ParseDecl.cpp revision 7dc813462dd9fd3f6f4296f896a12de14264fef8
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.isInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.  This returns the
219/// location of the semicolon in DeclEnd.
220///
221///       declaration: [C99 6.7]
222///         block-declaration ->
223///           simple-declaration
224///           others                   [FIXME]
225/// [C++]   template-declaration
226/// [C++]   namespace-definition
227/// [C++]   using-directive
228/// [C++]   using-declaration [TODO]
229/// [C++0x] static_assert-declaration
230///         others... [FIXME]
231///
232Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
233                                                SourceLocation &DeclEnd) {
234  DeclPtrTy SingleDecl;
235  switch (Tok.getKind()) {
236  case tok::kw_export:
237  case tok::kw_template:
238    SingleDecl = ParseTemplateDeclarationOrSpecialization(Context, DeclEnd);
239    break;
240  case tok::kw_namespace:
241    SingleDecl = ParseNamespace(Context, DeclEnd);
242    break;
243  case tok::kw_using:
244    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
245    break;
246  case tok::kw_static_assert:
247    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
248    break;
249  default:
250    return ParseSimpleDeclaration(Context, DeclEnd);
251  }
252
253  // This routine returns a DeclGroup, if the thing we parsed only contains a
254  // single decl, convert it now.
255  return Actions.ConvertDeclToDeclGroup(SingleDecl);
256}
257
258///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
259///         declaration-specifiers init-declarator-list[opt] ';'
260///[C90/C++]init-declarator-list ';'                             [TODO]
261/// [OMP]   threadprivate-directive                              [TODO]
262///
263/// If RequireSemi is false, this does not check for a ';' at the end of the
264/// declaration.
265Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
266                                                      SourceLocation &DeclEnd,
267                                                      bool RequireSemi) {
268  // Parse the common declaration-specifiers piece.
269  DeclSpec DS;
270  ParseDeclarationSpecifiers(DS);
271
272  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
273  // declaration-specifiers init-declarator-list[opt] ';'
274  if (Tok.is(tok::semi)) {
275    ConsumeToken();
276    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
277    return Actions.ConvertDeclToDeclGroup(TheDecl);
278  }
279
280  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
281  ParseDeclarator(DeclaratorInfo);
282
283  DeclGroupPtrTy DG =
284    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
285
286  DeclEnd = Tok.getLocation();
287
288  // If the client wants to check what comes after the declaration, just return
289  // immediately without checking anything!
290  if (!RequireSemi) return DG;
291
292  if (Tok.is(tok::semi)) {
293    ConsumeToken();
294    return DG;
295  }
296
297  Diag(Tok, diag::err_expected_semi_declation);
298  // Skip to end of block or statement
299  SkipUntil(tok::r_brace, true, true);
300  if (Tok.is(tok::semi))
301    ConsumeToken();
302  return DG;
303}
304
305
306/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
307/// parsing 'declaration-specifiers declarator'.  This method is split out this
308/// way to handle the ambiguity between top-level function-definitions and
309/// declarations.
310///
311///       init-declarator-list: [C99 6.7]
312///         init-declarator
313///         init-declarator-list ',' init-declarator
314///       init-declarator: [C99 6.7]
315///         declarator
316///         declarator '=' initializer
317/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
318/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
319/// [C++]   declarator initializer[opt]
320///
321/// [C++] initializer:
322/// [C++]   '=' initializer-clause
323/// [C++]   '(' expression-list ')'
324/// [C++0x] '=' 'default'                                                [TODO]
325/// [C++0x] '=' 'delete'
326///
327/// According to the standard grammar, =default and =delete are function
328/// definitions, but that definitely doesn't fit with the parser here.
329///
330Parser::DeclGroupPtrTy Parser::
331ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
332  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
333  // that we parse together here.
334  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
335
336  // At this point, we know that it is not a function definition.  Parse the
337  // rest of the init-declarator-list.
338  while (1) {
339    // If a simple-asm-expr is present, parse it.
340    if (Tok.is(tok::kw_asm)) {
341      SourceLocation Loc;
342      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
343      if (AsmLabel.isInvalid()) {
344        SkipUntil(tok::semi, true, true);
345        return DeclGroupPtrTy();
346      }
347
348      D.setAsmLabel(AsmLabel.release());
349      D.SetRangeEnd(Loc);
350    }
351
352    // If attributes are present, parse them.
353    if (Tok.is(tok::kw___attribute)) {
354      SourceLocation Loc;
355      AttributeList *AttrList = ParseAttributes(&Loc);
356      D.AddAttributes(AttrList, Loc);
357    }
358
359    // Inform the current actions module that we just parsed this declarator.
360    DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
361    DeclsInGroup.push_back(ThisDecl);
362
363    // Parse declarator '=' initializer.
364    if (Tok.is(tok::equal)) {
365      ConsumeToken();
366      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
367        SourceLocation DelLoc = ConsumeToken();
368        Actions.SetDeclDeleted(ThisDecl, DelLoc);
369      } else {
370        OwningExprResult Init(ParseInitializer());
371        if (Init.isInvalid()) {
372          SkipUntil(tok::semi, true, true);
373          return DeclGroupPtrTy();
374        }
375        Actions.AddInitializerToDecl(ThisDecl, move(Init));
376      }
377    } else if (Tok.is(tok::l_paren)) {
378      // Parse C++ direct initializer: '(' expression-list ')'
379      SourceLocation LParenLoc = ConsumeParen();
380      ExprVector Exprs(Actions);
381      CommaLocsTy CommaLocs;
382
383      if (ParseExpressionList(Exprs, CommaLocs)) {
384        SkipUntil(tok::r_paren);
385      } else {
386        // Match the ')'.
387        SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
388
389        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
390               "Unexpected number of commas!");
391        Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
392                                              move_arg(Exprs),
393                                              &CommaLocs[0], RParenLoc);
394      }
395    } else {
396      Actions.ActOnUninitializedDecl(ThisDecl);
397    }
398
399    // If we don't have a comma, it is either the end of the list (a ';') or an
400    // error, bail out.
401    if (Tok.isNot(tok::comma))
402      break;
403
404    // Consume the comma.
405    ConsumeToken();
406
407    // Parse the next declarator.
408    D.clear();
409
410    // Accept attributes in an init-declarator.  In the first declarator in a
411    // declaration, these would be part of the declspec.  In subsequent
412    // declarators, they become part of the declarator itself, so that they
413    // don't apply to declarators after *this* one.  Examples:
414    //    short __attribute__((common)) var;    -> declspec
415    //    short var __attribute__((common));    -> declarator
416    //    short x, __attribute__((common)) var;    -> declarator
417    if (Tok.is(tok::kw___attribute)) {
418      SourceLocation Loc;
419      AttributeList *AttrList = ParseAttributes(&Loc);
420      D.AddAttributes(AttrList, Loc);
421    }
422
423    ParseDeclarator(D);
424  }
425
426  return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
427                                         DeclsInGroup.size());
428}
429
430/// ParseSpecifierQualifierList
431///        specifier-qualifier-list:
432///          type-specifier specifier-qualifier-list[opt]
433///          type-qualifier specifier-qualifier-list[opt]
434/// [GNU]    attributes     specifier-qualifier-list[opt]
435///
436void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
437  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
438  /// parse declaration-specifiers and complain about extra stuff.
439  ParseDeclarationSpecifiers(DS);
440
441  // Validate declspec for type-name.
442  unsigned Specs = DS.getParsedSpecifiers();
443  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
444      !DS.getAttributes())
445    Diag(Tok, diag::err_typename_requires_specqual);
446
447  // Issue diagnostic and remove storage class if present.
448  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
449    if (DS.getStorageClassSpecLoc().isValid())
450      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
451    else
452      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
453    DS.ClearStorageClassSpecs();
454  }
455
456  // Issue diagnostic and remove function specfier if present.
457  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
458    if (DS.isInlineSpecified())
459      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
460    if (DS.isVirtualSpecified())
461      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
462    if (DS.isExplicitSpecified())
463      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
464    DS.ClearFunctionSpecs();
465  }
466}
467
468/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
469/// specified token is valid after the identifier in a declarator which
470/// immediately follows the declspec.  For example, these things are valid:
471///
472///      int x   [             4];         // direct-declarator
473///      int x   (             int y);     // direct-declarator
474///  int(int x   )                         // direct-declarator
475///      int x   ;                         // simple-declaration
476///      int x   =             17;         // init-declarator-list
477///      int x   ,             y;          // init-declarator-list
478///      int x   __asm__       ("foo");    // init-declarator-list
479///      int x   :             4;          // struct-declarator
480///      int x   {             5};         // C++'0x unified initializers
481///
482/// This is not, because 'x' does not immediately follow the declspec (though
483/// ')' happens to be valid anyway).
484///    int (x)
485///
486static bool isValidAfterIdentifierInDeclarator(const Token &T) {
487  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
488         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
489         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
490}
491
492
493/// ParseImplicitInt - This method is called when we have an non-typename
494/// identifier in a declspec (which normally terminates the decl spec) when
495/// the declspec has no type specifier.  In this case, the declspec is either
496/// malformed or is "implicit int" (in K&R and C89).
497///
498/// This method handles diagnosing this prettily and returns false if the
499/// declspec is done being processed.  If it recovers and thinks there may be
500/// other pieces of declspec after it, it returns true.
501///
502bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
503                              TemplateParameterLists *TemplateParams,
504                              AccessSpecifier AS) {
505  assert(Tok.is(tok::identifier) && "should have identifier");
506
507  SourceLocation Loc = Tok.getLocation();
508  // If we see an identifier that is not a type name, we normally would
509  // parse it as the identifer being declared.  However, when a typename
510  // is typo'd or the definition is not included, this will incorrectly
511  // parse the typename as the identifier name and fall over misparsing
512  // later parts of the diagnostic.
513  //
514  // As such, we try to do some look-ahead in cases where this would
515  // otherwise be an "implicit-int" case to see if this is invalid.  For
516  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
517  // an identifier with implicit int, we'd get a parse error because the
518  // next token is obviously invalid for a type.  Parse these as a case
519  // with an invalid type specifier.
520  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
521
522  // Since we know that this either implicit int (which is rare) or an
523  // error, we'd do lookahead to try to do better recovery.
524  if (isValidAfterIdentifierInDeclarator(NextToken())) {
525    // If this token is valid for implicit int, e.g. "static x = 4", then
526    // we just avoid eating the identifier, so it will be parsed as the
527    // identifier in the declarator.
528    return false;
529  }
530
531  // Otherwise, if we don't consume this token, we are going to emit an
532  // error anyway.  Try to recover from various common problems.  Check
533  // to see if this was a reference to a tag name without a tag specified.
534  // This is a common problem in C (saying 'foo' instead of 'struct foo').
535  //
536  // C++ doesn't need this, and isTagName doesn't take SS.
537  if (SS == 0) {
538    const char *TagName = 0;
539    tok::TokenKind TagKind = tok::unknown;
540
541    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
542      default: break;
543      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
544      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
545      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
546      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
547    }
548
549    if (TagName) {
550      Diag(Loc, diag::err_use_of_tag_name_without_tag)
551        << Tok.getIdentifierInfo() << TagName
552        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
553
554      // Parse this as a tag as if the missing tag were present.
555      if (TagKind == tok::kw_enum)
556        ParseEnumSpecifier(Loc, DS, AS);
557      else
558        ParseClassSpecifier(TagKind, Loc, DS, TemplateParams, AS);
559      return true;
560    }
561  }
562
563  // Since this is almost certainly an invalid type name, emit a
564  // diagnostic that says it, eat the token, and mark the declspec as
565  // invalid.
566  SourceRange R;
567  if (SS) R = SS->getRange();
568
569  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
570  const char *PrevSpec;
571  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
572  DS.SetRangeEnd(Tok.getLocation());
573  ConsumeToken();
574
575  // TODO: Could inject an invalid typedef decl in an enclosing scope to
576  // avoid rippling error messages on subsequent uses of the same type,
577  // could be useful if #include was forgotten.
578  return false;
579}
580
581/// ParseDeclarationSpecifiers
582///       declaration-specifiers: [C99 6.7]
583///         storage-class-specifier declaration-specifiers[opt]
584///         type-specifier declaration-specifiers[opt]
585/// [C99]   function-specifier declaration-specifiers[opt]
586/// [GNU]   attributes declaration-specifiers[opt]
587///
588///       storage-class-specifier: [C99 6.7.1]
589///         'typedef'
590///         'extern'
591///         'static'
592///         'auto'
593///         'register'
594/// [C++]   'mutable'
595/// [GNU]   '__thread'
596///       function-specifier: [C99 6.7.4]
597/// [C99]   'inline'
598/// [C++]   'virtual'
599/// [C++]   'explicit'
600///
601void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
602                                        TemplateParameterLists *TemplateParams,
603                                        AccessSpecifier AS) {
604  DS.SetRangeStart(Tok.getLocation());
605  while (1) {
606    int isInvalid = false;
607    const char *PrevSpec = 0;
608    SourceLocation Loc = Tok.getLocation();
609
610    switch (Tok.getKind()) {
611    default:
612    DoneWithDeclSpec:
613      // If this is not a declaration specifier token, we're done reading decl
614      // specifiers.  First verify that DeclSpec's are consistent.
615      DS.Finish(Diags, PP);
616      return;
617
618    case tok::coloncolon: // ::foo::bar
619      // Annotate C++ scope specifiers.  If we get one, loop.
620      if (TryAnnotateCXXScopeToken())
621        continue;
622      goto DoneWithDeclSpec;
623
624    case tok::annot_cxxscope: {
625      if (DS.hasTypeSpecifier())
626        goto DoneWithDeclSpec;
627
628      // We are looking for a qualified typename.
629      Token Next = NextToken();
630      if (Next.is(tok::annot_template_id) &&
631          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
632            ->Kind == TNK_Type_template) {
633        // We have a qualified template-id, e.g., N::A<int>
634        CXXScopeSpec SS;
635        ParseOptionalCXXScopeSpecifier(SS);
636        assert(Tok.is(tok::annot_template_id) &&
637               "ParseOptionalCXXScopeSpecifier not working");
638        AnnotateTemplateIdTokenAsType(&SS);
639        continue;
640      }
641
642      if (Next.isNot(tok::identifier))
643        goto DoneWithDeclSpec;
644
645      CXXScopeSpec SS;
646      SS.setScopeRep(Tok.getAnnotationValue());
647      SS.setRange(Tok.getAnnotationRange());
648
649      // If the next token is the name of the class type that the C++ scope
650      // denotes, followed by a '(', then this is a constructor declaration.
651      // We're done with the decl-specifiers.
652      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
653                                     CurScope, &SS) &&
654          GetLookAheadToken(2).is(tok::l_paren))
655        goto DoneWithDeclSpec;
656
657      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
658                                            Next.getLocation(), CurScope, &SS);
659
660      // If the referenced identifier is not a type, then this declspec is
661      // erroneous: We already checked about that it has no type specifier, and
662      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
663      // typename.
664      if (TypeRep == 0) {
665        ConsumeToken();   // Eat the scope spec so the identifier is current.
666        if (ParseImplicitInt(DS, &SS, TemplateParams, AS)) continue;
667        goto DoneWithDeclSpec;
668      }
669
670      ConsumeToken(); // The C++ scope.
671
672      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
673                                     TypeRep);
674      if (isInvalid)
675        break;
676
677      DS.SetRangeEnd(Tok.getLocation());
678      ConsumeToken(); // The typename.
679
680      continue;
681    }
682
683    case tok::annot_typename: {
684      if (Tok.getAnnotationValue())
685        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
686                                       Tok.getAnnotationValue());
687      else
688        DS.SetTypeSpecError();
689      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
690      ConsumeToken(); // The typename
691
692      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
693      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
694      // Objective-C interface.  If we don't have Objective-C or a '<', this is
695      // just a normal reference to a typedef name.
696      if (!Tok.is(tok::less) || !getLang().ObjC1)
697        continue;
698
699      SourceLocation EndProtoLoc;
700      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
701      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
702      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
703
704      DS.SetRangeEnd(EndProtoLoc);
705      continue;
706    }
707
708      // typedef-name
709    case tok::identifier: {
710      // In C++, check to see if this is a scope specifier like foo::bar::, if
711      // so handle it as such.  This is important for ctor parsing.
712      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
713        continue;
714
715      // This identifier can only be a typedef name if we haven't already seen
716      // a type-specifier.  Without this check we misparse:
717      //  typedef int X; struct Y { short X; };  as 'short int'.
718      if (DS.hasTypeSpecifier())
719        goto DoneWithDeclSpec;
720
721      // It has to be available as a typedef too!
722      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
723                                            Tok.getLocation(), CurScope);
724
725      // If this is not a typedef name, don't parse it as part of the declspec,
726      // it must be an implicit int or an error.
727      if (TypeRep == 0) {
728        if (ParseImplicitInt(DS, 0, TemplateParams, AS)) continue;
729        goto DoneWithDeclSpec;
730      }
731
732      // C++: If the identifier is actually the name of the class type
733      // being defined and the next token is a '(', then this is a
734      // constructor declaration. We're done with the decl-specifiers
735      // and will treat this token as an identifier.
736      if (getLang().CPlusPlus && CurScope->isClassScope() &&
737          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
738          NextToken().getKind() == tok::l_paren)
739        goto DoneWithDeclSpec;
740
741      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
742                                     TypeRep);
743      if (isInvalid)
744        break;
745
746      DS.SetRangeEnd(Tok.getLocation());
747      ConsumeToken(); // The identifier
748
749      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
750      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
751      // Objective-C interface.  If we don't have Objective-C or a '<', this is
752      // just a normal reference to a typedef name.
753      if (!Tok.is(tok::less) || !getLang().ObjC1)
754        continue;
755
756      SourceLocation EndProtoLoc;
757      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
758      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
759      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
760
761      DS.SetRangeEnd(EndProtoLoc);
762
763      // Need to support trailing type qualifiers (e.g. "id<p> const").
764      // If a type specifier follows, it will be diagnosed elsewhere.
765      continue;
766    }
767
768      // type-name
769    case tok::annot_template_id: {
770      TemplateIdAnnotation *TemplateId
771        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
772      if (TemplateId->Kind != TNK_Type_template) {
773        // This template-id does not refer to a type name, so we're
774        // done with the type-specifiers.
775        goto DoneWithDeclSpec;
776      }
777
778      // Turn the template-id annotation token into a type annotation
779      // token, then try again to parse it as a type-specifier.
780      AnnotateTemplateIdTokenAsType();
781      continue;
782    }
783
784    // GNU attributes support.
785    case tok::kw___attribute:
786      DS.AddAttributes(ParseAttributes());
787      continue;
788
789    // Microsoft declspec support.
790    case tok::kw___declspec:
791      if (!PP.getLangOptions().Microsoft)
792        goto DoneWithDeclSpec;
793      FuzzyParseMicrosoftDeclSpec();
794      continue;
795
796    // Microsoft single token adornments.
797    case tok::kw___forceinline:
798    case tok::kw___w64:
799    case tok::kw___cdecl:
800    case tok::kw___stdcall:
801    case tok::kw___fastcall:
802      if (!PP.getLangOptions().Microsoft)
803        goto DoneWithDeclSpec;
804      // Just ignore it.
805      break;
806
807    // storage-class-specifier
808    case tok::kw_typedef:
809      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
810      break;
811    case tok::kw_extern:
812      if (DS.isThreadSpecified())
813        Diag(Tok, diag::ext_thread_before) << "extern";
814      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
815      break;
816    case tok::kw___private_extern__:
817      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
818                                         PrevSpec);
819      break;
820    case tok::kw_static:
821      if (DS.isThreadSpecified())
822        Diag(Tok, diag::ext_thread_before) << "static";
823      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
824      break;
825    case tok::kw_auto:
826      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
827      break;
828    case tok::kw_register:
829      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
830      break;
831    case tok::kw_mutable:
832      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
833      break;
834    case tok::kw___thread:
835      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
836      break;
837
838    // function-specifier
839    case tok::kw_inline:
840      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
841      break;
842    case tok::kw_virtual:
843      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
844      break;
845    case tok::kw_explicit:
846      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
847      break;
848
849    // type-specifier
850    case tok::kw_short:
851      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
852      break;
853    case tok::kw_long:
854      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
855        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
856      else
857        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
858      break;
859    case tok::kw_signed:
860      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
861      break;
862    case tok::kw_unsigned:
863      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
864      break;
865    case tok::kw__Complex:
866      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
867      break;
868    case tok::kw__Imaginary:
869      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
870      break;
871    case tok::kw_void:
872      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
873      break;
874    case tok::kw_char:
875      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
876      break;
877    case tok::kw_int:
878      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
879      break;
880    case tok::kw_float:
881      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
882      break;
883    case tok::kw_double:
884      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
885      break;
886    case tok::kw_wchar_t:
887      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
888      break;
889    case tok::kw_bool:
890    case tok::kw__Bool:
891      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
892      break;
893    case tok::kw__Decimal32:
894      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
895      break;
896    case tok::kw__Decimal64:
897      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
898      break;
899    case tok::kw__Decimal128:
900      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
901      break;
902
903    // class-specifier:
904    case tok::kw_class:
905    case tok::kw_struct:
906    case tok::kw_union: {
907      tok::TokenKind Kind = Tok.getKind();
908      ConsumeToken();
909      ParseClassSpecifier(Kind, Loc, DS, TemplateParams, AS);
910      continue;
911    }
912
913    // enum-specifier:
914    case tok::kw_enum:
915      ConsumeToken();
916      ParseEnumSpecifier(Loc, DS, AS);
917      continue;
918
919    // cv-qualifier:
920    case tok::kw_const:
921      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
922      break;
923    case tok::kw_volatile:
924      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
925                                 getLang())*2;
926      break;
927    case tok::kw_restrict:
928      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
929                                 getLang())*2;
930      break;
931
932    // C++ typename-specifier:
933    case tok::kw_typename:
934      if (TryAnnotateTypeOrScopeToken())
935        continue;
936      break;
937
938    // GNU typeof support.
939    case tok::kw_typeof:
940      ParseTypeofSpecifier(DS);
941      continue;
942
943    case tok::less:
944      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
945      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
946      // but we support it.
947      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
948        goto DoneWithDeclSpec;
949
950      {
951        SourceLocation EndProtoLoc;
952        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
953        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
954        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
955        DS.SetRangeEnd(EndProtoLoc);
956
957        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
958          << CodeModificationHint::CreateInsertion(Loc, "id")
959          << SourceRange(Loc, EndProtoLoc);
960        // Need to support trailing type qualifiers (e.g. "id<p> const").
961        // If a type specifier follows, it will be diagnosed elsewhere.
962        continue;
963      }
964    }
965    // If the specifier combination wasn't legal, issue a diagnostic.
966    if (isInvalid) {
967      assert(PrevSpec && "Method did not return previous specifier!");
968      // Pick between error or extwarn.
969      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
970                                       : diag::ext_duplicate_declspec;
971      Diag(Tok, DiagID) << PrevSpec;
972    }
973    DS.SetRangeEnd(Tok.getLocation());
974    ConsumeToken();
975  }
976}
977
978/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
979/// primarily follow the C++ grammar with additions for C99 and GNU,
980/// which together subsume the C grammar. Note that the C++
981/// type-specifier also includes the C type-qualifier (for const,
982/// volatile, and C99 restrict). Returns true if a type-specifier was
983/// found (and parsed), false otherwise.
984///
985///       type-specifier: [C++ 7.1.5]
986///         simple-type-specifier
987///         class-specifier
988///         enum-specifier
989///         elaborated-type-specifier  [TODO]
990///         cv-qualifier
991///
992///       cv-qualifier: [C++ 7.1.5.1]
993///         'const'
994///         'volatile'
995/// [C99]   'restrict'
996///
997///       simple-type-specifier: [ C++ 7.1.5.2]
998///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
999///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1000///         'char'
1001///         'wchar_t'
1002///         'bool'
1003///         'short'
1004///         'int'
1005///         'long'
1006///         'signed'
1007///         'unsigned'
1008///         'float'
1009///         'double'
1010///         'void'
1011/// [C99]   '_Bool'
1012/// [C99]   '_Complex'
1013/// [C99]   '_Imaginary'  // Removed in TC2?
1014/// [GNU]   '_Decimal32'
1015/// [GNU]   '_Decimal64'
1016/// [GNU]   '_Decimal128'
1017/// [GNU]   typeof-specifier
1018/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1019/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1020bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
1021                                        const char *&PrevSpec,
1022                                        TemplateParameterLists *TemplateParams){
1023  SourceLocation Loc = Tok.getLocation();
1024
1025  switch (Tok.getKind()) {
1026  case tok::identifier:   // foo::bar
1027  case tok::kw_typename:  // typename foo::bar
1028    // Annotate typenames and C++ scope specifiers.  If we get one, just
1029    // recurse to handle whatever we get.
1030    if (TryAnnotateTypeOrScopeToken())
1031      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
1032    // Otherwise, not a type specifier.
1033    return false;
1034  case tok::coloncolon:   // ::foo::bar
1035    if (NextToken().is(tok::kw_new) ||    // ::new
1036        NextToken().is(tok::kw_delete))   // ::delete
1037      return false;
1038
1039    // Annotate typenames and C++ scope specifiers.  If we get one, just
1040    // recurse to handle whatever we get.
1041    if (TryAnnotateTypeOrScopeToken())
1042      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
1043    // Otherwise, not a type specifier.
1044    return false;
1045
1046  // simple-type-specifier:
1047  case tok::annot_typename: {
1048    if (Tok.getAnnotationValue())
1049      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1050                                     Tok.getAnnotationValue());
1051    else
1052      DS.SetTypeSpecError();
1053    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1054    ConsumeToken(); // The typename
1055
1056    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1057    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1058    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1059    // just a normal reference to a typedef name.
1060    if (!Tok.is(tok::less) || !getLang().ObjC1)
1061      return true;
1062
1063    SourceLocation EndProtoLoc;
1064    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1065    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1066    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1067
1068    DS.SetRangeEnd(EndProtoLoc);
1069    return true;
1070  }
1071
1072  case tok::kw_short:
1073    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1074    break;
1075  case tok::kw_long:
1076    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1077      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1078    else
1079      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1080    break;
1081  case tok::kw_signed:
1082    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1083    break;
1084  case tok::kw_unsigned:
1085    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1086    break;
1087  case tok::kw__Complex:
1088    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1089    break;
1090  case tok::kw__Imaginary:
1091    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1092    break;
1093  case tok::kw_void:
1094    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1095    break;
1096  case tok::kw_char:
1097    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1098    break;
1099  case tok::kw_int:
1100    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1101    break;
1102  case tok::kw_float:
1103    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1104    break;
1105  case tok::kw_double:
1106    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1107    break;
1108  case tok::kw_wchar_t:
1109    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1110    break;
1111  case tok::kw_bool:
1112  case tok::kw__Bool:
1113    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1114    break;
1115  case tok::kw__Decimal32:
1116    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1117    break;
1118  case tok::kw__Decimal64:
1119    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1120    break;
1121  case tok::kw__Decimal128:
1122    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1123    break;
1124
1125  // class-specifier:
1126  case tok::kw_class:
1127  case tok::kw_struct:
1128  case tok::kw_union: {
1129    tok::TokenKind Kind = Tok.getKind();
1130    ConsumeToken();
1131    ParseClassSpecifier(Kind, Loc, DS, TemplateParams);
1132    return true;
1133  }
1134
1135  // enum-specifier:
1136  case tok::kw_enum:
1137    ConsumeToken();
1138    ParseEnumSpecifier(Loc, DS);
1139    return true;
1140
1141  // cv-qualifier:
1142  case tok::kw_const:
1143    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1144                               getLang())*2;
1145    break;
1146  case tok::kw_volatile:
1147    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1148                               getLang())*2;
1149    break;
1150  case tok::kw_restrict:
1151    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1152                               getLang())*2;
1153    break;
1154
1155  // GNU typeof support.
1156  case tok::kw_typeof:
1157    ParseTypeofSpecifier(DS);
1158    return true;
1159
1160  case tok::kw___cdecl:
1161  case tok::kw___stdcall:
1162  case tok::kw___fastcall:
1163    if (!PP.getLangOptions().Microsoft) return false;
1164    ConsumeToken();
1165    return true;
1166
1167  default:
1168    // Not a type-specifier; do nothing.
1169    return false;
1170  }
1171
1172  // If the specifier combination wasn't legal, issue a diagnostic.
1173  if (isInvalid) {
1174    assert(PrevSpec && "Method did not return previous specifier!");
1175    // Pick between error or extwarn.
1176    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1177                                     : diag::ext_duplicate_declspec;
1178    Diag(Tok, DiagID) << PrevSpec;
1179  }
1180  DS.SetRangeEnd(Tok.getLocation());
1181  ConsumeToken(); // whatever we parsed above.
1182  return true;
1183}
1184
1185/// ParseStructDeclaration - Parse a struct declaration without the terminating
1186/// semicolon.
1187///
1188///       struct-declaration:
1189///         specifier-qualifier-list struct-declarator-list
1190/// [GNU]   __extension__ struct-declaration
1191/// [GNU]   specifier-qualifier-list
1192///       struct-declarator-list:
1193///         struct-declarator
1194///         struct-declarator-list ',' struct-declarator
1195/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1196///       struct-declarator:
1197///         declarator
1198/// [GNU]   declarator attributes[opt]
1199///         declarator[opt] ':' constant-expression
1200/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1201///
1202void Parser::
1203ParseStructDeclaration(DeclSpec &DS,
1204                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1205  if (Tok.is(tok::kw___extension__)) {
1206    // __extension__ silences extension warnings in the subexpression.
1207    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1208    ConsumeToken();
1209    return ParseStructDeclaration(DS, Fields);
1210  }
1211
1212  // Parse the common specifier-qualifiers-list piece.
1213  SourceLocation DSStart = Tok.getLocation();
1214  ParseSpecifierQualifierList(DS);
1215
1216  // If there are no declarators, this is a free-standing declaration
1217  // specifier. Let the actions module cope with it.
1218  if (Tok.is(tok::semi)) {
1219    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1220    return;
1221  }
1222
1223  // Read struct-declarators until we find the semicolon.
1224  Fields.push_back(FieldDeclarator(DS));
1225  while (1) {
1226    FieldDeclarator &DeclaratorInfo = Fields.back();
1227
1228    /// struct-declarator: declarator
1229    /// struct-declarator: declarator[opt] ':' constant-expression
1230    if (Tok.isNot(tok::colon))
1231      ParseDeclarator(DeclaratorInfo.D);
1232
1233    if (Tok.is(tok::colon)) {
1234      ConsumeToken();
1235      OwningExprResult Res(ParseConstantExpression());
1236      if (Res.isInvalid())
1237        SkipUntil(tok::semi, true, true);
1238      else
1239        DeclaratorInfo.BitfieldSize = Res.release();
1240    }
1241
1242    // If attributes exist after the declarator, parse them.
1243    if (Tok.is(tok::kw___attribute)) {
1244      SourceLocation Loc;
1245      AttributeList *AttrList = ParseAttributes(&Loc);
1246      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1247    }
1248
1249    // If we don't have a comma, it is either the end of the list (a ';')
1250    // or an error, bail out.
1251    if (Tok.isNot(tok::comma))
1252      return;
1253
1254    // Consume the comma.
1255    ConsumeToken();
1256
1257    // Parse the next declarator.
1258    Fields.push_back(FieldDeclarator(DS));
1259
1260    // Attributes are only allowed on the second declarator.
1261    if (Tok.is(tok::kw___attribute)) {
1262      SourceLocation Loc;
1263      AttributeList *AttrList = ParseAttributes(&Loc);
1264      Fields.back().D.AddAttributes(AttrList, Loc);
1265    }
1266  }
1267}
1268
1269/// ParseStructUnionBody
1270///       struct-contents:
1271///         struct-declaration-list
1272/// [EXT]   empty
1273/// [GNU]   "struct-declaration-list" without terminatoring ';'
1274///       struct-declaration-list:
1275///         struct-declaration
1276///         struct-declaration-list struct-declaration
1277/// [OBC]   '@' 'defs' '(' class-name ')'
1278///
1279void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1280                                  unsigned TagType, DeclPtrTy TagDecl) {
1281  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1282                                        PP.getSourceManager(),
1283                                        "parsing struct/union body");
1284
1285  SourceLocation LBraceLoc = ConsumeBrace();
1286
1287  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1288  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1289
1290  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1291  // C++.
1292  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1293    Diag(Tok, diag::ext_empty_struct_union_enum)
1294      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1295
1296  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1297  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1298
1299  // While we still have something to read, read the declarations in the struct.
1300  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1301    // Each iteration of this loop reads one struct-declaration.
1302
1303    // Check for extraneous top-level semicolon.
1304    if (Tok.is(tok::semi)) {
1305      Diag(Tok, diag::ext_extra_struct_semi)
1306        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1307      ConsumeToken();
1308      continue;
1309    }
1310
1311    // Parse all the comma separated declarators.
1312    DeclSpec DS;
1313    FieldDeclarators.clear();
1314    if (!Tok.is(tok::at)) {
1315      ParseStructDeclaration(DS, FieldDeclarators);
1316
1317      // Convert them all to fields.
1318      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1319        FieldDeclarator &FD = FieldDeclarators[i];
1320        // Install the declarator into the current TagDecl.
1321        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1322                                             DS.getSourceRange().getBegin(),
1323                                             FD.D, FD.BitfieldSize);
1324        FieldDecls.push_back(Field);
1325      }
1326    } else { // Handle @defs
1327      ConsumeToken();
1328      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1329        Diag(Tok, diag::err_unexpected_at);
1330        SkipUntil(tok::semi, true, true);
1331        continue;
1332      }
1333      ConsumeToken();
1334      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1335      if (!Tok.is(tok::identifier)) {
1336        Diag(Tok, diag::err_expected_ident);
1337        SkipUntil(tok::semi, true, true);
1338        continue;
1339      }
1340      llvm::SmallVector<DeclPtrTy, 16> Fields;
1341      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1342                        Tok.getIdentifierInfo(), Fields);
1343      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1344      ConsumeToken();
1345      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1346    }
1347
1348    if (Tok.is(tok::semi)) {
1349      ConsumeToken();
1350    } else if (Tok.is(tok::r_brace)) {
1351      Diag(Tok, diag::ext_expected_semi_decl_list);
1352      break;
1353    } else {
1354      Diag(Tok, diag::err_expected_semi_decl_list);
1355      // Skip to end of block or statement
1356      SkipUntil(tok::r_brace, true, true);
1357    }
1358  }
1359
1360  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1361
1362  AttributeList *AttrList = 0;
1363  // If attributes exist after struct contents, parse them.
1364  if (Tok.is(tok::kw___attribute))
1365    AttrList = ParseAttributes();
1366
1367  Actions.ActOnFields(CurScope,
1368                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1369                      LBraceLoc, RBraceLoc,
1370                      AttrList);
1371  StructScope.Exit();
1372  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1373}
1374
1375
1376/// ParseEnumSpecifier
1377///       enum-specifier: [C99 6.7.2.2]
1378///         'enum' identifier[opt] '{' enumerator-list '}'
1379///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1380/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1381///                                                 '}' attributes[opt]
1382///         'enum' identifier
1383/// [GNU]   'enum' attributes[opt] identifier
1384///
1385/// [C++] elaborated-type-specifier:
1386/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1387///
1388void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1389                                AccessSpecifier AS) {
1390  // Parse the tag portion of this.
1391
1392  AttributeList *Attr = 0;
1393  // If attributes exist after tag, parse them.
1394  if (Tok.is(tok::kw___attribute))
1395    Attr = ParseAttributes();
1396
1397  CXXScopeSpec SS;
1398  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1399    if (Tok.isNot(tok::identifier)) {
1400      Diag(Tok, diag::err_expected_ident);
1401      if (Tok.isNot(tok::l_brace)) {
1402        // Has no name and is not a definition.
1403        // Skip the rest of this declarator, up until the comma or semicolon.
1404        SkipUntil(tok::comma, true);
1405        return;
1406      }
1407    }
1408  }
1409
1410  // Must have either 'enum name' or 'enum {...}'.
1411  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1412    Diag(Tok, diag::err_expected_ident_lbrace);
1413
1414    // Skip the rest of this declarator, up until the comma or semicolon.
1415    SkipUntil(tok::comma, true);
1416    return;
1417  }
1418
1419  // If an identifier is present, consume and remember it.
1420  IdentifierInfo *Name = 0;
1421  SourceLocation NameLoc;
1422  if (Tok.is(tok::identifier)) {
1423    Name = Tok.getIdentifierInfo();
1424    NameLoc = ConsumeToken();
1425  }
1426
1427  // There are three options here.  If we have 'enum foo;', then this is a
1428  // forward declaration.  If we have 'enum foo {...' then this is a
1429  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1430  //
1431  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1432  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1433  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1434  //
1435  Action::TagKind TK;
1436  if (Tok.is(tok::l_brace))
1437    TK = Action::TK_Definition;
1438  else if (Tok.is(tok::semi))
1439    TK = Action::TK_Declaration;
1440  else
1441    TK = Action::TK_Reference;
1442  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1443                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1444
1445  if (Tok.is(tok::l_brace))
1446    ParseEnumBody(StartLoc, TagDecl);
1447
1448  // TODO: semantic analysis on the declspec for enums.
1449  const char *PrevSpec = 0;
1450  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1451                         TagDecl.getAs<void>()))
1452    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1453}
1454
1455/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1456///       enumerator-list:
1457///         enumerator
1458///         enumerator-list ',' enumerator
1459///       enumerator:
1460///         enumeration-constant
1461///         enumeration-constant '=' constant-expression
1462///       enumeration-constant:
1463///         identifier
1464///
1465void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1466  // Enter the scope of the enum body and start the definition.
1467  ParseScope EnumScope(this, Scope::DeclScope);
1468  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1469
1470  SourceLocation LBraceLoc = ConsumeBrace();
1471
1472  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1473  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1474    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1475
1476  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1477
1478  DeclPtrTy LastEnumConstDecl;
1479
1480  // Parse the enumerator-list.
1481  while (Tok.is(tok::identifier)) {
1482    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1483    SourceLocation IdentLoc = ConsumeToken();
1484
1485    SourceLocation EqualLoc;
1486    OwningExprResult AssignedVal(Actions);
1487    if (Tok.is(tok::equal)) {
1488      EqualLoc = ConsumeToken();
1489      AssignedVal = ParseConstantExpression();
1490      if (AssignedVal.isInvalid())
1491        SkipUntil(tok::comma, tok::r_brace, true, true);
1492    }
1493
1494    // Install the enumerator constant into EnumDecl.
1495    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1496                                                        LastEnumConstDecl,
1497                                                        IdentLoc, Ident,
1498                                                        EqualLoc,
1499                                                        AssignedVal.release());
1500    EnumConstantDecls.push_back(EnumConstDecl);
1501    LastEnumConstDecl = EnumConstDecl;
1502
1503    if (Tok.isNot(tok::comma))
1504      break;
1505    SourceLocation CommaLoc = ConsumeToken();
1506
1507    if (Tok.isNot(tok::identifier) &&
1508        !(getLang().C99 || getLang().CPlusPlus0x))
1509      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1510        << getLang().CPlusPlus
1511        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1512  }
1513
1514  // Eat the }.
1515  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1516
1517  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1518                        EnumConstantDecls.size());
1519
1520  Action::AttrTy *AttrList = 0;
1521  // If attributes exist after the identifier list, parse them.
1522  if (Tok.is(tok::kw___attribute))
1523    AttrList = ParseAttributes(); // FIXME: where do they do?
1524
1525  EnumScope.Exit();
1526  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1527}
1528
1529/// isTypeSpecifierQualifier - Return true if the current token could be the
1530/// start of a type-qualifier-list.
1531bool Parser::isTypeQualifier() const {
1532  switch (Tok.getKind()) {
1533  default: return false;
1534    // type-qualifier
1535  case tok::kw_const:
1536  case tok::kw_volatile:
1537  case tok::kw_restrict:
1538    return true;
1539  }
1540}
1541
1542/// isTypeSpecifierQualifier - Return true if the current token could be the
1543/// start of a specifier-qualifier-list.
1544bool Parser::isTypeSpecifierQualifier() {
1545  switch (Tok.getKind()) {
1546  default: return false;
1547
1548  case tok::identifier:   // foo::bar
1549  case tok::kw_typename:  // typename T::type
1550    // Annotate typenames and C++ scope specifiers.  If we get one, just
1551    // recurse to handle whatever we get.
1552    if (TryAnnotateTypeOrScopeToken())
1553      return isTypeSpecifierQualifier();
1554    // Otherwise, not a type specifier.
1555    return false;
1556
1557  case tok::coloncolon:   // ::foo::bar
1558    if (NextToken().is(tok::kw_new) ||    // ::new
1559        NextToken().is(tok::kw_delete))   // ::delete
1560      return false;
1561
1562    // Annotate typenames and C++ scope specifiers.  If we get one, just
1563    // recurse to handle whatever we get.
1564    if (TryAnnotateTypeOrScopeToken())
1565      return isTypeSpecifierQualifier();
1566    // Otherwise, not a type specifier.
1567    return false;
1568
1569    // GNU attributes support.
1570  case tok::kw___attribute:
1571    // GNU typeof support.
1572  case tok::kw_typeof:
1573
1574    // type-specifiers
1575  case tok::kw_short:
1576  case tok::kw_long:
1577  case tok::kw_signed:
1578  case tok::kw_unsigned:
1579  case tok::kw__Complex:
1580  case tok::kw__Imaginary:
1581  case tok::kw_void:
1582  case tok::kw_char:
1583  case tok::kw_wchar_t:
1584  case tok::kw_int:
1585  case tok::kw_float:
1586  case tok::kw_double:
1587  case tok::kw_bool:
1588  case tok::kw__Bool:
1589  case tok::kw__Decimal32:
1590  case tok::kw__Decimal64:
1591  case tok::kw__Decimal128:
1592
1593    // struct-or-union-specifier (C99) or class-specifier (C++)
1594  case tok::kw_class:
1595  case tok::kw_struct:
1596  case tok::kw_union:
1597    // enum-specifier
1598  case tok::kw_enum:
1599
1600    // type-qualifier
1601  case tok::kw_const:
1602  case tok::kw_volatile:
1603  case tok::kw_restrict:
1604
1605    // typedef-name
1606  case tok::annot_typename:
1607    return true;
1608
1609    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1610  case tok::less:
1611    return getLang().ObjC1;
1612
1613  case tok::kw___cdecl:
1614  case tok::kw___stdcall:
1615  case tok::kw___fastcall:
1616    return PP.getLangOptions().Microsoft;
1617  }
1618}
1619
1620/// isDeclarationSpecifier() - Return true if the current token is part of a
1621/// declaration specifier.
1622bool Parser::isDeclarationSpecifier() {
1623  switch (Tok.getKind()) {
1624  default: return false;
1625
1626  case tok::identifier:   // foo::bar
1627    // Unfortunate hack to support "Class.factoryMethod" notation.
1628    if (getLang().ObjC1 && NextToken().is(tok::period))
1629      return false;
1630    // Fall through
1631
1632  case tok::kw_typename: // typename T::type
1633    // Annotate typenames and C++ scope specifiers.  If we get one, just
1634    // recurse to handle whatever we get.
1635    if (TryAnnotateTypeOrScopeToken())
1636      return isDeclarationSpecifier();
1637    // Otherwise, not a declaration specifier.
1638    return false;
1639  case tok::coloncolon:   // ::foo::bar
1640    if (NextToken().is(tok::kw_new) ||    // ::new
1641        NextToken().is(tok::kw_delete))   // ::delete
1642      return false;
1643
1644    // Annotate typenames and C++ scope specifiers.  If we get one, just
1645    // recurse to handle whatever we get.
1646    if (TryAnnotateTypeOrScopeToken())
1647      return isDeclarationSpecifier();
1648    // Otherwise, not a declaration specifier.
1649    return false;
1650
1651    // storage-class-specifier
1652  case tok::kw_typedef:
1653  case tok::kw_extern:
1654  case tok::kw___private_extern__:
1655  case tok::kw_static:
1656  case tok::kw_auto:
1657  case tok::kw_register:
1658  case tok::kw___thread:
1659
1660    // type-specifiers
1661  case tok::kw_short:
1662  case tok::kw_long:
1663  case tok::kw_signed:
1664  case tok::kw_unsigned:
1665  case tok::kw__Complex:
1666  case tok::kw__Imaginary:
1667  case tok::kw_void:
1668  case tok::kw_char:
1669  case tok::kw_wchar_t:
1670  case tok::kw_int:
1671  case tok::kw_float:
1672  case tok::kw_double:
1673  case tok::kw_bool:
1674  case tok::kw__Bool:
1675  case tok::kw__Decimal32:
1676  case tok::kw__Decimal64:
1677  case tok::kw__Decimal128:
1678
1679    // struct-or-union-specifier (C99) or class-specifier (C++)
1680  case tok::kw_class:
1681  case tok::kw_struct:
1682  case tok::kw_union:
1683    // enum-specifier
1684  case tok::kw_enum:
1685
1686    // type-qualifier
1687  case tok::kw_const:
1688  case tok::kw_volatile:
1689  case tok::kw_restrict:
1690
1691    // function-specifier
1692  case tok::kw_inline:
1693  case tok::kw_virtual:
1694  case tok::kw_explicit:
1695
1696    // typedef-name
1697  case tok::annot_typename:
1698
1699    // GNU typeof support.
1700  case tok::kw_typeof:
1701
1702    // GNU attributes.
1703  case tok::kw___attribute:
1704    return true;
1705
1706    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1707  case tok::less:
1708    return getLang().ObjC1;
1709
1710  case tok::kw___declspec:
1711  case tok::kw___cdecl:
1712  case tok::kw___stdcall:
1713  case tok::kw___fastcall:
1714    return PP.getLangOptions().Microsoft;
1715  }
1716}
1717
1718
1719/// ParseTypeQualifierListOpt
1720///       type-qualifier-list: [C99 6.7.5]
1721///         type-qualifier
1722/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1723///         type-qualifier-list type-qualifier
1724/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1725///
1726void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1727  while (1) {
1728    int isInvalid = false;
1729    const char *PrevSpec = 0;
1730    SourceLocation Loc = Tok.getLocation();
1731
1732    switch (Tok.getKind()) {
1733    case tok::kw_const:
1734      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1735                                 getLang())*2;
1736      break;
1737    case tok::kw_volatile:
1738      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1739                                 getLang())*2;
1740      break;
1741    case tok::kw_restrict:
1742      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1743                                 getLang())*2;
1744      break;
1745    case tok::kw___ptr64:
1746    case tok::kw___cdecl:
1747    case tok::kw___stdcall:
1748    case tok::kw___fastcall:
1749      if (!PP.getLangOptions().Microsoft)
1750        goto DoneWithTypeQuals;
1751      // Just ignore it.
1752      break;
1753    case tok::kw___attribute:
1754      if (AttributesAllowed) {
1755        DS.AddAttributes(ParseAttributes());
1756        continue; // do *not* consume the next token!
1757      }
1758      // otherwise, FALL THROUGH!
1759    default:
1760      DoneWithTypeQuals:
1761      // If this is not a type-qualifier token, we're done reading type
1762      // qualifiers.  First verify that DeclSpec's are consistent.
1763      DS.Finish(Diags, PP);
1764      return;
1765    }
1766
1767    // If the specifier combination wasn't legal, issue a diagnostic.
1768    if (isInvalid) {
1769      assert(PrevSpec && "Method did not return previous specifier!");
1770      // Pick between error or extwarn.
1771      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1772                                      : diag::ext_duplicate_declspec;
1773      Diag(Tok, DiagID) << PrevSpec;
1774    }
1775    ConsumeToken();
1776  }
1777}
1778
1779
1780/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1781///
1782void Parser::ParseDeclarator(Declarator &D) {
1783  /// This implements the 'declarator' production in the C grammar, then checks
1784  /// for well-formedness and issues diagnostics.
1785  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1786}
1787
1788/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1789/// is parsed by the function passed to it. Pass null, and the direct-declarator
1790/// isn't parsed at all, making this function effectively parse the C++
1791/// ptr-operator production.
1792///
1793///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1794/// [C]     pointer[opt] direct-declarator
1795/// [C++]   direct-declarator
1796/// [C++]   ptr-operator declarator
1797///
1798///       pointer: [C99 6.7.5]
1799///         '*' type-qualifier-list[opt]
1800///         '*' type-qualifier-list[opt] pointer
1801///
1802///       ptr-operator:
1803///         '*' cv-qualifier-seq[opt]
1804///         '&'
1805/// [C++0x] '&&'
1806/// [GNU]   '&' restrict[opt] attributes[opt]
1807/// [GNU?]  '&&' restrict[opt] attributes[opt]
1808///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1809void Parser::ParseDeclaratorInternal(Declarator &D,
1810                                     DirectDeclParseFunction DirectDeclParser) {
1811
1812  // C++ member pointers start with a '::' or a nested-name.
1813  // Member pointers get special handling, since there's no place for the
1814  // scope spec in the generic path below.
1815  if (getLang().CPlusPlus &&
1816      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1817       Tok.is(tok::annot_cxxscope))) {
1818    CXXScopeSpec SS;
1819    if (ParseOptionalCXXScopeSpecifier(SS)) {
1820      if(Tok.isNot(tok::star)) {
1821        // The scope spec really belongs to the direct-declarator.
1822        D.getCXXScopeSpec() = SS;
1823        if (DirectDeclParser)
1824          (this->*DirectDeclParser)(D);
1825        return;
1826      }
1827
1828      SourceLocation Loc = ConsumeToken();
1829      D.SetRangeEnd(Loc);
1830      DeclSpec DS;
1831      ParseTypeQualifierListOpt(DS);
1832      D.ExtendWithDeclSpec(DS);
1833
1834      // Recurse to parse whatever is left.
1835      ParseDeclaratorInternal(D, DirectDeclParser);
1836
1837      // Sema will have to catch (syntactically invalid) pointers into global
1838      // scope. It has to catch pointers into namespace scope anyway.
1839      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1840                                                      Loc, DS.TakeAttributes()),
1841                    /* Don't replace range end. */SourceLocation());
1842      return;
1843    }
1844  }
1845
1846  tok::TokenKind Kind = Tok.getKind();
1847  // Not a pointer, C++ reference, or block.
1848  if (Kind != tok::star && Kind != tok::caret &&
1849      (Kind != tok::amp || !getLang().CPlusPlus) &&
1850      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1851      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1852    if (DirectDeclParser)
1853      (this->*DirectDeclParser)(D);
1854    return;
1855  }
1856
1857  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1858  // '&&' -> rvalue reference
1859  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1860  D.SetRangeEnd(Loc);
1861
1862  if (Kind == tok::star || Kind == tok::caret) {
1863    // Is a pointer.
1864    DeclSpec DS;
1865
1866    ParseTypeQualifierListOpt(DS);
1867    D.ExtendWithDeclSpec(DS);
1868
1869    // Recursively parse the declarator.
1870    ParseDeclaratorInternal(D, DirectDeclParser);
1871    if (Kind == tok::star)
1872      // Remember that we parsed a pointer type, and remember the type-quals.
1873      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1874                                                DS.TakeAttributes()),
1875                    SourceLocation());
1876    else
1877      // Remember that we parsed a Block type, and remember the type-quals.
1878      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1879                                                     Loc, DS.TakeAttributes()),
1880                    SourceLocation());
1881  } else {
1882    // Is a reference
1883    DeclSpec DS;
1884
1885    // Complain about rvalue references in C++03, but then go on and build
1886    // the declarator.
1887    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1888      Diag(Loc, diag::err_rvalue_reference);
1889
1890    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1891    // cv-qualifiers are introduced through the use of a typedef or of a
1892    // template type argument, in which case the cv-qualifiers are ignored.
1893    //
1894    // [GNU] Retricted references are allowed.
1895    // [GNU] Attributes on references are allowed.
1896    ParseTypeQualifierListOpt(DS);
1897    D.ExtendWithDeclSpec(DS);
1898
1899    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1900      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1901        Diag(DS.getConstSpecLoc(),
1902             diag::err_invalid_reference_qualifier_application) << "const";
1903      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1904        Diag(DS.getVolatileSpecLoc(),
1905             diag::err_invalid_reference_qualifier_application) << "volatile";
1906    }
1907
1908    // Recursively parse the declarator.
1909    ParseDeclaratorInternal(D, DirectDeclParser);
1910
1911    if (D.getNumTypeObjects() > 0) {
1912      // C++ [dcl.ref]p4: There shall be no references to references.
1913      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1914      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1915        if (const IdentifierInfo *II = D.getIdentifier())
1916          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1917           << II;
1918        else
1919          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1920            << "type name";
1921
1922        // Once we've complained about the reference-to-reference, we
1923        // can go ahead and build the (technically ill-formed)
1924        // declarator: reference collapsing will take care of it.
1925      }
1926    }
1927
1928    // Remember that we parsed a reference type. It doesn't have type-quals.
1929    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1930                                                DS.TakeAttributes(),
1931                                                Kind == tok::amp),
1932                  SourceLocation());
1933  }
1934}
1935
1936/// ParseDirectDeclarator
1937///       direct-declarator: [C99 6.7.5]
1938/// [C99]   identifier
1939///         '(' declarator ')'
1940/// [GNU]   '(' attributes declarator ')'
1941/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1942/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1943/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1944/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1945/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1946///         direct-declarator '(' parameter-type-list ')'
1947///         direct-declarator '(' identifier-list[opt] ')'
1948/// [GNU]   direct-declarator '(' parameter-forward-declarations
1949///                    parameter-type-list[opt] ')'
1950/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1951///                    cv-qualifier-seq[opt] exception-specification[opt]
1952/// [C++]   declarator-id
1953///
1954///       declarator-id: [C++ 8]
1955///         id-expression
1956///         '::'[opt] nested-name-specifier[opt] type-name
1957///
1958///       id-expression: [C++ 5.1]
1959///         unqualified-id
1960///         qualified-id            [TODO]
1961///
1962///       unqualified-id: [C++ 5.1]
1963///         identifier
1964///         operator-function-id
1965///         conversion-function-id  [TODO]
1966///          '~' class-name
1967///         template-id
1968///
1969void Parser::ParseDirectDeclarator(Declarator &D) {
1970  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1971
1972  if (getLang().CPlusPlus) {
1973    if (D.mayHaveIdentifier()) {
1974      // ParseDeclaratorInternal might already have parsed the scope.
1975      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1976        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1977      if (afterCXXScope) {
1978        // Change the declaration context for name lookup, until this function
1979        // is exited (and the declarator has been parsed).
1980        DeclScopeObj.EnterDeclaratorScope();
1981      }
1982
1983      if (Tok.is(tok::identifier)) {
1984        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1985
1986        // If this identifier is the name of the current class, it's a
1987        // constructor name.
1988        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1989          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1990                                               Tok.getLocation(), CurScope),
1991                           Tok.getLocation());
1992        // This is a normal identifier.
1993        } else
1994          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1995        ConsumeToken();
1996        goto PastIdentifier;
1997      } else if (Tok.is(tok::annot_template_id)) {
1998        TemplateIdAnnotation *TemplateId
1999          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2000
2001        // FIXME: Could this template-id name a constructor?
2002
2003        // FIXME: This is an egregious hack, where we silently ignore
2004        // the specialization (which should be a function template
2005        // specialization name) and use the name instead. This hack
2006        // will go away when we have support for function
2007        // specializations.
2008        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2009        TemplateId->Destroy();
2010        ConsumeToken();
2011        goto PastIdentifier;
2012      } else if (Tok.is(tok::kw_operator)) {
2013        SourceLocation OperatorLoc = Tok.getLocation();
2014        SourceLocation EndLoc;
2015
2016        // First try the name of an overloaded operator
2017        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2018          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2019        } else {
2020          // This must be a conversion function (C++ [class.conv.fct]).
2021          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2022            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2023          else {
2024            D.SetIdentifier(0, Tok.getLocation());
2025          }
2026        }
2027        goto PastIdentifier;
2028      } else if (Tok.is(tok::tilde)) {
2029        // This should be a C++ destructor.
2030        SourceLocation TildeLoc = ConsumeToken();
2031        if (Tok.is(tok::identifier)) {
2032          // FIXME: Inaccurate.
2033          SourceLocation NameLoc = Tok.getLocation();
2034          SourceLocation EndLoc;
2035          TypeResult Type = ParseClassName(EndLoc);
2036          if (Type.isInvalid())
2037            D.SetIdentifier(0, TildeLoc);
2038          else
2039            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2040        } else {
2041          Diag(Tok, diag::err_expected_class_name);
2042          D.SetIdentifier(0, TildeLoc);
2043        }
2044        goto PastIdentifier;
2045      }
2046
2047      // If we reached this point, token is not identifier and not '~'.
2048
2049      if (afterCXXScope) {
2050        Diag(Tok, diag::err_expected_unqualified_id);
2051        D.SetIdentifier(0, Tok.getLocation());
2052        D.setInvalidType(true);
2053        goto PastIdentifier;
2054      }
2055    }
2056  }
2057
2058  // If we reached this point, we are either in C/ObjC or the token didn't
2059  // satisfy any of the C++-specific checks.
2060  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2061    assert(!getLang().CPlusPlus &&
2062           "There's a C++-specific check for tok::identifier above");
2063    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2064    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2065    ConsumeToken();
2066  } else if (Tok.is(tok::l_paren)) {
2067    // direct-declarator: '(' declarator ')'
2068    // direct-declarator: '(' attributes declarator ')'
2069    // Example: 'char (*X)'   or 'int (*XX)(void)'
2070    ParseParenDeclarator(D);
2071  } else if (D.mayOmitIdentifier()) {
2072    // This could be something simple like "int" (in which case the declarator
2073    // portion is empty), if an abstract-declarator is allowed.
2074    D.SetIdentifier(0, Tok.getLocation());
2075  } else {
2076    if (D.getContext() == Declarator::MemberContext)
2077      Diag(Tok, diag::err_expected_member_name_or_semi)
2078        << D.getDeclSpec().getSourceRange();
2079    else if (getLang().CPlusPlus)
2080      Diag(Tok, diag::err_expected_unqualified_id);
2081    else
2082      Diag(Tok, diag::err_expected_ident_lparen);
2083    D.SetIdentifier(0, Tok.getLocation());
2084    D.setInvalidType(true);
2085  }
2086
2087 PastIdentifier:
2088  assert(D.isPastIdentifier() &&
2089         "Haven't past the location of the identifier yet?");
2090
2091  while (1) {
2092    if (Tok.is(tok::l_paren)) {
2093      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2094      // In such a case, check if we actually have a function declarator; if it
2095      // is not, the declarator has been fully parsed.
2096      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2097        // When not in file scope, warn for ambiguous function declarators, just
2098        // in case the author intended it as a variable definition.
2099        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2100        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2101          break;
2102      }
2103      ParseFunctionDeclarator(ConsumeParen(), D);
2104    } else if (Tok.is(tok::l_square)) {
2105      ParseBracketDeclarator(D);
2106    } else {
2107      break;
2108    }
2109  }
2110}
2111
2112/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2113/// only called before the identifier, so these are most likely just grouping
2114/// parens for precedence.  If we find that these are actually function
2115/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2116///
2117///       direct-declarator:
2118///         '(' declarator ')'
2119/// [GNU]   '(' attributes declarator ')'
2120///         direct-declarator '(' parameter-type-list ')'
2121///         direct-declarator '(' identifier-list[opt] ')'
2122/// [GNU]   direct-declarator '(' parameter-forward-declarations
2123///                    parameter-type-list[opt] ')'
2124///
2125void Parser::ParseParenDeclarator(Declarator &D) {
2126  SourceLocation StartLoc = ConsumeParen();
2127  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2128
2129  // Eat any attributes before we look at whether this is a grouping or function
2130  // declarator paren.  If this is a grouping paren, the attribute applies to
2131  // the type being built up, for example:
2132  //     int (__attribute__(()) *x)(long y)
2133  // If this ends up not being a grouping paren, the attribute applies to the
2134  // first argument, for example:
2135  //     int (__attribute__(()) int x)
2136  // In either case, we need to eat any attributes to be able to determine what
2137  // sort of paren this is.
2138  //
2139  AttributeList *AttrList = 0;
2140  bool RequiresArg = false;
2141  if (Tok.is(tok::kw___attribute)) {
2142    AttrList = ParseAttributes();
2143
2144    // We require that the argument list (if this is a non-grouping paren) be
2145    // present even if the attribute list was empty.
2146    RequiresArg = true;
2147  }
2148  // Eat any Microsoft extensions.
2149  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2150          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2151    ConsumeToken();
2152
2153  // If we haven't past the identifier yet (or where the identifier would be
2154  // stored, if this is an abstract declarator), then this is probably just
2155  // grouping parens. However, if this could be an abstract-declarator, then
2156  // this could also be the start of function arguments (consider 'void()').
2157  bool isGrouping;
2158
2159  if (!D.mayOmitIdentifier()) {
2160    // If this can't be an abstract-declarator, this *must* be a grouping
2161    // paren, because we haven't seen the identifier yet.
2162    isGrouping = true;
2163  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2164             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2165             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2166    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2167    // considered to be a type, not a K&R identifier-list.
2168    isGrouping = false;
2169  } else {
2170    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2171    isGrouping = true;
2172  }
2173
2174  // If this is a grouping paren, handle:
2175  // direct-declarator: '(' declarator ')'
2176  // direct-declarator: '(' attributes declarator ')'
2177  if (isGrouping) {
2178    bool hadGroupingParens = D.hasGroupingParens();
2179    D.setGroupingParens(true);
2180    if (AttrList)
2181      D.AddAttributes(AttrList, SourceLocation());
2182
2183    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2184    // Match the ')'.
2185    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2186
2187    D.setGroupingParens(hadGroupingParens);
2188    D.SetRangeEnd(Loc);
2189    return;
2190  }
2191
2192  // Okay, if this wasn't a grouping paren, it must be the start of a function
2193  // argument list.  Recognize that this declarator will never have an
2194  // identifier (and remember where it would have been), then call into
2195  // ParseFunctionDeclarator to handle of argument list.
2196  D.SetIdentifier(0, Tok.getLocation());
2197
2198  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2199}
2200
2201/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2202/// declarator D up to a paren, which indicates that we are parsing function
2203/// arguments.
2204///
2205/// If AttrList is non-null, then the caller parsed those arguments immediately
2206/// after the open paren - they should be considered to be the first argument of
2207/// a parameter.  If RequiresArg is true, then the first argument of the
2208/// function is required to be present and required to not be an identifier
2209/// list.
2210///
2211/// This method also handles this portion of the grammar:
2212///       parameter-type-list: [C99 6.7.5]
2213///         parameter-list
2214///         parameter-list ',' '...'
2215///
2216///       parameter-list: [C99 6.7.5]
2217///         parameter-declaration
2218///         parameter-list ',' parameter-declaration
2219///
2220///       parameter-declaration: [C99 6.7.5]
2221///         declaration-specifiers declarator
2222/// [C++]   declaration-specifiers declarator '=' assignment-expression
2223/// [GNU]   declaration-specifiers declarator attributes
2224///         declaration-specifiers abstract-declarator[opt]
2225/// [C++]   declaration-specifiers abstract-declarator[opt]
2226///           '=' assignment-expression
2227/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2228///
2229/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2230/// and "exception-specification[opt]".
2231///
2232void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2233                                     AttributeList *AttrList,
2234                                     bool RequiresArg) {
2235  // lparen is already consumed!
2236  assert(D.isPastIdentifier() && "Should not call before identifier!");
2237
2238  // This parameter list may be empty.
2239  if (Tok.is(tok::r_paren)) {
2240    if (RequiresArg) {
2241      Diag(Tok, diag::err_argument_required_after_attribute);
2242      delete AttrList;
2243    }
2244
2245    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2246
2247    // cv-qualifier-seq[opt].
2248    DeclSpec DS;
2249    bool hasExceptionSpec = false;
2250    bool hasAnyExceptionSpec = false;
2251    // FIXME: Does an empty vector ever allocate? Exception specifications are
2252    // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2253    std::vector<TypeTy*> Exceptions;
2254    if (getLang().CPlusPlus) {
2255      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2256      if (!DS.getSourceRange().getEnd().isInvalid())
2257        Loc = DS.getSourceRange().getEnd();
2258
2259      // Parse exception-specification[opt].
2260      if (Tok.is(tok::kw_throw)) {
2261        hasExceptionSpec = true;
2262        ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2263      }
2264    }
2265
2266    // Remember that we parsed a function type, and remember the attributes.
2267    // int() -> no prototype, no '...'.
2268    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2269                                               /*variadic*/ false,
2270                                               SourceLocation(),
2271                                               /*arglist*/ 0, 0,
2272                                               DS.getTypeQualifiers(),
2273                                               hasExceptionSpec,
2274                                               hasAnyExceptionSpec,
2275                                               Exceptions.empty() ? 0 :
2276                                                 &Exceptions[0],
2277                                               Exceptions.size(),
2278                                               LParenLoc, D),
2279                  Loc);
2280    return;
2281  }
2282
2283  // Alternatively, this parameter list may be an identifier list form for a
2284  // K&R-style function:  void foo(a,b,c)
2285  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2286    if (!TryAnnotateTypeOrScopeToken()) {
2287      // K&R identifier lists can't have typedefs as identifiers, per
2288      // C99 6.7.5.3p11.
2289      if (RequiresArg) {
2290        Diag(Tok, diag::err_argument_required_after_attribute);
2291        delete AttrList;
2292      }
2293      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2294      // normal declarators, not for abstract-declarators.
2295      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2296    }
2297  }
2298
2299  // Finally, a normal, non-empty parameter type list.
2300
2301  // Build up an array of information about the parsed arguments.
2302  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2303
2304  // Enter function-declaration scope, limiting any declarators to the
2305  // function prototype scope, including parameter declarators.
2306  ParseScope PrototypeScope(this,
2307                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2308
2309  bool IsVariadic = false;
2310  SourceLocation EllipsisLoc;
2311  while (1) {
2312    if (Tok.is(tok::ellipsis)) {
2313      IsVariadic = true;
2314      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2315      break;
2316    }
2317
2318    SourceLocation DSStart = Tok.getLocation();
2319
2320    // Parse the declaration-specifiers.
2321    DeclSpec DS;
2322
2323    // If the caller parsed attributes for the first argument, add them now.
2324    if (AttrList) {
2325      DS.AddAttributes(AttrList);
2326      AttrList = 0;  // Only apply the attributes to the first parameter.
2327    }
2328    ParseDeclarationSpecifiers(DS);
2329
2330    // Parse the declarator.  This is "PrototypeContext", because we must
2331    // accept either 'declarator' or 'abstract-declarator' here.
2332    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2333    ParseDeclarator(ParmDecl);
2334
2335    // Parse GNU attributes, if present.
2336    if (Tok.is(tok::kw___attribute)) {
2337      SourceLocation Loc;
2338      AttributeList *AttrList = ParseAttributes(&Loc);
2339      ParmDecl.AddAttributes(AttrList, Loc);
2340    }
2341
2342    // Remember this parsed parameter in ParamInfo.
2343    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2344
2345    // DefArgToks is used when the parsing of default arguments needs
2346    // to be delayed.
2347    CachedTokens *DefArgToks = 0;
2348
2349    // If no parameter was specified, verify that *something* was specified,
2350    // otherwise we have a missing type and identifier.
2351    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2352        ParmDecl.getNumTypeObjects() == 0) {
2353      // Completely missing, emit error.
2354      Diag(DSStart, diag::err_missing_param);
2355    } else {
2356      // Otherwise, we have something.  Add it and let semantic analysis try
2357      // to grok it and add the result to the ParamInfo we are building.
2358
2359      // Inform the actions module about the parameter declarator, so it gets
2360      // added to the current scope.
2361      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2362
2363      // Parse the default argument, if any. We parse the default
2364      // arguments in all dialects; the semantic analysis in
2365      // ActOnParamDefaultArgument will reject the default argument in
2366      // C.
2367      if (Tok.is(tok::equal)) {
2368        SourceLocation EqualLoc = Tok.getLocation();
2369
2370        // Parse the default argument
2371        if (D.getContext() == Declarator::MemberContext) {
2372          // If we're inside a class definition, cache the tokens
2373          // corresponding to the default argument. We'll actually parse
2374          // them when we see the end of the class definition.
2375          // FIXME: Templates will require something similar.
2376          // FIXME: Can we use a smart pointer for Toks?
2377          DefArgToks = new CachedTokens;
2378
2379          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2380                                    tok::semi, false)) {
2381            delete DefArgToks;
2382            DefArgToks = 0;
2383            Actions.ActOnParamDefaultArgumentError(Param);
2384          } else
2385            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2386        } else {
2387          // Consume the '='.
2388          ConsumeToken();
2389
2390          OwningExprResult DefArgResult(ParseAssignmentExpression());
2391          if (DefArgResult.isInvalid()) {
2392            Actions.ActOnParamDefaultArgumentError(Param);
2393            SkipUntil(tok::comma, tok::r_paren, true, true);
2394          } else {
2395            // Inform the actions module about the default argument
2396            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2397                                              move(DefArgResult));
2398          }
2399        }
2400      }
2401
2402      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2403                                          ParmDecl.getIdentifierLoc(), Param,
2404                                          DefArgToks));
2405    }
2406
2407    // If the next token is a comma, consume it and keep reading arguments.
2408    if (Tok.isNot(tok::comma)) break;
2409
2410    // Consume the comma.
2411    ConsumeToken();
2412  }
2413
2414  // Leave prototype scope.
2415  PrototypeScope.Exit();
2416
2417  // If we have the closing ')', eat it.
2418  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2419
2420  DeclSpec DS;
2421  bool hasExceptionSpec = false;
2422  bool hasAnyExceptionSpec = false;
2423  // FIXME: Does an empty vector ever allocate? Exception specifications are
2424  // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2425  std::vector<TypeTy*> Exceptions;
2426  if (getLang().CPlusPlus) {
2427    // Parse cv-qualifier-seq[opt].
2428    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2429      if (!DS.getSourceRange().getEnd().isInvalid())
2430        Loc = DS.getSourceRange().getEnd();
2431
2432    // Parse exception-specification[opt].
2433    if (Tok.is(tok::kw_throw)) {
2434      hasExceptionSpec = true;
2435      ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2436    }
2437  }
2438
2439  // Remember that we parsed a function type, and remember the attributes.
2440  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2441                                             EllipsisLoc,
2442                                             &ParamInfo[0], ParamInfo.size(),
2443                                             DS.getTypeQualifiers(),
2444                                             hasExceptionSpec,
2445                                             hasAnyExceptionSpec,
2446                                             Exceptions.empty() ? 0 :
2447                                               &Exceptions[0],
2448                                             Exceptions.size(), LParenLoc, D),
2449                Loc);
2450}
2451
2452/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2453/// we found a K&R-style identifier list instead of a type argument list.  The
2454/// current token is known to be the first identifier in the list.
2455///
2456///       identifier-list: [C99 6.7.5]
2457///         identifier
2458///         identifier-list ',' identifier
2459///
2460void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2461                                                   Declarator &D) {
2462  // Build up an array of information about the parsed arguments.
2463  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2464  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2465
2466  // If there was no identifier specified for the declarator, either we are in
2467  // an abstract-declarator, or we are in a parameter declarator which was found
2468  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2469  // diagnose this.
2470  if (!D.getIdentifier())
2471    Diag(Tok, diag::ext_ident_list_in_param);
2472
2473  // Tok is known to be the first identifier in the list.  Remember this
2474  // identifier in ParamInfo.
2475  ParamsSoFar.insert(Tok.getIdentifierInfo());
2476  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2477                                                 Tok.getLocation(),
2478                                                 DeclPtrTy()));
2479
2480  ConsumeToken();  // eat the first identifier.
2481
2482  while (Tok.is(tok::comma)) {
2483    // Eat the comma.
2484    ConsumeToken();
2485
2486    // If this isn't an identifier, report the error and skip until ')'.
2487    if (Tok.isNot(tok::identifier)) {
2488      Diag(Tok, diag::err_expected_ident);
2489      SkipUntil(tok::r_paren);
2490      return;
2491    }
2492
2493    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2494
2495    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2496    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2497      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2498
2499    // Verify that the argument identifier has not already been mentioned.
2500    if (!ParamsSoFar.insert(ParmII)) {
2501      Diag(Tok, diag::err_param_redefinition) << ParmII;
2502    } else {
2503      // Remember this identifier in ParamInfo.
2504      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2505                                                     Tok.getLocation(),
2506                                                     DeclPtrTy()));
2507    }
2508
2509    // Eat the identifier.
2510    ConsumeToken();
2511  }
2512
2513  // If we have the closing ')', eat it and we're done.
2514  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2515
2516  // Remember that we parsed a function type, and remember the attributes.  This
2517  // function type is always a K&R style function type, which is not varargs and
2518  // has no prototype.
2519  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2520                                             SourceLocation(),
2521                                             &ParamInfo[0], ParamInfo.size(),
2522                                             /*TypeQuals*/0,
2523                                             /*exception*/false, false, 0, 0,
2524                                             LParenLoc, D),
2525                RLoc);
2526}
2527
2528/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2529/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2530/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2531/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2532/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2533void Parser::ParseBracketDeclarator(Declarator &D) {
2534  SourceLocation StartLoc = ConsumeBracket();
2535
2536  // C array syntax has many features, but by-far the most common is [] and [4].
2537  // This code does a fast path to handle some of the most obvious cases.
2538  if (Tok.getKind() == tok::r_square) {
2539    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2540    // Remember that we parsed the empty array type.
2541    OwningExprResult NumElements(Actions);
2542    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2543                  EndLoc);
2544    return;
2545  } else if (Tok.getKind() == tok::numeric_constant &&
2546             GetLookAheadToken(1).is(tok::r_square)) {
2547    // [4] is very common.  Parse the numeric constant expression.
2548    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2549    ConsumeToken();
2550
2551    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2552
2553    // If there was an error parsing the assignment-expression, recover.
2554    if (ExprRes.isInvalid())
2555      ExprRes.release();  // Deallocate expr, just use [].
2556
2557    // Remember that we parsed a array type, and remember its features.
2558    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2559                                            ExprRes.release(), StartLoc),
2560                  EndLoc);
2561    return;
2562  }
2563
2564  // If valid, this location is the position where we read the 'static' keyword.
2565  SourceLocation StaticLoc;
2566  if (Tok.is(tok::kw_static))
2567    StaticLoc = ConsumeToken();
2568
2569  // If there is a type-qualifier-list, read it now.
2570  // Type qualifiers in an array subscript are a C99 feature.
2571  DeclSpec DS;
2572  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2573
2574  // If we haven't already read 'static', check to see if there is one after the
2575  // type-qualifier-list.
2576  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2577    StaticLoc = ConsumeToken();
2578
2579  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2580  bool isStar = false;
2581  OwningExprResult NumElements(Actions);
2582
2583  // Handle the case where we have '[*]' as the array size.  However, a leading
2584  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2585  // the the token after the star is a ']'.  Since stars in arrays are
2586  // infrequent, use of lookahead is not costly here.
2587  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2588    ConsumeToken();  // Eat the '*'.
2589
2590    if (StaticLoc.isValid()) {
2591      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2592      StaticLoc = SourceLocation();  // Drop the static.
2593    }
2594    isStar = true;
2595  } else if (Tok.isNot(tok::r_square)) {
2596    // Note, in C89, this production uses the constant-expr production instead
2597    // of assignment-expr.  The only difference is that assignment-expr allows
2598    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2599    // are not i-c-e's, so we don't need to distinguish between the two here.
2600
2601    // Parse the assignment-expression now.
2602    NumElements = ParseAssignmentExpression();
2603  }
2604
2605  // If there was an error parsing the assignment-expression, recover.
2606  if (NumElements.isInvalid()) {
2607    D.setInvalidType(true);
2608    // If the expression was invalid, skip it.
2609    SkipUntil(tok::r_square);
2610    return;
2611  }
2612
2613  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2614
2615  // Remember that we parsed a array type, and remember its features.
2616  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2617                                          StaticLoc.isValid(), isStar,
2618                                          NumElements.release(), StartLoc),
2619                EndLoc);
2620}
2621
2622/// [GNU]   typeof-specifier:
2623///           typeof ( expressions )
2624///           typeof ( type-name )
2625/// [GNU/C++] typeof unary-expression
2626///
2627void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2628  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2629  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2630  SourceLocation StartLoc = ConsumeToken();
2631
2632  if (Tok.isNot(tok::l_paren)) {
2633    if (!getLang().CPlusPlus) {
2634      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2635      return;
2636    }
2637
2638    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2639    if (Result.isInvalid()) {
2640      DS.SetTypeSpecError();
2641      return;
2642    }
2643
2644    const char *PrevSpec = 0;
2645    // Check for duplicate type specifiers.
2646    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2647                           Result.release()))
2648      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2649
2650    // FIXME: Not accurate, the range gets one token more than it should.
2651    DS.SetRangeEnd(Tok.getLocation());
2652    return;
2653  }
2654
2655  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2656
2657  if (isTypeIdInParens()) {
2658    Action::TypeResult Ty = ParseTypeName();
2659
2660    assert((Ty.isInvalid() || Ty.get()) &&
2661           "Parser::ParseTypeofSpecifier(): missing type");
2662
2663    if (Tok.isNot(tok::r_paren)) {
2664      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2665      return;
2666    }
2667    RParenLoc = ConsumeParen();
2668
2669    if (Ty.isInvalid())
2670      DS.SetTypeSpecError();
2671    else {
2672      const char *PrevSpec = 0;
2673      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2674      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2675                             Ty.get()))
2676        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2677    }
2678  } else { // we have an expression.
2679    OwningExprResult Result(ParseExpression());
2680
2681    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2682      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2683      DS.SetTypeSpecError();
2684      return;
2685    }
2686    RParenLoc = ConsumeParen();
2687    const char *PrevSpec = 0;
2688    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2689    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2690                           Result.release()))
2691      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2692  }
2693  DS.SetRangeEnd(RParenLoc);
2694}
2695
2696
2697