ParseDecl.cpp revision 7f43d6764797ab21216421aeb00f4ec314d503d1
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228///         others... [FIXME]
229///
230Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
231  switch (Tok.getKind()) {
232  case tok::kw_export:
233  case tok::kw_template:
234    return ParseTemplateDeclarationOrSpecialization(Context);
235  case tok::kw_namespace:
236    return ParseNamespace(Context);
237  case tok::kw_using:
238    return ParseUsingDirectiveOrDeclaration(Context);
239  default:
240    return ParseSimpleDeclaration(Context);
241  }
242}
243
244///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
245///         declaration-specifiers init-declarator-list[opt] ';'
246///[C90/C++]init-declarator-list ';'                             [TODO]
247/// [OMP]   threadprivate-directive                              [TODO]
248Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
249  // Parse the common declaration-specifiers piece.
250  DeclSpec DS;
251  ParseDeclarationSpecifiers(DS);
252
253  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
254  // declaration-specifiers init-declarator-list[opt] ';'
255  if (Tok.is(tok::semi)) {
256    ConsumeToken();
257    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
258  }
259
260  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
261  ParseDeclarator(DeclaratorInfo);
262
263  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
264}
265
266
267/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
268/// parsing 'declaration-specifiers declarator'.  This method is split out this
269/// way to handle the ambiguity between top-level function-definitions and
270/// declarations.
271///
272///       init-declarator-list: [C99 6.7]
273///         init-declarator
274///         init-declarator-list ',' init-declarator
275///       init-declarator: [C99 6.7]
276///         declarator
277///         declarator '=' initializer
278/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
279/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
280/// [C++]   declarator initializer[opt]
281///
282/// [C++] initializer:
283/// [C++]   '=' initializer-clause
284/// [C++]   '(' expression-list ')'
285///
286Parser::DeclTy *Parser::
287ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
288
289  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
290  // that they can be chained properly if the actions want this.
291  Parser::DeclTy *LastDeclInGroup = 0;
292
293  // At this point, we know that it is not a function definition.  Parse the
294  // rest of the init-declarator-list.
295  while (1) {
296    // If a simple-asm-expr is present, parse it.
297    if (Tok.is(tok::kw_asm)) {
298      SourceLocation Loc;
299      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
300      if (AsmLabel.isInvalid()) {
301        SkipUntil(tok::semi);
302        return 0;
303      }
304
305      D.setAsmLabel(AsmLabel.release());
306      D.SetRangeEnd(Loc);
307    }
308
309    // If attributes are present, parse them.
310    if (Tok.is(tok::kw___attribute)) {
311      SourceLocation Loc;
312      AttributeList *AttrList = ParseAttributes(&Loc);
313      D.AddAttributes(AttrList, Loc);
314    }
315
316    // Inform the current actions module that we just parsed this declarator.
317    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
318
319    // Parse declarator '=' initializer.
320    if (Tok.is(tok::equal)) {
321      ConsumeToken();
322      OwningExprResult Init(ParseInitializer());
323      if (Init.isInvalid()) {
324        SkipUntil(tok::semi);
325        return 0;
326      }
327      Actions.AddInitializerToDecl(LastDeclInGroup, move(Init));
328    } else if (Tok.is(tok::l_paren)) {
329      // Parse C++ direct initializer: '(' expression-list ')'
330      SourceLocation LParenLoc = ConsumeParen();
331      ExprVector Exprs(Actions);
332      CommaLocsTy CommaLocs;
333
334      bool InvalidExpr = false;
335      if (ParseExpressionList(Exprs, CommaLocs)) {
336        SkipUntil(tok::r_paren);
337        InvalidExpr = true;
338      }
339      // Match the ')'.
340      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
341
342      if (!InvalidExpr) {
343        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
344               "Unexpected number of commas!");
345        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
346                                              Exprs.take(), Exprs.size(),
347                                              &CommaLocs[0], RParenLoc);
348      }
349    } else {
350      Actions.ActOnUninitializedDecl(LastDeclInGroup);
351    }
352
353    // If we don't have a comma, it is either the end of the list (a ';') or an
354    // error, bail out.
355    if (Tok.isNot(tok::comma))
356      break;
357
358    // Consume the comma.
359    ConsumeToken();
360
361    // Parse the next declarator.
362    D.clear();
363
364    // Accept attributes in an init-declarator.  In the first declarator in a
365    // declaration, these would be part of the declspec.  In subsequent
366    // declarators, they become part of the declarator itself, so that they
367    // don't apply to declarators after *this* one.  Examples:
368    //    short __attribute__((common)) var;    -> declspec
369    //    short var __attribute__((common));    -> declarator
370    //    short x, __attribute__((common)) var;    -> declarator
371    if (Tok.is(tok::kw___attribute)) {
372      SourceLocation Loc;
373      AttributeList *AttrList = ParseAttributes(&Loc);
374      D.AddAttributes(AttrList, Loc);
375    }
376
377    ParseDeclarator(D);
378  }
379
380  if (Tok.is(tok::semi)) {
381    ConsumeToken();
382    // for(is key; in keys) is error.
383    if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
384      Diag(Tok, diag::err_parse_error);
385      return 0;
386    }
387    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
388  }
389  // If this is an ObjC2 for-each loop, this is a successful declarator
390  // parse.  The syntax for these looks like:
391  // 'for' '(' declaration 'in' expr ')' statement
392  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
393    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
394  }
395  Diag(Tok, diag::err_parse_error);
396  // Skip to end of block or statement
397  SkipUntil(tok::r_brace, true, true);
398  if (Tok.is(tok::semi))
399    ConsumeToken();
400  return 0;
401}
402
403/// ParseSpecifierQualifierList
404///        specifier-qualifier-list:
405///          type-specifier specifier-qualifier-list[opt]
406///          type-qualifier specifier-qualifier-list[opt]
407/// [GNU]    attributes     specifier-qualifier-list[opt]
408///
409void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
410  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
411  /// parse declaration-specifiers and complain about extra stuff.
412  ParseDeclarationSpecifiers(DS);
413
414  // Validate declspec for type-name.
415  unsigned Specs = DS.getParsedSpecifiers();
416  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
417    Diag(Tok, diag::err_typename_requires_specqual);
418
419  // Issue diagnostic and remove storage class if present.
420  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
421    if (DS.getStorageClassSpecLoc().isValid())
422      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
423    else
424      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
425    DS.ClearStorageClassSpecs();
426  }
427
428  // Issue diagnostic and remove function specfier if present.
429  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
430    if (DS.isInlineSpecified())
431      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
432    if (DS.isVirtualSpecified())
433      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
434    if (DS.isExplicitSpecified())
435      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
436    DS.ClearFunctionSpecs();
437  }
438}
439
440/// ParseDeclarationSpecifiers
441///       declaration-specifiers: [C99 6.7]
442///         storage-class-specifier declaration-specifiers[opt]
443///         type-specifier declaration-specifiers[opt]
444/// [C99]   function-specifier declaration-specifiers[opt]
445/// [GNU]   attributes declaration-specifiers[opt]
446///
447///       storage-class-specifier: [C99 6.7.1]
448///         'typedef'
449///         'extern'
450///         'static'
451///         'auto'
452///         'register'
453/// [C++]   'mutable'
454/// [GNU]   '__thread'
455///       function-specifier: [C99 6.7.4]
456/// [C99]   'inline'
457/// [C++]   'virtual'
458/// [C++]   'explicit'
459///
460void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
461                                        TemplateParameterLists *TemplateParams){
462  DS.SetRangeStart(Tok.getLocation());
463  while (1) {
464    int isInvalid = false;
465    const char *PrevSpec = 0;
466    SourceLocation Loc = Tok.getLocation();
467
468    switch (Tok.getKind()) {
469    default:
470    DoneWithDeclSpec:
471      // If this is not a declaration specifier token, we're done reading decl
472      // specifiers.  First verify that DeclSpec's are consistent.
473      DS.Finish(Diags, PP.getSourceManager(), getLang());
474      return;
475
476    case tok::coloncolon: // ::foo::bar
477      // Annotate C++ scope specifiers.  If we get one, loop.
478      if (TryAnnotateCXXScopeToken())
479        continue;
480      goto DoneWithDeclSpec;
481
482    case tok::annot_cxxscope: {
483      if (DS.hasTypeSpecifier())
484        goto DoneWithDeclSpec;
485
486      // We are looking for a qualified typename.
487      if (NextToken().isNot(tok::identifier))
488        goto DoneWithDeclSpec;
489
490      CXXScopeSpec SS;
491      SS.setScopeRep(Tok.getAnnotationValue());
492      SS.setRange(Tok.getAnnotationRange());
493
494      // If the next token is the name of the class type that the C++ scope
495      // denotes, followed by a '(', then this is a constructor declaration.
496      // We're done with the decl-specifiers.
497      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
498                                     CurScope, &SS) &&
499          GetLookAheadToken(2).is(tok::l_paren))
500        goto DoneWithDeclSpec;
501
502      Token Next = NextToken();
503      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
504                                            Next.getLocation(), CurScope, &SS);
505
506      if (TypeRep == 0)
507        goto DoneWithDeclSpec;
508
509      ConsumeToken(); // The C++ scope.
510
511      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
512                                     TypeRep);
513      if (isInvalid)
514        break;
515
516      DS.SetRangeEnd(Tok.getLocation());
517      ConsumeToken(); // The typename.
518
519      continue;
520    }
521
522    case tok::annot_typename: {
523      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
524                                     Tok.getAnnotationValue());
525      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
526      ConsumeToken(); // The typename
527
528      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
529      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
530      // Objective-C interface.  If we don't have Objective-C or a '<', this is
531      // just a normal reference to a typedef name.
532      if (!Tok.is(tok::less) || !getLang().ObjC1)
533        continue;
534
535      SourceLocation EndProtoLoc;
536      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
537      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
538      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
539
540      DS.SetRangeEnd(EndProtoLoc);
541      continue;
542    }
543
544      // typedef-name
545    case tok::identifier: {
546      // In C++, check to see if this is a scope specifier like foo::bar::, if
547      // so handle it as such.  This is important for ctor parsing.
548      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
549        continue;
550
551      // This identifier can only be a typedef name if we haven't already seen
552      // a type-specifier.  Without this check we misparse:
553      //  typedef int X; struct Y { short X; };  as 'short int'.
554      if (DS.hasTypeSpecifier())
555        goto DoneWithDeclSpec;
556
557      // It has to be available as a typedef too!
558      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
559                                            Tok.getLocation(), CurScope);
560
561      if (TypeRep == 0)
562        goto DoneWithDeclSpec;
563
564      // C++: If the identifier is actually the name of the class type
565      // being defined and the next token is a '(', then this is a
566      // constructor declaration. We're done with the decl-specifiers
567      // and will treat this token as an identifier.
568      if (getLang().CPlusPlus &&
569          CurScope->isClassScope() &&
570          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
571          NextToken().getKind() == tok::l_paren)
572        goto DoneWithDeclSpec;
573
574      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
575                                     TypeRep);
576      if (isInvalid)
577        break;
578
579      DS.SetRangeEnd(Tok.getLocation());
580      ConsumeToken(); // The identifier
581
582      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
583      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
584      // Objective-C interface.  If we don't have Objective-C or a '<', this is
585      // just a normal reference to a typedef name.
586      if (!Tok.is(tok::less) || !getLang().ObjC1)
587        continue;
588
589      SourceLocation EndProtoLoc;
590      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
591      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
592      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
593
594      DS.SetRangeEnd(EndProtoLoc);
595
596      // Need to support trailing type qualifiers (e.g. "id<p> const").
597      // If a type specifier follows, it will be diagnosed elsewhere.
598      continue;
599    }
600
601      // type-name
602    case tok::annot_template_id: {
603      TemplateIdAnnotation *TemplateId
604        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
605      if (TemplateId->Kind != TNK_Class_template) {
606        // This template-id does not refer to a type name, so we're
607        // done with the type-specifiers.
608        goto DoneWithDeclSpec;
609      }
610
611      // Turn the template-id annotation token into a type annotation
612      // token, then try again to parse it as a type-specifier.
613      if (AnnotateTemplateIdTokenAsType())
614        DS.SetTypeSpecError();
615
616      continue;
617    }
618
619    // GNU attributes support.
620    case tok::kw___attribute:
621      DS.AddAttributes(ParseAttributes());
622      continue;
623
624    // Microsoft declspec support.
625    case tok::kw___declspec:
626      if (!PP.getLangOptions().Microsoft)
627        goto DoneWithDeclSpec;
628      FuzzyParseMicrosoftDeclSpec();
629      continue;
630
631    // Microsoft single token adornments.
632    case tok::kw___forceinline:
633    case tok::kw___w64:
634    case tok::kw___cdecl:
635    case tok::kw___stdcall:
636    case tok::kw___fastcall:
637      if (!PP.getLangOptions().Microsoft)
638        goto DoneWithDeclSpec;
639      // Just ignore it.
640      break;
641
642    // storage-class-specifier
643    case tok::kw_typedef:
644      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
645      break;
646    case tok::kw_extern:
647      if (DS.isThreadSpecified())
648        Diag(Tok, diag::ext_thread_before) << "extern";
649      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
650      break;
651    case tok::kw___private_extern__:
652      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
653                                         PrevSpec);
654      break;
655    case tok::kw_static:
656      if (DS.isThreadSpecified())
657        Diag(Tok, diag::ext_thread_before) << "static";
658      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
659      break;
660    case tok::kw_auto:
661      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
662      break;
663    case tok::kw_register:
664      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
665      break;
666    case tok::kw_mutable:
667      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
668      break;
669    case tok::kw___thread:
670      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
671      break;
672
673      continue;
674
675    // function-specifier
676    case tok::kw_inline:
677      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
678      break;
679    case tok::kw_virtual:
680      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
681      break;
682    case tok::kw_explicit:
683      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
684      break;
685
686    // type-specifier
687    case tok::kw_short:
688      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
689      break;
690    case tok::kw_long:
691      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
692        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
693      else
694        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
695      break;
696    case tok::kw_signed:
697      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
698      break;
699    case tok::kw_unsigned:
700      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
701      break;
702    case tok::kw__Complex:
703      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
704      break;
705    case tok::kw__Imaginary:
706      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
707      break;
708    case tok::kw_void:
709      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
710      break;
711    case tok::kw_char:
712      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
713      break;
714    case tok::kw_int:
715      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
716      break;
717    case tok::kw_float:
718      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
719      break;
720    case tok::kw_double:
721      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
722      break;
723    case tok::kw_wchar_t:
724      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
725      break;
726    case tok::kw_bool:
727    case tok::kw__Bool:
728      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
729      break;
730    case tok::kw__Decimal32:
731      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
732      break;
733    case tok::kw__Decimal64:
734      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
735      break;
736    case tok::kw__Decimal128:
737      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
738      break;
739
740    // class-specifier:
741    case tok::kw_class:
742    case tok::kw_struct:
743    case tok::kw_union:
744      ParseClassSpecifier(DS, TemplateParams);
745      continue;
746
747    // enum-specifier:
748    case tok::kw_enum:
749      ParseEnumSpecifier(DS);
750      continue;
751
752    // cv-qualifier:
753    case tok::kw_const:
754      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
755      break;
756    case tok::kw_volatile:
757      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
758                                 getLang())*2;
759      break;
760    case tok::kw_restrict:
761      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
762                                 getLang())*2;
763      break;
764
765    // GNU typeof support.
766    case tok::kw_typeof:
767      ParseTypeofSpecifier(DS);
768      continue;
769
770    case tok::less:
771      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
772      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
773      // but we support it.
774      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
775        goto DoneWithDeclSpec;
776
777      {
778        SourceLocation EndProtoLoc;
779        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
780        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
781        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
782        DS.SetRangeEnd(EndProtoLoc);
783
784        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
785          << SourceRange(Loc, EndProtoLoc);
786        // Need to support trailing type qualifiers (e.g. "id<p> const").
787        // If a type specifier follows, it will be diagnosed elsewhere.
788        continue;
789      }
790    }
791    // If the specifier combination wasn't legal, issue a diagnostic.
792    if (isInvalid) {
793      assert(PrevSpec && "Method did not return previous specifier!");
794      // Pick between error or extwarn.
795      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
796                                       : diag::ext_duplicate_declspec;
797      Diag(Tok, DiagID) << PrevSpec;
798    }
799    DS.SetRangeEnd(Tok.getLocation());
800    ConsumeToken();
801  }
802}
803
804/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
805/// primarily follow the C++ grammar with additions for C99 and GNU,
806/// which together subsume the C grammar. Note that the C++
807/// type-specifier also includes the C type-qualifier (for const,
808/// volatile, and C99 restrict). Returns true if a type-specifier was
809/// found (and parsed), false otherwise.
810///
811///       type-specifier: [C++ 7.1.5]
812///         simple-type-specifier
813///         class-specifier
814///         enum-specifier
815///         elaborated-type-specifier  [TODO]
816///         cv-qualifier
817///
818///       cv-qualifier: [C++ 7.1.5.1]
819///         'const'
820///         'volatile'
821/// [C99]   'restrict'
822///
823///       simple-type-specifier: [ C++ 7.1.5.2]
824///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
825///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
826///         'char'
827///         'wchar_t'
828///         'bool'
829///         'short'
830///         'int'
831///         'long'
832///         'signed'
833///         'unsigned'
834///         'float'
835///         'double'
836///         'void'
837/// [C99]   '_Bool'
838/// [C99]   '_Complex'
839/// [C99]   '_Imaginary'  // Removed in TC2?
840/// [GNU]   '_Decimal32'
841/// [GNU]   '_Decimal64'
842/// [GNU]   '_Decimal128'
843/// [GNU]   typeof-specifier
844/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
845/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
846bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
847                                        const char *&PrevSpec,
848                                        TemplateParameterLists *TemplateParams){
849  SourceLocation Loc = Tok.getLocation();
850
851  switch (Tok.getKind()) {
852  case tok::identifier:   // foo::bar
853    // Annotate typenames and C++ scope specifiers.  If we get one, just
854    // recurse to handle whatever we get.
855    if (TryAnnotateTypeOrScopeToken())
856      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
857    // Otherwise, not a type specifier.
858    return false;
859  case tok::coloncolon:   // ::foo::bar
860    if (NextToken().is(tok::kw_new) ||    // ::new
861        NextToken().is(tok::kw_delete))   // ::delete
862      return false;
863
864    // Annotate typenames and C++ scope specifiers.  If we get one, just
865    // recurse to handle whatever we get.
866    if (TryAnnotateTypeOrScopeToken())
867      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
868    // Otherwise, not a type specifier.
869    return false;
870
871  // simple-type-specifier:
872  case tok::annot_typename: {
873    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
874                                   Tok.getAnnotationValue());
875    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
876    ConsumeToken(); // The typename
877
878    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
879    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
880    // Objective-C interface.  If we don't have Objective-C or a '<', this is
881    // just a normal reference to a typedef name.
882    if (!Tok.is(tok::less) || !getLang().ObjC1)
883      return true;
884
885    SourceLocation EndProtoLoc;
886    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
887    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
888    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
889
890    DS.SetRangeEnd(EndProtoLoc);
891    return true;
892  }
893
894  case tok::kw_short:
895    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
896    break;
897  case tok::kw_long:
898    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
899      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
900    else
901      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
902    break;
903  case tok::kw_signed:
904    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
905    break;
906  case tok::kw_unsigned:
907    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
908    break;
909  case tok::kw__Complex:
910    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
911    break;
912  case tok::kw__Imaginary:
913    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
914    break;
915  case tok::kw_void:
916    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
917    break;
918  case tok::kw_char:
919    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
920    break;
921  case tok::kw_int:
922    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
923    break;
924  case tok::kw_float:
925    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
926    break;
927  case tok::kw_double:
928    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
929    break;
930  case tok::kw_wchar_t:
931    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
932    break;
933  case tok::kw_bool:
934  case tok::kw__Bool:
935    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
936    break;
937  case tok::kw__Decimal32:
938    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
939    break;
940  case tok::kw__Decimal64:
941    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
942    break;
943  case tok::kw__Decimal128:
944    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
945    break;
946
947  // class-specifier:
948  case tok::kw_class:
949  case tok::kw_struct:
950  case tok::kw_union:
951    ParseClassSpecifier(DS, TemplateParams);
952    return true;
953
954  // enum-specifier:
955  case tok::kw_enum:
956    ParseEnumSpecifier(DS);
957    return true;
958
959  // cv-qualifier:
960  case tok::kw_const:
961    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
962                               getLang())*2;
963    break;
964  case tok::kw_volatile:
965    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
966                               getLang())*2;
967    break;
968  case tok::kw_restrict:
969    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
970                               getLang())*2;
971    break;
972
973  // GNU typeof support.
974  case tok::kw_typeof:
975    ParseTypeofSpecifier(DS);
976    return true;
977
978  case tok::kw___cdecl:
979  case tok::kw___stdcall:
980  case tok::kw___fastcall:
981    if (!PP.getLangOptions().Microsoft) return false;
982    ConsumeToken();
983    return true;
984
985  default:
986    // Not a type-specifier; do nothing.
987    return false;
988  }
989
990  // If the specifier combination wasn't legal, issue a diagnostic.
991  if (isInvalid) {
992    assert(PrevSpec && "Method did not return previous specifier!");
993    // Pick between error or extwarn.
994    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
995                                     : diag::ext_duplicate_declspec;
996    Diag(Tok, DiagID) << PrevSpec;
997  }
998  DS.SetRangeEnd(Tok.getLocation());
999  ConsumeToken(); // whatever we parsed above.
1000  return true;
1001}
1002
1003/// ParseStructDeclaration - Parse a struct declaration without the terminating
1004/// semicolon.
1005///
1006///       struct-declaration:
1007///         specifier-qualifier-list struct-declarator-list
1008/// [GNU]   __extension__ struct-declaration
1009/// [GNU]   specifier-qualifier-list
1010///       struct-declarator-list:
1011///         struct-declarator
1012///         struct-declarator-list ',' struct-declarator
1013/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1014///       struct-declarator:
1015///         declarator
1016/// [GNU]   declarator attributes[opt]
1017///         declarator[opt] ':' constant-expression
1018/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1019///
1020void Parser::
1021ParseStructDeclaration(DeclSpec &DS,
1022                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1023  if (Tok.is(tok::kw___extension__)) {
1024    // __extension__ silences extension warnings in the subexpression.
1025    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1026    ConsumeToken();
1027    return ParseStructDeclaration(DS, Fields);
1028  }
1029
1030  // Parse the common specifier-qualifiers-list piece.
1031  SourceLocation DSStart = Tok.getLocation();
1032  ParseSpecifierQualifierList(DS);
1033
1034  // If there are no declarators, this is a free-standing declaration
1035  // specifier. Let the actions module cope with it.
1036  if (Tok.is(tok::semi)) {
1037    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1038    return;
1039  }
1040
1041  // Read struct-declarators until we find the semicolon.
1042  Fields.push_back(FieldDeclarator(DS));
1043  while (1) {
1044    FieldDeclarator &DeclaratorInfo = Fields.back();
1045
1046    /// struct-declarator: declarator
1047    /// struct-declarator: declarator[opt] ':' constant-expression
1048    if (Tok.isNot(tok::colon))
1049      ParseDeclarator(DeclaratorInfo.D);
1050
1051    if (Tok.is(tok::colon)) {
1052      ConsumeToken();
1053      OwningExprResult Res(ParseConstantExpression());
1054      if (Res.isInvalid())
1055        SkipUntil(tok::semi, true, true);
1056      else
1057        DeclaratorInfo.BitfieldSize = Res.release();
1058    }
1059
1060    // If attributes exist after the declarator, parse them.
1061    if (Tok.is(tok::kw___attribute)) {
1062      SourceLocation Loc;
1063      AttributeList *AttrList = ParseAttributes(&Loc);
1064      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1065    }
1066
1067    // If we don't have a comma, it is either the end of the list (a ';')
1068    // or an error, bail out.
1069    if (Tok.isNot(tok::comma))
1070      return;
1071
1072    // Consume the comma.
1073    ConsumeToken();
1074
1075    // Parse the next declarator.
1076    Fields.push_back(FieldDeclarator(DS));
1077
1078    // Attributes are only allowed on the second declarator.
1079    if (Tok.is(tok::kw___attribute)) {
1080      SourceLocation Loc;
1081      AttributeList *AttrList = ParseAttributes(&Loc);
1082      Fields.back().D.AddAttributes(AttrList, Loc);
1083    }
1084  }
1085}
1086
1087/// ParseStructUnionBody
1088///       struct-contents:
1089///         struct-declaration-list
1090/// [EXT]   empty
1091/// [GNU]   "struct-declaration-list" without terminatoring ';'
1092///       struct-declaration-list:
1093///         struct-declaration
1094///         struct-declaration-list struct-declaration
1095/// [OBC]   '@' 'defs' '(' class-name ')'
1096///
1097void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1098                                  unsigned TagType, DeclTy *TagDecl) {
1099  SourceLocation LBraceLoc = ConsumeBrace();
1100
1101  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1102  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1103
1104  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1105  // C++.
1106  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1107    Diag(Tok, diag::ext_empty_struct_union_enum)
1108      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1109
1110  llvm::SmallVector<DeclTy*, 32> FieldDecls;
1111  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1112
1113  // While we still have something to read, read the declarations in the struct.
1114  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1115    // Each iteration of this loop reads one struct-declaration.
1116
1117    // Check for extraneous top-level semicolon.
1118    if (Tok.is(tok::semi)) {
1119      Diag(Tok, diag::ext_extra_struct_semi);
1120      ConsumeToken();
1121      continue;
1122    }
1123
1124    // Parse all the comma separated declarators.
1125    DeclSpec DS;
1126    FieldDeclarators.clear();
1127    if (!Tok.is(tok::at)) {
1128      ParseStructDeclaration(DS, FieldDeclarators);
1129
1130      // Convert them all to fields.
1131      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1132        FieldDeclarator &FD = FieldDeclarators[i];
1133        // Install the declarator into the current TagDecl.
1134        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
1135                                           DS.getSourceRange().getBegin(),
1136                                           FD.D, FD.BitfieldSize);
1137        FieldDecls.push_back(Field);
1138      }
1139    } else { // Handle @defs
1140      ConsumeToken();
1141      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1142        Diag(Tok, diag::err_unexpected_at);
1143        SkipUntil(tok::semi, true, true);
1144        continue;
1145      }
1146      ConsumeToken();
1147      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1148      if (!Tok.is(tok::identifier)) {
1149        Diag(Tok, diag::err_expected_ident);
1150        SkipUntil(tok::semi, true, true);
1151        continue;
1152      }
1153      llvm::SmallVector<DeclTy*, 16> Fields;
1154      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1155                        Tok.getIdentifierInfo(), Fields);
1156      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1157      ConsumeToken();
1158      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1159    }
1160
1161    if (Tok.is(tok::semi)) {
1162      ConsumeToken();
1163    } else if (Tok.is(tok::r_brace)) {
1164      Diag(Tok, diag::ext_expected_semi_decl_list);
1165      break;
1166    } else {
1167      Diag(Tok, diag::err_expected_semi_decl_list);
1168      // Skip to end of block or statement
1169      SkipUntil(tok::r_brace, true, true);
1170    }
1171  }
1172
1173  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1174
1175  AttributeList *AttrList = 0;
1176  // If attributes exist after struct contents, parse them.
1177  if (Tok.is(tok::kw___attribute))
1178    AttrList = ParseAttributes();
1179
1180  Actions.ActOnFields(CurScope,
1181                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1182                      LBraceLoc, RBraceLoc,
1183                      AttrList);
1184  StructScope.Exit();
1185  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1186}
1187
1188
1189/// ParseEnumSpecifier
1190///       enum-specifier: [C99 6.7.2.2]
1191///         'enum' identifier[opt] '{' enumerator-list '}'
1192///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1193/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1194///                                                 '}' attributes[opt]
1195///         'enum' identifier
1196/// [GNU]   'enum' attributes[opt] identifier
1197///
1198/// [C++] elaborated-type-specifier:
1199/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1200///
1201void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1202  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1203  SourceLocation StartLoc = ConsumeToken();
1204
1205  // Parse the tag portion of this.
1206
1207  AttributeList *Attr = 0;
1208  // If attributes exist after tag, parse them.
1209  if (Tok.is(tok::kw___attribute))
1210    Attr = ParseAttributes();
1211
1212  CXXScopeSpec SS;
1213  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1214    if (Tok.isNot(tok::identifier)) {
1215      Diag(Tok, diag::err_expected_ident);
1216      if (Tok.isNot(tok::l_brace)) {
1217        // Has no name and is not a definition.
1218        // Skip the rest of this declarator, up until the comma or semicolon.
1219        SkipUntil(tok::comma, true);
1220        return;
1221      }
1222    }
1223  }
1224
1225  // Must have either 'enum name' or 'enum {...}'.
1226  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1227    Diag(Tok, diag::err_expected_ident_lbrace);
1228
1229    // Skip the rest of this declarator, up until the comma or semicolon.
1230    SkipUntil(tok::comma, true);
1231    return;
1232  }
1233
1234  // If an identifier is present, consume and remember it.
1235  IdentifierInfo *Name = 0;
1236  SourceLocation NameLoc;
1237  if (Tok.is(tok::identifier)) {
1238    Name = Tok.getIdentifierInfo();
1239    NameLoc = ConsumeToken();
1240  }
1241
1242  // There are three options here.  If we have 'enum foo;', then this is a
1243  // forward declaration.  If we have 'enum foo {...' then this is a
1244  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1245  //
1246  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1247  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1248  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1249  //
1250  Action::TagKind TK;
1251  if (Tok.is(tok::l_brace))
1252    TK = Action::TK_Definition;
1253  else if (Tok.is(tok::semi))
1254    TK = Action::TK_Declaration;
1255  else
1256    TK = Action::TK_Reference;
1257  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1258                                     SS, Name, NameLoc, Attr);
1259
1260  if (Tok.is(tok::l_brace))
1261    ParseEnumBody(StartLoc, TagDecl);
1262
1263  // TODO: semantic analysis on the declspec for enums.
1264  const char *PrevSpec = 0;
1265  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1266    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1267}
1268
1269/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1270///       enumerator-list:
1271///         enumerator
1272///         enumerator-list ',' enumerator
1273///       enumerator:
1274///         enumeration-constant
1275///         enumeration-constant '=' constant-expression
1276///       enumeration-constant:
1277///         identifier
1278///
1279void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1280  // Enter the scope of the enum body and start the definition.
1281  ParseScope EnumScope(this, Scope::DeclScope);
1282  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1283
1284  SourceLocation LBraceLoc = ConsumeBrace();
1285
1286  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1287  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1288    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1289
1290  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1291
1292  DeclTy *LastEnumConstDecl = 0;
1293
1294  // Parse the enumerator-list.
1295  while (Tok.is(tok::identifier)) {
1296    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1297    SourceLocation IdentLoc = ConsumeToken();
1298
1299    SourceLocation EqualLoc;
1300    OwningExprResult AssignedVal(Actions);
1301    if (Tok.is(tok::equal)) {
1302      EqualLoc = ConsumeToken();
1303      AssignedVal = ParseConstantExpression();
1304      if (AssignedVal.isInvalid())
1305        SkipUntil(tok::comma, tok::r_brace, true, true);
1306    }
1307
1308    // Install the enumerator constant into EnumDecl.
1309    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1310                                                      LastEnumConstDecl,
1311                                                      IdentLoc, Ident,
1312                                                      EqualLoc,
1313                                                      AssignedVal.release());
1314    EnumConstantDecls.push_back(EnumConstDecl);
1315    LastEnumConstDecl = EnumConstDecl;
1316
1317    if (Tok.isNot(tok::comma))
1318      break;
1319    SourceLocation CommaLoc = ConsumeToken();
1320
1321    if (Tok.isNot(tok::identifier) && !getLang().C99)
1322      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1323  }
1324
1325  // Eat the }.
1326  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1327
1328  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1329                        EnumConstantDecls.size());
1330
1331  DeclTy *AttrList = 0;
1332  // If attributes exist after the identifier list, parse them.
1333  if (Tok.is(tok::kw___attribute))
1334    AttrList = ParseAttributes(); // FIXME: where do they do?
1335
1336  EnumScope.Exit();
1337  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1338}
1339
1340/// isTypeSpecifierQualifier - Return true if the current token could be the
1341/// start of a type-qualifier-list.
1342bool Parser::isTypeQualifier() const {
1343  switch (Tok.getKind()) {
1344  default: return false;
1345    // type-qualifier
1346  case tok::kw_const:
1347  case tok::kw_volatile:
1348  case tok::kw_restrict:
1349    return true;
1350  }
1351}
1352
1353/// isTypeSpecifierQualifier - Return true if the current token could be the
1354/// start of a specifier-qualifier-list.
1355bool Parser::isTypeSpecifierQualifier() {
1356  switch (Tok.getKind()) {
1357  default: return false;
1358
1359  case tok::identifier:   // foo::bar
1360    // Annotate typenames and C++ scope specifiers.  If we get one, just
1361    // recurse to handle whatever we get.
1362    if (TryAnnotateTypeOrScopeToken())
1363      return isTypeSpecifierQualifier();
1364    // Otherwise, not a type specifier.
1365    return false;
1366  case tok::coloncolon:   // ::foo::bar
1367    if (NextToken().is(tok::kw_new) ||    // ::new
1368        NextToken().is(tok::kw_delete))   // ::delete
1369      return false;
1370
1371    // Annotate typenames and C++ scope specifiers.  If we get one, just
1372    // recurse to handle whatever we get.
1373    if (TryAnnotateTypeOrScopeToken())
1374      return isTypeSpecifierQualifier();
1375    // Otherwise, not a type specifier.
1376    return false;
1377
1378    // GNU attributes support.
1379  case tok::kw___attribute:
1380    // GNU typeof support.
1381  case tok::kw_typeof:
1382
1383    // type-specifiers
1384  case tok::kw_short:
1385  case tok::kw_long:
1386  case tok::kw_signed:
1387  case tok::kw_unsigned:
1388  case tok::kw__Complex:
1389  case tok::kw__Imaginary:
1390  case tok::kw_void:
1391  case tok::kw_char:
1392  case tok::kw_wchar_t:
1393  case tok::kw_int:
1394  case tok::kw_float:
1395  case tok::kw_double:
1396  case tok::kw_bool:
1397  case tok::kw__Bool:
1398  case tok::kw__Decimal32:
1399  case tok::kw__Decimal64:
1400  case tok::kw__Decimal128:
1401
1402    // struct-or-union-specifier (C99) or class-specifier (C++)
1403  case tok::kw_class:
1404  case tok::kw_struct:
1405  case tok::kw_union:
1406    // enum-specifier
1407  case tok::kw_enum:
1408
1409    // type-qualifier
1410  case tok::kw_const:
1411  case tok::kw_volatile:
1412  case tok::kw_restrict:
1413
1414    // typedef-name
1415  case tok::annot_typename:
1416    return true;
1417
1418    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1419  case tok::less:
1420    return getLang().ObjC1;
1421
1422  case tok::kw___cdecl:
1423  case tok::kw___stdcall:
1424  case tok::kw___fastcall:
1425    return PP.getLangOptions().Microsoft;
1426  }
1427}
1428
1429/// isDeclarationSpecifier() - Return true if the current token is part of a
1430/// declaration specifier.
1431bool Parser::isDeclarationSpecifier() {
1432  switch (Tok.getKind()) {
1433  default: return false;
1434
1435  case tok::identifier:   // foo::bar
1436    // Annotate typenames and C++ scope specifiers.  If we get one, just
1437    // recurse to handle whatever we get.
1438    if (TryAnnotateTypeOrScopeToken())
1439      return isDeclarationSpecifier();
1440    // Otherwise, not a declaration specifier.
1441    return false;
1442  case tok::coloncolon:   // ::foo::bar
1443    if (NextToken().is(tok::kw_new) ||    // ::new
1444        NextToken().is(tok::kw_delete))   // ::delete
1445      return false;
1446
1447    // Annotate typenames and C++ scope specifiers.  If we get one, just
1448    // recurse to handle whatever we get.
1449    if (TryAnnotateTypeOrScopeToken())
1450      return isDeclarationSpecifier();
1451    // Otherwise, not a declaration specifier.
1452    return false;
1453
1454    // storage-class-specifier
1455  case tok::kw_typedef:
1456  case tok::kw_extern:
1457  case tok::kw___private_extern__:
1458  case tok::kw_static:
1459  case tok::kw_auto:
1460  case tok::kw_register:
1461  case tok::kw___thread:
1462
1463    // type-specifiers
1464  case tok::kw_short:
1465  case tok::kw_long:
1466  case tok::kw_signed:
1467  case tok::kw_unsigned:
1468  case tok::kw__Complex:
1469  case tok::kw__Imaginary:
1470  case tok::kw_void:
1471  case tok::kw_char:
1472  case tok::kw_wchar_t:
1473  case tok::kw_int:
1474  case tok::kw_float:
1475  case tok::kw_double:
1476  case tok::kw_bool:
1477  case tok::kw__Bool:
1478  case tok::kw__Decimal32:
1479  case tok::kw__Decimal64:
1480  case tok::kw__Decimal128:
1481
1482    // struct-or-union-specifier (C99) or class-specifier (C++)
1483  case tok::kw_class:
1484  case tok::kw_struct:
1485  case tok::kw_union:
1486    // enum-specifier
1487  case tok::kw_enum:
1488
1489    // type-qualifier
1490  case tok::kw_const:
1491  case tok::kw_volatile:
1492  case tok::kw_restrict:
1493
1494    // function-specifier
1495  case tok::kw_inline:
1496  case tok::kw_virtual:
1497  case tok::kw_explicit:
1498
1499    // typedef-name
1500  case tok::annot_typename:
1501
1502    // GNU typeof support.
1503  case tok::kw_typeof:
1504
1505    // GNU attributes.
1506  case tok::kw___attribute:
1507    return true;
1508
1509    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1510  case tok::less:
1511    return getLang().ObjC1;
1512
1513  case tok::kw___declspec:
1514  case tok::kw___cdecl:
1515  case tok::kw___stdcall:
1516  case tok::kw___fastcall:
1517    return PP.getLangOptions().Microsoft;
1518  }
1519}
1520
1521
1522/// ParseTypeQualifierListOpt
1523///       type-qualifier-list: [C99 6.7.5]
1524///         type-qualifier
1525/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1526///         type-qualifier-list type-qualifier
1527/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1528///
1529void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1530  while (1) {
1531    int isInvalid = false;
1532    const char *PrevSpec = 0;
1533    SourceLocation Loc = Tok.getLocation();
1534
1535    switch (Tok.getKind()) {
1536    case tok::kw_const:
1537      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1538                                 getLang())*2;
1539      break;
1540    case tok::kw_volatile:
1541      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1542                                 getLang())*2;
1543      break;
1544    case tok::kw_restrict:
1545      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1546                                 getLang())*2;
1547      break;
1548    case tok::kw___ptr64:
1549    case tok::kw___cdecl:
1550    case tok::kw___stdcall:
1551    case tok::kw___fastcall:
1552      if (!PP.getLangOptions().Microsoft)
1553        goto DoneWithTypeQuals;
1554      // Just ignore it.
1555      break;
1556    case tok::kw___attribute:
1557      if (AttributesAllowed) {
1558        DS.AddAttributes(ParseAttributes());
1559        continue; // do *not* consume the next token!
1560      }
1561      // otherwise, FALL THROUGH!
1562    default:
1563      DoneWithTypeQuals:
1564      // If this is not a type-qualifier token, we're done reading type
1565      // qualifiers.  First verify that DeclSpec's are consistent.
1566      DS.Finish(Diags, PP.getSourceManager(), getLang());
1567      return;
1568    }
1569
1570    // If the specifier combination wasn't legal, issue a diagnostic.
1571    if (isInvalid) {
1572      assert(PrevSpec && "Method did not return previous specifier!");
1573      // Pick between error or extwarn.
1574      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1575                                      : diag::ext_duplicate_declspec;
1576      Diag(Tok, DiagID) << PrevSpec;
1577    }
1578    ConsumeToken();
1579  }
1580}
1581
1582
1583/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1584///
1585void Parser::ParseDeclarator(Declarator &D) {
1586  /// This implements the 'declarator' production in the C grammar, then checks
1587  /// for well-formedness and issues diagnostics.
1588  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1589}
1590
1591/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1592/// is parsed by the function passed to it. Pass null, and the direct-declarator
1593/// isn't parsed at all, making this function effectively parse the C++
1594/// ptr-operator production.
1595///
1596///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1597/// [C]     pointer[opt] direct-declarator
1598/// [C++]   direct-declarator
1599/// [C++]   ptr-operator declarator
1600///
1601///       pointer: [C99 6.7.5]
1602///         '*' type-qualifier-list[opt]
1603///         '*' type-qualifier-list[opt] pointer
1604///
1605///       ptr-operator:
1606///         '*' cv-qualifier-seq[opt]
1607///         '&'
1608/// [GNU]   '&' restrict[opt] attributes[opt]
1609///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1610void Parser::ParseDeclaratorInternal(Declarator &D,
1611                                     DirectDeclParseFunction DirectDeclParser) {
1612
1613  // C++ member pointers start with a '::' or a nested-name.
1614  // Member pointers get special handling, since there's no place for the
1615  // scope spec in the generic path below.
1616  if ((Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1617       Tok.is(tok::annot_cxxscope)) && getLang().CPlusPlus) {
1618    CXXScopeSpec SS;
1619    if (ParseOptionalCXXScopeSpecifier(SS)) {
1620      if(Tok.isNot(tok::star)) {
1621        // The scope spec really belongs to the direct-declarator.
1622        D.getCXXScopeSpec() = SS;
1623        if (DirectDeclParser)
1624          (this->*DirectDeclParser)(D);
1625        return;
1626      }
1627
1628      SourceLocation Loc = ConsumeToken();
1629      D.SetRangeEnd(Loc);
1630      DeclSpec DS;
1631      ParseTypeQualifierListOpt(DS);
1632      D.ExtendWithDeclSpec(DS);
1633
1634      // Recurse to parse whatever is left.
1635      ParseDeclaratorInternal(D, DirectDeclParser);
1636
1637      // Sema will have to catch (syntactically invalid) pointers into global
1638      // scope. It has to catch pointers into namespace scope anyway.
1639      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1640                                                      Loc, DS.TakeAttributes()),
1641                    /* Don't replace range end. */SourceLocation());
1642      return;
1643    }
1644  }
1645
1646  tok::TokenKind Kind = Tok.getKind();
1647  // Not a pointer, C++ reference, or block.
1648  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1649      (Kind != tok::caret || !getLang().Blocks)) {
1650    if (DirectDeclParser)
1651      (this->*DirectDeclParser)(D);
1652    return;
1653  }
1654
1655  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1656  SourceLocation Loc = ConsumeToken();  // Eat the *, ^ or &.
1657  D.SetRangeEnd(Loc);
1658
1659  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1660    // Is a pointer.
1661    DeclSpec DS;
1662
1663    ParseTypeQualifierListOpt(DS);
1664    D.ExtendWithDeclSpec(DS);
1665
1666    // Recursively parse the declarator.
1667    ParseDeclaratorInternal(D, DirectDeclParser);
1668    if (Kind == tok::star)
1669      // Remember that we parsed a pointer type, and remember the type-quals.
1670      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1671                                                DS.TakeAttributes()),
1672                    SourceLocation());
1673    else
1674      // Remember that we parsed a Block type, and remember the type-quals.
1675      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1676                                                     Loc),
1677                    SourceLocation());
1678  } else {
1679    // Is a reference
1680    DeclSpec DS;
1681
1682    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1683    // cv-qualifiers are introduced through the use of a typedef or of a
1684    // template type argument, in which case the cv-qualifiers are ignored.
1685    //
1686    // [GNU] Retricted references are allowed.
1687    // [GNU] Attributes on references are allowed.
1688    ParseTypeQualifierListOpt(DS);
1689    D.ExtendWithDeclSpec(DS);
1690
1691    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1692      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1693        Diag(DS.getConstSpecLoc(),
1694             diag::err_invalid_reference_qualifier_application) << "const";
1695      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1696        Diag(DS.getVolatileSpecLoc(),
1697             diag::err_invalid_reference_qualifier_application) << "volatile";
1698    }
1699
1700    // Recursively parse the declarator.
1701    ParseDeclaratorInternal(D, DirectDeclParser);
1702
1703    if (D.getNumTypeObjects() > 0) {
1704      // C++ [dcl.ref]p4: There shall be no references to references.
1705      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1706      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1707        if (const IdentifierInfo *II = D.getIdentifier())
1708          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1709           << II;
1710        else
1711          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1712            << "type name";
1713
1714        // Once we've complained about the reference-to-reference, we
1715        // can go ahead and build the (technically ill-formed)
1716        // declarator: reference collapsing will take care of it.
1717      }
1718    }
1719
1720    // Remember that we parsed a reference type. It doesn't have type-quals.
1721    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1722                                                DS.TakeAttributes()),
1723                  SourceLocation());
1724  }
1725}
1726
1727/// ParseDirectDeclarator
1728///       direct-declarator: [C99 6.7.5]
1729/// [C99]   identifier
1730///         '(' declarator ')'
1731/// [GNU]   '(' attributes declarator ')'
1732/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1733/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1734/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1735/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1736/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1737///         direct-declarator '(' parameter-type-list ')'
1738///         direct-declarator '(' identifier-list[opt] ')'
1739/// [GNU]   direct-declarator '(' parameter-forward-declarations
1740///                    parameter-type-list[opt] ')'
1741/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1742///                    cv-qualifier-seq[opt] exception-specification[opt]
1743/// [C++]   declarator-id
1744///
1745///       declarator-id: [C++ 8]
1746///         id-expression
1747///         '::'[opt] nested-name-specifier[opt] type-name
1748///
1749///       id-expression: [C++ 5.1]
1750///         unqualified-id
1751///         qualified-id            [TODO]
1752///
1753///       unqualified-id: [C++ 5.1]
1754///         identifier
1755///         operator-function-id
1756///         conversion-function-id  [TODO]
1757///          '~' class-name
1758///         template-id
1759///
1760void Parser::ParseDirectDeclarator(Declarator &D) {
1761  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1762
1763  if (getLang().CPlusPlus) {
1764    if (D.mayHaveIdentifier()) {
1765      // ParseDeclaratorInternal might already have parsed the scope.
1766      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1767        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1768      if (afterCXXScope) {
1769        // Change the declaration context for name lookup, until this function
1770        // is exited (and the declarator has been parsed).
1771        DeclScopeObj.EnterDeclaratorScope();
1772      }
1773
1774      if (Tok.is(tok::identifier)) {
1775        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1776
1777        // If this identifier is the name of the current class, it's a
1778        // constructor name.
1779        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1780          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1781                                               Tok.getLocation(), CurScope),
1782                           Tok.getLocation());
1783        // This is a normal identifier.
1784        } else
1785          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1786        ConsumeToken();
1787        goto PastIdentifier;
1788      } else if (Tok.is(tok::annot_template_id)) {
1789        TemplateIdAnnotation *TemplateId
1790          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1791
1792        // FIXME: Could this template-id name a constructor?
1793
1794        // FIXME: This is an egregious hack, where we silently ignore
1795        // the specialization (which should be a function template
1796        // specialization name) and use the name instead. This hack
1797        // will go away when we have support for function
1798        // specializations.
1799        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1800        TemplateId->Destroy();
1801        ConsumeToken();
1802        goto PastIdentifier;
1803      } else if (Tok.is(tok::kw_operator)) {
1804        SourceLocation OperatorLoc = Tok.getLocation();
1805        SourceLocation EndLoc;
1806
1807        // First try the name of an overloaded operator
1808        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1809          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1810        } else {
1811          // This must be a conversion function (C++ [class.conv.fct]).
1812          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1813            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1814          else {
1815            D.SetIdentifier(0, Tok.getLocation());
1816          }
1817        }
1818        goto PastIdentifier;
1819      } else if (Tok.is(tok::tilde)) {
1820        // This should be a C++ destructor.
1821        SourceLocation TildeLoc = ConsumeToken();
1822        if (Tok.is(tok::identifier)) {
1823          // FIXME: Inaccurate.
1824          SourceLocation NameLoc = Tok.getLocation();
1825          SourceLocation EndLoc;
1826          if (TypeTy *Type = ParseClassName(EndLoc)) {
1827            D.setDestructor(Type, TildeLoc, NameLoc);
1828          } else {
1829            D.SetIdentifier(0, TildeLoc);
1830          }
1831        } else {
1832          Diag(Tok, diag::err_expected_class_name);
1833          D.SetIdentifier(0, TildeLoc);
1834        }
1835        goto PastIdentifier;
1836      }
1837
1838      // If we reached this point, token is not identifier and not '~'.
1839
1840      if (afterCXXScope) {
1841        Diag(Tok, diag::err_expected_unqualified_id);
1842        D.SetIdentifier(0, Tok.getLocation());
1843        D.setInvalidType(true);
1844        goto PastIdentifier;
1845      }
1846    }
1847  }
1848
1849  // If we reached this point, we are either in C/ObjC or the token didn't
1850  // satisfy any of the C++-specific checks.
1851
1852  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1853    assert(!getLang().CPlusPlus &&
1854           "There's a C++-specific check for tok::identifier above");
1855    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1856    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1857    ConsumeToken();
1858  } else if (Tok.is(tok::l_paren)) {
1859    // direct-declarator: '(' declarator ')'
1860    // direct-declarator: '(' attributes declarator ')'
1861    // Example: 'char (*X)'   or 'int (*XX)(void)'
1862    ParseParenDeclarator(D);
1863  } else if (D.mayOmitIdentifier()) {
1864    // This could be something simple like "int" (in which case the declarator
1865    // portion is empty), if an abstract-declarator is allowed.
1866    D.SetIdentifier(0, Tok.getLocation());
1867  } else {
1868    if (getLang().CPlusPlus)
1869      Diag(Tok, diag::err_expected_unqualified_id);
1870    else
1871      Diag(Tok, diag::err_expected_ident_lparen);
1872    D.SetIdentifier(0, Tok.getLocation());
1873    D.setInvalidType(true);
1874  }
1875
1876 PastIdentifier:
1877  assert(D.isPastIdentifier() &&
1878         "Haven't past the location of the identifier yet?");
1879
1880  while (1) {
1881    if (Tok.is(tok::l_paren)) {
1882      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1883      // In such a case, check if we actually have a function declarator; if it
1884      // is not, the declarator has been fully parsed.
1885      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1886        // When not in file scope, warn for ambiguous function declarators, just
1887        // in case the author intended it as a variable definition.
1888        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1889        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1890          break;
1891      }
1892      ParseFunctionDeclarator(ConsumeParen(), D);
1893    } else if (Tok.is(tok::l_square)) {
1894      ParseBracketDeclarator(D);
1895    } else {
1896      break;
1897    }
1898  }
1899}
1900
1901/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1902/// only called before the identifier, so these are most likely just grouping
1903/// parens for precedence.  If we find that these are actually function
1904/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1905///
1906///       direct-declarator:
1907///         '(' declarator ')'
1908/// [GNU]   '(' attributes declarator ')'
1909///         direct-declarator '(' parameter-type-list ')'
1910///         direct-declarator '(' identifier-list[opt] ')'
1911/// [GNU]   direct-declarator '(' parameter-forward-declarations
1912///                    parameter-type-list[opt] ')'
1913///
1914void Parser::ParseParenDeclarator(Declarator &D) {
1915  SourceLocation StartLoc = ConsumeParen();
1916  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1917
1918  // Eat any attributes before we look at whether this is a grouping or function
1919  // declarator paren.  If this is a grouping paren, the attribute applies to
1920  // the type being built up, for example:
1921  //     int (__attribute__(()) *x)(long y)
1922  // If this ends up not being a grouping paren, the attribute applies to the
1923  // first argument, for example:
1924  //     int (__attribute__(()) int x)
1925  // In either case, we need to eat any attributes to be able to determine what
1926  // sort of paren this is.
1927  //
1928  AttributeList *AttrList = 0;
1929  bool RequiresArg = false;
1930  if (Tok.is(tok::kw___attribute)) {
1931    AttrList = ParseAttributes();
1932
1933    // We require that the argument list (if this is a non-grouping paren) be
1934    // present even if the attribute list was empty.
1935    RequiresArg = true;
1936  }
1937  // Eat any Microsoft extensions.
1938  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1939          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1940    ConsumeToken();
1941
1942  // If we haven't past the identifier yet (or where the identifier would be
1943  // stored, if this is an abstract declarator), then this is probably just
1944  // grouping parens. However, if this could be an abstract-declarator, then
1945  // this could also be the start of function arguments (consider 'void()').
1946  bool isGrouping;
1947
1948  if (!D.mayOmitIdentifier()) {
1949    // If this can't be an abstract-declarator, this *must* be a grouping
1950    // paren, because we haven't seen the identifier yet.
1951    isGrouping = true;
1952  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1953             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1954             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1955    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1956    // considered to be a type, not a K&R identifier-list.
1957    isGrouping = false;
1958  } else {
1959    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1960    isGrouping = true;
1961  }
1962
1963  // If this is a grouping paren, handle:
1964  // direct-declarator: '(' declarator ')'
1965  // direct-declarator: '(' attributes declarator ')'
1966  if (isGrouping) {
1967    bool hadGroupingParens = D.hasGroupingParens();
1968    D.setGroupingParens(true);
1969    if (AttrList)
1970      D.AddAttributes(AttrList, SourceLocation());
1971
1972    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1973    // Match the ')'.
1974    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
1975
1976    D.setGroupingParens(hadGroupingParens);
1977    D.SetRangeEnd(Loc);
1978    return;
1979  }
1980
1981  // Okay, if this wasn't a grouping paren, it must be the start of a function
1982  // argument list.  Recognize that this declarator will never have an
1983  // identifier (and remember where it would have been), then call into
1984  // ParseFunctionDeclarator to handle of argument list.
1985  D.SetIdentifier(0, Tok.getLocation());
1986
1987  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1988}
1989
1990/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1991/// declarator D up to a paren, which indicates that we are parsing function
1992/// arguments.
1993///
1994/// If AttrList is non-null, then the caller parsed those arguments immediately
1995/// after the open paren - they should be considered to be the first argument of
1996/// a parameter.  If RequiresArg is true, then the first argument of the
1997/// function is required to be present and required to not be an identifier
1998/// list.
1999///
2000/// This method also handles this portion of the grammar:
2001///       parameter-type-list: [C99 6.7.5]
2002///         parameter-list
2003///         parameter-list ',' '...'
2004///
2005///       parameter-list: [C99 6.7.5]
2006///         parameter-declaration
2007///         parameter-list ',' parameter-declaration
2008///
2009///       parameter-declaration: [C99 6.7.5]
2010///         declaration-specifiers declarator
2011/// [C++]   declaration-specifiers declarator '=' assignment-expression
2012/// [GNU]   declaration-specifiers declarator attributes
2013///         declaration-specifiers abstract-declarator[opt]
2014/// [C++]   declaration-specifiers abstract-declarator[opt]
2015///           '=' assignment-expression
2016/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2017///
2018/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2019/// and "exception-specification[opt]"(TODO).
2020///
2021void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2022                                     AttributeList *AttrList,
2023                                     bool RequiresArg) {
2024  // lparen is already consumed!
2025  assert(D.isPastIdentifier() && "Should not call before identifier!");
2026
2027  // This parameter list may be empty.
2028  if (Tok.is(tok::r_paren)) {
2029    if (RequiresArg) {
2030      Diag(Tok, diag::err_argument_required_after_attribute);
2031      delete AttrList;
2032    }
2033
2034    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2035
2036    // cv-qualifier-seq[opt].
2037    DeclSpec DS;
2038    if (getLang().CPlusPlus) {
2039      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2040      if (!DS.getSourceRange().getEnd().isInvalid())
2041        Loc = DS.getSourceRange().getEnd();
2042
2043      // Parse exception-specification[opt].
2044      if (Tok.is(tok::kw_throw))
2045        ParseExceptionSpecification(Loc);
2046    }
2047
2048    // Remember that we parsed a function type, and remember the attributes.
2049    // int() -> no prototype, no '...'.
2050    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2051                                               /*variadic*/ false,
2052                                               SourceLocation(),
2053                                               /*arglist*/ 0, 0,
2054                                               DS.getTypeQualifiers(),
2055                                               LParenLoc, D),
2056                  Loc);
2057    return;
2058  }
2059
2060  // Alternatively, this parameter list may be an identifier list form for a
2061  // K&R-style function:  void foo(a,b,c)
2062  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2063    if (!TryAnnotateTypeOrScopeToken()) {
2064      // K&R identifier lists can't have typedefs as identifiers, per
2065      // C99 6.7.5.3p11.
2066      if (RequiresArg) {
2067        Diag(Tok, diag::err_argument_required_after_attribute);
2068        delete AttrList;
2069      }
2070      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2071      // normal declarators, not for abstract-declarators.
2072      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2073    }
2074  }
2075
2076  // Finally, a normal, non-empty parameter type list.
2077
2078  // Build up an array of information about the parsed arguments.
2079  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2080
2081  // Enter function-declaration scope, limiting any declarators to the
2082  // function prototype scope, including parameter declarators.
2083  ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope);
2084
2085  bool IsVariadic = false;
2086  SourceLocation EllipsisLoc;
2087  while (1) {
2088    if (Tok.is(tok::ellipsis)) {
2089      IsVariadic = true;
2090      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2091      break;
2092    }
2093
2094    SourceLocation DSStart = Tok.getLocation();
2095
2096    // Parse the declaration-specifiers.
2097    DeclSpec DS;
2098
2099    // If the caller parsed attributes for the first argument, add them now.
2100    if (AttrList) {
2101      DS.AddAttributes(AttrList);
2102      AttrList = 0;  // Only apply the attributes to the first parameter.
2103    }
2104    ParseDeclarationSpecifiers(DS);
2105
2106    // Parse the declarator.  This is "PrototypeContext", because we must
2107    // accept either 'declarator' or 'abstract-declarator' here.
2108    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2109    ParseDeclarator(ParmDecl);
2110
2111    // Parse GNU attributes, if present.
2112    if (Tok.is(tok::kw___attribute)) {
2113      SourceLocation Loc;
2114      AttributeList *AttrList = ParseAttributes(&Loc);
2115      ParmDecl.AddAttributes(AttrList, Loc);
2116    }
2117
2118    // Remember this parsed parameter in ParamInfo.
2119    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2120
2121    // DefArgToks is used when the parsing of default arguments needs
2122    // to be delayed.
2123    CachedTokens *DefArgToks = 0;
2124
2125    // If no parameter was specified, verify that *something* was specified,
2126    // otherwise we have a missing type and identifier.
2127    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
2128        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
2129      // Completely missing, emit error.
2130      Diag(DSStart, diag::err_missing_param);
2131    } else {
2132      // Otherwise, we have something.  Add it and let semantic analysis try
2133      // to grok it and add the result to the ParamInfo we are building.
2134
2135      // Inform the actions module about the parameter declarator, so it gets
2136      // added to the current scope.
2137      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2138
2139      // Parse the default argument, if any. We parse the default
2140      // arguments in all dialects; the semantic analysis in
2141      // ActOnParamDefaultArgument will reject the default argument in
2142      // C.
2143      if (Tok.is(tok::equal)) {
2144        SourceLocation EqualLoc = Tok.getLocation();
2145
2146        // Parse the default argument
2147        if (D.getContext() == Declarator::MemberContext) {
2148          // If we're inside a class definition, cache the tokens
2149          // corresponding to the default argument. We'll actually parse
2150          // them when we see the end of the class definition.
2151          // FIXME: Templates will require something similar.
2152          // FIXME: Can we use a smart pointer for Toks?
2153          DefArgToks = new CachedTokens;
2154
2155          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2156                                    tok::semi, false)) {
2157            delete DefArgToks;
2158            DefArgToks = 0;
2159            Actions.ActOnParamDefaultArgumentError(Param);
2160          } else
2161            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2162        } else {
2163          // Consume the '='.
2164          ConsumeToken();
2165
2166          OwningExprResult DefArgResult(ParseAssignmentExpression());
2167          if (DefArgResult.isInvalid()) {
2168            Actions.ActOnParamDefaultArgumentError(Param);
2169            SkipUntil(tok::comma, tok::r_paren, true, true);
2170          } else {
2171            // Inform the actions module about the default argument
2172            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2173                                              DefArgResult.release());
2174          }
2175        }
2176      }
2177
2178      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2179                                          ParmDecl.getIdentifierLoc(), Param,
2180                                          DefArgToks));
2181    }
2182
2183    // If the next token is a comma, consume it and keep reading arguments.
2184    if (Tok.isNot(tok::comma)) break;
2185
2186    // Consume the comma.
2187    ConsumeToken();
2188  }
2189
2190  // Leave prototype scope.
2191  PrototypeScope.Exit();
2192
2193  // If we have the closing ')', eat it.
2194  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2195
2196  DeclSpec DS;
2197  if (getLang().CPlusPlus) {
2198    // Parse cv-qualifier-seq[opt].
2199    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2200      if (!DS.getSourceRange().getEnd().isInvalid())
2201        Loc = DS.getSourceRange().getEnd();
2202
2203    // Parse exception-specification[opt].
2204    if (Tok.is(tok::kw_throw))
2205      ParseExceptionSpecification(Loc);
2206  }
2207
2208  // Remember that we parsed a function type, and remember the attributes.
2209  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2210                                             EllipsisLoc,
2211                                             &ParamInfo[0], ParamInfo.size(),
2212                                             DS.getTypeQualifiers(),
2213                                             LParenLoc, D),
2214                Loc);
2215}
2216
2217/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2218/// we found a K&R-style identifier list instead of a type argument list.  The
2219/// current token is known to be the first identifier in the list.
2220///
2221///       identifier-list: [C99 6.7.5]
2222///         identifier
2223///         identifier-list ',' identifier
2224///
2225void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2226                                                   Declarator &D) {
2227  // Build up an array of information about the parsed arguments.
2228  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2229  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2230
2231  // If there was no identifier specified for the declarator, either we are in
2232  // an abstract-declarator, or we are in a parameter declarator which was found
2233  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2234  // diagnose this.
2235  if (!D.getIdentifier())
2236    Diag(Tok, diag::ext_ident_list_in_param);
2237
2238  // Tok is known to be the first identifier in the list.  Remember this
2239  // identifier in ParamInfo.
2240  ParamsSoFar.insert(Tok.getIdentifierInfo());
2241  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2242                                                 Tok.getLocation(), 0));
2243
2244  ConsumeToken();  // eat the first identifier.
2245
2246  while (Tok.is(tok::comma)) {
2247    // Eat the comma.
2248    ConsumeToken();
2249
2250    // If this isn't an identifier, report the error and skip until ')'.
2251    if (Tok.isNot(tok::identifier)) {
2252      Diag(Tok, diag::err_expected_ident);
2253      SkipUntil(tok::r_paren);
2254      return;
2255    }
2256
2257    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2258
2259    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2260    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2261      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2262
2263    // Verify that the argument identifier has not already been mentioned.
2264    if (!ParamsSoFar.insert(ParmII)) {
2265      Diag(Tok, diag::err_param_redefinition) << ParmII;
2266    } else {
2267      // Remember this identifier in ParamInfo.
2268      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2269                                                     Tok.getLocation(), 0));
2270    }
2271
2272    // Eat the identifier.
2273    ConsumeToken();
2274  }
2275
2276  // If we have the closing ')', eat it and we're done.
2277  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2278
2279  // Remember that we parsed a function type, and remember the attributes.  This
2280  // function type is always a K&R style function type, which is not varargs and
2281  // has no prototype.
2282  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2283                                             SourceLocation(),
2284                                             &ParamInfo[0], ParamInfo.size(),
2285                                             /*TypeQuals*/0, LParenLoc, D),
2286                RLoc);
2287}
2288
2289/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2290/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2291/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2292/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2293/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2294void Parser::ParseBracketDeclarator(Declarator &D) {
2295  SourceLocation StartLoc = ConsumeBracket();
2296
2297  // C array syntax has many features, but by-far the most common is [] and [4].
2298  // This code does a fast path to handle some of the most obvious cases.
2299  if (Tok.getKind() == tok::r_square) {
2300    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2301    // Remember that we parsed the empty array type.
2302    OwningExprResult NumElements(Actions);
2303    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2304                  EndLoc);
2305    return;
2306  } else if (Tok.getKind() == tok::numeric_constant &&
2307             GetLookAheadToken(1).is(tok::r_square)) {
2308    // [4] is very common.  Parse the numeric constant expression.
2309    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2310    ConsumeToken();
2311
2312    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2313
2314    // If there was an error parsing the assignment-expression, recover.
2315    if (ExprRes.isInvalid())
2316      ExprRes.release();  // Deallocate expr, just use [].
2317
2318    // Remember that we parsed a array type, and remember its features.
2319    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2320                                            ExprRes.release(), StartLoc),
2321                  EndLoc);
2322    return;
2323  }
2324
2325  // If valid, this location is the position where we read the 'static' keyword.
2326  SourceLocation StaticLoc;
2327  if (Tok.is(tok::kw_static))
2328    StaticLoc = ConsumeToken();
2329
2330  // If there is a type-qualifier-list, read it now.
2331  // Type qualifiers in an array subscript are a C99 feature.
2332  DeclSpec DS;
2333  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2334
2335  // If we haven't already read 'static', check to see if there is one after the
2336  // type-qualifier-list.
2337  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2338    StaticLoc = ConsumeToken();
2339
2340  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2341  bool isStar = false;
2342  OwningExprResult NumElements(Actions);
2343
2344  // Handle the case where we have '[*]' as the array size.  However, a leading
2345  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2346  // the the token after the star is a ']'.  Since stars in arrays are
2347  // infrequent, use of lookahead is not costly here.
2348  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2349    ConsumeToken();  // Eat the '*'.
2350
2351    if (StaticLoc.isValid()) {
2352      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2353      StaticLoc = SourceLocation();  // Drop the static.
2354    }
2355    isStar = true;
2356  } else if (Tok.isNot(tok::r_square)) {
2357    // Note, in C89, this production uses the constant-expr production instead
2358    // of assignment-expr.  The only difference is that assignment-expr allows
2359    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2360    // are not i-c-e's, so we don't need to distinguish between the two here.
2361
2362    // Parse the assignment-expression now.
2363    NumElements = ParseAssignmentExpression();
2364  }
2365
2366  // If there was an error parsing the assignment-expression, recover.
2367  if (NumElements.isInvalid()) {
2368    // If the expression was invalid, skip it.
2369    SkipUntil(tok::r_square);
2370    return;
2371  }
2372
2373  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2374
2375  // Remember that we parsed a array type, and remember its features.
2376  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2377                                          StaticLoc.isValid(), isStar,
2378                                          NumElements.release(), StartLoc),
2379                EndLoc);
2380}
2381
2382/// [GNU]   typeof-specifier:
2383///           typeof ( expressions )
2384///           typeof ( type-name )
2385/// [GNU/C++] typeof unary-expression
2386///
2387void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2388  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2389  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2390  SourceLocation StartLoc = ConsumeToken();
2391
2392  if (Tok.isNot(tok::l_paren)) {
2393    if (!getLang().CPlusPlus) {
2394      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2395      return;
2396    }
2397
2398    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2399    if (Result.isInvalid()) {
2400      DS.SetTypeSpecError();
2401      return;
2402    }
2403
2404    const char *PrevSpec = 0;
2405    // Check for duplicate type specifiers.
2406    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2407                           Result.release()))
2408      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2409
2410    // FIXME: Not accurate, the range gets one token more than it should.
2411    DS.SetRangeEnd(Tok.getLocation());
2412    return;
2413  }
2414
2415  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2416
2417  if (isTypeIdInParens()) {
2418    Action::TypeResult Ty = ParseTypeName();
2419
2420    assert((Ty.isInvalid() || Ty.get()) &&
2421           "Parser::ParseTypeofSpecifier(): missing type");
2422
2423    if (Tok.isNot(tok::r_paren)) {
2424      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2425      return;
2426    }
2427    RParenLoc = ConsumeParen();
2428
2429    if (Ty.isInvalid())
2430      DS.SetTypeSpecError();
2431    else {
2432      const char *PrevSpec = 0;
2433      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2434      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2435                             Ty.get()))
2436        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2437    }
2438  } else { // we have an expression.
2439    OwningExprResult Result(ParseExpression());
2440
2441    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2442      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2443      DS.SetTypeSpecError();
2444      return;
2445    }
2446    RParenLoc = ConsumeParen();
2447    const char *PrevSpec = 0;
2448    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2449    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2450                           Result.release()))
2451      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2452  }
2453  DS.SetRangeEnd(RParenLoc);
2454}
2455
2456
2457