized GNU attribute
175void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
176                                   SourceLocation AttrNameLoc,
177                                   ParsedAttributes &Attrs,
178                                   SourceLocation *EndLoc) {
179
180  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
181
182  // Availability attributes have their own grammar.
183  if (AttrName->isStr("availability")) {
184    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
185    return;
186  }
187  // Thread safety attributes fit into the FIXME case above, so we
188  // just parse the arguments as a list of expressions
189  if (IsThreadSafetyAttribute(AttrName->getName())) {
190    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
191    return;
192  }
193
194  ConsumeParen(); // ignore the left paren loc for now
195
196  IdentifierInfo *ParmName = 0;
197  SourceLocation ParmLoc;
198  bool BuiltinType = false;
199
200  switch (Tok.getKind()) {
201  case tok::kw_char:
202  case tok::kw_wchar_t:
203  case tok::kw_char16_t:
204  case tok::kw_char32_t:
205  case tok::kw_bool:
206  case tok::kw_short:
207  case tok::kw_int:
208  case tok::kw_long:
209  case tok::kw___int64:
210  case tok::kw___int128:
211  case tok::kw_signed:
212  case tok::kw_unsigned:
213  case tok::kw_float:
214  case tok::kw_double:
215  case tok::kw_void:
216  case tok::kw_typeof:
217    // __attribute__(( vec_type_hint(char) ))
218    // FIXME: Don't just discard the builtin type token.
219    ConsumeToken();
220    BuiltinType = true;
221    break;
222
223  case tok::identifier:
224    ParmName = Tok.getIdentifierInfo();
225    ParmLoc = ConsumeToken();
226    break;
227
228  default:
229    break;
230  }
231
232  ExprVector ArgExprs(Actions);
233
234  if (!BuiltinType &&
235      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
236    // Eat the comma.
237    if (ParmLoc.isValid())
238      ConsumeToken();
239
240    // Parse the non-empty comma-separated list of expressions.
241    while (1) {
242      ExprResult ArgExpr(ParseAssignmentExpression());
243      if (ArgExpr.isInvalid()) {
244        SkipUntil(tok::r_paren);
245        return;
246      }
247      ArgExprs.push_back(ArgExpr.release());
248      if (Tok.isNot(tok::comma))
249        break;
250      ConsumeToken(); // Eat the comma, move to the next argument
251    }
252  }
253  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
254    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
255                          tok::greater)) {
256      while (Tok.is(tok::identifier)) {
257        ConsumeToken();
258        if (Tok.is(tok::greater))
259          break;
260        if (Tok.is(tok::comma)) {
261          ConsumeToken();
262          continue;
263        }
264      }
265      if (Tok.isNot(tok::greater))
266        Diag(Tok, diag::err_iboutletcollection_with_protocol);
267      SkipUntil(tok::r_paren, false, true); // skip until ')'
268    }
269  }
270
271  SourceLocation RParen = Tok.getLocation();
272  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
273    AttributeList *attr =
274      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
275                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
276    if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection)
277      Diag(Tok, diag::err_iboutletcollection_builtintype);
278  }
279}
280
281
282/// ParseMicrosoftDeclSpec - Parse an __declspec construct
283///
284/// [MS] decl-specifier:
285///             __declspec ( extended-decl-modifier-seq )
286///
287/// [MS] extended-decl-modifier-seq:
288///             extended-decl-modifier[opt]
289///             extended-decl-modifier extended-decl-modifier-seq
290
291void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
292  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
293
294  ConsumeToken();
295  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
296                       "declspec")) {
297    SkipUntil(tok::r_paren, true); // skip until ) or ;
298    return;
299  }
300
301  while (Tok.getIdentifierInfo()) {
302    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
303    SourceLocation AttrNameLoc = ConsumeToken();
304
305    // FIXME: Remove this when we have proper __declspec(property()) support.
306    // Just skip everything inside property().
307    if (AttrName->getName() == "property") {
308      ConsumeParen();
309      SkipUntil(tok::r_paren);
310    }
311    if (Tok.is(tok::l_paren)) {
312      ConsumeParen();
313      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
314      // correctly.
315      ExprResult ArgExpr(ParseAssignmentExpression());
316      if (!ArgExpr.isInvalid()) {
317        Expr *ExprList = ArgExpr.take();
318        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
319                     SourceLocation(), &ExprList, 1, true);
320      }
321      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
322        SkipUntil(tok::r_paren, false);
323    } else {
324      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
325                   0, SourceLocation(), 0, 0, true);
326    }
327  }
328  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
329    SkipUntil(tok::r_paren, false);
330  return;
331}
332
333void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
334  // Treat these like attributes
335  // FIXME: Allow Sema to distinguish between these and real attributes!
336  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
337         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
338         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
339         Tok.is(tok::kw___ptr32) ||
340         Tok.is(tok::kw___unaligned)) {
341    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
342    SourceLocation AttrNameLoc = ConsumeToken();
343    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
344        Tok.is(tok::kw___ptr32))
345      // FIXME: Support these properly!
346      continue;
347    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
348                 SourceLocation(), 0, 0, true);
349  }
350}
351
352void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
353  // Treat these like attributes
354  while (Tok.is(tok::kw___pascal)) {
355    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
356    SourceLocation AttrNameLoc = ConsumeToken();
357    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
358                 SourceLocation(), 0, 0, true);
359  }
360}
361
362void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
363  // Treat these like attributes
364  while (Tok.is(tok::kw___kernel)) {
365    SourceLocation AttrNameLoc = ConsumeToken();
366    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
367                 AttrNameLoc, 0, AttrNameLoc, 0,
368                 SourceLocation(), 0, 0, false);
369  }
370}
371
372void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
373  SourceLocation Loc = Tok.getLocation();
374  switch(Tok.getKind()) {
375    // OpenCL qualifiers:
376    case tok::kw___private:
377    case tok::kw_private:
378      DS.getAttributes().addNewInteger(
379          Actions.getASTContext(),
380          PP.getIdentifierInfo("address_space"), Loc, 0);
381      break;
382
383    case tok::kw___global:
384      DS.getAttributes().addNewInteger(
385          Actions.getASTContext(),
386          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
387      break;
388
389    case tok::kw___local:
390      DS.getAttributes().addNewInteger(
391          Actions.getASTContext(),
392          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
393      break;
394
395    case tok::kw___constant:
396      DS.getAttributes().addNewInteger(
397          Actions.getASTContext(),
398          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
399      break;
400
401    case tok::kw___read_only:
402      DS.getAttributes().addNewInteger(
403          Actions.getASTContext(),
404          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
405      break;
406
407    case tok::kw___write_only:
408      DS.getAttributes().addNewInteger(
409          Actions.getASTContext(),
410          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
411      break;
412
413    case tok::kw___read_write:
414      DS.getAttributes().addNewInteger(
415          Actions.getASTContext(),
416          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
417      break;
418    default: break;
419  }
420}
421
422/// \brief Parse a version number.
423///
424/// version:
425///   simple-integer
426///   simple-integer ',' simple-integer
427///   simple-integer ',' simple-integer ',' simple-integer
428VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
429  Range = Tok.getLocation();
430
431  if (!Tok.is(tok::numeric_constant)) {
432    Diag(Tok, diag::err_expected_version);
433    SkipUntil(tok::comma, tok::r_paren, true, true, true);
434    return VersionTuple();
435  }
436
437  // Parse the major (and possibly minor and subminor) versions, which
438  // are stored in the numeric constant. We utilize a quirk of the
439  // lexer, which is that it handles something like 1.2.3 as a single
440  // numeric constant, rather than two separate tokens.
441  SmallString<512> Buffer;
442  Buffer.resize(Tok.getLength()+1);
443  const char *ThisTokBegin = &Buffer[0];
444
445  // Get the spelling of the token, which eliminates trigraphs, etc.
446  bool Invalid = false;
447  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
448  if (Invalid)
449    return VersionTuple();
450
451  // Parse the major version.
452  unsigned AfterMajor = 0;
453  unsigned Major = 0;
454  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
455    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
456    ++AfterMajor;
457  }
458
459  if (AfterMajor == 0) {
460    Diag(Tok, diag::err_expected_version);
461    SkipUntil(tok::comma, tok::r_paren, true, true, true);
462    return VersionTuple();
463  }
464
465  if (AfterMajor == ActualLength) {
466    ConsumeToken();
467
468    // We only had a single version component.
469    if (Major == 0) {
470      Diag(Tok, diag::err_zero_version);
471      return VersionTuple();
472    }
473
474    return VersionTuple(Major);
475  }
476
477  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
478    Diag(Tok, diag::err_expected_version);
479    SkipUntil(tok::comma, tok::r_paren, true, true, true);
480    return VersionTuple();
481  }
482
483  // Parse the minor version.
484  unsigned AfterMinor = AfterMajor + 1;
485  unsigned Minor = 0;
486  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
487    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
488    ++AfterMinor;
489  }
490
491  if (AfterMinor == ActualLength) {
492    ConsumeToken();
493
494    // We had major.minor.
495    if (Major == 0 && Minor == 0) {
496      Diag(Tok, diag::err_zero_version);
497      return VersionTuple();
498    }
499
500    return VersionTuple(Major, Minor);
501  }
502
503  // If what follows is not a '.', we have a problem.
504  if (ThisTokBegin[AfterMinor] != '.') {
505    Diag(Tok, diag::err_expected_version);
506    SkipUntil(tok::comma, tok::r_paren, true, true, true);
507    return VersionTuple();
508  }
509
510  // Parse the subminor version.
511  unsigned AfterSubminor = AfterMinor + 1;
512  unsigned Subminor = 0;
513  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
514    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
515    ++AfterSubminor;
516  }
517
518  if (AfterSubminor != ActualLength) {
519    Diag(Tok, diag::err_expected_version);
520    SkipUntil(tok::comma, tok::r_paren, true, true, true);
521    return VersionTuple();
522  }
523  ConsumeToken();
524  return VersionTuple(Major, Minor, Subminor);
525}
526
527/// \brief Parse the contents of the "availability" attribute.
528///
529/// availability-attribute:
530///   'availability' '(' platform ',' version-arg-list, opt-message')'
531///
532/// platform:
533///   identifier
534///
535/// version-arg-list:
536///   version-arg
537///   version-arg ',' version-arg-list
538///
539/// version-arg:
540///   'introduced' '=' version
541///   'deprecated' '=' version
542///   'obsoleted' = version
543///   'unavailable'
544/// opt-message:
545///   'message' '=' <string>
546void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
547                                        SourceLocation AvailabilityLoc,
548                                        ParsedAttributes &attrs,
549                                        SourceLocation *endLoc) {
550  SourceLocation PlatformLoc;
551  IdentifierInfo *Platform = 0;
552
553  enum { Introduced, Deprecated, Obsoleted, Unknown };
554  AvailabilityChange Changes[Unknown];
555  ExprResult MessageExpr;
556
557  // Opening '('.
558  BalancedDelimiterTracker T(*this, tok::l_paren);
559  if (T.consumeOpen()) {
560    Diag(Tok, diag::err_expected_lparen);
561    return;
562  }
563
564  // Parse the platform name,
565  if (Tok.isNot(tok::identifier)) {
566    Diag(Tok, diag::err_availability_expected_platform);
567    SkipUntil(tok::r_paren);
568    return;
569  }
570  Platform = Tok.getIdentifierInfo();
571  PlatformLoc = ConsumeToken();
572
573  // Parse the ',' following the platform name.
574  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
575    return;
576
577  // If we haven't grabbed the pointers for the identifiers
578  // "introduced", "deprecated", and "obsoleted", do so now.
579  if (!Ident_introduced) {
580    Ident_introduced = PP.getIdentifierInfo("introduced");
581    Ident_deprecated = PP.getIdentifierInfo("deprecated");
582    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
583    Ident_unavailable = PP.getIdentifierInfo("unavailable");
584    Ident_message = PP.getIdentifierInfo("message");
585  }
586
587  // Parse the set of introductions/deprecations/removals.
588  SourceLocation UnavailableLoc;
589  do {
590    if (Tok.isNot(tok::identifier)) {
591      Diag(Tok, diag::err_availability_expected_change);
592      SkipUntil(tok::r_paren);
593      return;
594    }
595    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
596    SourceLocation KeywordLoc = ConsumeToken();
597
598    if (Keyword == Ident_unavailable) {
599      if (UnavailableLoc.isValid()) {
600        Diag(KeywordLoc, diag::err_availability_redundant)
601          << Keyword << SourceRange(UnavailableLoc);
602      }
603      UnavailableLoc = KeywordLoc;
604
605      if (Tok.isNot(tok::comma))
606        break;
607
608      ConsumeToken();
609      continue;
610    }
611
612    if (Tok.isNot(tok::equal)) {
613      Diag(Tok, diag::err_expected_equal_after)
614        << Keyword;
615      SkipUntil(tok::r_paren);
616      return;
617    }
618    ConsumeToken();
619    if (Keyword == Ident_message) {
620      if (!isTokenStringLiteral()) {
621        Diag(Tok, diag::err_expected_string_literal);
622        SkipUntil(tok::r_paren);
623        return;
624      }
625      MessageExpr = ParseStringLiteralExpression();
626      break;
627    }
628
629    SourceRange VersionRange;
630    VersionTuple Version = ParseVersionTuple(VersionRange);
631
632    if (Version.empty()) {
633      SkipUntil(tok::r_paren);
634      return;
635    }
636
637    unsigned Index;
638    if (Keyword == Ident_introduced)
639      Index = Introduced;
640    else if (Keyword == Ident_deprecated)
641      Index = Deprecated;
642    else if (Keyword == Ident_obsoleted)
643      Index = Obsoleted;
644    else
645      Index = Unknown;
646
647    if (Index < Unknown) {
648      if (!Changes[Index].KeywordLoc.isInvalid()) {
649        Diag(KeywordLoc, diag::err_availability_redundant)
650          << Keyword
651          << SourceRange(Changes[Index].KeywordLoc,
652                         Changes[Index].VersionRange.getEnd());
653      }
654
655      Changes[Index].KeywordLoc = KeywordLoc;
656      Changes[Index].Version = Version;
657      Changes[Index].VersionRange = VersionRange;
658    } else {
659      Diag(KeywordLoc, diag::err_availability_unknown_change)
660        << Keyword << VersionRange;
661    }
662
663    if (Tok.isNot(tok::comma))
664      break;
665
666    ConsumeToken();
667  } while (true);
668
669  // Closing ')'.
670  if (T.consumeClose())
671    return;
672
673  if (endLoc)
674    *endLoc = T.getCloseLocation();
675
676  // The 'unavailable' availability cannot be combined with any other
677  // availability changes. Make sure that hasn't happened.
678  if (UnavailableLoc.isValid()) {
679    bool Complained = false;
680    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
681      if (Changes[Index].KeywordLoc.isValid()) {
682        if (!Complained) {
683          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
684            << SourceRange(Changes[Index].KeywordLoc,
685                           Changes[Index].VersionRange.getEnd());
686          Complained = true;
687        }
688
689        // Clear out the availability.
690        Changes[Index] = AvailabilityChange();
691      }
692    }
693  }
694
695  // Record this attribute
696  attrs.addNew(&Availability,
697               SourceRange(AvailabilityLoc, T.getCloseLocation()),
698               0, AvailabilityLoc,
699               Platform, PlatformLoc,
700               Changes[Introduced],
701               Changes[Deprecated],
702               Changes[Obsoleted],
703               UnavailableLoc, MessageExpr.take(),
704               false, false);
705}
706
707
708// Late Parsed Attributes:
709// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
710
711void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
712
713void Parser::LateParsedClass::ParseLexedAttributes() {
714  Self->ParseLexedAttributes(*Class);
715}
716
717void Parser::LateParsedAttribute::ParseLexedAttributes() {
718  Self->ParseLexedAttribute(*this, true, false);
719}
720
721/// Wrapper class which calls ParseLexedAttribute, after setting up the
722/// scope appropriately.
723void Parser::ParseLexedAttributes(ParsingClass &Class) {
724  // Deal with templates
725  // FIXME: Test cases to make sure this does the right thing for templates.
726  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
727  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
728                                HasTemplateScope);
729  if (HasTemplateScope)
730    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
731
732  // Set or update the scope flags.
733  bool AlreadyHasClassScope = Class.TopLevelClass;
734  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
735  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
736  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
737
738  // Enter the scope of nested classes
739  if (!AlreadyHasClassScope)
740    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
741                                                Class.TagOrTemplate);
742  {
743    // Allow 'this' within late-parsed attributes.
744    Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate,
745                                     /*TypeQuals=*/0);
746
747    for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
748      Class.LateParsedDeclarations[i]->ParseLexedAttributes();
749    }
750  }
751
752  if (!AlreadyHasClassScope)
753    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
754                                                 Class.TagOrTemplate);
755}
756
757
758/// \brief Parse all attributes in LAs, and attach them to Decl D.
759void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
760                                     bool EnterScope, bool OnDefinition) {
761  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
762    LAs[i]->addDecl(D);
763    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
764    delete LAs[i];
765  }
766  LAs.clear();
767}
768
769
770/// \brief Finish parsing an attribute for which parsing was delayed.
771/// This will be called at the end of parsing a class declaration
772/// for each LateParsedAttribute. We consume the saved tokens and
773/// create an attribute with the arguments filled in. We add this
774/// to the Attribute list for the decl.
775void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
776                                 bool EnterScope, bool OnDefinition) {
777  // Save the current token position.
778  SourceLocation OrigLoc = Tok.getLocation();
779
780  // Append the current token at the end of the new token stream so that it
781  // doesn't get lost.
782  LA.Toks.push_back(Tok);
783  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
784  // Consume the previously pushed token.
785  ConsumeAnyToken();
786
787  if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
788    Diag(Tok, diag::warn_attribute_on_function_definition)
789      << LA.AttrName.getName();
790  }
791
792  ParsedAttributes Attrs(AttrFactory);
793  SourceLocation endLoc;
794
795  if (LA.Decls.size() == 1) {
796    Decl *D = LA.Decls[0];
797
798    // If the Decl is templatized, add template parameters to scope.
799    bool HasTemplateScope = EnterScope && D->isTemplateDecl();
800    ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
801    if (HasTemplateScope)
802      Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
803
804    // If the Decl is on a function, add function parameters to the scope.
805    bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
806    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
807    if (HasFunctionScope)
808      Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
809
810    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
811
812    if (HasFunctionScope) {
813      Actions.ActOnExitFunctionContext();
814      FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
815    }
816    if (HasTemplateScope) {
817      TempScope.Exit();
818    }
819  } else if (LA.Decls.size() > 0) {
820    // If there are multiple decls, then the decl cannot be within the
821    // function scope.
822    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
823  } else {
824    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
825  }
826
827  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
828    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
829  }
830
831  if (Tok.getLocation() != OrigLoc) {
832    // Due to a parsing error, we either went over the cached tokens or
833    // there are still cached tokens left, so we skip the leftover tokens.
834    // Since this is an uncommon situation that should be avoided, use the
835    // expensive isBeforeInTranslationUnit call.
836    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
837                                                        OrigLoc))
838    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
839      ConsumeAnyToken();
840  }
841}
842
843/// \brief Wrapper around a case statement checking if AttrName is
844/// one of the thread safety attributes
845bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
846  return llvm::StringSwitch<bool>(AttrName)
847      .Case("guarded_by", true)
848      .Case("guarded_var", true)
849      .Case("pt_guarded_by", true)
850      .Case("pt_guarded_var", true)
851      .Case("lockable", true)
852      .Case("scoped_lockable", true)
853      .Case("no_thread_safety_analysis", true)
854      .Case("acquired_after", true)
855      .Case("acquired_before", true)
856      .Case("exclusive_lock_function", true)
857      .Case("shared_lock_function", true)
858      .Case("exclusive_trylock_function", true)
859      .Case("shared_trylock_function", true)
860      .Case("unlock_function", true)
861      .Case("lock_returned", true)
862      .Case("locks_excluded", true)
863      .Case("exclusive_locks_required", true)
864      .Case("shared_locks_required", true)
865      .Default(false);
866}
867
868/// \brief Parse the contents of thread safety attributes. These
869/// should always be parsed as an expression list.
870///
871/// We need to special case the parsing due to the fact that if the first token
872/// of the first argument is an identifier, the main parse loop will store
873/// that token as a "parameter" and the rest of
874/// the arguments will be added to a list of "arguments". However,
875/// subsequent tokens in the first argument are lost. We instead parse each
876/// argument as an expression and add all arguments to the list of "arguments".
877/// In future, we will take advantage of this special case to also
878/// deal with some argument scoping issues here (for example, referring to a
879/// function parameter in the attribute on that function).
880void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
881                                        SourceLocation AttrNameLoc,
882                                        ParsedAttributes &Attrs,
883                                        SourceLocation *EndLoc) {
884  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
885
886  BalancedDelimiterTracker T(*this, tok::l_paren);
887  T.consumeOpen();
888
889  ExprVector ArgExprs(Actions);
890  bool ArgExprsOk = true;
891
892  // now parse the list of expressions
893  while (Tok.isNot(tok::r_paren)) {
894    ExprResult ArgExpr(ParseAssignmentExpression());
895    if (ArgExpr.isInvalid()) {
896      ArgExprsOk = false;
897      T.consumeClose();
898      break;
899    } else {
900      ArgExprs.push_back(ArgExpr.release());
901    }
902    if (Tok.isNot(tok::comma))
903      break;
904    ConsumeToken(); // Eat the comma, move to the next argument
905  }
906  // Match the ')'.
907  if (ArgExprsOk && !T.consumeClose()) {
908    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
909                 ArgExprs.take(), ArgExprs.size());
910  }
911  if (EndLoc)
912    *EndLoc = T.getCloseLocation();
913}
914
915/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
916/// of a C++11 attribute-specifier in a location where an attribute is not
917/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
918/// situation.
919///
920/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
921/// this doesn't appear to actually be an attribute-specifier, and the caller
922/// should try to parse it.
923bool Parser::DiagnoseProhibitedCXX11Attribute() {
924  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
925
926  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
927  case CAK_NotAttributeSpecifier:
928    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
929    return false;
930
931  case CAK_InvalidAttributeSpecifier:
932    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
933    return false;
934
935  case CAK_AttributeSpecifier:
936    // Parse and discard the attributes.
937    SourceLocation BeginLoc = ConsumeBracket();
938    ConsumeBracket();
939    SkipUntil(tok::r_square, /*StopAtSemi*/ false);
940    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
941    SourceLocation EndLoc = ConsumeBracket();
942    Diag(BeginLoc, diag::err_attributes_not_allowed)
943      << SourceRange(BeginLoc, EndLoc);
944    return true;
945  }
946  llvm_unreachable("All cases handled above.");
947}
948
949void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
950  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
951    << attrs.Range;
952}
953
954/// ParseDeclaration - Parse a full 'declaration', which consists of
955/// declaration-specifiers, some number of declarators, and a semicolon.
956/// 'Context' should be a Declarator::TheContext value.  This returns the
957/// location of the semicolon in DeclEnd.
958///
959///       declaration: [C99 6.7]
960///         block-declaration ->
961///           simple-declaration
962///           others                   [FIXME]
963/// [C++]   template-declaration
964/// [C++]   namespace-definition
965/// [C++]   using-directive
966/// [C++]   using-declaration
967/// [C++11/C11] static_assert-declaration
968///         others... [FIXME]
969///
970Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
971                                                unsigned Context,
972                                                SourceLocation &DeclEnd,
973                                          ParsedAttributesWithRange &attrs) {
974  ParenBraceBracketBalancer BalancerRAIIObj(*this);
975  // Must temporarily exit the objective-c container scope for
976  // parsing c none objective-c decls.
977  ObjCDeclContextSwitch ObjCDC(*this);
978
979  Decl *SingleDecl = 0;
980  Decl *OwnedType = 0;
981  switch (Tok.getKind()) {
982  case tok::kw_template:
983  case tok::kw_export:
984    ProhibitAttributes(attrs);
985    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
986    break;
987  case tok::kw_inline:
988    // Could be the start of an inline namespace. Allowed as an ext in C++03.
989    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
990      ProhibitAttributes(attrs);
991      SourceLocation InlineLoc = ConsumeToken();
992      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
993      break;
994    }
995    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
996                                  true);
997  case tok::kw_namespace:
998    ProhibitAttributes(attrs);
999    SingleDecl = ParseNamespace(Context, DeclEnd);
1000    break;
1001  case tok::kw_using:
1002    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1003                                                  DeclEnd, attrs, &OwnedType);
1004    break;
1005  case tok::kw_static_assert:
1006  case tok::kw__Static_assert:
1007    ProhibitAttributes(attrs);
1008    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1009    break;
1010  default:
1011    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
1012  }
1013
1014  // This routine returns a DeclGroup, if the thing we parsed only contains a
1015  // single decl, convert it now. Alias declarations can also declare a type;
1016  // include that too if it is present.
1017  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1018}
1019
1020///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1021///         declaration-specifiers init-declarator-list[opt] ';'
1022///[C90/C++]init-declarator-list ';'                             [TODO]
1023/// [OMP]   threadprivate-directive                              [TODO]
1024///
1025///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
1026///         attribute-specifier-seq[opt] type-specifier-seq declarator
1027///
1028/// If RequireSemi is false, this does not check for a ';' at the end of the
1029/// declaration.  If it is true, it checks for and eats it.
1030///
1031/// If FRI is non-null, we might be parsing a for-range-declaration instead
1032/// of a simple-declaration. If we find that we are, we also parse the
1033/// for-range-initializer, and place it here.
1034Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
1035                                                      unsigned Context,
1036                                                      SourceLocation &DeclEnd,
1037                                                      ParsedAttributes &attrs,
1038                                                      bool RequireSemi,
1039                                                      ForRangeInit *FRI) {
1040  // Parse the common declaration-specifiers piece.
1041  ParsingDeclSpec DS(*this);
1042  DS.takeAttributesFrom(attrs);
1043
1044  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
1045                             getDeclSpecContextFromDeclaratorContext(Context));
1046
1047  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1048  // declaration-specifiers init-declarator-list[opt] ';'
1049  if (Tok.is(tok::semi)) {
1050    if (RequireSemi) ConsumeToken();
1051    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1052                                                       DS);
1053    DS.complete(TheDecl);
1054    return Actions.ConvertDeclToDeclGroup(TheDecl);
1055  }
1056
1057  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1058}
1059
1060/// Returns true if this might be the start of a declarator, or a common typo
1061/// for a declarator.
1062bool Parser::MightBeDeclarator(unsigned Context) {
1063  switch (Tok.getKind()) {
1064  case tok::annot_cxxscope:
1065  case tok::annot_template_id:
1066  case tok::caret:
1067  case tok::code_completion:
1068  case tok::coloncolon:
1069  case tok::ellipsis:
1070  case tok::kw___attribute:
1071  case tok::kw_operator:
1072  case tok::l_paren:
1073  case tok::star:
1074    return true;
1075
1076  case tok::amp:
1077  case tok::ampamp:
1078    return getLangOpts().CPlusPlus;
1079
1080  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1081    return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x &&
1082           NextToken().is(tok::l_square);
1083
1084  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1085    return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1086
1087  case tok::identifier:
1088    switch (NextToken().getKind()) {
1089    case tok::code_completion:
1090    case tok::coloncolon:
1091    case tok::comma:
1092    case tok::equal:
1093    case tok::equalequal: // Might be a typo for '='.
1094    case tok::kw_alignas:
1095    case tok::kw_asm:
1096    case tok::kw___attribute:
1097    case tok::l_brace:
1098    case tok::l_paren:
1099    case tok::l_square:
1100    case tok::less:
1101    case tok::r_brace:
1102    case tok::r_paren:
1103    case tok::r_square:
1104    case tok::semi:
1105      return true;
1106
1107    case tok::colon:
1108      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1109      // and in block scope it's probably a label. Inside a class definition,
1110      // this is a bit-field.
1111      return Context == Declarator::MemberContext ||
1112             (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1113
1114    case tok::identifier: // Possible virt-specifier.
1115      return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
1116
1117    default:
1118      return false;
1119    }
1120
1121  default:
1122    return false;
1123  }
1124}
1125
1126/// Skip until we reach something which seems like a sensible place to pick
1127/// up parsing after a malformed declaration. This will sometimes stop sooner
1128/// than SkipUntil(tok::r_brace) would, but will never stop later.
1129void Parser::SkipMalformedDecl() {
1130  while (true) {
1131    switch (Tok.getKind()) {
1132    case tok::l_brace:
1133      // Skip until matching }, then stop. We've probably skipped over
1134      // a malformed class or function definition or similar.
1135      ConsumeBrace();
1136      SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1137      if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1138        // This declaration isn't over yet. Keep skipping.
1139        continue;
1140      }
1141      if (Tok.is(tok::semi))
1142        ConsumeToken();
1143      return;
1144
1145    case tok::l_square:
1146      ConsumeBracket();
1147      SkipUntil(tok::r_square, /*StopAtSemi*/false);
1148      continue;
1149
1150    case tok::l_paren:
1151      ConsumeParen();
1152      SkipUntil(tok::r_paren, /*StopAtSemi*/false);
1153      continue;
1154
1155    case tok::r_brace:
1156      return;
1157
1158    case tok::semi:
1159      ConsumeToken();
1160      return;
1161
1162    case tok::kw_inline:
1163      // 'inline namespace' at the start of a line is almost certainly
1164      // a good place to pick back up parsing.
1165      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace))
1166        return;
1167      break;
1168
1169    case tok::kw_namespace:
1170      // 'namespace' at the start of a line is almost certainly a good
1171      // place to pick back up parsing.
1172      if (Tok.isAtStartOfLine())
1173        return;
1174      break;
1175
1176    case tok::eof:
1177      return;
1178
1179    default:
1180      break;
1181    }
1182
1183    ConsumeAnyToken();
1184  }
1185}
1186
1187/// ParseDeclGroup - Having concluded that this is either a function
1188/// definition or a group of object declarations, actually parse the
1189/// result.
1190Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1191                                              unsigned Context,
1192                                              bool AllowFunctionDefinitions,
1193                                              SourceLocation *DeclEnd,
1194                                              ForRangeInit *FRI) {
1195  // Parse the first declarator.
1196  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1197  ParseDeclarator(D);
1198
1199  // Bail out if the first declarator didn't seem well-formed.
1200  if (!D.hasName() && !D.mayOmitIdentifier()) {
1201    SkipMalformedDecl();
1202    return DeclGroupPtrTy();
1203  }
1204
1205  // Save late-parsed attributes for now; they need to be parsed in the
1206  // appropriate function scope after the function Decl has been constructed.
1207  LateParsedAttrList LateParsedAttrs;
1208  if (D.isFunctionDeclarator())
1209    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1210
1211  // Check to see if we have a function *definition* which must have a body.
1212  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1213      // Look at the next token to make sure that this isn't a function
1214      // declaration.  We have to check this because __attribute__ might be the
1215      // start of a function definition in GCC-extended K&R C.
1216      !isDeclarationAfterDeclarator()) {
1217
1218    if (isStartOfFunctionDefinition(D)) {
1219      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1220        Diag(Tok, diag::err_function_declared_typedef);
1221
1222        // Recover by treating the 'typedef' as spurious.
1223        DS.ClearStorageClassSpecs();
1224      }
1225
1226      Decl *TheDecl =
1227        ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1228      return Actions.ConvertDeclToDeclGroup(TheDecl);
1229    }
1230
1231    if (isDeclarationSpecifier()) {
1232      // If there is an invalid declaration specifier right after the function
1233      // prototype, then we must be in a missing semicolon case where this isn't
1234      // actually a body.  Just fall through into the code that handles it as a
1235      // prototype, and let the top-level code handle the erroneous declspec
1236      // where it would otherwise expect a comma or semicolon.
1237    } else {
1238      Diag(Tok, diag::err_expected_fn_body);
1239      SkipUntil(tok::semi);
1240      return DeclGroupPtrTy();
1241    }
1242  }
1243
1244  if (ParseAsmAttributesAfterDeclarator(D))
1245    return DeclGroupPtrTy();
1246
1247  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1248  // must parse and analyze the for-range-initializer before the declaration is
1249  // analyzed.
1250  if (FRI && Tok.is(tok::colon)) {
1251    FRI->ColonLoc = ConsumeToken();
1252    if (Tok.is(tok::l_brace))
1253      FRI->RangeExpr = ParseBraceInitializer();
1254    else
1255      FRI->RangeExpr = ParseExpression();
1256    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1257    Actions.ActOnCXXForRangeDecl(ThisDecl);
1258    Actions.FinalizeDeclaration(ThisDecl);
1259    D.complete(ThisDecl);
1260    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1261  }
1262
1263  SmallVector<Decl *, 8> DeclsInGroup;
1264  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1265  if (LateParsedAttrs.size() > 0)
1266    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1267  D.complete(FirstDecl);
1268  if (FirstDecl)
1269    DeclsInGroup.push_back(FirstDecl);
1270
1271  bool ExpectSemi = Context != Declarator::ForContext;
1272
1273  // If we don't have a comma, it is either the end of the list (a ';') or an
1274  // error, bail out.
1275  while (Tok.is(tok::comma)) {
1276    SourceLocation CommaLoc = ConsumeToken();
1277
1278    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1279      // This comma was followed by a line-break and something which can't be
1280      // the start of a declarator. The comma was probably a typo for a
1281      // semicolon.
1282      Diag(CommaLoc, diag::err_expected_semi_declaration)
1283        << FixItHint::CreateReplacement(CommaLoc, ";");
1284      ExpectSemi = false;
1285      break;
1286    }
1287
1288    // Parse the next declarator.
1289    D.clear();
1290    D.setCommaLoc(CommaLoc);
1291
1292    // Accept attributes in an init-declarator.  In the first declarator in a
1293    // declaration, these would be part of the declspec.  In subsequent
1294    // declarators, they become part of the declarator itself, so that they
1295    // don't apply to declarators after *this* one.  Examples:
1296    //    short __attribute__((common)) var;    -> declspec
1297    //    short var __attribute__((common));    -> declarator
1298    //    short x, __attribute__((common)) var;    -> declarator
1299    MaybeParseGNUAttributes(D);
1300
1301    ParseDeclarator(D);
1302    if (!D.isInvalidType()) {
1303      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1304      D.complete(ThisDecl);
1305      if (ThisDecl)
1306        DeclsInGroup.push_back(ThisDecl);
1307    }
1308  }
1309
1310  if (DeclEnd)
1311    *DeclEnd = Tok.getLocation();
1312
1313  if (ExpectSemi &&
1314      ExpectAndConsume(tok::semi,
1315                       Context == Declarator::FileContext
1316                         ? diag::err_invalid_token_after_toplevel_declarator
1317                         : diag::err_expected_semi_declaration)) {
1318    // Okay, there was no semicolon and one was expected.  If we see a
1319    // declaration specifier, just assume it was missing and continue parsing.
1320    // Otherwise things are very confused and we skip to recover.
1321    if (!isDeclarationSpecifier()) {
1322      SkipUntil(tok::r_brace, true, true);
1323      if (Tok.is(tok::semi))
1324        ConsumeToken();
1325    }
1326  }
1327
1328  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1329                                         DeclsInGroup.data(),
1330                                         DeclsInGroup.size());
1331}
1332
1333/// Parse an optional simple-asm-expr and attributes, and attach them to a
1334/// declarator. Returns true on an error.
1335bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1336  // If a simple-asm-expr is present, parse it.
1337  if (Tok.is(tok::kw_asm)) {
1338    SourceLocation Loc;
1339    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1340    if (AsmLabel.isInvalid()) {
1341      SkipUntil(tok::semi, true, true);
1342      return true;
1343    }
1344
1345    D.setAsmLabel(AsmLabel.release());
1346    D.SetRangeEnd(Loc);
1347  }
1348
1349  MaybeParseGNUAttributes(D);
1350  return false;
1351}
1352
1353/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1354/// declarator'. This method parses the remainder of the declaration
1355/// (including any attributes or initializer, among other things) and
1356/// finalizes the declaration.
1357///
1358///       init-declarator: [C99 6.7]
1359///         declarator
1360///         declarator '=' initializer
1361/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1362/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1363/// [C++]   declarator initializer[opt]
1364///
1365/// [C++] initializer:
1366/// [C++]   '=' initializer-clause
1367/// [C++]   '(' expression-list ')'
1368/// [C++0x] '=' 'default'                                                [TODO]
1369/// [C++0x] '=' 'delete'
1370/// [C++0x] braced-init-list
1371///
1372/// According to the standard grammar, =default and =delete are function
1373/// definitions, but that definitely doesn't fit with the parser here.
1374///
1375Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1376                                     const ParsedTemplateInfo &TemplateInfo) {
1377  if (ParseAsmAttributesAfterDeclarator(D))
1378    return 0;
1379
1380  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1381}
1382
1383Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1384                                     const ParsedTemplateInfo &TemplateInfo) {
1385  // Inform the current actions module that we just parsed this declarator.
1386  Decl *ThisDecl = 0;
1387  switch (TemplateInfo.Kind) {
1388  case ParsedTemplateInfo::NonTemplate:
1389    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1390    break;
1391
1392  case ParsedTemplateInfo::Template:
1393  case ParsedTemplateInfo::ExplicitSpecialization:
1394    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1395                             MultiTemplateParamsArg(Actions,
1396                                          TemplateInfo.TemplateParams->data(),
1397                                          TemplateInfo.TemplateParams->size()),
1398                                               D);
1399    break;
1400
1401  case ParsedTemplateInfo::ExplicitInstantiation: {
1402    DeclResult ThisRes
1403      = Actions.ActOnExplicitInstantiation(getCurScope(),
1404                                           TemplateInfo.ExternLoc,
1405                                           TemplateInfo.TemplateLoc,
1406                                           D);
1407    if (ThisRes.isInvalid()) {
1408      SkipUntil(tok::semi, true, true);
1409      return 0;
1410    }
1411
1412    ThisDecl = ThisRes.get();
1413    break;
1414    }
1415  }
1416
1417  bool TypeContainsAuto =
1418    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1419
1420  // Parse declarator '=' initializer.
1421  // If a '==' or '+=' is found, suggest a fixit to '='.
1422  if (isTokenEqualOrEqualTypo()) {
1423    ConsumeToken();
1424    if (Tok.is(tok::kw_delete)) {
1425      if (D.isFunctionDeclarator())
1426        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1427          << 1 /* delete */;
1428      else
1429        Diag(ConsumeToken(), diag::err_deleted_non_function);
1430    } else if (Tok.is(tok::kw_default)) {
1431      if (D.isFunctionDeclarator())
1432        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1433          << 0 /* default */;
1434      else
1435        Diag(ConsumeToken(), diag::err_default_special_members);
1436    } else {
1437      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1438        EnterScope(0);
1439        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1440      }
1441
1442      if (Tok.is(tok::code_completion)) {
1443        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1444        cutOffParsing();
1445        return 0;
1446      }
1447
1448      ExprResult Init(ParseInitializer());
1449
1450      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1451        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1452        ExitScope();
1453      }
1454
1455      if (Init.isInvalid()) {
1456        SkipUntil(tok::comma, true, true);
1457        Actions.ActOnInitializerError(ThisDecl);
1458      } else
1459        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1460                                     /*DirectInit=*/false, TypeContainsAuto);
1461    }
1462  } else if (Tok.is(tok::l_paren)) {
1463    // Parse C++ direct initializer: '(' expression-list ')'
1464    BalancedDelimiterTracker T(*this, tok::l_paren);
1465    T.consumeOpen();
1466
1467    ExprVector Exprs(Actions);
1468    CommaLocsTy CommaLocs;
1469
1470    if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1471      EnterScope(0);
1472      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1473    }
1474
1475    if (ParseExpressionList(Exprs, CommaLocs)) {
1476      SkipUntil(tok::r_paren);
1477
1478      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1479        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1480        ExitScope();
1481      }
1482    } else {
1483      // Match the ')'.
1484      T.consumeClose();
1485
1486      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1487             "Unexpected number of commas!");
1488
1489      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1490        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1491        ExitScope();
1492      }
1493
1494      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1495                                                          T.getCloseLocation(),
1496                                                          move_arg(Exprs));
1497      Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
1498                                   /*DirectInit=*/true, TypeContainsAuto);
1499    }
1500  } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1501    // Parse C++0x braced-init-list.
1502    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1503
1504    if (D.getCXXScopeSpec().isSet()) {
1505      EnterScope(0);
1506      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1507    }
1508
1509    ExprResult Init(ParseBraceInitializer());
1510
1511    if (D.getCXXScopeSpec().isSet()) {
1512      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1513      ExitScope();
1514    }
1515
1516    if (Init.isInvalid()) {
1517      Actions.ActOnInitializerError(ThisDecl);
1518    } else
1519      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1520                                   /*DirectInit=*/true, TypeContainsAuto);
1521
1522  } else {
1523    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1524  }
1525
1526  Actions.FinalizeDeclaration(ThisDecl);
1527
1528  return ThisDecl;
1529}
1530
1531/// ParseSpecifierQualifierList
1532///        specifier-qualifier-list:
1533///          type-specifier specifier-qualifier-list[opt]
1534///          type-qualifier specifier-qualifier-list[opt]
1535/// [GNU]    attributes     specifier-qualifier-list[opt]
1536///
1537void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1538                                         DeclSpecContext DSC) {
1539  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1540  /// parse declaration-specifiers and complain about extra stuff.
1541  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1542  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1543
1544  // Validate declspec for type-name.
1545  unsigned Specs = DS.getParsedSpecifiers();
1546  if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) {
1547    Diag(Tok, diag::err_expected_type);
1548    DS.SetTypeSpecError();
1549  } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1550             !DS.hasAttributes()) {
1551    Diag(Tok, diag::err_typename_requires_specqual);
1552    if (!DS.hasTypeSpecifier())
1553      DS.SetTypeSpecError();
1554  }
1555
1556  // Issue diagnostic and remove storage class if present.
1557  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1558    if (DS.getStorageClassSpecLoc().isValid())
1559      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1560    else
1561      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1562    DS.ClearStorageClassSpecs();
1563  }
1564
1565  // Issue diagnostic and remove function specfier if present.
1566  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1567    if (DS.isInlineSpecified())
1568      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1569    if (DS.isVirtualSpecified())
1570      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1571    if (DS.isExplicitSpecified())
1572      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1573    DS.ClearFunctionSpecs();
1574  }
1575
1576  // Issue diagnostic and remove constexpr specfier if present.
1577  if (DS.isConstexprSpecified()) {
1578    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1579    DS.ClearConstexprSpec();
1580  }
1581}
1582
1583/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1584/// specified token is valid after the identifier in a declarator which
1585/// immediately follows the declspec.  For example, these things are valid:
1586///
1587///      int x   [             4];         // direct-declarator
1588///      int x   (             int y);     // direct-declarator
1589///  int(int x   )                         // direct-declarator
1590///      int x   ;                         // simple-declaration
1591///      int x   =             17;         // init-declarator-list
1592///      int x   ,             y;          // init-declarator-list
1593///      int x   __asm__       ("foo");    // init-declarator-list
1594///      int x   :             4;          // struct-declarator
1595///      int x   {             5};         // C++'0x unified initializers
1596///
1597/// This is not, because 'x' does not immediately follow the declspec (though
1598/// ')' happens to be valid anyway).
1599///    int (x)
1600///
1601static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1602  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1603         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1604         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1605}
1606
1607
1608/// ParseImplicitInt - This method is called when we have an non-typename
1609/// identifier in a declspec (which normally terminates the decl spec) when
1610/// the declspec has no type specifier.  In this case, the declspec is either
1611/// malformed or is "implicit int" (in K&R and C89).
1612///
1613/// This method handles diagnosing this prettily and returns false if the
1614/// declspec is done being processed.  If it recovers and thinks there may be
1615/// other pieces of declspec after it, it returns true.
1616///
1617bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1618                              const ParsedTemplateInfo &TemplateInfo,
1619                              AccessSpecifier AS, DeclSpecContext DSC) {
1620  assert(Tok.is(tok::identifier) && "should have identifier");
1621
1622  SourceLocation Loc = Tok.getLocation();
1623  // If we see an identifier that is not a type name, we normally would
1624  // parse it as the identifer being declared.  However, when a typename
1625  // is typo'd or the definition is not included, this will incorrectly
1626  // parse the typename as the identifier name and fall over misparsing
1627  // later parts of the diagnostic.
1628  //
1629  // As such, we try to do some look-ahead in cases where this would
1630  // otherwise be an "implicit-int" case to see if this is invalid.  For
1631  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1632  // an identifier with implicit int, we'd get a parse error because the
1633  // next token is obviously invalid for a type.  Parse these as a case
1634  // with an invalid type specifier.
1635  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1636
1637  // Since we know that this either implicit int (which is rare) or an
1638  // error, do lookahead to try to do better recovery. This never applies within
1639  // a type specifier.
1640  // FIXME: Don't bail out here in languages with no implicit int (like
1641  // C++ with no -fms-extensions). This is much more likely to be an undeclared
1642  // type or typo than a use of implicit int.
1643  if (DSC != DSC_type_specifier &&
1644      isValidAfterIdentifierInDeclarator(NextToken())) {
1645    // If this token is valid for implicit int, e.g. "static x = 4", then
1646    // we just avoid eating the identifier, so it will be parsed as the
1647    // identifier in the declarator.
1648    return false;
1649  }
1650
1651  // Otherwise, if we don't consume this token, we are going to emit an
1652  // error anyway.  Try to recover from various common problems.  Check
1653  // to see if this was a reference to a tag name without a tag specified.
1654  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1655  //
1656  // C++ doesn't need this, and isTagName doesn't take SS.
1657  if (SS == 0) {
1658    const char *TagName = 0, *FixitTagName = 0;
1659    tok::TokenKind TagKind = tok::unknown;
1660
1661    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1662      default: break;
1663      case DeclSpec::TST_enum:
1664        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1665      case DeclSpec::TST_union:
1666        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1667      case DeclSpec::TST_struct:
1668        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1669      case DeclSpec::TST_class:
1670        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1671    }
1672
1673    if (TagName) {
1674      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1675        << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus
1676        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1677
1678      // Parse this as a tag as if the missing tag were present.
1679      if (TagKind == tok::kw_enum)
1680        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
1681      else
1682        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
1683                            /*EnteringContext*/ false, DSC_normal);
1684      return true;
1685    }
1686  }
1687
1688  // This is almost certainly an invalid type name. Let the action emit a
1689  // diagnostic and attempt to recover.
1690  ParsedType T;
1691  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1692                                      getCurScope(), SS, T)) {
1693    // The action emitted a diagnostic, so we don't have to.
1694    if (T) {
1695      // The action has suggested that the type T could be used. Set that as
1696      // the type in the declaration specifiers, consume the would-be type
1697      // name token, and we're done.
1698      const char *PrevSpec;
1699      unsigned DiagID;
1700      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1701      DS.SetRangeEnd(Tok.getLocation());
1702      ConsumeToken();
1703
1704      // There may be other declaration specifiers after this.
1705      return true;
1706    }
1707
1708    // Fall through; the action had no suggestion for us.
1709  } else {
1710    // The action did not emit a diagnostic, so emit one now.
1711    SourceRange R;
1712    if (SS) R = SS->getRange();
1713    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1714  }
1715
1716  // Mark this as an error.
1717  DS.SetTypeSpecError();
1718  DS.SetRangeEnd(Tok.getLocation());
1719  ConsumeToken();
1720
1721  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1722  // avoid rippling error messages on subsequent uses of the same type,
1723  // could be useful if #include was forgotten.
1724  return false;
1725}
1726
1727/// \brief Determine the declaration specifier context from the declarator
1728/// context.
1729///
1730/// \param Context the declarator context, which is one of the
1731/// Declarator::TheContext enumerator values.
1732Parser::DeclSpecContext
1733Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1734  if (Context == Declarator::MemberContext)
1735    return DSC_class;
1736  if (Context == Declarator::FileContext)
1737    return DSC_top_level;
1738  if (Context == Declarator::TrailingReturnContext)
1739    return DSC_trailing;
1740  return DSC_normal;
1741}
1742
1743/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1744///
1745/// FIXME: Simply returns an alignof() expression if the argument is a
1746/// type. Ideally, the type should be propagated directly into Sema.
1747///
1748/// [C11]   type-id
1749/// [C11]   constant-expression
1750/// [C++0x] type-id ...[opt]
1751/// [C++0x] assignment-expression ...[opt]
1752ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1753                                      SourceLocation &EllipsisLoc) {
1754  ExprResult ER;
1755  if (isTypeIdInParens()) {
1756    SourceLocation TypeLoc = Tok.getLocation();
1757    ParsedType Ty = ParseTypeName().get();
1758    SourceRange TypeRange(Start, Tok.getLocation());
1759    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1760                                               Ty.getAsOpaquePtr(), TypeRange);
1761  } else
1762    ER = ParseConstantExpression();
1763
1764  if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis))
1765    EllipsisLoc = ConsumeToken();
1766
1767  return ER;
1768}
1769
1770/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1771/// attribute to Attrs.
1772///
1773/// alignment-specifier:
1774/// [C11]   '_Alignas' '(' type-id ')'
1775/// [C11]   '_Alignas' '(' constant-expression ')'
1776/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1777/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1778void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1779                                     SourceLocation *endLoc) {
1780  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1781         "Not an alignment-specifier!");
1782
1783  SourceLocation KWLoc = Tok.getLocation();
1784  ConsumeToken();
1785
1786  BalancedDelimiterTracker T(*this, tok::l_paren);
1787  if (T.expectAndConsume(diag::err_expected_lparen))
1788    return;
1789
1790  SourceLocation EllipsisLoc;
1791  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1792  if (ArgExpr.isInvalid()) {
1793    SkipUntil(tok::r_paren);
1794    return;
1795  }
1796
1797  T.consumeClose();
1798  if (endLoc)
1799    *endLoc = T.getCloseLocation();
1800
1801  // FIXME: Handle pack-expansions here.
1802  if (EllipsisLoc.isValid()) {
1803    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1804    return;
1805  }
1806
1807  ExprVector ArgExprs(Actions);
1808  ArgExprs.push_back(ArgExpr.release());
1809  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1810               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1811}
1812
1813/// ParseDeclarationSpecifiers
1814///       declaration-specifiers: [C99 6.7]
1815///         storage-class-specifier declaration-specifiers[opt]
1816///         type-specifier declaration-specifiers[opt]
1817/// [C99]   function-specifier declaration-specifiers[opt]
1818/// [C11]   alignment-specifier declaration-specifiers[opt]
1819/// [GNU]   attributes declaration-specifiers[opt]
1820/// [Clang] '__module_private__' declaration-specifiers[opt]
1821///
1822///       storage-class-specifier: [C99 6.7.1]
1823///         'typedef'
1824///         'extern'
1825///         'static'
1826///         'auto'
1827///         'register'
1828/// [C++]   'mutable'
1829/// [GNU]   '__thread'
1830///       function-specifier: [C99 6.7.4]
1831/// [C99]   'inline'
1832/// [C++]   'virtual'
1833/// [C++]   'explicit'
1834/// [OpenCL] '__kernel'
1835///       'friend': [C++ dcl.friend]
1836///       'constexpr': [C++0x dcl.constexpr]
1837
1838///
1839void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1840                                        const ParsedTemplateInfo &TemplateInfo,
1841                                        AccessSpecifier AS,
1842                                        DeclSpecContext DSContext,
1843                                        LateParsedAttrList *LateAttrs) {
1844  if (DS.getSourceRange().isInvalid()) {
1845    DS.SetRangeStart(Tok.getLocation());
1846    DS.SetRangeEnd(Tok.getLocation());
1847  }
1848
1849  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1850  while (1) {
1851    bool isInvalid = false;
1852    const char *PrevSpec = 0;
1853    unsigned DiagID = 0;
1854
1855    SourceLocation Loc = Tok.getLocation();
1856
1857    switch (Tok.getKind()) {
1858    default:
1859    DoneWithDeclSpec:
1860      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1861      MaybeParseCXX0XAttributes(DS.getAttributes());
1862
1863      // If this is not a declaration specifier token, we're done reading decl
1864      // specifiers.  First verify that DeclSpec's are consistent.
1865      DS.Finish(Diags, PP);
1866      return;
1867
1868    case tok::code_completion: {
1869      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1870      if (DS.hasTypeSpecifier()) {
1871        bool AllowNonIdentifiers
1872          = (getCurScope()->getFlags() & (Scope::ControlScope |
1873                                          Scope::BlockScope |
1874                                          Scope::TemplateParamScope |
1875                                          Scope::FunctionPrototypeScope |
1876                                          Scope::AtCatchScope)) == 0;
1877        bool AllowNestedNameSpecifiers
1878          = DSContext == DSC_top_level ||
1879            (DSContext == DSC_class && DS.isFriendSpecified());
1880
1881        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1882                                     AllowNonIdentifiers,
1883                                     AllowNestedNameSpecifiers);
1884        return cutOffParsing();
1885      }
1886
1887      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1888        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1889      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1890        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1891                                    : Sema::PCC_Template;
1892      else if (DSContext == DSC_class)
1893        CCC = Sema::PCC_Class;
1894      else if (CurParsedObjCImpl)
1895        CCC = Sema::PCC_ObjCImplementation;
1896
1897      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1898      return cutOffParsing();
1899    }
1900
1901    case tok::coloncolon: // ::foo::bar
1902      // C++ scope specifier.  Annotate and loop, or bail out on error.
1903      if (TryAnnotateCXXScopeToken(true)) {
1904        if (!DS.hasTypeSpecifier())
1905          DS.SetTypeSpecError();
1906        goto DoneWithDeclSpec;
1907      }
1908      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1909        goto DoneWithDeclSpec;
1910      continue;
1911
1912    case tok::annot_cxxscope: {
1913      if (DS.hasTypeSpecifier())
1914        goto DoneWithDeclSpec;
1915
1916      CXXScopeSpec SS;
1917      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1918                                                   Tok.getAnnotationRange(),
1919                                                   SS);
1920
1921      // We are looking for a qualified typename.
1922      Token Next = NextToken();
1923      if (Next.is(tok::annot_template_id) &&
1924          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1925            ->Kind == TNK_Type_template) {
1926        // We have a qualified template-id, e.g., N::A<int>
1927
1928        // C++ [class.qual]p2:
1929        //   In a lookup in which the constructor is an acceptable lookup
1930        //   result and the nested-name-specifier nominates a class C:
1931        //
1932        //     - if the name specified after the
1933        //       nested-name-specifier, when looked up in C, is the
1934        //       injected-class-name of C (Clause 9), or
1935        //
1936        //     - if the name specified after the nested-name-specifier
1937        //       is the same as the identifier or the
1938        //       simple-template-id's template-name in the last
1939        //       component of the nested-name-specifier,
1940        //
1941        //   the name is instead considered to name the constructor of
1942        //   class C.
1943        //
1944        // Thus, if the template-name is actually the constructor
1945        // name, then the code is ill-formed; this interpretation is
1946        // reinforced by the NAD status of core issue 635.
1947        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1948        if ((DSContext == DSC_top_level ||
1949             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1950            TemplateId->Name &&
1951            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1952          if (isConstructorDeclarator()) {
1953            // The user meant this to be an out-of-line constructor
1954            // definition, but template arguments are not allowed
1955            // there.  Just allow this as a constructor; we'll
1956            // complain about it later.
1957            goto DoneWithDeclSpec;
1958          }
1959
1960          // The user meant this to name a type, but it actually names
1961          // a constructor with some extraneous template
1962          // arguments. Complain, then parse it as a type as the user
1963          // intended.
1964          Diag(TemplateId->TemplateNameLoc,
1965               diag::err_out_of_line_template_id_names_constructor)
1966            << TemplateId->Name;
1967        }
1968
1969        DS.getTypeSpecScope() = SS;
1970        ConsumeToken(); // The C++ scope.
1971        assert(Tok.is(tok::annot_template_id) &&
1972               "ParseOptionalCXXScopeSpecifier not working");
1973        AnnotateTemplateIdTokenAsType();
1974        continue;
1975      }
1976
1977      if (Next.is(tok::annot_typename)) {
1978        DS.getTypeSpecScope() = SS;
1979        ConsumeToken(); // The C++ scope.
1980        if (Tok.getAnnotationValue()) {
1981          ParsedType T = getTypeAnnotation(Tok);
1982          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1983                                         Tok.getAnnotationEndLoc(),
1984                                         PrevSpec, DiagID, T);
1985        }
1986        else
1987          DS.SetTypeSpecError();
1988        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1989        ConsumeToken(); // The typename
1990      }
1991
1992      if (Next.isNot(tok::identifier))
1993        goto DoneWithDeclSpec;
1994
1995      // If we're in a context where the identifier could be a class name,
1996      // check whether this is a constructor declaration.
1997      if ((DSContext == DSC_top_level ||
1998           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1999          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2000                                     &SS)) {
2001        if (isConstructorDeclarator())
2002          goto DoneWithDeclSpec;
2003
2004        // As noted in C++ [class.qual]p2 (cited above), when the name
2005        // of the class is qualified in a context where it could name
2006        // a constructor, its a constructor name. However, we've
2007        // looked at the declarator, and the user probably meant this
2008        // to be a type. Complain that it isn't supposed to be treated
2009        // as a type, then proceed to parse it as a type.
2010        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2011          << Next.getIdentifierInfo();
2012      }
2013
2014      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2015                                               Next.getLocation(),
2016                                               getCurScope(), &SS,
2017                                               false, false, ParsedType(),
2018                                               /*IsCtorOrDtorName=*/false,
2019                                               /*NonTrivialSourceInfo=*/true);
2020
2021      // If the referenced identifier is not a type, then this declspec is
2022      // erroneous: We already checked about that it has no type specifier, and
2023      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2024      // typename.
2025      if (TypeRep == 0) {
2026        ConsumeToken();   // Eat the scope spec so the identifier is current.
2027        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue;
2028        goto DoneWithDeclSpec;
2029      }
2030
2031      DS.getTypeSpecScope() = SS;
2032      ConsumeToken(); // The C++ scope.
2033
2034      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2035                                     DiagID, TypeRep);
2036      if (isInvalid)
2037        break;
2038
2039      DS.SetRangeEnd(Tok.getLocation());
2040      ConsumeToken(); // The typename.
2041
2042      continue;
2043    }
2044
2045    case tok::annot_typename: {
2046      if (Tok.getAnnotationValue()) {
2047        ParsedType T = getTypeAnnotation(Tok);
2048        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2049                                       DiagID, T);
2050      } else
2051        DS.SetTypeSpecError();
2052
2053      if (isInvalid)
2054        break;
2055
2056      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2057      ConsumeToken(); // The typename
2058
2059      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2060      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2061      // Objective-C interface.
2062      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2063        ParseObjCProtocolQualifiers(DS);
2064
2065      continue;
2066    }
2067
2068    case tok::kw___is_signed:
2069      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2070      // typically treats it as a trait. If we see __is_signed as it appears
2071      // in libstdc++, e.g.,
2072      //
2073      //   static const bool __is_signed;
2074      //
2075      // then treat __is_signed as an identifier rather than as a keyword.
2076      if (DS.getTypeSpecType() == TST_bool &&
2077          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2078          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
2079        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
2080        Tok.setKind(tok::identifier);
2081      }
2082
2083      // We're done with the declaration-specifiers.
2084      goto DoneWithDeclSpec;
2085
2086      // typedef-name
2087    case tok::kw_decltype:
2088    case tok::identifier: {
2089      // In C++, check to see if this is a scope specifier like foo::bar::, if
2090      // so handle it as such.  This is important for ctor parsing.
2091      if (getLangOpts().CPlusPlus) {
2092        if (TryAnnotateCXXScopeToken(true)) {
2093          if (!DS.hasTypeSpecifier())
2094            DS.SetTypeSpecError();
2095          goto DoneWithDeclSpec;
2096        }
2097        if (!Tok.is(tok::identifier))
2098          continue;
2099      }
2100
2101      // This identifier can only be a typedef name if we haven't already seen
2102      // a type-specifier.  Without this check we misparse:
2103      //  typedef int X; struct Y { short X; };  as 'short int'.
2104      if (DS.hasTypeSpecifier())
2105        goto DoneWithDeclSpec;
2106
2107      // Check for need to substitute AltiVec keyword tokens.
2108      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2109        break;
2110
2111      ParsedType TypeRep =
2112        Actions.getTypeName(*Tok.getIdentifierInfo(),
2113                            Tok.getLocation(), getCurScope());
2114
2115      // If this is not a typedef name, don't parse it as part of the declspec,
2116      // it must be an implicit int or an error.
2117      if (!TypeRep) {
2118        if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue;
2119        goto DoneWithDeclSpec;
2120      }
2121
2122      // If we're in a context where the identifier could be a class name,
2123      // check whether this is a constructor declaration.
2124      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2125          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2126          isConstructorDeclarator())
2127        goto DoneWithDeclSpec;
2128
2129      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2130                                     DiagID, TypeRep);
2131      if (isInvalid)
2132        break;
2133
2134      DS.SetRangeEnd(Tok.getLocation());
2135      ConsumeToken(); // The identifier
2136
2137      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2138      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2139      // Objective-C interface.
2140      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2141        ParseObjCProtocolQualifiers(DS);
2142
2143      // Need to support trailing type qualifiers (e.g. "id<p> const").
2144      // If a type specifier follows, it will be diagnosed elsewhere.
2145      continue;
2146    }
2147
2148      // type-name
2149    case tok::annot_template_id: {
2150      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2151      if (TemplateId->Kind != TNK_Type_template) {
2152        // This template-id does not refer to a type name, so we're
2153        // done with the type-specifiers.
2154        goto DoneWithDeclSpec;
2155      }
2156
2157      // If we're in a context where the template-id could be a
2158      // constructor name or specialization, check whether this is a
2159      // constructor declaration.
2160      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2161          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2162          isConstructorDeclarator())
2163        goto DoneWithDeclSpec;
2164
2165      // Turn the template-id annotation token into a type annotation
2166      // token, then try again to parse it as a type-specifier.
2167      AnnotateTemplateIdTokenAsType();
2168      continue;
2169    }
2170
2171    // GNU attributes support.
2172    case tok::kw___attribute:
2173      ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
2174      continue;
2175
2176    // Microsoft declspec support.
2177    case tok::kw___declspec:
2178      ParseMicrosoftDeclSpec(DS.getAttributes());
2179      continue;
2180
2181    // Microsoft single token adornments.
2182    case tok::kw___forceinline:
2183      // FIXME: Add handling here!
2184      break;
2185
2186    case tok::kw___ptr64:
2187    case tok::kw___ptr32:
2188    case tok::kw___w64:
2189    case tok::kw___cdecl:
2190    case tok::kw___stdcall:
2191    case tok::kw___fastcall:
2192    case tok::kw___thiscall:
2193    case tok::kw___unaligned:
2194      ParseMicrosoftTypeAttributes(DS.getAttributes());
2195      continue;
2196
2197    // Borland single token adornments.
2198    case tok::kw___pascal:
2199      ParseBorlandTypeAttributes(DS.getAttributes());
2200      continue;
2201
2202    // OpenCL single token adornments.
2203    case tok::kw___kernel:
2204      ParseOpenCLAttributes(DS.getAttributes());
2205      continue;
2206
2207    // storage-class-specifier
2208    case tok::kw_typedef:
2209      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2210                                         PrevSpec, DiagID);
2211      break;
2212    case tok::kw_extern:
2213      if (DS.isThreadSpecified())
2214        Diag(Tok, diag::ext_thread_before) << "extern";
2215      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2216                                         PrevSpec, DiagID);
2217      break;
2218    case tok::kw___private_extern__:
2219      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2220                                         Loc, PrevSpec, DiagID);
2221      break;
2222    case tok::kw_static:
2223      if (DS.isThreadSpecified())
2224        Diag(Tok, diag::ext_thread_before) << "static";
2225      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2226                                         PrevSpec, DiagID);
2227      break;
2228    case tok::kw_auto:
2229      if (getLangOpts().CPlusPlus0x) {
2230        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2231          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2232                                             PrevSpec, DiagID);
2233          if (!isInvalid)
2234            Diag(Tok, diag::ext_auto_storage_class)
2235              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2236        } else
2237          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2238                                         DiagID);
2239      } else
2240        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2241                                           PrevSpec, DiagID);
2242      break;
2243    case tok::kw_register:
2244      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2245                                         PrevSpec, DiagID);
2246      break;
2247    case tok::kw_mutable:
2248      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2249                                         PrevSpec, DiagID);
2250      break;
2251    case tok::kw___thread:
2252      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2253      break;
2254
2255    // function-specifier
2256    case tok::kw_inline:
2257      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2258      break;
2259    case tok::kw_virtual:
2260      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2261      break;
2262    case tok::kw_explicit:
2263      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2264      break;
2265
2266    // alignment-specifier
2267    case tok::kw__Alignas:
2268      if (!getLangOpts().C11)
2269        Diag(Tok, diag::ext_c11_alignas);
2270      ParseAlignmentSpecifier(DS.getAttributes());
2271      continue;
2272
2273    // friend
2274    case tok::kw_friend:
2275      if (DSContext == DSC_class)
2276        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2277      else {
2278        PrevSpec = ""; // not actually used by the diagnostic
2279        DiagID = diag::err_friend_invalid_in_context;
2280        isInvalid = true;
2281      }
2282      break;
2283
2284    // Modules
2285    case tok::kw___module_private__:
2286      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2287      break;
2288
2289    // constexpr
2290    case tok::kw_constexpr:
2291      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2292      break;
2293
2294    // type-specifier
2295    case tok::kw_short:
2296      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2297                                      DiagID);
2298      break;
2299    case tok::kw_long:
2300      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2301        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2302                                        DiagID);
2303      else
2304        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2305                                        DiagID);
2306      break;
2307    case tok::kw___int64:
2308        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2309                                        DiagID);
2310      break;
2311    case tok::kw_signed:
2312      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2313                                     DiagID);
2314      break;
2315    case tok::kw_unsigned:
2316      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2317                                     DiagID);
2318      break;
2319    case tok::kw__Complex:
2320      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2321                                        DiagID);
2322      break;
2323    case tok::kw__Imaginary:
2324      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2325                                        DiagID);
2326      break;
2327    case tok::kw_void:
2328      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2329                                     DiagID);
2330      break;
2331    case tok::kw_char:
2332      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2333                                     DiagID);
2334      break;
2335    case tok::kw_int:
2336      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2337                                     DiagID);
2338      break;
2339    case tok::kw___int128:
2340      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
2341                                     DiagID);
2342      break;
2343    case tok::kw_half:
2344      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2345                                     DiagID);
2346      break;
2347    case tok::kw_float:
2348      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2349                                     DiagID);
2350      break;
2351    case tok::kw_double:
2352      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2353                                     DiagID);
2354      break;
2355    case tok::kw_wchar_t:
2356      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2357                                     DiagID);
2358      break;
2359    case tok::kw_char16_t:
2360      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2361                                     DiagID);
2362      break;
2363    case tok::kw_char32_t:
2364      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2365                                     DiagID);
2366      break;
2367    case tok::kw_bool:
2368    case tok::kw__Bool:
2369      if (Tok.is(tok::kw_bool) &&
2370          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2371          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2372        PrevSpec = ""; // Not used by the diagnostic.
2373        DiagID = diag::err_bool_redeclaration;
2374        // For better error recovery.
2375        Tok.setKind(tok::identifier);
2376        isInvalid = true;
2377      } else {
2378        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2379                                       DiagID);
2380      }
2381      break;
2382    case tok::kw__Decimal32:
2383      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2384                                     DiagID);
2385      break;
2386    case tok::kw__Decimal64:
2387      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2388                                     DiagID);
2389      break;
2390    case tok::kw__Decimal128:
2391      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2392                                     DiagID);
2393      break;
2394    case tok::kw___vector:
2395      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2396      break;
2397    case tok::kw___pixel:
2398      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2399      break;
2400    case tok::kw___unknown_anytype:
2401      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2402                                     PrevSpec, DiagID);
2403      break;
2404
2405    // class-specifier:
2406    case tok::kw_class:
2407    case tok::kw_struct:
2408    case tok::kw_union: {
2409      tok::TokenKind Kind = Tok.getKind();
2410      ConsumeToken();
2411      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
2412                          EnteringContext, DSContext);
2413      continue;
2414    }
2415
2416    // enum-specifier:
2417    case tok::kw_enum:
2418      ConsumeToken();
2419      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
2420      continue;
2421
2422    // cv-qualifier:
2423    case tok::kw_const:
2424      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2425                                 getLangOpts());
2426      break;
2427    case tok::kw_volatile:
2428      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2429                                 getLangOpts());
2430      break;
2431    case tok::kw_restrict:
2432      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2433                                 getLangOpts());
2434      break;
2435
2436    // C++ typename-specifier:
2437    case tok::kw_typename:
2438      if (TryAnnotateTypeOrScopeToken()) {
2439        DS.SetTypeSpecError();
2440        goto DoneWithDeclSpec;
2441      }
2442      if (!Tok.is(tok::kw_typename))
2443        continue;
2444      break;
2445
2446    // GNU typeof support.
2447    case tok::kw_typeof:
2448      ParseTypeofSpecifier(DS);
2449      continue;
2450
2451    case tok::annot_decltype:
2452      ParseDecltypeSpecifier(DS);
2453      continue;
2454
2455    case tok::kw___underlying_type:
2456      ParseUnderlyingTypeSpecifier(DS);
2457      continue;
2458
2459    case tok::kw__Atomic:
2460      ParseAtomicSpecifier(DS);
2461      continue;
2462
2463    // OpenCL qualifiers:
2464    case tok::kw_private:
2465      if (!getLangOpts().OpenCL)
2466        goto DoneWithDeclSpec;
2467    case tok::kw___private:
2468    case tok::kw___global:
2469    case tok::kw___local:
2470    case tok::kw___constant:
2471    case tok::kw___read_only:
2472    case tok::kw___write_only:
2473    case tok::kw___read_write:
2474      ParseOpenCLQualifiers(DS);
2475      break;
2476
2477    case tok::less:
2478      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2479      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2480      // but we support it.
2481      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
2482        goto DoneWithDeclSpec;
2483
2484      if (!ParseObjCProtocolQualifiers(DS))
2485        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2486          << FixItHint::CreateInsertion(Loc, "id")
2487          << SourceRange(Loc, DS.getSourceRange().getEnd());
2488
2489      // Need to support trailing type qualifiers (e.g. "id<p> const").
2490      // If a type specifier follows, it will be diagnosed elsewhere.
2491      continue;
2492    }
2493    // If the specifier wasn't legal, issue a diagnostic.
2494    if (isInvalid) {
2495      assert(PrevSpec && "Method did not return previous specifier!");
2496      assert(DiagID);
2497
2498      if (DiagID == diag::ext_duplicate_declspec)
2499        Diag(Tok, DiagID)
2500          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2501      else
2502        Diag(Tok, DiagID) << PrevSpec;
2503    }
2504
2505    DS.SetRangeEnd(Tok.getLocation());
2506    if (DiagID != diag::err_bool_redeclaration)
2507      ConsumeToken();
2508  }
2509}
2510
2511/// ParseStructDeclaration - Parse a struct declaration without the terminating
2512/// semicolon.
2513///
2514///       struct-declaration:
2515///         specifier-qualifier-list struct-declarator-list
2516/// [GNU]   __extension__ struct-declaration
2517/// [GNU]   specifier-qualifier-list
2518///       struct-declarator-list:
2519///         struct-declarator
2520///         struct-declarator-list ',' struct-declarator
2521/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2522///       struct-declarator:
2523///         declarator
2524/// [GNU]   declarator attributes[opt]
2525///         declarator[opt] ':' constant-expression
2526/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2527///
2528void Parser::
2529ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2530
2531  if (Tok.is(tok::kw___extension__)) {
2532    // __extension__ silences extension warnings in the subexpression.
2533    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2534    ConsumeToken();
2535    return ParseStructDeclaration(DS, Fields);
2536  }
2537
2538  // Parse the common specifier-qualifiers-list piece.
2539  ParseSpecifierQualifierList(DS);
2540
2541  // If there are no declarators, this is a free-standing declaration
2542  // specifier. Let the actions module cope with it.
2543  if (Tok.is(tok::semi)) {
2544    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2545    return;
2546  }
2547
2548  // Read struct-declarators until we find the semicolon.
2549  bool FirstDeclarator = true;
2550  SourceLocation CommaLoc;
2551  while (1) {
2552    ParsingDeclRAIIObject PD(*this);
2553    FieldDeclarator DeclaratorInfo(DS);
2554    DeclaratorInfo.D.setCommaLoc(CommaLoc);
2555
2556    // Attributes are only allowed here on successive declarators.
2557    if (!FirstDeclarator)
2558      MaybeParseGNUAttributes(DeclaratorInfo.D);
2559
2560    /// struct-declarator: declarator
2561    /// struct-declarator: declarator[opt] ':' constant-expression
2562    if (Tok.isNot(tok::colon)) {
2563      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2564      ColonProtectionRAIIObject X(*this);
2565      ParseDeclarator(DeclaratorInfo.D);
2566    }
2567
2568    if (Tok.is(tok::colon)) {
2569      ConsumeToken();
2570      ExprResult Res(ParseConstantExpression());
2571      if (Res.isInvalid())
2572        SkipUntil(tok::semi, true, true);
2573      else
2574        DeclaratorInfo.BitfieldSize = Res.release();
2575    }
2576
2577    // If attributes exist after the declarator, parse them.
2578    MaybeParseGNUAttributes(DeclaratorInfo.D);
2579
2580    // We're done with this declarator;  invoke the callback.
2581    Decl *D = Fields.invoke(DeclaratorInfo);
2582    PD.complete(D);
2583
2584    // If we don't have a comma, it is either the end of the list (a ';')
2585    // or an error, bail out.
2586    if (Tok.isNot(tok::comma))
2587      return;
2588
2589    // Consume the comma.
2590    CommaLoc = ConsumeToken();
2591
2592    FirstDeclarator = false;
2593  }
2594}
2595
2596/// ParseStructUnionBody
2597///       struct-contents:
2598///         struct-declaration-list
2599/// [EXT]   empty
2600/// [GNU]   "struct-declaration-list" without terminatoring ';'
2601///       struct-declaration-list:
2602///         struct-declaration
2603///         struct-declaration-list struct-declaration
2604/// [OBC]   '@' 'defs' '(' class-name ')'
2605///
2606void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2607                                  unsigned TagType, Decl *TagDecl) {
2608  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2609                                      "parsing struct/union body");
2610
2611  BalancedDelimiterTracker T(*this, tok::l_brace);
2612  if (T.consumeOpen())
2613    return;
2614
2615  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2616  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2617
2618  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2619  // C++.
2620  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) {
2621    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2622    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2623  }
2624
2625  SmallVector<Decl *, 32> FieldDecls;
2626
2627  // While we still have something to read, read the declarations in the struct.
2628  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2629    // Each iteration of this loop reads one struct-declaration.
2630
2631    // Check for extraneous top-level semicolon.
2632    if (Tok.is(tok::semi)) {
2633      Diag(Tok, diag::ext_extra_struct_semi)
2634        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2635        << FixItHint::CreateRemoval(Tok.getLocation());
2636      ConsumeToken();
2637      continue;
2638    }
2639
2640    // Parse all the comma separated declarators.
2641    DeclSpec DS(AttrFactory);
2642
2643    if (!Tok.is(tok::at)) {
2644      struct CFieldCallback : FieldCallback {
2645        Parser &P;
2646        Decl *TagDecl;
2647        SmallVectorImpl<Decl *> &FieldDecls;
2648
2649        CFieldCallback(Parser &P, Decl *TagDecl,
2650                       SmallVectorImpl<Decl *> &FieldDecls) :
2651          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2652
2653        virtual Decl *invoke(FieldDeclarator &FD) {
2654          // Install the declarator into the current TagDecl.
2655          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2656                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2657                                                 FD.D, FD.BitfieldSize);
2658          FieldDecls.push_back(Field);
2659          return Field;
2660        }
2661      } Callback(*this, TagDecl, FieldDecls);
2662
2663      ParseStructDeclaration(DS, Callback);
2664    } else { // Handle @defs
2665      ConsumeToken();
2666      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2667        Diag(Tok, diag::err_unexpected_at);
2668        SkipUntil(tok::semi, true);
2669        continue;
2670      }
2671      ConsumeToken();
2672      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2673      if (!Tok.is(tok::identifier)) {
2674        Diag(Tok, diag::err_expected_ident);
2675        SkipUntil(tok::semi, true);
2676        continue;
2677      }
2678      SmallVector<Decl *, 16> Fields;
2679      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2680                        Tok.getIdentifierInfo(), Fields);
2681      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2682      ConsumeToken();
2683      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2684    }
2685
2686    if (Tok.is(tok::semi)) {
2687      ConsumeToken();
2688    } else if (Tok.is(tok::r_brace)) {
2689      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2690      break;
2691    } else {
2692      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2693      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2694      SkipUntil(tok::r_brace, true, true);
2695      // If we stopped at a ';', eat it.
2696      if (Tok.is(tok::semi)) ConsumeToken();
2697    }
2698  }
2699
2700  T.consumeClose();
2701
2702  ParsedAttributes attrs(AttrFactory);
2703  // If attributes exist after struct contents, parse them.
2704  MaybeParseGNUAttributes(attrs);
2705
2706  Actions.ActOnFields(getCurScope(),
2707                      RecordLoc, TagDecl, FieldDecls,
2708                      T.getOpenLocation(), T.getCloseLocation(),
2709                      attrs.getList());
2710  StructScope.Exit();
2711  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2712                                   T.getCloseLocation());
2713}
2714
2715/// ParseEnumSpecifier
2716///       enum-specifier: [C99 6.7.2.2]
2717///         'enum' identifier[opt] '{' enumerator-list '}'
2718///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2719/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2720///                                                 '}' attributes[opt]
2721/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
2722///                                                 '}'
2723///         'enum' identifier
2724/// [GNU]   'enum' attributes[opt] identifier
2725///
2726/// [C++11] enum-head '{' enumerator-list[opt] '}'
2727/// [C++11] enum-head '{' enumerator-list ','  '}'
2728///
2729///       enum-head: [C++11]
2730///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
2731///         enum-key attribute-specifier-seq[opt] nested-name-specifier
2732///             identifier enum-base[opt]
2733///
2734///       enum-key: [C++11]
2735///         'enum'
2736///         'enum' 'class'
2737///         'enum' 'struct'
2738///
2739///       enum-base: [C++11]
2740///         ':' type-specifier-seq
2741///
2742/// [C++] elaborated-type-specifier:
2743/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2744///
2745void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2746                                const ParsedTemplateInfo &TemplateInfo,
2747                                AccessSpecifier AS, DeclSpecContext DSC) {
2748  // Parse the tag portion of this.
2749  if (Tok.is(tok::code_completion)) {
2750    // Code completion for an enum name.
2751    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2752    return cutOffParsing();
2753  }
2754
2755  SourceLocation ScopedEnumKWLoc;
2756  bool IsScopedUsingClassTag = false;
2757
2758  if (getLangOpts().CPlusPlus0x &&
2759      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2760    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2761    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2762    ScopedEnumKWLoc = ConsumeToken();
2763  }
2764
2765  // C++11 [temp.explicit]p12: The usual access controls do not apply to names
2766  // used to specify explicit instantiations. We extend this to also cover
2767  // explicit specializations.
2768  Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
2769    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
2770    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
2771
2772  // If attributes exist after tag, parse them.
2773  ParsedAttributes attrs(AttrFactory);
2774  MaybeParseGNUAttributes(attrs);
2775
2776  // If declspecs exist after tag, parse them.
2777  while (Tok.is(tok::kw___declspec))
2778    ParseMicrosoftDeclSpec(attrs);
2779
2780  // Enum definitions should not be parsed in a trailing-return-type.
2781  bool AllowDeclaration = DSC != DSC_trailing;
2782
2783  bool AllowFixedUnderlyingType = AllowDeclaration &&
2784    (getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt ||
2785     getLangOpts().ObjC2);
2786
2787  CXXScopeSpec &SS = DS.getTypeSpecScope();
2788  if (getLangOpts().CPlusPlus) {
2789    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2790    // if a fixed underlying type is allowed.
2791    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2792
2793    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2794                                       /*EnteringContext=*/false))
2795      return;
2796
2797    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2798      Diag(Tok, diag::err_expected_ident);
2799      if (Tok.isNot(tok::l_brace)) {
2800        // Has no name and is not a definition.
2801        // Skip the rest of this declarator, up until the comma or semicolon.
2802        SkipUntil(tok::comma, true);
2803        return;
2804      }
2805    }
2806  }
2807
2808  // Must have either 'enum name' or 'enum {...}'.
2809  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2810      !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
2811    Diag(Tok, diag::err_expected_ident_lbrace);
2812
2813    // Skip the rest of this declarator, up until the comma or semicolon.
2814    SkipUntil(tok::comma, true);
2815    return;
2816  }
2817
2818  // If an identifier is present, consume and remember it.
2819  IdentifierInfo *Name = 0;
2820  SourceLocation NameLoc;
2821  if (Tok.is(tok::identifier)) {
2822    Name = Tok.getIdentifierInfo();
2823    NameLoc = ConsumeToken();
2824  }
2825
2826  if (!Name && ScopedEnumKWLoc.isValid()) {
2827    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2828    // declaration of a scoped enumeration.
2829    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2830    ScopedEnumKWLoc = SourceLocation();
2831    IsScopedUsingClassTag = false;
2832  }
2833
2834  // Stop suppressing access control now we've parsed the enum name.
2835  SuppressAccess.done();
2836
2837  TypeResult BaseType;
2838
2839  // Parse the fixed underlying type.
2840  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2841    bool PossibleBitfield = false;
2842    if (getCurScope()->getFlags() & Scope::ClassScope) {
2843      // If we're in class scope, this can either be an enum declaration with
2844      // an underlying type, or a declaration of a bitfield member. We try to
2845      // use a simple disambiguation scheme first to catch the common cases
2846      // (integer literal, sizeof); if it's still ambiguous, we then consider
2847      // anything that's a simple-type-specifier followed by '(' as an
2848      // expression. This suffices because function types are not valid
2849      // underlying types anyway.
2850      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2851      // If the next token starts an expression, we know we're parsing a
2852      // bit-field. This is the common case.
2853      if (TPR == TPResult::True())
2854        PossibleBitfield = true;
2855      // If the next token starts a type-specifier-seq, it may be either a
2856      // a fixed underlying type or the start of a function-style cast in C++;
2857      // lookahead one more token to see if it's obvious that we have a
2858      // fixed underlying type.
2859      else if (TPR == TPResult::False() &&
2860               GetLookAheadToken(2).getKind() == tok::semi) {
2861        // Consume the ':'.
2862        ConsumeToken();
2863      } else {
2864        // We have the start of a type-specifier-seq, so we have to perform
2865        // tentative parsing to determine whether we have an expression or a
2866        // type.
2867        TentativeParsingAction TPA(*this);
2868
2869        // Consume the ':'.
2870        ConsumeToken();
2871
2872        // If we see a type specifier followed by an open-brace, we have an
2873        // ambiguity between an underlying type and a C++11 braced
2874        // function-style cast. Resolve this by always treating it as an
2875        // underlying type.
2876        // FIXME: The standard is not entirely clear on how to disambiguate in
2877        // this case.
2878        if ((getLangOpts().CPlusPlus &&
2879             isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
2880            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
2881          // We'll parse this as a bitfield later.
2882          PossibleBitfield = true;
2883          TPA.Revert();
2884        } else {
2885          // We have a type-specifier-seq.
2886          TPA.Commit();
2887        }
2888      }
2889    } else {
2890      // Consume the ':'.
2891      ConsumeToken();
2892    }
2893
2894    if (!PossibleBitfield) {
2895      SourceRange Range;
2896      BaseType = ParseTypeName(&Range);
2897
2898      if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2)
2899        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2900          << Range;
2901      if (getLangOpts().CPlusPlus0x)
2902        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2903    }
2904  }
2905
2906  // There are four options here.  If we have 'friend enum foo;' then this is a
2907  // friend declaration, and cannot have an accompanying definition. If we have
2908  // 'enum foo;', then this is a forward declaration.  If we have
2909  // 'enum foo {...' then this is a definition. Otherwise we have something
2910  // like 'enum foo xyz', a reference.
2911  //
2912  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2913  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2914  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2915  //
2916  Sema::TagUseKind TUK;
2917  if (DS.isFriendSpecified())
2918    TUK = Sema::TUK_Friend;
2919  else if (!AllowDeclaration)
2920    TUK = Sema::TUK_Reference;
2921  else if (Tok.is(tok::l_brace))
2922    TUK = Sema::TUK_Definition;
2923  else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
2924    TUK = Sema::TUK_Declaration;
2925  else
2926    TUK = Sema::TUK_Reference;
2927
2928  MultiTemplateParamsArg TParams;
2929  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2930      TUK != Sema::TUK_Reference) {
2931    if (!getLangOpts().CPlusPlus0x || !SS.isSet()) {
2932      // Skip the rest of this declarator, up until the comma or semicolon.
2933      Diag(Tok, diag::err_enum_template);
2934      SkipUntil(tok::comma, true);
2935      return;
2936    }
2937
2938    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
2939      // Enumerations can't be explicitly instantiated.
2940      DS.SetTypeSpecError();
2941      Diag(StartLoc, diag::err_explicit_instantiation_enum);
2942      return;
2943    }
2944
2945    assert(TemplateInfo.TemplateParams && "no template parameters");
2946    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
2947                                     TemplateInfo.TemplateParams->size());
2948  }
2949
2950  if (!Name && TUK != Sema::TUK_Definition) {
2951    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2952
2953    // Skip the rest of this declarator, up until the comma or semicolon.
2954    SkipUntil(tok::comma, true);
2955    return;
2956  }
2957
2958  bool Owned = false;
2959  bool IsDependent = false;
2960  const char *PrevSpec = 0;
2961  unsigned DiagID;
2962  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2963                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2964                                   AS, DS.getModulePrivateSpecLoc(), TParams,
2965                                   Owned, IsDependent, ScopedEnumKWLoc,
2966                                   IsScopedUsingClassTag, BaseType);
2967
2968  if (IsDependent) {
2969    // This enum has a dependent nested-name-specifier. Handle it as a
2970    // dependent tag.
2971    if (!Name) {
2972      DS.SetTypeSpecError();
2973      Diag(Tok, diag::err_expected_type_name_after_typename);
2974      return;
2975    }
2976
2977    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2978                                                TUK, SS, Name, StartLoc,
2979                                                NameLoc);
2980    if (Type.isInvalid()) {
2981      DS.SetTypeSpecError();
2982      return;
2983    }
2984
2985    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2986                           NameLoc.isValid() ? NameLoc : StartLoc,
2987                           PrevSpec, DiagID, Type.get()))
2988      Diag(StartLoc, DiagID) << PrevSpec;
2989
2990    return;
2991  }
2992
2993  if (!TagDecl) {
2994    // The action failed to produce an enumeration tag. If this is a
2995    // definition, consume the entire definition.
2996    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
2997      ConsumeBrace();
2998      SkipUntil(tok::r_brace);
2999    }
3000
3001    DS.SetTypeSpecError();
3002    return;
3003  }
3004
3005  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3006    if (TUK == Sema::TUK_Friend) {
3007      Diag(Tok, diag::err_friend_decl_defines_type)
3008        << SourceRange(DS.getFriendSpecLoc());
3009      ConsumeBrace();
3010      SkipUntil(tok::r_brace);
3011    } else {
3012      ParseEnumBody(StartLoc, TagDecl);
3013    }
3014  }
3015
3016  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3017                         NameLoc.isValid() ? NameLoc : StartLoc,
3018                         PrevSpec, DiagID, TagDecl, Owned))
3019    Diag(StartLoc, DiagID) << PrevSpec;
3020}
3021
3022/// ParseEnumBody - Parse a {} enclosed enumerator-list.
3023///       enumerator-list:
3024///         enumerator
3025///         enumerator-list ',' enumerator
3026///       enumerator:
3027///         enumeration-constant
3028///         enumeration-constant '=' constant-expression
3029///       enumeration-constant:
3030///         identifier
3031///
3032void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3033  // Enter the scope of the enum body and start the definition.
3034  ParseScope EnumScope(this, Scope::DeclScope);
3035  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3036
3037  BalancedDelimiterTracker T(*this, tok::l_brace);
3038  T.consumeOpen();
3039
3040  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3041  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3042    Diag(Tok, diag::error_empty_enum);
3043
3044  SmallVector<Decl *, 32> EnumConstantDecls;
3045
3046  Decl *LastEnumConstDecl = 0;
3047
3048  // Parse the enumerator-list.
3049  while (Tok.is(tok::identifier)) {
3050    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3051    SourceLocation IdentLoc = ConsumeToken();
3052
3053    // If attributes exist after the enumerator, parse them.
3054    ParsedAttributes attrs(AttrFactory);
3055    MaybeParseGNUAttributes(attrs);
3056
3057    SourceLocation EqualLoc;
3058    ExprResult AssignedVal;
3059    ParsingDeclRAIIObject PD(*this);
3060
3061    if (Tok.is(tok::equal)) {
3062      EqualLoc = ConsumeToken();
3063      AssignedVal = ParseConstantExpression();
3064      if (AssignedVal.isInvalid())
3065        SkipUntil(tok::comma, tok::r_brace, true, true);
3066    }
3067
3068    // Install the enumerator constant into EnumDecl.
3069    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3070                                                    LastEnumConstDecl,
3071                                                    IdentLoc, Ident,
3072                                                    attrs.getList(), EqualLoc,
3073                                                    AssignedVal.release());
3074    PD.complete(EnumConstDecl);
3075
3076    EnumConstantDecls.push_back(EnumConstDecl);
3077    LastEnumConstDecl = EnumConstDecl;
3078
3079    if (Tok.is(tok::identifier)) {
3080      // We're missing a comma between enumerators.
3081      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3082      Diag(Loc, diag::err_enumerator_list_missing_comma)
3083        << FixItHint::CreateInsertion(Loc, ", ");
3084      continue;
3085    }
3086
3087    if (Tok.isNot(tok::comma))
3088      break;
3089    SourceLocation CommaLoc = ConsumeToken();
3090
3091    if (Tok.isNot(tok::identifier)) {
3092      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x)
3093        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3094          << getLangOpts().CPlusPlus
3095          << FixItHint::CreateRemoval(CommaLoc);
3096      else if (getLangOpts().CPlusPlus0x)
3097        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3098          << FixItHint::CreateRemoval(CommaLoc);
3099    }
3100  }
3101
3102  // Eat the }.
3103  T.consumeClose();
3104
3105  // If attributes exist after the identifier list, parse them.
3106  ParsedAttributes attrs(AttrFactory);
3107  MaybeParseGNUAttributes(attrs);
3108
3109  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3110                        EnumDecl, EnumConstantDecls.data(),
3111                        EnumConstantDecls.size(), getCurScope(),
3112                        attrs.getList());
3113
3114  EnumScope.Exit();
3115  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3116                                   T.getCloseLocation());
3117}
3118
3119/// isTypeSpecifierQualifier - Return true if the current token could be the
3120/// start of a type-qualifier-list.
3121bool Parser::isTypeQualifier() const {
3122  switch (Tok.getKind()) {
3123  default: return false;
3124
3125    // type-qualifier only in OpenCL
3126  case tok::kw_private:
3127    return getLangOpts().OpenCL;
3128
3129    // type-qualifier
3130  case tok::kw_const:
3131  case tok::kw_volatile:
3132  case tok::kw_restrict:
3133  case tok::kw___private:
3134  case tok::kw___local:
3135  case tok::kw___global:
3136  case tok::kw___constant:
3137  case tok::kw___read_only:
3138  case tok::kw___read_write:
3139  case tok::kw___write_only:
3140    return true;
3141  }
3142}
3143
3144/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3145/// is definitely a type-specifier.  Return false if it isn't part of a type
3146/// specifier or if we're not sure.
3147bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3148  switch (Tok.getKind()) {
3149  default: return false;
3150    // type-specifiers
3151  case tok::kw_short:
3152  case tok::kw_long:
3153  case tok::kw___int64:
3154  case tok::kw___int128:
3155  case tok::kw_signed:
3156  case tok::kw_unsigned:
3157  case tok::kw__Complex:
3158  case tok::kw__Imaginary:
3159  case tok::kw_void:
3160  case tok::kw_char:
3161  case tok::kw_wchar_t:
3162  case tok::kw_char16_t:
3163  case tok::kw_char32_t:
3164  case tok::kw_int:
3165  case tok::kw_half:
3166  case tok::kw_float:
3167  case tok::kw_double:
3168  case tok::kw_bool:
3169  case tok::kw__Bool:
3170  case tok::kw__Decimal32:
3171  case tok::kw__Decimal64:
3172  case tok::kw__Decimal128:
3173  case tok::kw___vector:
3174
3175    // struct-or-union-specifier (C99) or class-specifier (C++)
3176  case tok::kw_class:
3177  case tok::kw_struct:
3178  case tok::kw_union:
3179    // enum-specifier
3180  case tok::kw_enum:
3181
3182    // typedef-name
3183  case tok::annot_typename:
3184    return true;
3185  }
3186}
3187
3188/// isTypeSpecifierQualifier - Return true if the current token could be the
3189/// start of a specifier-qualifier-list.
3190bool Parser::isTypeSpecifierQualifier() {
3191  switch (Tok.getKind()) {
3192  default: return false;
3193
3194  case tok::identifier:   // foo::bar
3195    if (TryAltiVecVectorToken())
3196      return true;
3197    // Fall through.
3198  case tok::kw_typename:  // typename T::type
3199    // Annotate typenames and C++ scope specifiers.  If we get one, just
3200    // recurse to handle whatever we get.
3201    if (TryAnnotateTypeOrScopeToken())
3202      return true;
3203    if (Tok.is(tok::identifier))
3204      return false;
3205    return isTypeSpecifierQualifier();
3206
3207  case tok::coloncolon:   // ::foo::bar
3208    if (NextToken().is(tok::kw_new) ||    // ::new
3209        NextToken().is(tok::kw_delete))   // ::delete
3210      return false;
3211
3212    if (TryAnnotateTypeOrScopeToken())
3213      return true;
3214    return isTypeSpecifierQualifier();
3215
3216    // GNU attributes support.
3217  case tok::kw___attribute:
3218    // GNU typeof support.
3219  case tok::kw_typeof:
3220
3221    // type-specifiers
3222  case tok::kw_short:
3223  case tok::kw_long:
3224  case tok::kw___int64:
3225  case tok::kw___int128:
3226  case tok::kw_signed:
3227  case tok::kw_unsigned:
3228  case tok::kw__Complex:
3229  case tok::kw__Imaginary:
3230  case tok::kw_void:
3231  case tok::kw_char:
3232  case tok::kw_wchar_t:
3233  case tok::kw_char16_t:
3234  case tok::kw_char32_t:
3235  case tok::kw_int:
3236  case tok::kw_half:
3237  case tok::kw_float:
3238  case tok::kw_double:
3239  case tok::kw_bool:
3240  case tok::kw__Bool:
3241  case tok::kw__Decimal32:
3242  case tok::kw__Decimal64:
3243  case tok::kw__Decimal128:
3244  case tok::kw___vector:
3245
3246    // struct-or-union-specifier (C99) or class-specifier (C++)
3247  case tok::kw_class:
3248  case tok::kw_struct:
3249  case tok::kw_union:
3250    // enum-specifier
3251  case tok::kw_enum:
3252
3253    // type-qualifier
3254  case tok::kw_const:
3255  case tok::kw_volatile:
3256  case tok::kw_restrict:
3257
3258    // typedef-name
3259  case tok::annot_typename:
3260    return true;
3261
3262    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3263  case tok::less:
3264    return getLangOpts().ObjC1;
3265
3266  case tok::kw___cdecl:
3267  case tok::kw___stdcall:
3268  case tok::kw___fastcall:
3269  case tok::kw___thiscall:
3270  case tok::kw___w64:
3271  case tok::kw___ptr64:
3272  case tok::kw___ptr32:
3273  case tok::kw___pascal:
3274  case tok::kw___unaligned:
3275
3276  case tok::kw___private:
3277  case tok::kw___local:
3278  case tok::kw___global:
3279  case tok::kw___constant:
3280  case tok::kw___read_only:
3281  case tok::kw___read_write:
3282  case tok::kw___write_only:
3283
3284    return true;
3285
3286  case tok::kw_private:
3287    return getLangOpts().OpenCL;
3288
3289  // C11 _Atomic()
3290  case tok::kw__Atomic:
3291    return true;
3292  }
3293}
3294
3295/// isDeclarationSpecifier() - Return true if the current token is part of a
3296/// declaration specifier.
3297///
3298/// \param DisambiguatingWithExpression True to indicate that the purpose of
3299/// this check is to disambiguate between an expression and a declaration.
3300bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3301  switch (Tok.getKind()) {
3302  default: return false;
3303
3304  case tok::kw_private:
3305    return getLangOpts().OpenCL;
3306
3307  case tok::identifier:   // foo::bar
3308    // Unfortunate hack to support "Class.factoryMethod" notation.
3309    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
3310      return false;
3311    if (TryAltiVecVectorToken())
3312      return true;
3313    // Fall through.
3314  case tok::kw_decltype: // decltype(T())::type
3315  case tok::kw_typename: // typename T::type
3316    // Annotate typenames and C++ scope specifiers.  If we get one, just
3317    // recurse to handle whatever we get.
3318    if (TryAnnotateTypeOrScopeToken())
3319      return true;
3320    if (Tok.is(tok::identifier))
3321      return false;
3322
3323    // If we're in Objective-C and we have an Objective-C class type followed
3324    // by an identifier and then either ':' or ']', in a place where an
3325    // expression is permitted, then this is probably a class message send
3326    // missing the initial '['. In this case, we won't consider this to be
3327    // the start of a declaration.
3328    if (DisambiguatingWithExpression &&
3329        isStartOfObjCClassMessageMissingOpenBracket())
3330      return false;
3331
3332    return isDeclarationSpecifier();
3333
3334  case tok::coloncolon:   // ::foo::bar
3335    if (NextToken().is(tok::kw_new) ||    // ::new
3336        NextToken().is(tok::kw_delete))   // ::delete
3337      return false;
3338
3339    // Annotate typenames and C++ scope specifiers.  If we get one, just
3340    // recurse to handle whatever we get.
3341    if (TryAnnotateTypeOrScopeToken())
3342      return true;
3343    return isDeclarationSpecifier();
3344
3345    // storage-class-specifier
3346  case tok::kw_typedef:
3347  case tok::kw_extern:
3348  case tok::kw___private_extern__:
3349  case tok::kw_static:
3350  case tok::kw_auto:
3351  case tok::kw_register:
3352  case tok::kw___thread:
3353
3354    // Modules
3355  case tok::kw___module_private__:
3356
3357    // type-specifiers
3358  case tok::kw_short:
3359  case tok::kw_long:
3360  case tok::kw___int64:
3361  case tok::kw___int128:
3362  case tok::kw_signed:
3363  case tok::kw_unsigned:
3364  case tok::kw__Complex:
3365  case tok::kw__Imaginary:
3366  case tok::kw_void:
3367  case tok::kw_char:
3368  case tok::kw_wchar_t:
3369  case tok::kw_char16_t:
3370  case tok::kw_char32_t:
3371
3372  case tok::kw_int:
3373  case tok::kw_half:
3374  case tok::kw_float:
3375  case tok::kw_double:
3376  case tok::kw_bool:
3377  case tok::kw__Bool:
3378  case tok::kw__Decimal32:
3379  case tok::kw__Decimal64:
3380  case tok::kw__Decimal128:
3381  case tok::kw___vector:
3382
3383    // struct-or-union-specifier (C99) or class-specifier (C++)
3384  case tok::kw_class:
3385  case tok::kw_struct:
3386  case tok::kw_union:
3387    // enum-specifier
3388  case tok::kw_enum:
3389
3390    // type-qualifier
3391  case tok::kw_const:
3392  case tok::kw_volatile:
3393  case tok::kw_restrict:
3394
3395    // function-specifier
3396  case tok::kw_inline:
3397  case tok::kw_virtual:
3398  case tok::kw_explicit:
3399
3400    // static_assert-declaration
3401  case tok::kw__Static_assert:
3402
3403    // GNU typeof support.
3404  case tok::kw_typeof:
3405
3406    // GNU attributes.
3407  case tok::kw___attribute:
3408    return true;
3409
3410    // C++0x decltype.
3411  case tok::annot_decltype:
3412    return true;
3413
3414    // C11 _Atomic()
3415  case tok::kw__Atomic:
3416    return true;
3417
3418    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3419  case tok::less:
3420    return getLangOpts().ObjC1;
3421
3422    // typedef-name
3423  case tok::annot_typename:
3424    return !DisambiguatingWithExpression ||
3425           !isStartOfObjCClassMessageMissingOpenBracket();
3426
3427  case tok::kw___declspec:
3428  case tok::kw___cdecl:
3429  case tok::kw___stdcall:
3430  case tok::kw___fastcall:
3431  case tok::kw___thiscall:
3432  case tok::kw___w64:
3433  case tok::kw___ptr64:
3434  case tok::kw___ptr32:
3435  case tok::kw___forceinline:
3436  case tok::kw___pascal:
3437  case tok::kw___unaligned:
3438
3439  case tok::kw___private:
3440  case tok::kw___local:
3441  case tok::kw___global:
3442  case tok::kw___constant:
3443  case tok::kw___read_only:
3444  case tok::kw___read_write:
3445  case tok::kw___write_only:
3446
3447    return true;
3448  }
3449}
3450
3451bool Parser::isConstructorDeclarator() {
3452  TentativeParsingAction TPA(*this);
3453
3454  // Parse the C++ scope specifier.
3455  CXXScopeSpec SS;
3456  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3457                                     /*EnteringContext=*/true)) {
3458    TPA.Revert();
3459    return false;
3460  }
3461
3462  // Parse the constructor name.
3463  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3464    // We already know that we have a constructor name; just consume
3465    // the token.
3466    ConsumeToken();
3467  } else {
3468    TPA.Revert();
3469    return false;
3470  }
3471
3472  // Current class name must be followed by a left parenthesis.
3473  if (Tok.isNot(tok::l_paren)) {
3474    TPA.Revert();
3475    return false;
3476  }
3477  ConsumeParen();
3478
3479  // A right parenthesis, or ellipsis followed by a right parenthesis signals
3480  // that we have a constructor.
3481  if (Tok.is(tok::r_paren) ||
3482      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
3483    TPA.Revert();
3484    return true;
3485  }
3486
3487  // If we need to, enter the specified scope.
3488  DeclaratorScopeObj DeclScopeObj(*this, SS);
3489  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3490    DeclScopeObj.EnterDeclaratorScope();
3491
3492  // Optionally skip Microsoft attributes.
3493  ParsedAttributes Attrs(AttrFactory);
3494  MaybeParseMicrosoftAttributes(Attrs);
3495
3496  // Check whether the next token(s) are part of a declaration
3497  // specifier, in which case we have the start of a parameter and,
3498  // therefore, we know that this is a constructor.
3499  bool IsConstructor = false;
3500  if (isDeclarationSpecifier())
3501    IsConstructor = true;
3502  else if (Tok.is(tok::identifier) ||
3503           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
3504    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
3505    // This might be a parenthesized member name, but is more likely to
3506    // be a constructor declaration with an invalid argument type. Keep
3507    // looking.
3508    if (Tok.is(tok::annot_cxxscope))
3509      ConsumeToken();
3510    ConsumeToken();
3511
3512    // If this is not a constructor, we must be parsing a declarator,
3513    // which must have one of the following syntactic forms (see the
3514    // grammar extract at the start of ParseDirectDeclarator):
3515    switch (Tok.getKind()) {
3516    case tok::l_paren:
3517      // C(X   (   int));
3518    case tok::l_square:
3519      // C(X   [   5]);
3520      // C(X   [   [attribute]]);
3521    case tok::coloncolon:
3522      // C(X   ::   Y);
3523      // C(X   ::   *p);
3524    case tok::r_paren:
3525      // C(X   )
3526      // Assume this isn't a constructor, rather than assuming it's a
3527      // constructor with an unnamed parameter of an ill-formed type.
3528      break;
3529
3530    default:
3531      IsConstructor = true;
3532      break;
3533    }
3534  }
3535
3536  TPA.Revert();
3537  return IsConstructor;
3538}
3539
3540/// ParseTypeQualifierListOpt
3541///          type-qualifier-list: [C99 6.7.5]
3542///            type-qualifier
3543/// [vendor]   attributes
3544///              [ only if VendorAttributesAllowed=true ]
3545///            type-qualifier-list type-qualifier
3546/// [vendor]   type-qualifier-list attributes
3547///              [ only if VendorAttributesAllowed=true ]
3548/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3549///              [ only if CXX0XAttributesAllowed=true ]
3550/// Note: vendor can be GNU, MS, etc.
3551///
3552void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3553                                       bool VendorAttributesAllowed,
3554                                       bool CXX11AttributesAllowed) {
3555  if (getLangOpts().CPlusPlus0x && CXX11AttributesAllowed &&
3556      isCXX11AttributeSpecifier()) {
3557    ParsedAttributesWithRange attrs(AttrFactory);
3558    ParseCXX11Attributes(attrs);
3559    DS.takeAttributesFrom(attrs);
3560  }
3561
3562  SourceLocation EndLoc;
3563
3564  while (1) {
3565    bool isInvalid = false;
3566    const char *PrevSpec = 0;
3567    unsigned DiagID = 0;
3568    SourceLocation Loc = Tok.getLocation();
3569
3570    switch (Tok.getKind()) {
3571    case tok::code_completion:
3572      Actions.CodeCompleteTypeQualifiers(DS);
3573      return cutOffParsing();
3574
3575    case tok::kw_const:
3576      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3577                                 getLangOpts());
3578      break;
3579    case tok::kw_volatile:
3580      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3581                                 getLangOpts());
3582      break;
3583    case tok::kw_restrict:
3584      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3585                                 getLangOpts());
3586      break;
3587
3588    // OpenCL qualifiers:
3589    case tok::kw_private:
3590      if (!getLangOpts().OpenCL)
3591        goto DoneWithTypeQuals;
3592    case tok::kw___private:
3593    case tok::kw___global:
3594    case tok::kw___local:
3595    case tok::kw___constant:
3596    case tok::kw___read_only:
3597    case tok::kw___write_only:
3598    case tok::kw___read_write:
3599      ParseOpenCLQualifiers(DS);
3600      break;
3601
3602    case tok::kw___w64:
3603    case tok::kw___ptr64:
3604    case tok::kw___ptr32:
3605    case tok::kw___cdecl:
3606    case tok::kw___stdcall:
3607    case tok::kw___fastcall:
3608    case tok::kw___thiscall:
3609    case tok::kw___unaligned:
3610      if (VendorAttributesAllowed) {
3611        ParseMicrosoftTypeAttributes(DS.getAttributes());
3612        continue;
3613      }
3614      goto DoneWithTypeQuals;
3615    case tok::kw___pascal:
3616      if (VendorAttributesAllowed) {
3617        ParseBorlandTypeAttributes(DS.getAttributes());
3618        continue;
3619      }
3620      goto DoneWithTypeQuals;
3621    case tok::kw___attribute:
3622      if (VendorAttributesAllowed) {
3623        ParseGNUAttributes(DS.getAttributes());
3624        continue; // do *not* consume the next token!
3625      }
3626      // otherwise, FALL THROUGH!
3627    default:
3628      DoneWithTypeQuals:
3629      // If this is not a type-qualifier token, we're done reading type
3630      // qualifiers.  First verify that DeclSpec's are consistent.
3631      DS.Finish(Diags, PP);
3632      if (EndLoc.isValid())
3633        DS.SetRangeEnd(EndLoc);
3634      return;
3635    }
3636
3637    // If the specifier combination wasn't legal, issue a diagnostic.
3638    if (isInvalid) {
3639      assert(PrevSpec && "Method did not return previous specifier!");
3640      Diag(Tok, DiagID) << PrevSpec;
3641    }
3642    EndLoc = ConsumeToken();
3643  }
3644}
3645
3646
3647/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3648///
3649void Parser::ParseDeclarator(Declarator &D) {
3650  /// This implements the 'declarator' production in the C grammar, then checks
3651  /// for well-formedness and issues diagnostics.
3652  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3653}
3654
3655static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
3656  if (Kind == tok::star || Kind == tok::caret)
3657    return true;
3658
3659  // We parse rvalue refs in C++03, because otherwise the errors are scary.
3660  if (!Lang.CPlusPlus)
3661    return false;
3662
3663  return Kind == tok::amp || Kind == tok::ampamp;
3664}
3665
3666/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3667/// is parsed by the function passed to it. Pass null, and the direct-declarator
3668/// isn't parsed at all, making this function effectively parse the C++
3669/// ptr-operator production.
3670///
3671/// If the grammar of this construct is extended, matching changes must also be
3672/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
3673/// isConstructorDeclarator.
3674///
3675///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3676/// [C]     pointer[opt] direct-declarator
3677/// [C++]   direct-declarator
3678/// [C++]   ptr-operator declarator
3679///
3680///       pointer: [C99 6.7.5]
3681///         '*' type-qualifier-list[opt]
3682///         '*' type-qualifier-list[opt] pointer
3683///
3684///       ptr-operator:
3685///         '*' cv-qualifier-seq[opt]
3686///         '&'
3687/// [C++0x] '&&'
3688/// [GNU]   '&' restrict[opt] attributes[opt]
3689/// [GNU?]  '&&' restrict[opt] attributes[opt]
3690///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3691void Parser::ParseDeclaratorInternal(Declarator &D,
3692                                     DirectDeclParseFunction DirectDeclParser) {
3693  if (Diags.hasAllExtensionsSilenced())
3694    D.setExtension();
3695
3696  // C++ member pointers start with a '::' or a nested-name.
3697  // Member pointers get special handling, since there's no place for the
3698  // scope spec in the generic path below.
3699  if (getLangOpts().CPlusPlus &&
3700      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3701       Tok.is(tok::annot_cxxscope))) {
3702    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3703                           D.getContext() == Declarator::MemberContext;
3704    CXXScopeSpec SS;
3705    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3706
3707    if (SS.isNotEmpty()) {
3708      if (Tok.isNot(tok::star)) {
3709        // The scope spec really belongs to the direct-declarator.
3710        D.getCXXScopeSpec() = SS;
3711        if (DirectDeclParser)
3712          (this->*DirectDeclParser)(D);
3713        return;
3714      }
3715
3716      SourceLocation Loc = ConsumeToken();
3717      D.SetRangeEnd(Loc);
3718      DeclSpec DS(AttrFactory);
3719      ParseTypeQualifierListOpt(DS);
3720      D.ExtendWithDeclSpec(DS);
3721
3722      // Recurse to parse whatever is left.
3723      ParseDeclaratorInternal(D, DirectDeclParser);
3724
3725      // Sema will have to catch (syntactically invalid) pointers into global
3726      // scope. It has to catch pointers into namespace scope anyway.
3727      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3728                                                      Loc),
3729                    DS.getAttributes(),
3730                    /* Don't replace range end. */SourceLocation());
3731      return;
3732    }
3733  }
3734
3735  tok::TokenKind Kind = Tok.getKind();
3736  // Not a pointer, C++ reference, or block.
3737  if (!isPtrOperatorToken(Kind, getLangOpts())) {
3738    if (DirectDeclParser)
3739      (this->*DirectDeclParser)(D);
3740    return;
3741  }
3742
3743  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3744  // '&&' -> rvalue reference
3745  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3746  D.SetRangeEnd(Loc);
3747
3748  if (Kind == tok::star || Kind == tok::caret) {
3749    // Is a pointer.
3750    DeclSpec DS(AttrFactory);
3751
3752    // FIXME: GNU attributes are not allowed here in a new-type-id.
3753    ParseTypeQualifierListOpt(DS);
3754    D.ExtendWithDeclSpec(DS);
3755
3756    // Recursively parse the declarator.
3757    ParseDeclaratorInternal(D, DirectDeclParser);
3758    if (Kind == tok::star)
3759      // Remember that we parsed a pointer type, and remember the type-quals.
3760      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3761                                                DS.getConstSpecLoc(),
3762                                                DS.getVolatileSpecLoc(),
3763                                                DS.getRestrictSpecLoc()),
3764                    DS.getAttributes(),
3765                    SourceLocation());
3766    else
3767      // Remember that we parsed a Block type, and remember the type-quals.
3768      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3769                                                     Loc),
3770                    DS.getAttributes(),
3771                    SourceLocation());
3772  } else {
3773    // Is a reference
3774    DeclSpec DS(AttrFactory);
3775
3776    // Complain about rvalue references in C++03, but then go on and build
3777    // the declarator.
3778    if (Kind == tok::ampamp)
3779      Diag(Loc, getLangOpts().CPlusPlus0x ?
3780           diag::warn_cxx98_compat_rvalue_reference :
3781           diag::ext_rvalue_reference);
3782
3783    // GNU-style and C++11 attributes are allowed here, as is restrict.
3784    ParseTypeQualifierListOpt(DS);
3785    D.ExtendWithDeclSpec(DS);
3786
3787    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3788    // cv-qualifiers are introduced through the use of a typedef or of a
3789    // template type argument, in which case the cv-qualifiers are ignored.
3790    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3791      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3792        Diag(DS.getConstSpecLoc(),
3793             diag::err_invalid_reference_qualifier_application) << "const";
3794      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3795        Diag(DS.getVolatileSpecLoc(),
3796             diag::err_invalid_reference_qualifier_application) << "volatile";
3797    }
3798
3799    // Recursively parse the declarator.
3800    ParseDeclaratorInternal(D, DirectDeclParser);
3801
3802    if (D.getNumTypeObjects() > 0) {
3803      // C++ [dcl.ref]p4: There shall be no references to references.
3804      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3805      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3806        if (const IdentifierInfo *II = D.getIdentifier())
3807          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3808           << II;
3809        else
3810          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3811            << "type name";
3812
3813        // Once we've complained about the reference-to-reference, we
3814        // can go ahead and build the (technically ill-formed)
3815        // declarator: reference collapsing will take care of it.
3816      }
3817    }
3818
3819    // Remember that we parsed a reference type. It doesn't have type-quals.
3820    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3821                                                Kind == tok::amp),
3822                  DS.getAttributes(),
3823                  SourceLocation());
3824  }
3825}
3826
3827static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D,
3828                                      SourceLocation EllipsisLoc) {
3829  if (EllipsisLoc.isValid()) {
3830    FixItHint Insertion;
3831    if (!D.getEllipsisLoc().isValid()) {
3832      Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "...");
3833      D.setEllipsisLoc(EllipsisLoc);
3834    }
3835    P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
3836      << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName();
3837  }
3838}
3839
3840/// ParseDirectDeclarator
3841///       direct-declarator: [C99 6.7.5]
3842/// [C99]   identifier
3843///         '(' declarator ')'
3844/// [GNU]   '(' attributes declarator ')'
3845/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3846/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3847/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3848/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3849/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3850/// [C++11] direct-declarator '[' constant-expression[opt] ']'
3851///                    attribute-specifier-seq[opt]
3852///         direct-declarator '(' parameter-type-list ')'
3853///         direct-declarator '(' identifier-list[opt] ')'
3854/// [GNU]   direct-declarator '(' parameter-forward-declarations
3855///                    parameter-type-list[opt] ')'
3856/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3857///                    cv-qualifier-seq[opt] exception-specification[opt]
3858/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
3859///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
3860///                    ref-qualifier[opt] exception-specification[opt]
3861/// [C++]   declarator-id
3862/// [C++11] declarator-id attribute-specifier-seq[opt]
3863///
3864///       declarator-id: [C++ 8]
3865///         '...'[opt] id-expression
3866///         '::'[opt] nested-name-specifier[opt] type-name
3867///
3868///       id-expression: [C++ 5.1]
3869///         unqualified-id
3870///         qualified-id
3871///
3872///       unqualified-id: [C++ 5.1]
3873///         identifier
3874///         operator-function-id
3875///         conversion-function-id
3876///          '~' class-name
3877///         template-id
3878///
3879/// Note, any additional constructs added here may need corresponding changes
3880/// in isConstructorDeclarator.
3881void Parser::ParseDirectDeclarator(Declarator &D) {
3882  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3883
3884  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
3885    // ParseDeclaratorInternal might already have parsed the scope.
3886    if (D.getCXXScopeSpec().isEmpty()) {
3887      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3888                             D.getContext() == Declarator::MemberContext;
3889      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3890                                     EnteringContext);
3891    }
3892
3893    if (D.getCXXScopeSpec().isValid()) {
3894      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3895        // Change the declaration context for name lookup, until this function
3896        // is exited (and the declarator has been parsed).
3897        DeclScopeObj.EnterDeclaratorScope();
3898    }
3899
3900    // C++0x [dcl.fct]p14:
3901    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3902    //   of a parameter-declaration-clause without a preceding comma. In
3903    //   this case, the ellipsis is parsed as part of the
3904    //   abstract-declarator if the type of the parameter names a template
3905    //   parameter pack that has not been expanded; otherwise, it is parsed
3906    //   as part of the parameter-declaration-clause.
3907    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
3908        !((D.getContext() == Declarator::PrototypeContext ||
3909           D.getContext() == Declarator::BlockLiteralContext) &&
3910          NextToken().is(tok::r_paren) &&
3911          !Actions.containsUnexpandedParameterPacks(D))) {
3912      SourceLocation EllipsisLoc = ConsumeToken();
3913      if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
3914        // The ellipsis was put in the wrong place. Recover, and explain to
3915        // the user what they should have done.
3916        ParseDeclarator(D);
3917        diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
3918        return;
3919      } else
3920        D.setEllipsisLoc(EllipsisLoc);
3921
3922      // The ellipsis can't be followed by a parenthesized declarator. We
3923      // check for that in ParseParenDeclarator, after we have disambiguated
3924      // the l_paren token.
3925    }
3926
3927    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3928        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3929      // We found something that indicates the start of an unqualified-id.
3930      // Parse that unqualified-id.
3931      bool AllowConstructorName;
3932      if (D.getDeclSpec().hasTypeSpecifier())
3933        AllowConstructorName = false;
3934      else if (D.getCXXScopeSpec().isSet())
3935        AllowConstructorName =
3936          (D.getContext() == Declarator::FileContext ||
3937           (D.getContext() == Declarator::MemberContext &&
3938            D.getDeclSpec().isFriendSpecified()));
3939      else
3940        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3941
3942      SourceLocation TemplateKWLoc;
3943      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3944                             /*EnteringContext=*/true,
3945                             /*AllowDestructorName=*/true,
3946                             AllowConstructorName,
3947                             ParsedType(),
3948                             TemplateKWLoc,
3949                             D.getName()) ||
3950          // Once we're past the identifier, if the scope was bad, mark the
3951          // whole declarator bad.
3952          D.getCXXScopeSpec().isInvalid()) {
3953        D.SetIdentifier(0, Tok.getLocation());
3954        D.setInvalidType(true);
3955      } else {
3956        // Parsed the unqualified-id; update range information and move along.
3957        if (D.getSourceRange().getBegin().isInvalid())
3958          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3959        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3960      }
3961      goto PastIdentifier;
3962    }
3963  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3964    assert(!getLangOpts().CPlusPlus &&
3965           "There's a C++-specific check for tok::identifier above");
3966    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3967    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3968    ConsumeToken();
3969    goto PastIdentifier;
3970  }
3971
3972  if (Tok.is(tok::l_paren)) {
3973    // direct-declarator: '(' declarator ')'
3974    // direct-declarator: '(' attributes declarator ')'
3975    // Example: 'char (*X)'   or 'int (*XX)(void)'
3976    ParseParenDeclarator(D);
3977
3978    // If the declarator was parenthesized, we entered the declarator
3979    // scope when parsing the parenthesized declarator, then exited
3980    // the scope already. Re-enter the scope, if we need to.
3981    if (D.getCXXScopeSpec().isSet()) {
3982      // If there was an error parsing parenthesized declarator, declarator
3983      // scope may have been entered before. Don't do it again.
3984      if (!D.isInvalidType() &&
3985          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3986        // Change the declaration context for name lookup, until this function
3987        // is exited (and the declarator has been parsed).
3988        DeclScopeObj.EnterDeclaratorScope();
3989    }
3990  } else if (D.mayOmitIdentifier()) {
3991    // This could be something simple like "int" (in which case the declarator
3992    // portion is empty), if an abstract-declarator is allowed.
3993    D.SetIdentifier(0, Tok.getLocation());
3994  } else {
3995    if (D.getContext() == Declarator::MemberContext)
3996      Diag(Tok, diag::err_expected_member_name_or_semi)
3997        << D.getDeclSpec().getSourceRange();
3998    else if (getLangOpts().CPlusPlus)
3999      Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
4000    else
4001      Diag(Tok, diag::err_expected_ident_lparen);
4002    D.SetIdentifier(0, Tok.getLocation());
4003    D.setInvalidType(true);
4004  }
4005
4006 PastIdentifier:
4007  assert(D.isPastIdentifier() &&
4008         "Haven't past the location of the identifier yet?");
4009
4010  // Don't parse attributes unless we have parsed an unparenthesized name.
4011  if (D.hasName() && !D.getNumTypeObjects())
4012    MaybeParseCXX0XAttributes(D);
4013
4014  while (1) {
4015    if (Tok.is(tok::l_paren)) {
4016      // Enter function-declaration scope, limiting any declarators to the
4017      // function prototype scope, including parameter declarators.
4018      ParseScope PrototypeScope(this,
4019                                Scope::FunctionPrototypeScope|Scope::DeclScope);
4020      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
4021      // In such a case, check if we actually have a function declarator; if it
4022      // is not, the declarator has been fully parsed.
4023      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4024        // When not in file scope, warn for ambiguous function declarators, just
4025        // in case the author intended it as a variable definition.
4026        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
4027        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
4028          break;
4029      }
4030      ParsedAttributes attrs(AttrFactory);
4031      BalancedDelimiterTracker T(*this, tok::l_paren);
4032      T.consumeOpen();
4033      ParseFunctionDeclarator(D, attrs, T);
4034      PrototypeScope.Exit();
4035    } else if (Tok.is(tok::l_square)) {
4036      ParseBracketDeclarator(D);
4037    } else {
4038      break;
4039    }
4040  }
4041}
4042
4043/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
4044/// only called before the identifier, so these are most likely just grouping
4045/// parens for precedence.  If we find that these are actually function
4046/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4047///
4048///       direct-declarator:
4049///         '(' declarator ')'
4050/// [GNU]   '(' attributes declarator ')'
4051///         direct-declarator '(' parameter-type-list ')'
4052///         direct-declarator '(' identifier-list[opt] ')'
4053/// [GNU]   direct-declarator '(' parameter-forward-declarations
4054///                    parameter-type-list[opt] ')'
4055///
4056void Parser::ParseParenDeclarator(Declarator &D) {
4057  BalancedDelimiterTracker T(*this, tok::l_paren);
4058  T.consumeOpen();
4059
4060  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4061
4062  // Eat any attributes before we look at whether this is a grouping or function
4063  // declarator paren.  If this is a grouping paren, the attribute applies to
4064  // the type being built up, for example:
4065  //     int (__attribute__(()) *x)(long y)
4066  // If this ends up not being a grouping paren, the attribute applies to the
4067  // first argument, for example:
4068  //     int (__attribute__(()) int x)
4069  // In either case, we need to eat any attributes to be able to determine what
4070  // sort of paren this is.
4071  //
4072  ParsedAttributes attrs(AttrFactory);
4073  bool RequiresArg = false;
4074  if (Tok.is(tok::kw___attribute)) {
4075    ParseGNUAttributes(attrs);
4076
4077    // We require that the argument list (if this is a non-grouping paren) be
4078    // present even if the attribute list was empty.
4079    RequiresArg = true;
4080  }
4081  // Eat any Microsoft extensions.
4082  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
4083       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
4084       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
4085       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
4086    ParseMicrosoftTypeAttributes(attrs);
4087  }
4088  // Eat any Borland extensions.
4089  if  (Tok.is(tok::kw___pascal))
4090    ParseBorlandTypeAttributes(attrs);
4091
4092  // If we haven't past the identifier yet (or where the identifier would be
4093  // stored, if this is an abstract declarator), then this is probably just
4094  // grouping parens. However, if this could be an abstract-declarator, then
4095  // this could also be the start of function arguments (consider 'void()').
4096  bool isGrouping;
4097
4098  if (!D.mayOmitIdentifier()) {
4099    // If this can't be an abstract-declarator, this *must* be a grouping
4100    // paren, because we haven't seen the identifier yet.
4101    isGrouping = true;
4102  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4103             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
4104              NextToken().is(tok::r_paren)) || // C++ int(...)
4105             isDeclarationSpecifier() ||       // 'int(int)' is a function.
4106             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
4107    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4108    // considered to be a type, not a K&R identifier-list.
4109    isGrouping = false;
4110  } else {
4111    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4112    isGrouping = true;
4113  }
4114
4115  // If this is a grouping paren, handle:
4116  // direct-declarator: '(' declarator ')'
4117  // direct-declarator: '(' attributes declarator ')'
4118  if (isGrouping) {
4119    SourceLocation EllipsisLoc = D.getEllipsisLoc();
4120    D.setEllipsisLoc(SourceLocation());
4121
4122    bool hadGroupingParens = D.hasGroupingParens();
4123    D.setGroupingParens(true);
4124    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4125    // Match the ')'.
4126    T.consumeClose();
4127    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
4128                                            T.getCloseLocation()),
4129                  attrs, T.getCloseLocation());
4130
4131    D.setGroupingParens(hadGroupingParens);
4132
4133    // An ellipsis cannot be placed outside parentheses.
4134    if (EllipsisLoc.isValid())
4135      diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
4136
4137    return;
4138  }
4139
4140  // Okay, if this wasn't a grouping paren, it must be the start of a function
4141  // argument list.  Recognize that this declarator will never have an
4142  // identifier (and remember where it would have been), then call into
4143  // ParseFunctionDeclarator to handle of argument list.
4144  D.SetIdentifier(0, Tok.getLocation());
4145
4146  // Enter function-declaration scope, limiting any declarators to the
4147  // function prototype scope, including parameter declarators.
4148  ParseScope PrototypeScope(this,
4149                            Scope::FunctionPrototypeScope|Scope::DeclScope);
4150  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4151  PrototypeScope.Exit();
4152}
4153
4154/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4155/// declarator D up to a paren, which indicates that we are parsing function
4156/// arguments.
4157///
4158/// If FirstArgAttrs is non-null, then the caller parsed those arguments
4159/// immediately after the open paren - they should be considered to be the
4160/// first argument of a parameter.
4161///
4162/// If RequiresArg is true, then the first argument of the function is required
4163/// to be present and required to not be an identifier list.
4164///
4165/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
4166/// (C++11) ref-qualifier[opt], exception-specification[opt],
4167/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
4168///
4169/// [C++11] exception-specification:
4170///           dynamic-exception-specification
4171///           noexcept-specification
4172///
4173void Parser::ParseFunctionDeclarator(Declarator &D,
4174                                     ParsedAttributes &FirstArgAttrs,
4175                                     BalancedDelimiterTracker &Tracker,
4176                                     bool RequiresArg) {
4177  assert(getCurScope()->isFunctionPrototypeScope() &&
4178         "Should call from a Function scope");
4179  // lparen is already consumed!
4180  assert(D.isPastIdentifier() && "Should not call before identifier!");
4181
4182  // This should be true when the function has typed arguments.
4183  // Otherwise, it is treated as a K&R-style function.
4184  bool HasProto = false;
4185  // Build up an array of information about the parsed arguments.
4186  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4187  // Remember where we see an ellipsis, if any.
4188  SourceLocation EllipsisLoc;
4189
4190  DeclSpec DS(AttrFactory);
4191  bool RefQualifierIsLValueRef = true;
4192  SourceLocation RefQualifierLoc;
4193  SourceLocation ConstQualifierLoc;
4194  SourceLocation VolatileQualifierLoc;
4195  ExceptionSpecificationType ESpecType = EST_None;
4196  SourceRange ESpecRange;
4197  SmallVector<ParsedType, 2> DynamicExceptions;
4198  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4199  ExprResult NoexceptExpr;
4200  CachedTokens *ExceptionSpecTokens = 0;
4201  ParsedAttributes FnAttrs(AttrFactory);
4202  ParsedType TrailingReturnType;
4203
4204  Actions.ActOnStartFunctionDeclarator();
4205
4206  SourceLocation EndLoc;
4207  if (isFunctionDeclaratorIdentifierList()) {
4208    if (RequiresArg)
4209      Diag(Tok, diag::err_argument_required_after_attribute);
4210
4211    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4212
4213    Tracker.consumeClose();
4214    EndLoc = Tracker.getCloseLocation();
4215  } else {
4216    if (Tok.isNot(tok::r_paren))
4217      ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
4218    else if (RequiresArg)
4219      Diag(Tok, diag::err_argument_required_after_attribute);
4220
4221    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
4222
4223    // If we have the closing ')', eat it.
4224    Tracker.consumeClose();
4225    EndLoc = Tracker.getCloseLocation();
4226
4227    if (getLangOpts().CPlusPlus) {
4228      // FIXME: Accept these components in any order, and produce fixits to
4229      // correct the order if the user gets it wrong. Ideally we should deal
4230      // with the virt-specifier-seq and pure-specifier in the same way.
4231
4232      // Parse cv-qualifier-seq[opt].
4233      ParseTypeQualifierListOpt(DS, false /*no attributes*/, false);
4234      if (!DS.getSourceRange().getEnd().isInvalid()) {
4235        EndLoc = DS.getSourceRange().getEnd();
4236        ConstQualifierLoc = DS.getConstSpecLoc();
4237        VolatileQualifierLoc = DS.getVolatileSpecLoc();
4238      }
4239
4240      // Parse ref-qualifier[opt].
4241      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4242        Diag(Tok, getLangOpts().CPlusPlus0x ?
4243             diag::warn_cxx98_compat_ref_qualifier :
4244             diag::ext_ref_qualifier);
4245
4246        RefQualifierIsLValueRef = Tok.is(tok::amp);
4247        RefQualifierLoc = ConsumeToken();
4248        EndLoc = RefQualifierLoc;
4249      }
4250
4251      // C++11 [expr.prim.general]p3:
4252      //   If a declaration declares a member function or member function
4253      //   template of a class X, the expression this is a prvalue of type
4254      //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
4255      //   and the end of the function-definition, member-declarator, or
4256      //   declarator.
4257      bool IsCXX11MemberFunction =
4258        getLangOpts().CPlusPlus0x &&
4259        (D.getContext() == Declarator::MemberContext ||
4260         (D.getContext() == Declarator::FileContext &&
4261          D.getCXXScopeSpec().isValid() &&
4262          Actions.CurContext->isRecord()));
4263      Sema::CXXThisScopeRAII ThisScope(Actions,
4264                               dyn_cast<CXXRecordDecl>(Actions.CurContext),
4265                               DS.getTypeQualifiers(),
4266                               IsCXX11MemberFunction);
4267
4268      // Parse exception-specification[opt].
4269      bool Delayed = (D.getContext() == Declarator::MemberContext &&
4270                      D.getDeclSpec().getStorageClassSpec()
4271                        != DeclSpec::SCS_typedef &&
4272                      !D.getDeclSpec().isFriendSpecified());
4273      ESpecType = tryParseExceptionSpecification(Delayed,
4274                                                 ESpecRange,
4275                                                 DynamicExceptions,
4276                                                 DynamicExceptionRanges,
4277                                                 NoexceptExpr,
4278                                                 ExceptionSpecTokens);
4279      if (ESpecType != EST_None)
4280        EndLoc = ESpecRange.getEnd();
4281
4282      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
4283      // after the exception-specification.
4284      MaybeParseCXX0XAttributes(FnAttrs);
4285
4286      // Parse trailing-return-type[opt].
4287      if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) {
4288        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4289        SourceRange Range;
4290        TrailingReturnType = ParseTrailingReturnType(Range).get();
4291        if (Range.getEnd().isValid())
4292          EndLoc = Range.getEnd();
4293      }
4294    }
4295  }
4296
4297  // Remember that we parsed a function type, and remember the attributes.
4298  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4299                                             /*isVariadic=*/EllipsisLoc.isValid(),
4300                                             EllipsisLoc,
4301                                             ParamInfo.data(), ParamInfo.size(),
4302                                             DS.getTypeQualifiers(),
4303                                             RefQualifierIsLValueRef,
4304                                             RefQualifierLoc, ConstQualifierLoc,
4305                                             VolatileQualifierLoc,
4306                                             /*MutableLoc=*/SourceLocation(),
4307                                             ESpecType, ESpecRange.getBegin(),
4308                                             DynamicExceptions.data(),
4309                                             DynamicExceptionRanges.data(),
4310                                             DynamicExceptions.size(),
4311                                             NoexceptExpr.isUsable() ?
4312                                               NoexceptExpr.get() : 0,
4313                                             ExceptionSpecTokens,
4314                                             Tracker.getOpenLocation(),
4315                                             EndLoc, D,
4316                                             TrailingReturnType),
4317                FnAttrs, EndLoc);
4318
4319  Actions.ActOnEndFunctionDeclarator();
4320}
4321
4322/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4323/// identifier list form for a K&R-style function:  void foo(a,b,c)
4324///
4325/// Note that identifier-lists are only allowed for normal declarators, not for
4326/// abstract-declarators.
4327bool Parser::isFunctionDeclaratorIdentifierList() {
4328  return !getLangOpts().CPlusPlus
4329         && Tok.is(tok::identifier)
4330         && !TryAltiVecVectorToken()
4331         // K&R identifier lists can't have typedefs as identifiers, per C99
4332         // 6.7.5.3p11.
4333         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4334         // Identifier lists follow a really simple grammar: the identifiers can
4335         // be followed *only* by a ", identifier" or ")".  However, K&R
4336         // identifier lists are really rare in the brave new modern world, and
4337         // it is very common for someone to typo a type in a non-K&R style
4338         // list.  If we are presented with something like: "void foo(intptr x,
4339         // float y)", we don't want to start parsing the function declarator as
4340         // though it is a K&R style declarator just because intptr is an
4341         // invalid type.
4342         //
4343         // To handle this, we check to see if the token after the first
4344         // identifier is a "," or ")".  Only then do we parse it as an
4345         // identifier list.
4346         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4347}
4348
4349/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4350/// we found a K&R-style identifier list instead of a typed parameter list.
4351///
4352/// After returning, ParamInfo will hold the parsed parameters.
4353///
4354///       identifier-list: [C99 6.7.5]
4355///         identifier
4356///         identifier-list ',' identifier
4357///
4358void Parser::ParseFunctionDeclaratorIdentifierList(
4359       Declarator &D,
4360       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4361  // If there was no identifier specified for the declarator, either we are in
4362  // an abstract-declarator, or we are in a parameter declarator which was found
4363  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4364  // diagnose this.
4365  if (!D.getIdentifier())
4366    Diag(Tok, diag::ext_ident_list_in_param);
4367
4368  // Maintain an efficient lookup of params we have seen so far.
4369  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4370
4371  while (1) {
4372    // If this isn't an identifier, report the error and skip until ')'.
4373    if (Tok.isNot(tok::identifier)) {
4374      Diag(Tok, diag::err_expected_ident);
4375      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4376      // Forget we parsed anything.
4377      ParamInfo.clear();
4378      return;
4379    }
4380
4381    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4382
4383    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4384    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4385      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4386
4387    // Verify that the argument identifier has not already been mentioned.
4388    if (!ParamsSoFar.insert(ParmII)) {
4389      Diag(Tok, diag::err_param_redefinition) << ParmII;
4390    } else {
4391      // Remember this identifier in ParamInfo.
4392      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4393                                                     Tok.getLocation(),
4394                                                     0));
4395    }
4396
4397    // Eat the identifier.
4398    ConsumeToken();
4399
4400    // The list continues if we see a comma.
4401    if (Tok.isNot(tok::comma))
4402      break;
4403    ConsumeToken();
4404  }
4405}
4406
4407/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4408/// after the opening parenthesis. This function will not parse a K&R-style
4409/// identifier list.
4410///
4411/// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
4412/// caller parsed those arguments immediately after the open paren - they should
4413/// be considered to be part of the first parameter.
4414///
4415/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4416/// be the location of the ellipsis, if any was parsed.
4417///
4418///       parameter-type-list: [C99 6.7.5]
4419///         parameter-list
4420///         parameter-list ',' '...'
4421/// [C++]   parameter-list '...'
4422///
4423///       parameter-list: [C99 6.7.5]
4424///         parameter-declaration
4425///         parameter-list ',' parameter-declaration
4426///
4427///       parameter-declaration: [C99 6.7.5]
4428///         declaration-specifiers declarator
4429/// [C++]   declaration-specifiers declarator '=' assignment-expression
4430/// [C++11]                                       initializer-clause
4431/// [GNU]   declaration-specifiers declarator attributes
4432///         declaration-specifiers abstract-declarator[opt]
4433/// [C++]   declaration-specifiers abstract-declarator[opt]
4434///           '=' assignment-expression
4435/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4436/// [C++11] attribute-specifier-seq parameter-declaration
4437///
4438void Parser::ParseParameterDeclarationClause(
4439       Declarator &D,
4440       ParsedAttributes &FirstArgAttrs,
4441       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4442       SourceLocation &EllipsisLoc) {
4443
4444  while (1) {
4445    if (Tok.is(tok::ellipsis)) {
4446      // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
4447      // before deciding this was a parameter-declaration-clause.
4448      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4449      break;
4450    }
4451
4452    // Parse the declaration-specifiers.
4453    // Just use the ParsingDeclaration "scope" of the declarator.
4454    DeclSpec DS(AttrFactory);
4455
4456    // Parse any C++11 attributes.
4457    MaybeParseCXX0XAttributes(DS.getAttributes());
4458
4459    // Skip any Microsoft attributes before a param.
4460    if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square))
4461      ParseMicrosoftAttributes(DS.getAttributes());
4462
4463    SourceLocation DSStart = Tok.getLocation();
4464
4465    // If the caller parsed attributes for the first argument, add them now.
4466    // Take them so that we only apply the attributes to the first parameter.
4467    // FIXME: If we can leave the attributes in the token stream somehow, we can
4468    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
4469    // too much hassle.
4470    DS.takeAttributesFrom(FirstArgAttrs);
4471
4472    ParseDeclarationSpecifiers(DS);
4473
4474    // Parse the declarator.  This is "PrototypeContext", because we must
4475    // accept either 'declarator' or 'abstract-declarator' here.
4476    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4477    ParseDeclarator(ParmDecl);
4478
4479    // Parse GNU attributes, if present.
4480    MaybeParseGNUAttributes(ParmDecl);
4481
4482    // Remember this parsed parameter in ParamInfo.
4483    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4484
4485    // DefArgToks is used when the parsing of default arguments needs
4486    // to be delayed.
4487    CachedTokens *DefArgToks = 0;
4488
4489    // If no parameter was specified, verify that *something* was specified,
4490    // otherwise we have a missing type and identifier.
4491    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4492        ParmDecl.getNumTypeObjects() == 0) {
4493      // Completely missing, emit error.
4494      Diag(DSStart, diag::err_missing_param);
4495    } else {
4496      // Otherwise, we have something.  Add it and let semantic analysis try
4497      // to grok it and add the result to the ParamInfo we are building.
4498
4499      // Inform the actions module about the parameter declarator, so it gets
4500      // added to the current scope.
4501      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4502
4503      // Parse the default argument, if any. We parse the default
4504      // arguments in all dialects; the semantic analysis in
4505      // ActOnParamDefaultArgument will reject the default argument in
4506      // C.
4507      if (Tok.is(tok::equal)) {
4508        SourceLocation EqualLoc = Tok.getLocation();
4509
4510        // Parse the default argument
4511        if (D.getContext() == Declarator::MemberContext) {
4512          // If we're inside a class definition, cache the tokens
4513          // corresponding to the default argument. We'll actually parse
4514          // them when we see the end of the class definition.
4515          // FIXME: Can we use a smart pointer for Toks?
4516          DefArgToks = new CachedTokens;
4517
4518          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4519                                    /*StopAtSemi=*/true,
4520                                    /*ConsumeFinalToken=*/false)) {
4521            delete DefArgToks;
4522            DefArgToks = 0;
4523            Actions.ActOnParamDefaultArgumentError(Param);
4524          } else {
4525            // Mark the end of the default argument so that we know when to
4526            // stop when we parse it later on.
4527            Token DefArgEnd;
4528            DefArgEnd.startToken();
4529            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4530            DefArgEnd.setLocation(Tok.getLocation());
4531            DefArgToks->push_back(DefArgEnd);
4532            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4533                                                (*DefArgToks)[1].getLocation());
4534          }
4535        } else {
4536          // Consume the '='.
4537          ConsumeToken();
4538
4539          // The argument isn't actually potentially evaluated unless it is
4540          // used.
4541          EnterExpressionEvaluationContext Eval(Actions,
4542                                              Sema::PotentiallyEvaluatedIfUsed,
4543                                                Param);
4544
4545          ExprResult DefArgResult;
4546          if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
4547            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
4548            DefArgResult = ParseBraceInitializer();
4549          } else
4550            DefArgResult = ParseAssignmentExpression();
4551          if (DefArgResult.isInvalid()) {
4552            Actions.ActOnParamDefaultArgumentError(Param);
4553            SkipUntil(tok::comma, tok::r_paren, true, true);
4554          } else {
4555            // Inform the actions module about the default argument
4556            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4557                                              DefArgResult.take());
4558          }
4559        }
4560      }
4561
4562      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4563                                          ParmDecl.getIdentifierLoc(), Param,
4564                                          DefArgToks));
4565    }
4566
4567    // If the next token is a comma, consume it and keep reading arguments.
4568    if (Tok.isNot(tok::comma)) {
4569      if (Tok.is(tok::ellipsis)) {
4570        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4571
4572        if (!getLangOpts().CPlusPlus) {
4573          // We have ellipsis without a preceding ',', which is ill-formed
4574          // in C. Complain and provide the fix.
4575          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4576            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4577        }
4578      }
4579
4580      break;
4581    }
4582
4583    // Consume the comma.
4584    ConsumeToken();
4585  }
4586
4587}
4588
4589/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4590/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4591/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4592/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4593/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4594/// [C++11] direct-declarator '[' constant-expression[opt] ']'
4595///                           attribute-specifier-seq[opt]
4596void Parser::ParseBracketDeclarator(Declarator &D) {
4597  if (CheckProhibitedCXX11Attribute())
4598    return;
4599
4600  BalancedDelimiterTracker T(*this, tok::l_square);
4601  T.consumeOpen();
4602
4603  // C array syntax has many features, but by-far the most common is [] and [4].
4604  // This code does a fast path to handle some of the most obvious cases.
4605  if (Tok.getKind() == tok::r_square) {
4606    T.consumeClose();
4607    ParsedAttributes attrs(AttrFactory);
4608    MaybeParseCXX0XAttributes(attrs);
4609
4610    // Remember that we parsed the empty array type.
4611    ExprResult NumElements;
4612    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4613                                            T.getOpenLocation(),
4614                                            T.getCloseLocation()),
4615                  attrs, T.getCloseLocation());
4616    return;
4617  } else if (Tok.getKind() == tok::numeric_constant &&
4618             GetLookAheadToken(1).is(tok::r_square)) {
4619    // [4] is very common.  Parse the numeric constant expression.
4620    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
4621    ConsumeToken();
4622
4623    T.consumeClose();
4624    ParsedAttributes attrs(AttrFactory);
4625    MaybeParseCXX0XAttributes(attrs);
4626
4627    // Remember that we parsed a array type, and remember its features.
4628    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4629                                            ExprRes.release(),
4630                                            T.getOpenLocation(),
4631                                            T.getCloseLocation()),
4632                  attrs, T.getCloseLocation());
4633    return;
4634  }
4635
4636  // If valid, this location is the position where we read the 'static' keyword.
4637  SourceLocation StaticLoc;
4638  if (Tok.is(tok::kw_static))
4639    StaticLoc = ConsumeToken();
4640
4641  // If there is a type-qualifier-list, read it now.
4642  // Type qualifiers in an array subscript are a C99 feature.
4643  DeclSpec DS(AttrFactory);
4644  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4645
4646  // If we haven't already read 'static', check to see if there is one after the
4647  // type-qualifier-list.
4648  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4649    StaticLoc = ConsumeToken();
4650
4651  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4652  bool isStar = false;
4653  ExprResult NumElements;
4654
4655  // Handle the case where we have '[*]' as the array size.  However, a leading
4656  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4657  // the the token after the star is a ']'.  Since stars in arrays are
4658  // infrequent, use of lookahead is not costly here.
4659  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4660    ConsumeToken();  // Eat the '*'.
4661
4662    if (StaticLoc.isValid()) {
4663      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4664      StaticLoc = SourceLocation();  // Drop the static.
4665    }
4666    isStar = true;
4667  } else if (Tok.isNot(tok::r_square)) {
4668    // Note, in C89, this production uses the constant-expr production instead
4669    // of assignment-expr.  The only difference is that assignment-expr allows
4670    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4671    // are not i-c-e's, so we don't need to distinguish between the two here.
4672
4673    // Parse the constant-expression or assignment-expression now (depending
4674    // on dialect).
4675    if (getLangOpts().CPlusPlus) {
4676      NumElements = ParseConstantExpression();
4677    } else {
4678      EnterExpressionEvaluationContext Unevaluated(Actions,
4679                                                   Sema::ConstantEvaluated);
4680      NumElements = ParseAssignmentExpression();
4681    }
4682  }
4683
4684  // If there was an error parsing the assignment-expression, recover.
4685  if (NumElements.isInvalid()) {
4686    D.setInvalidType(true);
4687    // If the expression was invalid, skip it.
4688    SkipUntil(tok::r_square);
4689    return;
4690  }
4691
4692  T.consumeClose();
4693
4694  ParsedAttributes attrs(AttrFactory);
4695  MaybeParseCXX0XAttributes(attrs);
4696
4697  // Remember that we parsed a array type, and remember its features.
4698  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4699                                          StaticLoc.isValid(), isStar,
4700                                          NumElements.release(),
4701                                          T.getOpenLocation(),
4702                                          T.getCloseLocation()),
4703                attrs, T.getCloseLocation());
4704}
4705
4706/// [GNU]   typeof-specifier:
4707///           typeof ( expressions )
4708///           typeof ( type-name )
4709/// [GNU/C++] typeof unary-expression
4710///
4711void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4712  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4713  Token OpTok = Tok;
4714  SourceLocation StartLoc = ConsumeToken();
4715
4716  const bool hasParens = Tok.is(tok::l_paren);
4717
4718  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
4719
4720  bool isCastExpr;
4721  ParsedType CastTy;
4722  SourceRange CastRange;
4723  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4724                                                          CastTy, CastRange);
4725  if (hasParens)
4726    DS.setTypeofParensRange(CastRange);
4727
4728  if (CastRange.getEnd().isInvalid())
4729    // FIXME: Not accurate, the range gets one token more than it should.
4730    DS.SetRangeEnd(Tok.getLocation());
4731  else
4732    DS.SetRangeEnd(CastRange.getEnd());
4733
4734  if (isCastExpr) {
4735    if (!CastTy) {
4736      DS.SetTypeSpecError();
4737      return;
4738    }
4739
4740    const char *PrevSpec = 0;
4741    unsigned DiagID;
4742    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4743    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4744                           DiagID, CastTy))
4745      Diag(StartLoc, DiagID) << PrevSpec;
4746    return;
4747  }
4748
4749  // If we get here, the operand to the typeof was an expresion.
4750  if (Operand.isInvalid()) {
4751    DS.SetTypeSpecError();
4752    return;
4753  }
4754
4755  // We might need to transform the operand if it is potentially evaluated.
4756  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
4757  if (Operand.isInvalid()) {
4758    DS.SetTypeSpecError();
4759    return;
4760  }
4761
4762  const char *PrevSpec = 0;
4763  unsigned DiagID;
4764  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4765  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4766                         DiagID, Operand.get()))
4767    Diag(StartLoc, DiagID) << PrevSpec;
4768}
4769
4770/// [C11]   atomic-specifier:
4771///           _Atomic ( type-name )
4772///
4773void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4774  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4775
4776  SourceLocation StartLoc = ConsumeToken();
4777  BalancedDelimiterTracker T(*this, tok::l_paren);
4778  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4779    SkipUntil(tok::r_paren);
4780    return;
4781  }
4782
4783  TypeResult Result = ParseTypeName();
4784  if (Result.isInvalid()) {
4785    SkipUntil(tok::r_paren);
4786    return;
4787  }
4788
4789  // Match the ')'
4790  T.consumeClose();
4791
4792  if (T.getCloseLocation().isInvalid())
4793    return;
4794
4795  DS.setTypeofParensRange(T.getRange());
4796  DS.SetRangeEnd(T.getCloseLocation());
4797
4798  const char *PrevSpec = 0;
4799  unsigned DiagID;
4800  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4801                         DiagID, Result.release()))
4802    Diag(StartLoc, DiagID) << PrevSpec;
4803}
4804
4805
4806/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4807/// from TryAltiVecVectorToken.
4808bool Parser::TryAltiVecVectorTokenOutOfLine() {
4809  Token Next = NextToken();
4810  switch (Next.getKind()) {
4811  default: return false;
4812  case tok::kw_short:
4813  case tok::kw_long:
4814  case tok::kw_signed:
4815  case tok::kw_unsigned:
4816  case tok::kw_void:
4817  case tok::kw_char:
4818  case tok::kw_int:
4819  case tok::kw_float:
4820  case tok::kw_double:
4821  case tok::kw_bool:
4822  case tok::kw___pixel:
4823    Tok.setKind(tok::kw___vector);
4824    return true;
4825  case tok::identifier:
4826    if (Next.getIdentifierInfo() == Ident_pixel) {
4827      Tok.setKind(tok::kw___vector);
4828      return true;
4829    }
4830    return false;
4831  }
4832}
4833
4834bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4835                                      const char *&PrevSpec, unsigned &DiagID,
4836                                      bool &isInvalid) {
4837  if (Tok.getIdentifierInfo() == Ident_vector) {
4838    Token Next = NextToken();
4839    switch (Next.getKind()) {
4840    case tok::kw_short:
4841    case tok::kw_long:
4842    case tok::kw_signed:
4843    case tok::kw_unsigned:
4844    case tok::kw_void:
4845    case tok::kw_char:
4846    case tok::kw_int:
4847    case tok::kw_float:
4848    case tok::kw_double:
4849    case tok::kw_bool:
4850    case tok::kw___pixel:
4851      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4852      return true;
4853    case tok::identifier:
4854      if (Next.getIdentifierInfo() == Ident_pixel) {
4855        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4856        return true;
4857      }
4858      break;
4859    default:
4860      break;
4861    }
4862  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4863             DS.isTypeAltiVecVector()) {
4864    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4865    return true;
4866  }
4867  return false;
4868}
4869