ParseDecl.cpp revision 7fe6208c3fa91f835813bb78236ef5c2bbf81053
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/StringSwitch.h"
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// C99 6.7: Declarations.
27//===----------------------------------------------------------------------===//
28
29/// ParseTypeName
30///       type-name: [C99 6.7.6]
31///         specifier-qualifier-list abstract-declarator[opt]
32///
33/// Called type-id in C++.
34TypeResult Parser::ParseTypeName(SourceRange *Range,
35                                 Declarator::TheContext Context,
36                                 AccessSpecifier AS,
37                                 Decl **OwnedType) {
38  // Parse the common declaration-specifiers piece.
39  DeclSpec DS(AttrFactory);
40  ParseSpecifierQualifierList(DS, AS);
41  if (OwnedType)
42    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
43
44  // Parse the abstract-declarator, if present.
45  Declarator DeclaratorInfo(DS, Context);
46  ParseDeclarator(DeclaratorInfo);
47  if (Range)
48    *Range = DeclaratorInfo.getSourceRange();
49
50  if (DeclaratorInfo.isInvalidType())
51    return true;
52
53  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
54}
55
56
57/// isAttributeLateParsed - Return true if the attribute has arguments that
58/// require late parsing.
59static bool isAttributeLateParsed(const IdentifierInfo &II) {
60    return llvm::StringSwitch<bool>(II.getName())
61#include "clang/Parse/AttrLateParsed.inc"
62        .Default(false);
63}
64
65
66/// ParseGNUAttributes - Parse a non-empty attributes list.
67///
68/// [GNU] attributes:
69///         attribute
70///         attributes attribute
71///
72/// [GNU]  attribute:
73///          '__attribute__' '(' '(' attribute-list ')' ')'
74///
75/// [GNU]  attribute-list:
76///          attrib
77///          attribute_list ',' attrib
78///
79/// [GNU]  attrib:
80///          empty
81///          attrib-name
82///          attrib-name '(' identifier ')'
83///          attrib-name '(' identifier ',' nonempty-expr-list ')'
84///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
85///
86/// [GNU]  attrib-name:
87///          identifier
88///          typespec
89///          typequal
90///          storageclass
91///
92/// FIXME: The GCC grammar/code for this construct implies we need two
93/// token lookahead. Comment from gcc: "If they start with an identifier
94/// which is followed by a comma or close parenthesis, then the arguments
95/// start with that identifier; otherwise they are an expression list."
96///
97/// At the moment, I am not doing 2 token lookahead. I am also unaware of
98/// any attributes that don't work (based on my limited testing). Most
99/// attributes are very simple in practice. Until we find a bug, I don't see
100/// a pressing need to implement the 2 token lookahead.
101
102void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
103                                SourceLocation *endLoc,
104                                LateParsedAttrList *LateAttrs) {
105  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
106
107  while (Tok.is(tok::kw___attribute)) {
108    ConsumeToken();
109    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
110                         "attribute")) {
111      SkipUntil(tok::r_paren, true); // skip until ) or ;
112      return;
113    }
114    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
115      SkipUntil(tok::r_paren, true); // skip until ) or ;
116      return;
117    }
118    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
119    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
120           Tok.is(tok::comma)) {
121      if (Tok.is(tok::comma)) {
122        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
123        ConsumeToken();
124        continue;
125      }
126      // we have an identifier or declaration specifier (const, int, etc.)
127      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
128      SourceLocation AttrNameLoc = ConsumeToken();
129
130      if (Tok.is(tok::l_paren)) {
131        // handle "parameterized" attributes
132        if (LateAttrs && !ClassStack.empty() &&
133            isAttributeLateParsed(*AttrName)) {
134          // Delayed parsing is only available for attributes that occur
135          // in certain locations within a class scope.
136          LateParsedAttribute *LA =
137            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
138          LateAttrs->push_back(LA);
139          getCurrentClass().LateParsedDeclarations.push_back(LA);
140
141          // consume everything up to and including the matching right parens
142          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
143
144          Token Eof;
145          Eof.startToken();
146          Eof.setLocation(Tok.getLocation());
147          LA->Toks.push_back(Eof);
148        } else {
149          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
150        }
151      } else {
152        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
153                     0, SourceLocation(), 0, 0);
154      }
155    }
156    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
157      SkipUntil(tok::r_paren, false);
158    SourceLocation Loc = Tok.getLocation();
159    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
160      SkipUntil(tok::r_paren, false);
161    }
162    if (endLoc)
163      *endLoc = Loc;
164  }
165}
166
167
168/// Parse the arguments to a parameterized GNU attribute
169void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
170                                   SourceLocation AttrNameLoc,
171                                   ParsedAttributes &Attrs,
172                                   SourceLocation *EndLoc) {
173
174  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
175
176  // Availability attributes have their own grammar.
177  if (AttrName->isStr("availability")) {
178    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
179    return;
180  }
181  // Thread safety attributes fit into the FIXME case above, so we
182  // just parse the arguments as a list of expressions
183  if (IsThreadSafetyAttribute(AttrName->getName())) {
184    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
185    return;
186  }
187
188  ConsumeParen(); // ignore the left paren loc for now
189
190  if (Tok.is(tok::identifier)) {
191    IdentifierInfo *ParmName = Tok.getIdentifierInfo();
192    SourceLocation ParmLoc = ConsumeToken();
193
194    if (Tok.is(tok::r_paren)) {
195      // __attribute__(( mode(byte) ))
196      SourceLocation RParen = ConsumeParen();
197      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
198                   ParmName, ParmLoc, 0, 0);
199    } else if (Tok.is(tok::comma)) {
200      ConsumeToken();
201      // __attribute__(( format(printf, 1, 2) ))
202      ExprVector ArgExprs(Actions);
203      bool ArgExprsOk = true;
204
205      // now parse the non-empty comma separated list of expressions
206      while (1) {
207        ExprResult ArgExpr(ParseAssignmentExpression());
208        if (ArgExpr.isInvalid()) {
209          ArgExprsOk = false;
210          SkipUntil(tok::r_paren);
211          break;
212        } else {
213          ArgExprs.push_back(ArgExpr.release());
214        }
215        if (Tok.isNot(tok::comma))
216          break;
217        ConsumeToken(); // Eat the comma, move to the next argument
218      }
219      if (ArgExprsOk && Tok.is(tok::r_paren)) {
220        SourceLocation RParen = ConsumeParen();
221        Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
222                     ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
223      }
224    }
225  } else { // not an identifier
226    switch (Tok.getKind()) {
227    case tok::r_paren: {
228    // parse a possibly empty comma separated list of expressions
229      // __attribute__(( nonnull() ))
230      SourceLocation RParen = ConsumeParen();
231      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
232                   0, SourceLocation(), 0, 0);
233      break;
234    }
235    case tok::kw_char:
236    case tok::kw_wchar_t:
237    case tok::kw_char16_t:
238    case tok::kw_char32_t:
239    case tok::kw_bool:
240    case tok::kw_short:
241    case tok::kw_int:
242    case tok::kw_long:
243    case tok::kw___int64:
244    case tok::kw_signed:
245    case tok::kw_unsigned:
246    case tok::kw_float:
247    case tok::kw_double:
248    case tok::kw_void:
249    case tok::kw_typeof: {
250      // If it's a builtin type name, eat it and expect a rparen
251      // __attribute__(( vec_type_hint(char) ))
252      SourceLocation EndLoc = ConsumeToken();
253      if (Tok.is(tok::r_paren))
254        EndLoc = ConsumeParen();
255      AttributeList *attr
256        = Attrs.addNew(AttrName, SourceRange(AttrNameLoc, EndLoc), 0,
257                       AttrNameLoc, 0, SourceLocation(), 0, 0);
258      if (attr->getKind() == AttributeList::AT_IBOutletCollection)
259        Diag(Tok, diag::err_iboutletcollection_builtintype);
260      break;
261    }
262    default:
263      // __attribute__(( aligned(16) ))
264      ExprVector ArgExprs(Actions);
265      bool ArgExprsOk = true;
266
267      // now parse the list of expressions
268      while (1) {
269        ExprResult ArgExpr(ParseAssignmentExpression());
270        if (ArgExpr.isInvalid()) {
271          ArgExprsOk = false;
272          SkipUntil(tok::r_paren);
273          break;
274        } else {
275          ArgExprs.push_back(ArgExpr.release());
276        }
277        if (Tok.isNot(tok::comma))
278          break;
279        ConsumeToken(); // Eat the comma, move to the next argument
280      }
281      // Match the ')'.
282      if (ArgExprsOk && Tok.is(tok::r_paren)) {
283        SourceLocation RParen = ConsumeParen();
284        Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0,
285                     AttrNameLoc, 0, SourceLocation(),
286                     ArgExprs.take(), ArgExprs.size());
287      }
288      break;
289    }
290  }
291}
292
293
294/// ParseMicrosoftDeclSpec - Parse an __declspec construct
295///
296/// [MS] decl-specifier:
297///             __declspec ( extended-decl-modifier-seq )
298///
299/// [MS] extended-decl-modifier-seq:
300///             extended-decl-modifier[opt]
301///             extended-decl-modifier extended-decl-modifier-seq
302
303void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
304  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
305
306  ConsumeToken();
307  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
308                       "declspec")) {
309    SkipUntil(tok::r_paren, true); // skip until ) or ;
310    return;
311  }
312
313  while (Tok.getIdentifierInfo()) {
314    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
315    SourceLocation AttrNameLoc = ConsumeToken();
316
317    // FIXME: Remove this when we have proper __declspec(property()) support.
318    // Just skip everything inside property().
319    if (AttrName->getName() == "property") {
320      ConsumeParen();
321      SkipUntil(tok::r_paren);
322    }
323    if (Tok.is(tok::l_paren)) {
324      ConsumeParen();
325      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
326      // correctly.
327      ExprResult ArgExpr(ParseAssignmentExpression());
328      if (!ArgExpr.isInvalid()) {
329        Expr *ExprList = ArgExpr.take();
330        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
331                     SourceLocation(), &ExprList, 1, true);
332      }
333      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
334        SkipUntil(tok::r_paren, false);
335    } else {
336      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
337                   0, SourceLocation(), 0, 0, true);
338    }
339  }
340  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
341    SkipUntil(tok::r_paren, false);
342  return;
343}
344
345void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
346  // Treat these like attributes
347  // FIXME: Allow Sema to distinguish between these and real attributes!
348  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
349         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
350         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
351         Tok.is(tok::kw___ptr32) ||
352         Tok.is(tok::kw___unaligned)) {
353    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
354    SourceLocation AttrNameLoc = ConsumeToken();
355    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
356        Tok.is(tok::kw___ptr32))
357      // FIXME: Support these properly!
358      continue;
359    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
360                 SourceLocation(), 0, 0, true);
361  }
362}
363
364void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
365  // Treat these like attributes
366  while (Tok.is(tok::kw___pascal)) {
367    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
368    SourceLocation AttrNameLoc = ConsumeToken();
369    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
370                 SourceLocation(), 0, 0, true);
371  }
372}
373
374void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
375  // Treat these like attributes
376  while (Tok.is(tok::kw___kernel)) {
377    SourceLocation AttrNameLoc = ConsumeToken();
378    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
379                 AttrNameLoc, 0, AttrNameLoc, 0,
380                 SourceLocation(), 0, 0, false);
381  }
382}
383
384void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
385  SourceLocation Loc = Tok.getLocation();
386  switch(Tok.getKind()) {
387    // OpenCL qualifiers:
388    case tok::kw___private:
389    case tok::kw_private:
390      DS.getAttributes().addNewInteger(
391          Actions.getASTContext(),
392          PP.getIdentifierInfo("address_space"), Loc, 0);
393      break;
394
395    case tok::kw___global:
396      DS.getAttributes().addNewInteger(
397          Actions.getASTContext(),
398          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
399      break;
400
401    case tok::kw___local:
402      DS.getAttributes().addNewInteger(
403          Actions.getASTContext(),
404          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
405      break;
406
407    case tok::kw___constant:
408      DS.getAttributes().addNewInteger(
409          Actions.getASTContext(),
410          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
411      break;
412
413    case tok::kw___read_only:
414      DS.getAttributes().addNewInteger(
415          Actions.getASTContext(),
416          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
417      break;
418
419    case tok::kw___write_only:
420      DS.getAttributes().addNewInteger(
421          Actions.getASTContext(),
422          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
423      break;
424
425    case tok::kw___read_write:
426      DS.getAttributes().addNewInteger(
427          Actions.getASTContext(),
428          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
429      break;
430    default: break;
431  }
432}
433
434/// \brief Parse a version number.
435///
436/// version:
437///   simple-integer
438///   simple-integer ',' simple-integer
439///   simple-integer ',' simple-integer ',' simple-integer
440VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
441  Range = Tok.getLocation();
442
443  if (!Tok.is(tok::numeric_constant)) {
444    Diag(Tok, diag::err_expected_version);
445    SkipUntil(tok::comma, tok::r_paren, true, true, true);
446    return VersionTuple();
447  }
448
449  // Parse the major (and possibly minor and subminor) versions, which
450  // are stored in the numeric constant. We utilize a quirk of the
451  // lexer, which is that it handles something like 1.2.3 as a single
452  // numeric constant, rather than two separate tokens.
453  llvm::SmallString<512> Buffer;
454  Buffer.resize(Tok.getLength()+1);
455  const char *ThisTokBegin = &Buffer[0];
456
457  // Get the spelling of the token, which eliminates trigraphs, etc.
458  bool Invalid = false;
459  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
460  if (Invalid)
461    return VersionTuple();
462
463  // Parse the major version.
464  unsigned AfterMajor = 0;
465  unsigned Major = 0;
466  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
467    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
468    ++AfterMajor;
469  }
470
471  if (AfterMajor == 0) {
472    Diag(Tok, diag::err_expected_version);
473    SkipUntil(tok::comma, tok::r_paren, true, true, true);
474    return VersionTuple();
475  }
476
477  if (AfterMajor == ActualLength) {
478    ConsumeToken();
479
480    // We only had a single version component.
481    if (Major == 0) {
482      Diag(Tok, diag::err_zero_version);
483      return VersionTuple();
484    }
485
486    return VersionTuple(Major);
487  }
488
489  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
490    Diag(Tok, diag::err_expected_version);
491    SkipUntil(tok::comma, tok::r_paren, true, true, true);
492    return VersionTuple();
493  }
494
495  // Parse the minor version.
496  unsigned AfterMinor = AfterMajor + 1;
497  unsigned Minor = 0;
498  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
499    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
500    ++AfterMinor;
501  }
502
503  if (AfterMinor == ActualLength) {
504    ConsumeToken();
505
506    // We had major.minor.
507    if (Major == 0 && Minor == 0) {
508      Diag(Tok, diag::err_zero_version);
509      return VersionTuple();
510    }
511
512    return VersionTuple(Major, Minor);
513  }
514
515  // If what follows is not a '.', we have a problem.
516  if (ThisTokBegin[AfterMinor] != '.') {
517    Diag(Tok, diag::err_expected_version);
518    SkipUntil(tok::comma, tok::r_paren, true, true, true);
519    return VersionTuple();
520  }
521
522  // Parse the subminor version.
523  unsigned AfterSubminor = AfterMinor + 1;
524  unsigned Subminor = 0;
525  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
526    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
527    ++AfterSubminor;
528  }
529
530  if (AfterSubminor != ActualLength) {
531    Diag(Tok, diag::err_expected_version);
532    SkipUntil(tok::comma, tok::r_paren, true, true, true);
533    return VersionTuple();
534  }
535  ConsumeToken();
536  return VersionTuple(Major, Minor, Subminor);
537}
538
539/// \brief Parse the contents of the "availability" attribute.
540///
541/// availability-attribute:
542///   'availability' '(' platform ',' version-arg-list ')'
543///
544/// platform:
545///   identifier
546///
547/// version-arg-list:
548///   version-arg
549///   version-arg ',' version-arg-list
550///
551/// version-arg:
552///   'introduced' '=' version
553///   'deprecated' '=' version
554///   'removed' = version
555///   'unavailable'
556void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
557                                        SourceLocation AvailabilityLoc,
558                                        ParsedAttributes &attrs,
559                                        SourceLocation *endLoc) {
560  SourceLocation PlatformLoc;
561  IdentifierInfo *Platform = 0;
562
563  enum { Introduced, Deprecated, Obsoleted, Unknown };
564  AvailabilityChange Changes[Unknown];
565
566  // Opening '('.
567  BalancedDelimiterTracker T(*this, tok::l_paren);
568  if (T.consumeOpen()) {
569    Diag(Tok, diag::err_expected_lparen);
570    return;
571  }
572
573  // Parse the platform name,
574  if (Tok.isNot(tok::identifier)) {
575    Diag(Tok, diag::err_availability_expected_platform);
576    SkipUntil(tok::r_paren);
577    return;
578  }
579  Platform = Tok.getIdentifierInfo();
580  PlatformLoc = ConsumeToken();
581
582  // Parse the ',' following the platform name.
583  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
584    return;
585
586  // If we haven't grabbed the pointers for the identifiers
587  // "introduced", "deprecated", and "obsoleted", do so now.
588  if (!Ident_introduced) {
589    Ident_introduced = PP.getIdentifierInfo("introduced");
590    Ident_deprecated = PP.getIdentifierInfo("deprecated");
591    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
592    Ident_unavailable = PP.getIdentifierInfo("unavailable");
593  }
594
595  // Parse the set of introductions/deprecations/removals.
596  SourceLocation UnavailableLoc;
597  do {
598    if (Tok.isNot(tok::identifier)) {
599      Diag(Tok, diag::err_availability_expected_change);
600      SkipUntil(tok::r_paren);
601      return;
602    }
603    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
604    SourceLocation KeywordLoc = ConsumeToken();
605
606    if (Keyword == Ident_unavailable) {
607      if (UnavailableLoc.isValid()) {
608        Diag(KeywordLoc, diag::err_availability_redundant)
609          << Keyword << SourceRange(UnavailableLoc);
610      }
611      UnavailableLoc = KeywordLoc;
612
613      if (Tok.isNot(tok::comma))
614        break;
615
616      ConsumeToken();
617      continue;
618    }
619
620    if (Tok.isNot(tok::equal)) {
621      Diag(Tok, diag::err_expected_equal_after)
622        << Keyword;
623      SkipUntil(tok::r_paren);
624      return;
625    }
626    ConsumeToken();
627
628    SourceRange VersionRange;
629    VersionTuple Version = ParseVersionTuple(VersionRange);
630
631    if (Version.empty()) {
632      SkipUntil(tok::r_paren);
633      return;
634    }
635
636    unsigned Index;
637    if (Keyword == Ident_introduced)
638      Index = Introduced;
639    else if (Keyword == Ident_deprecated)
640      Index = Deprecated;
641    else if (Keyword == Ident_obsoleted)
642      Index = Obsoleted;
643    else
644      Index = Unknown;
645
646    if (Index < Unknown) {
647      if (!Changes[Index].KeywordLoc.isInvalid()) {
648        Diag(KeywordLoc, diag::err_availability_redundant)
649          << Keyword
650          << SourceRange(Changes[Index].KeywordLoc,
651                         Changes[Index].VersionRange.getEnd());
652      }
653
654      Changes[Index].KeywordLoc = KeywordLoc;
655      Changes[Index].Version = Version;
656      Changes[Index].VersionRange = VersionRange;
657    } else {
658      Diag(KeywordLoc, diag::err_availability_unknown_change)
659        << Keyword << VersionRange;
660    }
661
662    if (Tok.isNot(tok::comma))
663      break;
664
665    ConsumeToken();
666  } while (true);
667
668  // Closing ')'.
669  if (T.consumeClose())
670    return;
671
672  if (endLoc)
673    *endLoc = T.getCloseLocation();
674
675  // The 'unavailable' availability cannot be combined with any other
676  // availability changes. Make sure that hasn't happened.
677  if (UnavailableLoc.isValid()) {
678    bool Complained = false;
679    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
680      if (Changes[Index].KeywordLoc.isValid()) {
681        if (!Complained) {
682          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
683            << SourceRange(Changes[Index].KeywordLoc,
684                           Changes[Index].VersionRange.getEnd());
685          Complained = true;
686        }
687
688        // Clear out the availability.
689        Changes[Index] = AvailabilityChange();
690      }
691    }
692  }
693
694  // Record this attribute
695  attrs.addNew(&Availability,
696               SourceRange(AvailabilityLoc, T.getCloseLocation()),
697               0, SourceLocation(),
698               Platform, PlatformLoc,
699               Changes[Introduced],
700               Changes[Deprecated],
701               Changes[Obsoleted],
702               UnavailableLoc, false, false);
703}
704
705
706// Late Parsed Attributes:
707// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
708
709void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
710
711void Parser::LateParsedClass::ParseLexedAttributes() {
712  Self->ParseLexedAttributes(*Class);
713}
714
715void Parser::LateParsedAttribute::ParseLexedAttributes() {
716  Self->ParseLexedAttribute(*this);
717}
718
719/// Wrapper class which calls ParseLexedAttribute, after setting up the
720/// scope appropriately.
721void Parser::ParseLexedAttributes(ParsingClass &Class) {
722  // Deal with templates
723  // FIXME: Test cases to make sure this does the right thing for templates.
724  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
725  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
726                                HasTemplateScope);
727  if (HasTemplateScope)
728    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
729
730  // Set or update the scope flags to include Scope::ThisScope.
731  bool AlreadyHasClassScope = Class.TopLevelClass;
732  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
733  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
734  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
735
736  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
737    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
738  }
739}
740
741/// \brief Finish parsing an attribute for which parsing was delayed.
742/// This will be called at the end of parsing a class declaration
743/// for each LateParsedAttribute. We consume the saved tokens and
744/// create an attribute with the arguments filled in. We add this
745/// to the Attribute list for the decl.
746void Parser::ParseLexedAttribute(LateParsedAttribute &LA) {
747  // Save the current token position.
748  SourceLocation OrigLoc = Tok.getLocation();
749
750  // Append the current token at the end of the new token stream so that it
751  // doesn't get lost.
752  LA.Toks.push_back(Tok);
753  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
754  // Consume the previously pushed token.
755  ConsumeAnyToken();
756
757  ParsedAttributes Attrs(AttrFactory);
758  SourceLocation endLoc;
759
760  // If the Decl is templatized, add template parameters to scope.
761  bool HasTemplateScope = LA.D && LA.D->isTemplateDecl();
762  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
763  if (HasTemplateScope)
764    Actions.ActOnReenterTemplateScope(Actions.CurScope, LA.D);
765
766  // If the Decl is on a function, add function parameters to the scope.
767  bool HasFunctionScope = LA.D && LA.D->isFunctionOrFunctionTemplate();
768  ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
769  if (HasFunctionScope)
770    Actions.ActOnReenterFunctionContext(Actions.CurScope, LA.D);
771
772  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
773
774  if (HasFunctionScope) {
775    Actions.ActOnExitFunctionContext();
776    FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
777  }
778  if (HasTemplateScope) {
779    TempScope.Exit();
780  }
781
782  // Late parsed attributes must be attached to Decls by hand.  If the
783  // LA.D is not set, then this was not done properly.
784  assert(LA.D && "No decl attached to late parsed attribute");
785  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.D, Attrs);
786
787  if (Tok.getLocation() != OrigLoc) {
788    // Due to a parsing error, we either went over the cached tokens or
789    // there are still cached tokens left, so we skip the leftover tokens.
790    // Since this is an uncommon situation that should be avoided, use the
791    // expensive isBeforeInTranslationUnit call.
792    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
793                                                        OrigLoc))
794    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
795        ConsumeAnyToken();
796  }
797}
798
799/// \brief Wrapper around a case statement checking if AttrName is
800/// one of the thread safety attributes
801bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
802  return llvm::StringSwitch<bool>(AttrName)
803      .Case("guarded_by", true)
804      .Case("guarded_var", true)
805      .Case("pt_guarded_by", true)
806      .Case("pt_guarded_var", true)
807      .Case("lockable", true)
808      .Case("scoped_lockable", true)
809      .Case("no_thread_safety_analysis", true)
810      .Case("acquired_after", true)
811      .Case("acquired_before", true)
812      .Case("exclusive_lock_function", true)
813      .Case("shared_lock_function", true)
814      .Case("exclusive_trylock_function", true)
815      .Case("shared_trylock_function", true)
816      .Case("unlock_function", true)
817      .Case("lock_returned", true)
818      .Case("locks_excluded", true)
819      .Case("exclusive_locks_required", true)
820      .Case("shared_locks_required", true)
821      .Default(false);
822}
823
824/// \brief Parse the contents of thread safety attributes. These
825/// should always be parsed as an expression list.
826///
827/// We need to special case the parsing due to the fact that if the first token
828/// of the first argument is an identifier, the main parse loop will store
829/// that token as a "parameter" and the rest of
830/// the arguments will be added to a list of "arguments". However,
831/// subsequent tokens in the first argument are lost. We instead parse each
832/// argument as an expression and add all arguments to the list of "arguments".
833/// In future, we will take advantage of this special case to also
834/// deal with some argument scoping issues here (for example, referring to a
835/// function parameter in the attribute on that function).
836void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
837                                        SourceLocation AttrNameLoc,
838                                        ParsedAttributes &Attrs,
839                                        SourceLocation *EndLoc) {
840  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
841
842  BalancedDelimiterTracker T(*this, tok::l_paren);
843  T.consumeOpen();
844
845  ExprVector ArgExprs(Actions);
846  bool ArgExprsOk = true;
847
848  // now parse the list of expressions
849  while (1) {
850    ExprResult ArgExpr(ParseAssignmentExpression());
851    if (ArgExpr.isInvalid()) {
852      ArgExprsOk = false;
853      T.consumeClose();
854      break;
855    } else {
856      ArgExprs.push_back(ArgExpr.release());
857    }
858    if (Tok.isNot(tok::comma))
859      break;
860    ConsumeToken(); // Eat the comma, move to the next argument
861  }
862  // Match the ')'.
863  if (ArgExprsOk && !T.consumeClose()) {
864    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
865                 ArgExprs.take(), ArgExprs.size());
866  }
867  if (EndLoc)
868    *EndLoc = T.getCloseLocation();
869}
870
871void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
872  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
873    << attrs.Range;
874}
875
876/// ParseDeclaration - Parse a full 'declaration', which consists of
877/// declaration-specifiers, some number of declarators, and a semicolon.
878/// 'Context' should be a Declarator::TheContext value.  This returns the
879/// location of the semicolon in DeclEnd.
880///
881///       declaration: [C99 6.7]
882///         block-declaration ->
883///           simple-declaration
884///           others                   [FIXME]
885/// [C++]   template-declaration
886/// [C++]   namespace-definition
887/// [C++]   using-directive
888/// [C++]   using-declaration
889/// [C++0x/C1X] static_assert-declaration
890///         others... [FIXME]
891///
892Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
893                                                unsigned Context,
894                                                SourceLocation &DeclEnd,
895                                          ParsedAttributesWithRange &attrs) {
896  ParenBraceBracketBalancer BalancerRAIIObj(*this);
897  // Must temporarily exit the objective-c container scope for
898  // parsing c none objective-c decls.
899  ObjCDeclContextSwitch ObjCDC(*this);
900
901  Decl *SingleDecl = 0;
902  Decl *OwnedType = 0;
903  switch (Tok.getKind()) {
904  case tok::kw_template:
905  case tok::kw_export:
906    ProhibitAttributes(attrs);
907    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
908    break;
909  case tok::kw_inline:
910    // Could be the start of an inline namespace. Allowed as an ext in C++03.
911    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
912      ProhibitAttributes(attrs);
913      SourceLocation InlineLoc = ConsumeToken();
914      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
915      break;
916    }
917    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
918                                  true);
919  case tok::kw_namespace:
920    ProhibitAttributes(attrs);
921    SingleDecl = ParseNamespace(Context, DeclEnd);
922    break;
923  case tok::kw_using:
924    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
925                                                  DeclEnd, attrs, &OwnedType);
926    break;
927  case tok::kw_static_assert:
928  case tok::kw__Static_assert:
929    ProhibitAttributes(attrs);
930    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
931    break;
932  default:
933    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
934  }
935
936  // This routine returns a DeclGroup, if the thing we parsed only contains a
937  // single decl, convert it now. Alias declarations can also declare a type;
938  // include that too if it is present.
939  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
940}
941
942///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
943///         declaration-specifiers init-declarator-list[opt] ';'
944///[C90/C++]init-declarator-list ';'                             [TODO]
945/// [OMP]   threadprivate-directive                              [TODO]
946///
947///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
948///         attribute-specifier-seq[opt] type-specifier-seq declarator
949///
950/// If RequireSemi is false, this does not check for a ';' at the end of the
951/// declaration.  If it is true, it checks for and eats it.
952///
953/// If FRI is non-null, we might be parsing a for-range-declaration instead
954/// of a simple-declaration. If we find that we are, we also parse the
955/// for-range-initializer, and place it here.
956Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
957                                                      unsigned Context,
958                                                      SourceLocation &DeclEnd,
959                                                      ParsedAttributes &attrs,
960                                                      bool RequireSemi,
961                                                      ForRangeInit *FRI) {
962  // Parse the common declaration-specifiers piece.
963  ParsingDeclSpec DS(*this);
964  DS.takeAttributesFrom(attrs);
965
966  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
967                             getDeclSpecContextFromDeclaratorContext(Context));
968  StmtResult R = Actions.ActOnVlaStmt(DS);
969  if (R.isUsable())
970    Stmts.push_back(R.release());
971
972  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
973  // declaration-specifiers init-declarator-list[opt] ';'
974  if (Tok.is(tok::semi)) {
975    if (RequireSemi) ConsumeToken();
976    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
977                                                       DS);
978    DS.complete(TheDecl);
979    return Actions.ConvertDeclToDeclGroup(TheDecl);
980  }
981
982  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
983}
984
985/// ParseDeclGroup - Having concluded that this is either a function
986/// definition or a group of object declarations, actually parse the
987/// result.
988Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
989                                              unsigned Context,
990                                              bool AllowFunctionDefinitions,
991                                              SourceLocation *DeclEnd,
992                                              ForRangeInit *FRI) {
993  // Parse the first declarator.
994  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
995  ParseDeclarator(D);
996
997  // Bail out if the first declarator didn't seem well-formed.
998  if (!D.hasName() && !D.mayOmitIdentifier()) {
999    // Skip until ; or }.
1000    SkipUntil(tok::r_brace, true, true);
1001    if (Tok.is(tok::semi))
1002      ConsumeToken();
1003    return DeclGroupPtrTy();
1004  }
1005
1006  // Check to see if we have a function *definition* which must have a body.
1007  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1008      // Look at the next token to make sure that this isn't a function
1009      // declaration.  We have to check this because __attribute__ might be the
1010      // start of a function definition in GCC-extended K&R C.
1011      !isDeclarationAfterDeclarator()) {
1012
1013    if (isStartOfFunctionDefinition(D)) {
1014      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1015        Diag(Tok, diag::err_function_declared_typedef);
1016
1017        // Recover by treating the 'typedef' as spurious.
1018        DS.ClearStorageClassSpecs();
1019      }
1020
1021      Decl *TheDecl = ParseFunctionDefinition(D);
1022      return Actions.ConvertDeclToDeclGroup(TheDecl);
1023    }
1024
1025    if (isDeclarationSpecifier()) {
1026      // If there is an invalid declaration specifier right after the function
1027      // prototype, then we must be in a missing semicolon case where this isn't
1028      // actually a body.  Just fall through into the code that handles it as a
1029      // prototype, and let the top-level code handle the erroneous declspec
1030      // where it would otherwise expect a comma or semicolon.
1031    } else {
1032      Diag(Tok, diag::err_expected_fn_body);
1033      SkipUntil(tok::semi);
1034      return DeclGroupPtrTy();
1035    }
1036  }
1037
1038  if (ParseAttributesAfterDeclarator(D))
1039    return DeclGroupPtrTy();
1040
1041  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1042  // must parse and analyze the for-range-initializer before the declaration is
1043  // analyzed.
1044  if (FRI && Tok.is(tok::colon)) {
1045    FRI->ColonLoc = ConsumeToken();
1046    if (Tok.is(tok::l_brace))
1047      FRI->RangeExpr = ParseBraceInitializer();
1048    else
1049      FRI->RangeExpr = ParseExpression();
1050    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1051    Actions.ActOnCXXForRangeDecl(ThisDecl);
1052    Actions.FinalizeDeclaration(ThisDecl);
1053    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1054  }
1055
1056  SmallVector<Decl *, 8> DeclsInGroup;
1057  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1058  D.complete(FirstDecl);
1059  if (FirstDecl)
1060    DeclsInGroup.push_back(FirstDecl);
1061
1062  // If we don't have a comma, it is either the end of the list (a ';') or an
1063  // error, bail out.
1064  while (Tok.is(tok::comma)) {
1065    // Consume the comma.
1066    ConsumeToken();
1067
1068    // Parse the next declarator.
1069    D.clear();
1070
1071    // Accept attributes in an init-declarator.  In the first declarator in a
1072    // declaration, these would be part of the declspec.  In subsequent
1073    // declarators, they become part of the declarator itself, so that they
1074    // don't apply to declarators after *this* one.  Examples:
1075    //    short __attribute__((common)) var;    -> declspec
1076    //    short var __attribute__((common));    -> declarator
1077    //    short x, __attribute__((common)) var;    -> declarator
1078    MaybeParseGNUAttributes(D);
1079
1080    ParseDeclarator(D);
1081
1082    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1083    D.complete(ThisDecl);
1084    if (ThisDecl)
1085      DeclsInGroup.push_back(ThisDecl);
1086  }
1087
1088  if (DeclEnd)
1089    *DeclEnd = Tok.getLocation();
1090
1091  if (Context != Declarator::ForContext &&
1092      ExpectAndConsume(tok::semi,
1093                       Context == Declarator::FileContext
1094                         ? diag::err_invalid_token_after_toplevel_declarator
1095                         : diag::err_expected_semi_declaration)) {
1096    // Okay, there was no semicolon and one was expected.  If we see a
1097    // declaration specifier, just assume it was missing and continue parsing.
1098    // Otherwise things are very confused and we skip to recover.
1099    if (!isDeclarationSpecifier()) {
1100      SkipUntil(tok::r_brace, true, true);
1101      if (Tok.is(tok::semi))
1102        ConsumeToken();
1103    }
1104  }
1105
1106  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1107                                         DeclsInGroup.data(),
1108                                         DeclsInGroup.size());
1109}
1110
1111/// Parse an optional simple-asm-expr and attributes, and attach them to a
1112/// declarator. Returns true on an error.
1113bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
1114  // If a simple-asm-expr is present, parse it.
1115  if (Tok.is(tok::kw_asm)) {
1116    SourceLocation Loc;
1117    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1118    if (AsmLabel.isInvalid()) {
1119      SkipUntil(tok::semi, true, true);
1120      return true;
1121    }
1122
1123    D.setAsmLabel(AsmLabel.release());
1124    D.SetRangeEnd(Loc);
1125  }
1126
1127  MaybeParseGNUAttributes(D);
1128  return false;
1129}
1130
1131/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1132/// declarator'. This method parses the remainder of the declaration
1133/// (including any attributes or initializer, among other things) and
1134/// finalizes the declaration.
1135///
1136///       init-declarator: [C99 6.7]
1137///         declarator
1138///         declarator '=' initializer
1139/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1140/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1141/// [C++]   declarator initializer[opt]
1142///
1143/// [C++] initializer:
1144/// [C++]   '=' initializer-clause
1145/// [C++]   '(' expression-list ')'
1146/// [C++0x] '=' 'default'                                                [TODO]
1147/// [C++0x] '=' 'delete'
1148/// [C++0x] braced-init-list
1149///
1150/// According to the standard grammar, =default and =delete are function
1151/// definitions, but that definitely doesn't fit with the parser here.
1152///
1153Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1154                                     const ParsedTemplateInfo &TemplateInfo) {
1155  if (ParseAttributesAfterDeclarator(D))
1156    return 0;
1157
1158  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1159}
1160
1161Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1162                                     const ParsedTemplateInfo &TemplateInfo) {
1163  // Inform the current actions module that we just parsed this declarator.
1164  Decl *ThisDecl = 0;
1165  switch (TemplateInfo.Kind) {
1166  case ParsedTemplateInfo::NonTemplate:
1167    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1168    break;
1169
1170  case ParsedTemplateInfo::Template:
1171  case ParsedTemplateInfo::ExplicitSpecialization:
1172    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1173                             MultiTemplateParamsArg(Actions,
1174                                          TemplateInfo.TemplateParams->data(),
1175                                          TemplateInfo.TemplateParams->size()),
1176                                               D);
1177    break;
1178
1179  case ParsedTemplateInfo::ExplicitInstantiation: {
1180    DeclResult ThisRes
1181      = Actions.ActOnExplicitInstantiation(getCurScope(),
1182                                           TemplateInfo.ExternLoc,
1183                                           TemplateInfo.TemplateLoc,
1184                                           D);
1185    if (ThisRes.isInvalid()) {
1186      SkipUntil(tok::semi, true, true);
1187      return 0;
1188    }
1189
1190    ThisDecl = ThisRes.get();
1191    break;
1192    }
1193  }
1194
1195  bool TypeContainsAuto =
1196    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1197
1198  // Parse declarator '=' initializer.
1199  if (isTokenEqualOrMistypedEqualEqual(
1200                               diag::err_invalid_equalequal_after_declarator)) {
1201    ConsumeToken();
1202    if (Tok.is(tok::kw_delete)) {
1203      if (D.isFunctionDeclarator())
1204        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1205          << 1 /* delete */;
1206      else
1207        Diag(ConsumeToken(), diag::err_deleted_non_function);
1208    } else if (Tok.is(tok::kw_default)) {
1209      if (D.isFunctionDeclarator())
1210        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
1211          << 1 /* delete */;
1212      else
1213        Diag(ConsumeToken(), diag::err_default_special_members);
1214    } else {
1215      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1216        EnterScope(0);
1217        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1218      }
1219
1220      if (Tok.is(tok::code_completion)) {
1221        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1222        cutOffParsing();
1223        return 0;
1224      }
1225
1226      ExprResult Init(ParseInitializer());
1227
1228      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1229        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1230        ExitScope();
1231      }
1232
1233      if (Init.isInvalid()) {
1234        SkipUntil(tok::comma, true, true);
1235        Actions.ActOnInitializerError(ThisDecl);
1236      } else
1237        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1238                                     /*DirectInit=*/false, TypeContainsAuto);
1239    }
1240  } else if (Tok.is(tok::l_paren)) {
1241    // Parse C++ direct initializer: '(' expression-list ')'
1242    BalancedDelimiterTracker T(*this, tok::l_paren);
1243    T.consumeOpen();
1244
1245    ExprVector Exprs(Actions);
1246    CommaLocsTy CommaLocs;
1247
1248    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1249      EnterScope(0);
1250      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1251    }
1252
1253    if (ParseExpressionList(Exprs, CommaLocs)) {
1254      SkipUntil(tok::r_paren);
1255
1256      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1257        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1258        ExitScope();
1259      }
1260    } else {
1261      // Match the ')'.
1262      T.consumeClose();
1263
1264      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1265             "Unexpected number of commas!");
1266
1267      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1268        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1269        ExitScope();
1270      }
1271
1272      Actions.AddCXXDirectInitializerToDecl(ThisDecl, T.getOpenLocation(),
1273                                            move_arg(Exprs),
1274                                            T.getCloseLocation(),
1275                                            TypeContainsAuto);
1276    }
1277  } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1278    // Parse C++0x braced-init-list.
1279    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1280
1281    if (D.getCXXScopeSpec().isSet()) {
1282      EnterScope(0);
1283      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1284    }
1285
1286    ExprResult Init(ParseBraceInitializer());
1287
1288    if (D.getCXXScopeSpec().isSet()) {
1289      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1290      ExitScope();
1291    }
1292
1293    if (Init.isInvalid()) {
1294      Actions.ActOnInitializerError(ThisDecl);
1295    } else
1296      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1297                                   /*DirectInit=*/true, TypeContainsAuto);
1298
1299  } else {
1300    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1301  }
1302
1303  Actions.FinalizeDeclaration(ThisDecl);
1304
1305  return ThisDecl;
1306}
1307
1308/// ParseSpecifierQualifierList
1309///        specifier-qualifier-list:
1310///          type-specifier specifier-qualifier-list[opt]
1311///          type-qualifier specifier-qualifier-list[opt]
1312/// [GNU]    attributes     specifier-qualifier-list[opt]
1313///
1314void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1315  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1316  /// parse declaration-specifiers and complain about extra stuff.
1317  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1318  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1319
1320  // Validate declspec for type-name.
1321  unsigned Specs = DS.getParsedSpecifiers();
1322  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1323      !DS.hasAttributes())
1324    Diag(Tok, diag::err_typename_requires_specqual);
1325
1326  // Issue diagnostic and remove storage class if present.
1327  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1328    if (DS.getStorageClassSpecLoc().isValid())
1329      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1330    else
1331      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1332    DS.ClearStorageClassSpecs();
1333  }
1334
1335  // Issue diagnostic and remove function specfier if present.
1336  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1337    if (DS.isInlineSpecified())
1338      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1339    if (DS.isVirtualSpecified())
1340      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1341    if (DS.isExplicitSpecified())
1342      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1343    DS.ClearFunctionSpecs();
1344  }
1345}
1346
1347/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1348/// specified token is valid after the identifier in a declarator which
1349/// immediately follows the declspec.  For example, these things are valid:
1350///
1351///      int x   [             4];         // direct-declarator
1352///      int x   (             int y);     // direct-declarator
1353///  int(int x   )                         // direct-declarator
1354///      int x   ;                         // simple-declaration
1355///      int x   =             17;         // init-declarator-list
1356///      int x   ,             y;          // init-declarator-list
1357///      int x   __asm__       ("foo");    // init-declarator-list
1358///      int x   :             4;          // struct-declarator
1359///      int x   {             5};         // C++'0x unified initializers
1360///
1361/// This is not, because 'x' does not immediately follow the declspec (though
1362/// ')' happens to be valid anyway).
1363///    int (x)
1364///
1365static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1366  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1367         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1368         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1369}
1370
1371
1372/// ParseImplicitInt - This method is called when we have an non-typename
1373/// identifier in a declspec (which normally terminates the decl spec) when
1374/// the declspec has no type specifier.  In this case, the declspec is either
1375/// malformed or is "implicit int" (in K&R and C89).
1376///
1377/// This method handles diagnosing this prettily and returns false if the
1378/// declspec is done being processed.  If it recovers and thinks there may be
1379/// other pieces of declspec after it, it returns true.
1380///
1381bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1382                              const ParsedTemplateInfo &TemplateInfo,
1383                              AccessSpecifier AS) {
1384  assert(Tok.is(tok::identifier) && "should have identifier");
1385
1386  SourceLocation Loc = Tok.getLocation();
1387  // If we see an identifier that is not a type name, we normally would
1388  // parse it as the identifer being declared.  However, when a typename
1389  // is typo'd or the definition is not included, this will incorrectly
1390  // parse the typename as the identifier name and fall over misparsing
1391  // later parts of the diagnostic.
1392  //
1393  // As such, we try to do some look-ahead in cases where this would
1394  // otherwise be an "implicit-int" case to see if this is invalid.  For
1395  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1396  // an identifier with implicit int, we'd get a parse error because the
1397  // next token is obviously invalid for a type.  Parse these as a case
1398  // with an invalid type specifier.
1399  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1400
1401  // Since we know that this either implicit int (which is rare) or an
1402  // error, we'd do lookahead to try to do better recovery.
1403  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1404    // If this token is valid for implicit int, e.g. "static x = 4", then
1405    // we just avoid eating the identifier, so it will be parsed as the
1406    // identifier in the declarator.
1407    return false;
1408  }
1409
1410  // Otherwise, if we don't consume this token, we are going to emit an
1411  // error anyway.  Try to recover from various common problems.  Check
1412  // to see if this was a reference to a tag name without a tag specified.
1413  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1414  //
1415  // C++ doesn't need this, and isTagName doesn't take SS.
1416  if (SS == 0) {
1417    const char *TagName = 0, *FixitTagName = 0;
1418    tok::TokenKind TagKind = tok::unknown;
1419
1420    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1421      default: break;
1422      case DeclSpec::TST_enum:
1423        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1424      case DeclSpec::TST_union:
1425        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1426      case DeclSpec::TST_struct:
1427        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1428      case DeclSpec::TST_class:
1429        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1430    }
1431
1432    if (TagName) {
1433      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1434        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1435        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1436
1437      // Parse this as a tag as if the missing tag were present.
1438      if (TagKind == tok::kw_enum)
1439        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1440      else
1441        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1442      return true;
1443    }
1444  }
1445
1446  // This is almost certainly an invalid type name. Let the action emit a
1447  // diagnostic and attempt to recover.
1448  ParsedType T;
1449  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1450                                      getCurScope(), SS, T)) {
1451    // The action emitted a diagnostic, so we don't have to.
1452    if (T) {
1453      // The action has suggested that the type T could be used. Set that as
1454      // the type in the declaration specifiers, consume the would-be type
1455      // name token, and we're done.
1456      const char *PrevSpec;
1457      unsigned DiagID;
1458      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1459      DS.SetRangeEnd(Tok.getLocation());
1460      ConsumeToken();
1461
1462      // There may be other declaration specifiers after this.
1463      return true;
1464    }
1465
1466    // Fall through; the action had no suggestion for us.
1467  } else {
1468    // The action did not emit a diagnostic, so emit one now.
1469    SourceRange R;
1470    if (SS) R = SS->getRange();
1471    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1472  }
1473
1474  // Mark this as an error.
1475  const char *PrevSpec;
1476  unsigned DiagID;
1477  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1478  DS.SetRangeEnd(Tok.getLocation());
1479  ConsumeToken();
1480
1481  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1482  // avoid rippling error messages on subsequent uses of the same type,
1483  // could be useful if #include was forgotten.
1484  return false;
1485}
1486
1487/// \brief Determine the declaration specifier context from the declarator
1488/// context.
1489///
1490/// \param Context the declarator context, which is one of the
1491/// Declarator::TheContext enumerator values.
1492Parser::DeclSpecContext
1493Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1494  if (Context == Declarator::MemberContext)
1495    return DSC_class;
1496  if (Context == Declarator::FileContext)
1497    return DSC_top_level;
1498  return DSC_normal;
1499}
1500
1501/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1502///
1503/// FIXME: Simply returns an alignof() expression if the argument is a
1504/// type. Ideally, the type should be propagated directly into Sema.
1505///
1506/// [C1X/C++0x] type-id
1507/// [C1X]       constant-expression
1508/// [C++0x]     assignment-expression
1509ExprResult Parser::ParseAlignArgument(SourceLocation Start) {
1510  if (isTypeIdInParens()) {
1511    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1512    SourceLocation TypeLoc = Tok.getLocation();
1513    ParsedType Ty = ParseTypeName().get();
1514    SourceRange TypeRange(Start, Tok.getLocation());
1515    return Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1516                                                Ty.getAsOpaquePtr(), TypeRange);
1517  } else
1518    return ParseConstantExpression();
1519}
1520
1521/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1522/// attribute to Attrs.
1523///
1524/// alignment-specifier:
1525/// [C1X]   '_Alignas' '(' type-id ')'
1526/// [C1X]   '_Alignas' '(' constant-expression ')'
1527/// [C++0x] 'alignas' '(' type-id ')'
1528/// [C++0x] 'alignas' '(' assignment-expression ')'
1529void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1530                                     SourceLocation *endLoc) {
1531  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1532         "Not an alignment-specifier!");
1533
1534  SourceLocation KWLoc = Tok.getLocation();
1535  ConsumeToken();
1536
1537  BalancedDelimiterTracker T(*this, tok::l_paren);
1538  if (T.expectAndConsume(diag::err_expected_lparen))
1539    return;
1540
1541  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation());
1542  if (ArgExpr.isInvalid()) {
1543    SkipUntil(tok::r_paren);
1544    return;
1545  }
1546
1547  T.consumeClose();
1548  if (endLoc)
1549    *endLoc = T.getCloseLocation();
1550
1551  ExprVector ArgExprs(Actions);
1552  ArgExprs.push_back(ArgExpr.release());
1553  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1554               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1555}
1556
1557/// ParseDeclarationSpecifiers
1558///       declaration-specifiers: [C99 6.7]
1559///         storage-class-specifier declaration-specifiers[opt]
1560///         type-specifier declaration-specifiers[opt]
1561/// [C99]   function-specifier declaration-specifiers[opt]
1562/// [C1X]   alignment-specifier declaration-specifiers[opt]
1563/// [GNU]   attributes declaration-specifiers[opt]
1564/// [Clang] '__module_private__' declaration-specifiers[opt]
1565///
1566///       storage-class-specifier: [C99 6.7.1]
1567///         'typedef'
1568///         'extern'
1569///         'static'
1570///         'auto'
1571///         'register'
1572/// [C++]   'mutable'
1573/// [GNU]   '__thread'
1574///       function-specifier: [C99 6.7.4]
1575/// [C99]   'inline'
1576/// [C++]   'virtual'
1577/// [C++]   'explicit'
1578/// [OpenCL] '__kernel'
1579///       'friend': [C++ dcl.friend]
1580///       'constexpr': [C++0x dcl.constexpr]
1581
1582///
1583void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1584                                        const ParsedTemplateInfo &TemplateInfo,
1585                                        AccessSpecifier AS,
1586                                        DeclSpecContext DSContext) {
1587  if (DS.getSourceRange().isInvalid()) {
1588    DS.SetRangeStart(Tok.getLocation());
1589    DS.SetRangeEnd(Tok.getLocation());
1590  }
1591
1592  while (1) {
1593    bool isInvalid = false;
1594    const char *PrevSpec = 0;
1595    unsigned DiagID = 0;
1596
1597    SourceLocation Loc = Tok.getLocation();
1598
1599    switch (Tok.getKind()) {
1600    default:
1601    DoneWithDeclSpec:
1602      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1603      MaybeParseCXX0XAttributes(DS.getAttributes());
1604
1605      // If this is not a declaration specifier token, we're done reading decl
1606      // specifiers.  First verify that DeclSpec's are consistent.
1607      DS.Finish(Diags, PP);
1608      return;
1609
1610    case tok::code_completion: {
1611      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1612      if (DS.hasTypeSpecifier()) {
1613        bool AllowNonIdentifiers
1614          = (getCurScope()->getFlags() & (Scope::ControlScope |
1615                                          Scope::BlockScope |
1616                                          Scope::TemplateParamScope |
1617                                          Scope::FunctionPrototypeScope |
1618                                          Scope::AtCatchScope)) == 0;
1619        bool AllowNestedNameSpecifiers
1620          = DSContext == DSC_top_level ||
1621            (DSContext == DSC_class && DS.isFriendSpecified());
1622
1623        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1624                                     AllowNonIdentifiers,
1625                                     AllowNestedNameSpecifiers);
1626        return cutOffParsing();
1627      }
1628
1629      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1630        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1631      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1632        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1633                                    : Sema::PCC_Template;
1634      else if (DSContext == DSC_class)
1635        CCC = Sema::PCC_Class;
1636      else if (ObjCImpDecl)
1637        CCC = Sema::PCC_ObjCImplementation;
1638
1639      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1640      return cutOffParsing();
1641    }
1642
1643    case tok::coloncolon: // ::foo::bar
1644      // C++ scope specifier.  Annotate and loop, or bail out on error.
1645      if (TryAnnotateCXXScopeToken(true)) {
1646        if (!DS.hasTypeSpecifier())
1647          DS.SetTypeSpecError();
1648        goto DoneWithDeclSpec;
1649      }
1650      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1651        goto DoneWithDeclSpec;
1652      continue;
1653
1654    case tok::annot_cxxscope: {
1655      if (DS.hasTypeSpecifier())
1656        goto DoneWithDeclSpec;
1657
1658      CXXScopeSpec SS;
1659      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1660                                                   Tok.getAnnotationRange(),
1661                                                   SS);
1662
1663      // We are looking for a qualified typename.
1664      Token Next = NextToken();
1665      if (Next.is(tok::annot_template_id) &&
1666          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1667            ->Kind == TNK_Type_template) {
1668        // We have a qualified template-id, e.g., N::A<int>
1669
1670        // C++ [class.qual]p2:
1671        //   In a lookup in which the constructor is an acceptable lookup
1672        //   result and the nested-name-specifier nominates a class C:
1673        //
1674        //     - if the name specified after the
1675        //       nested-name-specifier, when looked up in C, is the
1676        //       injected-class-name of C (Clause 9), or
1677        //
1678        //     - if the name specified after the nested-name-specifier
1679        //       is the same as the identifier or the
1680        //       simple-template-id's template-name in the last
1681        //       component of the nested-name-specifier,
1682        //
1683        //   the name is instead considered to name the constructor of
1684        //   class C.
1685        //
1686        // Thus, if the template-name is actually the constructor
1687        // name, then the code is ill-formed; this interpretation is
1688        // reinforced by the NAD status of core issue 635.
1689        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1690        if ((DSContext == DSC_top_level ||
1691             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1692            TemplateId->Name &&
1693            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1694          if (isConstructorDeclarator()) {
1695            // The user meant this to be an out-of-line constructor
1696            // definition, but template arguments are not allowed
1697            // there.  Just allow this as a constructor; we'll
1698            // complain about it later.
1699            goto DoneWithDeclSpec;
1700          }
1701
1702          // The user meant this to name a type, but it actually names
1703          // a constructor with some extraneous template
1704          // arguments. Complain, then parse it as a type as the user
1705          // intended.
1706          Diag(TemplateId->TemplateNameLoc,
1707               diag::err_out_of_line_template_id_names_constructor)
1708            << TemplateId->Name;
1709        }
1710
1711        DS.getTypeSpecScope() = SS;
1712        ConsumeToken(); // The C++ scope.
1713        assert(Tok.is(tok::annot_template_id) &&
1714               "ParseOptionalCXXScopeSpecifier not working");
1715        AnnotateTemplateIdTokenAsType();
1716        continue;
1717      }
1718
1719      if (Next.is(tok::annot_typename)) {
1720        DS.getTypeSpecScope() = SS;
1721        ConsumeToken(); // The C++ scope.
1722        if (Tok.getAnnotationValue()) {
1723          ParsedType T = getTypeAnnotation(Tok);
1724          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1725                                         Tok.getAnnotationEndLoc(),
1726                                         PrevSpec, DiagID, T);
1727        }
1728        else
1729          DS.SetTypeSpecError();
1730        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1731        ConsumeToken(); // The typename
1732      }
1733
1734      if (Next.isNot(tok::identifier))
1735        goto DoneWithDeclSpec;
1736
1737      // If we're in a context where the identifier could be a class name,
1738      // check whether this is a constructor declaration.
1739      if ((DSContext == DSC_top_level ||
1740           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1741          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1742                                     &SS)) {
1743        if (isConstructorDeclarator())
1744          goto DoneWithDeclSpec;
1745
1746        // As noted in C++ [class.qual]p2 (cited above), when the name
1747        // of the class is qualified in a context where it could name
1748        // a constructor, its a constructor name. However, we've
1749        // looked at the declarator, and the user probably meant this
1750        // to be a type. Complain that it isn't supposed to be treated
1751        // as a type, then proceed to parse it as a type.
1752        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1753          << Next.getIdentifierInfo();
1754      }
1755
1756      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1757                                               Next.getLocation(),
1758                                               getCurScope(), &SS,
1759                                               false, false, ParsedType(),
1760                                               /*NonTrivialSourceInfo=*/true);
1761
1762      // If the referenced identifier is not a type, then this declspec is
1763      // erroneous: We already checked about that it has no type specifier, and
1764      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1765      // typename.
1766      if (TypeRep == 0) {
1767        ConsumeToken();   // Eat the scope spec so the identifier is current.
1768        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1769        goto DoneWithDeclSpec;
1770      }
1771
1772      DS.getTypeSpecScope() = SS;
1773      ConsumeToken(); // The C++ scope.
1774
1775      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1776                                     DiagID, TypeRep);
1777      if (isInvalid)
1778        break;
1779
1780      DS.SetRangeEnd(Tok.getLocation());
1781      ConsumeToken(); // The typename.
1782
1783      continue;
1784    }
1785
1786    case tok::annot_typename: {
1787      if (Tok.getAnnotationValue()) {
1788        ParsedType T = getTypeAnnotation(Tok);
1789        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1790                                       DiagID, T);
1791      } else
1792        DS.SetTypeSpecError();
1793
1794      if (isInvalid)
1795        break;
1796
1797      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1798      ConsumeToken(); // The typename
1799
1800      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1801      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1802      // Objective-C interface.
1803      if (Tok.is(tok::less) && getLang().ObjC1)
1804        ParseObjCProtocolQualifiers(DS);
1805
1806      continue;
1807    }
1808
1809    case tok::kw___is_signed:
1810      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1811      // typically treats it as a trait. If we see __is_signed as it appears
1812      // in libstdc++, e.g.,
1813      //
1814      //   static const bool __is_signed;
1815      //
1816      // then treat __is_signed as an identifier rather than as a keyword.
1817      if (DS.getTypeSpecType() == TST_bool &&
1818          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1819          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1820        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1821        Tok.setKind(tok::identifier);
1822      }
1823
1824      // We're done with the declaration-specifiers.
1825      goto DoneWithDeclSpec;
1826
1827      // typedef-name
1828    case tok::identifier: {
1829      // In C++, check to see if this is a scope specifier like foo::bar::, if
1830      // so handle it as such.  This is important for ctor parsing.
1831      if (getLang().CPlusPlus) {
1832        if (TryAnnotateCXXScopeToken(true)) {
1833          if (!DS.hasTypeSpecifier())
1834            DS.SetTypeSpecError();
1835          goto DoneWithDeclSpec;
1836        }
1837        if (!Tok.is(tok::identifier))
1838          continue;
1839      }
1840
1841      // This identifier can only be a typedef name if we haven't already seen
1842      // a type-specifier.  Without this check we misparse:
1843      //  typedef int X; struct Y { short X; };  as 'short int'.
1844      if (DS.hasTypeSpecifier())
1845        goto DoneWithDeclSpec;
1846
1847      // Check for need to substitute AltiVec keyword tokens.
1848      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1849        break;
1850
1851      // It has to be available as a typedef too!
1852      ParsedType TypeRep =
1853        Actions.getTypeName(*Tok.getIdentifierInfo(),
1854                            Tok.getLocation(), getCurScope());
1855
1856      // If this is not a typedef name, don't parse it as part of the declspec,
1857      // it must be an implicit int or an error.
1858      if (!TypeRep) {
1859        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1860        goto DoneWithDeclSpec;
1861      }
1862
1863      // If we're in a context where the identifier could be a class name,
1864      // check whether this is a constructor declaration.
1865      if (getLang().CPlusPlus && DSContext == DSC_class &&
1866          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1867          isConstructorDeclarator())
1868        goto DoneWithDeclSpec;
1869
1870      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1871                                     DiagID, TypeRep);
1872      if (isInvalid)
1873        break;
1874
1875      DS.SetRangeEnd(Tok.getLocation());
1876      ConsumeToken(); // The identifier
1877
1878      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1879      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1880      // Objective-C interface.
1881      if (Tok.is(tok::less) && getLang().ObjC1)
1882        ParseObjCProtocolQualifiers(DS);
1883
1884      // Need to support trailing type qualifiers (e.g. "id<p> const").
1885      // If a type specifier follows, it will be diagnosed elsewhere.
1886      continue;
1887    }
1888
1889      // type-name
1890    case tok::annot_template_id: {
1891      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1892      if (TemplateId->Kind != TNK_Type_template) {
1893        // This template-id does not refer to a type name, so we're
1894        // done with the type-specifiers.
1895        goto DoneWithDeclSpec;
1896      }
1897
1898      // If we're in a context where the template-id could be a
1899      // constructor name or specialization, check whether this is a
1900      // constructor declaration.
1901      if (getLang().CPlusPlus && DSContext == DSC_class &&
1902          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1903          isConstructorDeclarator())
1904        goto DoneWithDeclSpec;
1905
1906      // Turn the template-id annotation token into a type annotation
1907      // token, then try again to parse it as a type-specifier.
1908      AnnotateTemplateIdTokenAsType();
1909      continue;
1910    }
1911
1912    // GNU attributes support.
1913    case tok::kw___attribute:
1914      ParseGNUAttributes(DS.getAttributes());
1915      continue;
1916
1917    // Microsoft declspec support.
1918    case tok::kw___declspec:
1919      ParseMicrosoftDeclSpec(DS.getAttributes());
1920      continue;
1921
1922    // Microsoft single token adornments.
1923    case tok::kw___forceinline:
1924      // FIXME: Add handling here!
1925      break;
1926
1927    case tok::kw___ptr64:
1928    case tok::kw___ptr32:
1929    case tok::kw___w64:
1930    case tok::kw___cdecl:
1931    case tok::kw___stdcall:
1932    case tok::kw___fastcall:
1933    case tok::kw___thiscall:
1934    case tok::kw___unaligned:
1935      ParseMicrosoftTypeAttributes(DS.getAttributes());
1936      continue;
1937
1938    // Borland single token adornments.
1939    case tok::kw___pascal:
1940      ParseBorlandTypeAttributes(DS.getAttributes());
1941      continue;
1942
1943    // OpenCL single token adornments.
1944    case tok::kw___kernel:
1945      ParseOpenCLAttributes(DS.getAttributes());
1946      continue;
1947
1948    // storage-class-specifier
1949    case tok::kw_typedef:
1950      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
1951                                         PrevSpec, DiagID);
1952      break;
1953    case tok::kw_extern:
1954      if (DS.isThreadSpecified())
1955        Diag(Tok, diag::ext_thread_before) << "extern";
1956      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
1957                                         PrevSpec, DiagID);
1958      break;
1959    case tok::kw___private_extern__:
1960      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
1961                                         Loc, PrevSpec, DiagID);
1962      break;
1963    case tok::kw_static:
1964      if (DS.isThreadSpecified())
1965        Diag(Tok, diag::ext_thread_before) << "static";
1966      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
1967                                         PrevSpec, DiagID);
1968      break;
1969    case tok::kw_auto:
1970      if (getLang().CPlusPlus0x) {
1971        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1972          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1973                                             PrevSpec, DiagID);
1974          if (!isInvalid)
1975            Diag(Tok, diag::ext_auto_storage_class)
1976              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1977        } else
1978          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1979                                         DiagID);
1980      } else
1981        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1982                                           PrevSpec, DiagID);
1983      break;
1984    case tok::kw_register:
1985      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
1986                                         PrevSpec, DiagID);
1987      break;
1988    case tok::kw_mutable:
1989      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
1990                                         PrevSpec, DiagID);
1991      break;
1992    case tok::kw___thread:
1993      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1994      break;
1995
1996    // function-specifier
1997    case tok::kw_inline:
1998      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1999      break;
2000    case tok::kw_virtual:
2001      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2002      break;
2003    case tok::kw_explicit:
2004      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2005      break;
2006
2007    // alignment-specifier
2008    case tok::kw__Alignas:
2009      if (!getLang().C1X)
2010        Diag(Tok, diag::ext_c1x_alignas);
2011      ParseAlignmentSpecifier(DS.getAttributes());
2012      continue;
2013
2014    // friend
2015    case tok::kw_friend:
2016      if (DSContext == DSC_class)
2017        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2018      else {
2019        PrevSpec = ""; // not actually used by the diagnostic
2020        DiagID = diag::err_friend_invalid_in_context;
2021        isInvalid = true;
2022      }
2023      break;
2024
2025    // Modules
2026    case tok::kw___module_private__:
2027      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2028      break;
2029
2030    // constexpr
2031    case tok::kw_constexpr:
2032      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2033      break;
2034
2035    // type-specifier
2036    case tok::kw_short:
2037      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2038                                      DiagID);
2039      break;
2040    case tok::kw_long:
2041      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2042        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2043                                        DiagID);
2044      else
2045        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2046                                        DiagID);
2047      break;
2048    case tok::kw___int64:
2049        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2050                                        DiagID);
2051      break;
2052    case tok::kw_signed:
2053      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2054                                     DiagID);
2055      break;
2056    case tok::kw_unsigned:
2057      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2058                                     DiagID);
2059      break;
2060    case tok::kw__Complex:
2061      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2062                                        DiagID);
2063      break;
2064    case tok::kw__Imaginary:
2065      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2066                                        DiagID);
2067      break;
2068    case tok::kw_void:
2069      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2070                                     DiagID);
2071      break;
2072    case tok::kw_char:
2073      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2074                                     DiagID);
2075      break;
2076    case tok::kw_int:
2077      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2078                                     DiagID);
2079      break;
2080     case tok::kw_half:
2081       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2082                                      DiagID);
2083       break;
2084    case tok::kw_float:
2085      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2086                                     DiagID);
2087      break;
2088    case tok::kw_double:
2089      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2090                                     DiagID);
2091      break;
2092    case tok::kw_wchar_t:
2093      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2094                                     DiagID);
2095      break;
2096    case tok::kw_char16_t:
2097      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2098                                     DiagID);
2099      break;
2100    case tok::kw_char32_t:
2101      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2102                                     DiagID);
2103      break;
2104    case tok::kw_bool:
2105    case tok::kw__Bool:
2106      if (Tok.is(tok::kw_bool) &&
2107          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2108          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2109        PrevSpec = ""; // Not used by the diagnostic.
2110        DiagID = diag::err_bool_redeclaration;
2111        // For better error recovery.
2112        Tok.setKind(tok::identifier);
2113        isInvalid = true;
2114      } else {
2115        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2116                                       DiagID);
2117      }
2118      break;
2119    case tok::kw__Decimal32:
2120      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2121                                     DiagID);
2122      break;
2123    case tok::kw__Decimal64:
2124      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2125                                     DiagID);
2126      break;
2127    case tok::kw__Decimal128:
2128      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2129                                     DiagID);
2130      break;
2131    case tok::kw___vector:
2132      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2133      break;
2134    case tok::kw___pixel:
2135      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2136      break;
2137    case tok::kw___unknown_anytype:
2138      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2139                                     PrevSpec, DiagID);
2140      break;
2141
2142    // class-specifier:
2143    case tok::kw_class:
2144    case tok::kw_struct:
2145    case tok::kw_union: {
2146      tok::TokenKind Kind = Tok.getKind();
2147      ConsumeToken();
2148      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
2149      continue;
2150    }
2151
2152    // enum-specifier:
2153    case tok::kw_enum:
2154      ConsumeToken();
2155      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
2156      continue;
2157
2158    // cv-qualifier:
2159    case tok::kw_const:
2160      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2161                                 getLang());
2162      break;
2163    case tok::kw_volatile:
2164      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2165                                 getLang());
2166      break;
2167    case tok::kw_restrict:
2168      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2169                                 getLang());
2170      break;
2171
2172    // C++ typename-specifier:
2173    case tok::kw_typename:
2174      if (TryAnnotateTypeOrScopeToken()) {
2175        DS.SetTypeSpecError();
2176        goto DoneWithDeclSpec;
2177      }
2178      if (!Tok.is(tok::kw_typename))
2179        continue;
2180      break;
2181
2182    // GNU typeof support.
2183    case tok::kw_typeof:
2184      ParseTypeofSpecifier(DS);
2185      continue;
2186
2187    case tok::kw_decltype:
2188      ParseDecltypeSpecifier(DS);
2189      continue;
2190
2191    case tok::kw___underlying_type:
2192      ParseUnderlyingTypeSpecifier(DS);
2193      continue;
2194
2195    case tok::kw__Atomic:
2196      ParseAtomicSpecifier(DS);
2197      continue;
2198
2199    // OpenCL qualifiers:
2200    case tok::kw_private:
2201      if (!getLang().OpenCL)
2202        goto DoneWithDeclSpec;
2203    case tok::kw___private:
2204    case tok::kw___global:
2205    case tok::kw___local:
2206    case tok::kw___constant:
2207    case tok::kw___read_only:
2208    case tok::kw___write_only:
2209    case tok::kw___read_write:
2210      ParseOpenCLQualifiers(DS);
2211      break;
2212
2213    case tok::less:
2214      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2215      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2216      // but we support it.
2217      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
2218        goto DoneWithDeclSpec;
2219
2220      if (!ParseObjCProtocolQualifiers(DS))
2221        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2222          << FixItHint::CreateInsertion(Loc, "id")
2223          << SourceRange(Loc, DS.getSourceRange().getEnd());
2224
2225      // Need to support trailing type qualifiers (e.g. "id<p> const").
2226      // If a type specifier follows, it will be diagnosed elsewhere.
2227      continue;
2228    }
2229    // If the specifier wasn't legal, issue a diagnostic.
2230    if (isInvalid) {
2231      assert(PrevSpec && "Method did not return previous specifier!");
2232      assert(DiagID);
2233
2234      if (DiagID == diag::ext_duplicate_declspec)
2235        Diag(Tok, DiagID)
2236          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2237      else
2238        Diag(Tok, DiagID) << PrevSpec;
2239    }
2240
2241    DS.SetRangeEnd(Tok.getLocation());
2242    if (DiagID != diag::err_bool_redeclaration)
2243      ConsumeToken();
2244  }
2245}
2246
2247/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
2248/// primarily follow the C++ grammar with additions for C99 and GNU,
2249/// which together subsume the C grammar. Note that the C++
2250/// type-specifier also includes the C type-qualifier (for const,
2251/// volatile, and C99 restrict). Returns true if a type-specifier was
2252/// found (and parsed), false otherwise.
2253///
2254///       type-specifier: [C++ 7.1.5]
2255///         simple-type-specifier
2256///         class-specifier
2257///         enum-specifier
2258///         elaborated-type-specifier  [TODO]
2259///         cv-qualifier
2260///
2261///       cv-qualifier: [C++ 7.1.5.1]
2262///         'const'
2263///         'volatile'
2264/// [C99]   'restrict'
2265///
2266///       simple-type-specifier: [ C++ 7.1.5.2]
2267///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
2268///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
2269///         'char'
2270///         'wchar_t'
2271///         'bool'
2272///         'short'
2273///         'int'
2274///         'long'
2275///         'signed'
2276///         'unsigned'
2277///         'float'
2278///         'double'
2279///         'void'
2280/// [C99]   '_Bool'
2281/// [C99]   '_Complex'
2282/// [C99]   '_Imaginary'  // Removed in TC2?
2283/// [GNU]   '_Decimal32'
2284/// [GNU]   '_Decimal64'
2285/// [GNU]   '_Decimal128'
2286/// [GNU]   typeof-specifier
2287/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
2288/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
2289/// [C++0x] 'decltype' ( expression )
2290/// [AltiVec] '__vector'
2291bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
2292                                        const char *&PrevSpec,
2293                                        unsigned &DiagID,
2294                                        const ParsedTemplateInfo &TemplateInfo,
2295                                        bool SuppressDeclarations) {
2296  SourceLocation Loc = Tok.getLocation();
2297
2298  switch (Tok.getKind()) {
2299  case tok::identifier:   // foo::bar
2300    // If we already have a type specifier, this identifier is not a type.
2301    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
2302        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
2303        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
2304      return false;
2305    // Check for need to substitute AltiVec keyword tokens.
2306    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2307      break;
2308    // Fall through.
2309  case tok::kw_typename:  // typename foo::bar
2310    // Annotate typenames and C++ scope specifiers.  If we get one, just
2311    // recurse to handle whatever we get.
2312    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2313                                    /*NeedType=*/true))
2314      return true;
2315    if (Tok.is(tok::identifier))
2316      return false;
2317    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2318                                      TemplateInfo, SuppressDeclarations);
2319  case tok::coloncolon:   // ::foo::bar
2320    if (NextToken().is(tok::kw_new) ||    // ::new
2321        NextToken().is(tok::kw_delete))   // ::delete
2322      return false;
2323
2324    // Annotate typenames and C++ scope specifiers.  If we get one, just
2325    // recurse to handle whatever we get.
2326    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2327                                    /*NeedType=*/true))
2328      return true;
2329    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2330                                      TemplateInfo, SuppressDeclarations);
2331
2332  // simple-type-specifier:
2333  case tok::annot_typename: {
2334    if (ParsedType T = getTypeAnnotation(Tok)) {
2335      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2336                                     Tok.getAnnotationEndLoc(), PrevSpec,
2337                                     DiagID, T);
2338    } else
2339      DS.SetTypeSpecError();
2340    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2341    ConsumeToken(); // The typename
2342
2343    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2344    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2345    // Objective-C interface.  If we don't have Objective-C or a '<', this is
2346    // just a normal reference to a typedef name.
2347    if (Tok.is(tok::less) && getLang().ObjC1)
2348      ParseObjCProtocolQualifiers(DS);
2349
2350    return true;
2351  }
2352
2353  case tok::kw_short:
2354    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2355    break;
2356  case tok::kw_long:
2357    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2358      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2359                                      DiagID);
2360    else
2361      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2362                                      DiagID);
2363    break;
2364  case tok::kw___int64:
2365      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2366                                      DiagID);
2367    break;
2368  case tok::kw_signed:
2369    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2370    break;
2371  case tok::kw_unsigned:
2372    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2373                                   DiagID);
2374    break;
2375  case tok::kw__Complex:
2376    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2377                                      DiagID);
2378    break;
2379  case tok::kw__Imaginary:
2380    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2381                                      DiagID);
2382    break;
2383  case tok::kw_void:
2384    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2385    break;
2386  case tok::kw_char:
2387    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2388    break;
2389  case tok::kw_int:
2390    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2391    break;
2392  case tok::kw_half:
2393    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
2394    break;
2395  case tok::kw_float:
2396    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2397    break;
2398  case tok::kw_double:
2399    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2400    break;
2401  case tok::kw_wchar_t:
2402    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2403    break;
2404  case tok::kw_char16_t:
2405    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2406    break;
2407  case tok::kw_char32_t:
2408    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2409    break;
2410  case tok::kw_bool:
2411  case tok::kw__Bool:
2412    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2413    break;
2414  case tok::kw__Decimal32:
2415    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2416                                   DiagID);
2417    break;
2418  case tok::kw__Decimal64:
2419    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2420                                   DiagID);
2421    break;
2422  case tok::kw__Decimal128:
2423    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2424                                   DiagID);
2425    break;
2426  case tok::kw___vector:
2427    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2428    break;
2429  case tok::kw___pixel:
2430    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2431    break;
2432
2433  // class-specifier:
2434  case tok::kw_class:
2435  case tok::kw_struct:
2436  case tok::kw_union: {
2437    tok::TokenKind Kind = Tok.getKind();
2438    ConsumeToken();
2439    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2440                        SuppressDeclarations);
2441    return true;
2442  }
2443
2444  // enum-specifier:
2445  case tok::kw_enum:
2446    ConsumeToken();
2447    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2448    return true;
2449
2450  // cv-qualifier:
2451  case tok::kw_const:
2452    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2453                               DiagID, getLang());
2454    break;
2455  case tok::kw_volatile:
2456    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2457                               DiagID, getLang());
2458    break;
2459  case tok::kw_restrict:
2460    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2461                               DiagID, getLang());
2462    break;
2463
2464  // GNU typeof support.
2465  case tok::kw_typeof:
2466    ParseTypeofSpecifier(DS);
2467    return true;
2468
2469  // C++0x decltype support.
2470  case tok::kw_decltype:
2471    ParseDecltypeSpecifier(DS);
2472    return true;
2473
2474  // C++0x type traits support.
2475  case tok::kw___underlying_type:
2476    ParseUnderlyingTypeSpecifier(DS);
2477    return true;
2478
2479  case tok::kw__Atomic:
2480    ParseAtomicSpecifier(DS);
2481    return true;
2482
2483  // OpenCL qualifiers:
2484  case tok::kw_private:
2485    if (!getLang().OpenCL)
2486      return false;
2487  case tok::kw___private:
2488  case tok::kw___global:
2489  case tok::kw___local:
2490  case tok::kw___constant:
2491  case tok::kw___read_only:
2492  case tok::kw___write_only:
2493  case tok::kw___read_write:
2494    ParseOpenCLQualifiers(DS);
2495    break;
2496
2497  // C++0x auto support.
2498  case tok::kw_auto:
2499    // This is only called in situations where a storage-class specifier is
2500    // illegal, so we can assume an auto type specifier was intended even in
2501    // C++98. In C++98 mode, DeclSpec::Finish will produce an appropriate
2502    // extension diagnostic.
2503    if (!getLang().CPlusPlus)
2504      return false;
2505
2506    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2507    break;
2508
2509  case tok::kw___ptr64:
2510  case tok::kw___ptr32:
2511  case tok::kw___w64:
2512  case tok::kw___cdecl:
2513  case tok::kw___stdcall:
2514  case tok::kw___fastcall:
2515  case tok::kw___thiscall:
2516  case tok::kw___unaligned:
2517    ParseMicrosoftTypeAttributes(DS.getAttributes());
2518    return true;
2519
2520  case tok::kw___pascal:
2521    ParseBorlandTypeAttributes(DS.getAttributes());
2522    return true;
2523
2524  default:
2525    // Not a type-specifier; do nothing.
2526    return false;
2527  }
2528
2529  // If the specifier combination wasn't legal, issue a diagnostic.
2530  if (isInvalid) {
2531    assert(PrevSpec && "Method did not return previous specifier!");
2532    // Pick between error or extwarn.
2533    Diag(Tok, DiagID) << PrevSpec;
2534  }
2535  DS.SetRangeEnd(Tok.getLocation());
2536  ConsumeToken(); // whatever we parsed above.
2537  return true;
2538}
2539
2540/// ParseStructDeclaration - Parse a struct declaration without the terminating
2541/// semicolon.
2542///
2543///       struct-declaration:
2544///         specifier-qualifier-list struct-declarator-list
2545/// [GNU]   __extension__ struct-declaration
2546/// [GNU]   specifier-qualifier-list
2547///       struct-declarator-list:
2548///         struct-declarator
2549///         struct-declarator-list ',' struct-declarator
2550/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2551///       struct-declarator:
2552///         declarator
2553/// [GNU]   declarator attributes[opt]
2554///         declarator[opt] ':' constant-expression
2555/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2556///
2557void Parser::
2558ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2559
2560  if (Tok.is(tok::kw___extension__)) {
2561    // __extension__ silences extension warnings in the subexpression.
2562    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2563    ConsumeToken();
2564    return ParseStructDeclaration(DS, Fields);
2565  }
2566
2567  // Parse the common specifier-qualifiers-list piece.
2568  ParseSpecifierQualifierList(DS);
2569
2570  // If there are no declarators, this is a free-standing declaration
2571  // specifier. Let the actions module cope with it.
2572  if (Tok.is(tok::semi)) {
2573    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2574    return;
2575  }
2576
2577  // Read struct-declarators until we find the semicolon.
2578  bool FirstDeclarator = true;
2579  while (1) {
2580    ParsingDeclRAIIObject PD(*this);
2581    FieldDeclarator DeclaratorInfo(DS);
2582
2583    // Attributes are only allowed here on successive declarators.
2584    if (!FirstDeclarator)
2585      MaybeParseGNUAttributes(DeclaratorInfo.D);
2586
2587    /// struct-declarator: declarator
2588    /// struct-declarator: declarator[opt] ':' constant-expression
2589    if (Tok.isNot(tok::colon)) {
2590      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2591      ColonProtectionRAIIObject X(*this);
2592      ParseDeclarator(DeclaratorInfo.D);
2593    }
2594
2595    if (Tok.is(tok::colon)) {
2596      ConsumeToken();
2597      ExprResult Res(ParseConstantExpression());
2598      if (Res.isInvalid())
2599        SkipUntil(tok::semi, true, true);
2600      else
2601        DeclaratorInfo.BitfieldSize = Res.release();
2602    }
2603
2604    // If attributes exist after the declarator, parse them.
2605    MaybeParseGNUAttributes(DeclaratorInfo.D);
2606
2607    // We're done with this declarator;  invoke the callback.
2608    Decl *D = Fields.invoke(DeclaratorInfo);
2609    PD.complete(D);
2610
2611    // If we don't have a comma, it is either the end of the list (a ';')
2612    // or an error, bail out.
2613    if (Tok.isNot(tok::comma))
2614      return;
2615
2616    // Consume the comma.
2617    ConsumeToken();
2618
2619    FirstDeclarator = false;
2620  }
2621}
2622
2623/// ParseStructUnionBody
2624///       struct-contents:
2625///         struct-declaration-list
2626/// [EXT]   empty
2627/// [GNU]   "struct-declaration-list" without terminatoring ';'
2628///       struct-declaration-list:
2629///         struct-declaration
2630///         struct-declaration-list struct-declaration
2631/// [OBC]   '@' 'defs' '(' class-name ')'
2632///
2633void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2634                                  unsigned TagType, Decl *TagDecl) {
2635  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2636                                      "parsing struct/union body");
2637
2638  BalancedDelimiterTracker T(*this, tok::l_brace);
2639  if (T.consumeOpen())
2640    return;
2641
2642  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2643  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2644
2645  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2646  // C++.
2647  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2648    Diag(Tok, diag::ext_empty_struct_union)
2649      << (TagType == TST_union);
2650
2651  SmallVector<Decl *, 32> FieldDecls;
2652
2653  // While we still have something to read, read the declarations in the struct.
2654  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2655    // Each iteration of this loop reads one struct-declaration.
2656
2657    // Check for extraneous top-level semicolon.
2658    if (Tok.is(tok::semi)) {
2659      Diag(Tok, diag::ext_extra_struct_semi)
2660        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2661        << FixItHint::CreateRemoval(Tok.getLocation());
2662      ConsumeToken();
2663      continue;
2664    }
2665
2666    // Parse all the comma separated declarators.
2667    DeclSpec DS(AttrFactory);
2668
2669    if (!Tok.is(tok::at)) {
2670      struct CFieldCallback : FieldCallback {
2671        Parser &P;
2672        Decl *TagDecl;
2673        SmallVectorImpl<Decl *> &FieldDecls;
2674
2675        CFieldCallback(Parser &P, Decl *TagDecl,
2676                       SmallVectorImpl<Decl *> &FieldDecls) :
2677          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2678
2679        virtual Decl *invoke(FieldDeclarator &FD) {
2680          // Install the declarator into the current TagDecl.
2681          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2682                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2683                                                 FD.D, FD.BitfieldSize);
2684          FieldDecls.push_back(Field);
2685          return Field;
2686        }
2687      } Callback(*this, TagDecl, FieldDecls);
2688
2689      ParseStructDeclaration(DS, Callback);
2690    } else { // Handle @defs
2691      ConsumeToken();
2692      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2693        Diag(Tok, diag::err_unexpected_at);
2694        SkipUntil(tok::semi, true);
2695        continue;
2696      }
2697      ConsumeToken();
2698      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2699      if (!Tok.is(tok::identifier)) {
2700        Diag(Tok, diag::err_expected_ident);
2701        SkipUntil(tok::semi, true);
2702        continue;
2703      }
2704      SmallVector<Decl *, 16> Fields;
2705      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2706                        Tok.getIdentifierInfo(), Fields);
2707      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2708      ConsumeToken();
2709      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2710    }
2711
2712    if (Tok.is(tok::semi)) {
2713      ConsumeToken();
2714    } else if (Tok.is(tok::r_brace)) {
2715      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2716      break;
2717    } else {
2718      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2719      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2720      SkipUntil(tok::r_brace, true, true);
2721      // If we stopped at a ';', eat it.
2722      if (Tok.is(tok::semi)) ConsumeToken();
2723    }
2724  }
2725
2726  T.consumeClose();
2727
2728  ParsedAttributes attrs(AttrFactory);
2729  // If attributes exist after struct contents, parse them.
2730  MaybeParseGNUAttributes(attrs);
2731
2732  Actions.ActOnFields(getCurScope(),
2733                      RecordLoc, TagDecl, FieldDecls,
2734                      T.getOpenLocation(), T.getCloseLocation(),
2735                      attrs.getList());
2736  StructScope.Exit();
2737  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2738                                   T.getCloseLocation());
2739}
2740
2741/// ParseEnumSpecifier
2742///       enum-specifier: [C99 6.7.2.2]
2743///         'enum' identifier[opt] '{' enumerator-list '}'
2744///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2745/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2746///                                                 '}' attributes[opt]
2747///         'enum' identifier
2748/// [GNU]   'enum' attributes[opt] identifier
2749///
2750/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2751/// [C++0x] enum-head '{' enumerator-list ','  '}'
2752///
2753///       enum-head: [C++0x]
2754///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2755///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2756///
2757///       enum-key: [C++0x]
2758///         'enum'
2759///         'enum' 'class'
2760///         'enum' 'struct'
2761///
2762///       enum-base: [C++0x]
2763///         ':' type-specifier-seq
2764///
2765/// [C++] elaborated-type-specifier:
2766/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2767///
2768void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2769                                const ParsedTemplateInfo &TemplateInfo,
2770                                AccessSpecifier AS) {
2771  // Parse the tag portion of this.
2772  if (Tok.is(tok::code_completion)) {
2773    // Code completion for an enum name.
2774    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2775    return cutOffParsing();
2776  }
2777
2778  bool IsScopedEnum = false;
2779  bool IsScopedUsingClassTag = false;
2780
2781  if (getLang().CPlusPlus0x &&
2782      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2783    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2784    IsScopedEnum = true;
2785    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2786    ConsumeToken();
2787  }
2788
2789  // If attributes exist after tag, parse them.
2790  ParsedAttributes attrs(AttrFactory);
2791  MaybeParseGNUAttributes(attrs);
2792
2793  bool AllowFixedUnderlyingType
2794    = getLang().CPlusPlus0x || getLang().MicrosoftExt || getLang().ObjC2;
2795
2796  CXXScopeSpec &SS = DS.getTypeSpecScope();
2797  if (getLang().CPlusPlus) {
2798    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2799    // if a fixed underlying type is allowed.
2800    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2801
2802    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
2803      return;
2804
2805    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2806      Diag(Tok, diag::err_expected_ident);
2807      if (Tok.isNot(tok::l_brace)) {
2808        // Has no name and is not a definition.
2809        // Skip the rest of this declarator, up until the comma or semicolon.
2810        SkipUntil(tok::comma, true);
2811        return;
2812      }
2813    }
2814  }
2815
2816  // Must have either 'enum name' or 'enum {...}'.
2817  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2818      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2819    Diag(Tok, diag::err_expected_ident_lbrace);
2820
2821    // Skip the rest of this declarator, up until the comma or semicolon.
2822    SkipUntil(tok::comma, true);
2823    return;
2824  }
2825
2826  // If an identifier is present, consume and remember it.
2827  IdentifierInfo *Name = 0;
2828  SourceLocation NameLoc;
2829  if (Tok.is(tok::identifier)) {
2830    Name = Tok.getIdentifierInfo();
2831    NameLoc = ConsumeToken();
2832  }
2833
2834  if (!Name && IsScopedEnum) {
2835    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2836    // declaration of a scoped enumeration.
2837    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2838    IsScopedEnum = false;
2839    IsScopedUsingClassTag = false;
2840  }
2841
2842  TypeResult BaseType;
2843
2844  // Parse the fixed underlying type.
2845  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2846    bool PossibleBitfield = false;
2847    if (getCurScope()->getFlags() & Scope::ClassScope) {
2848      // If we're in class scope, this can either be an enum declaration with
2849      // an underlying type, or a declaration of a bitfield member. We try to
2850      // use a simple disambiguation scheme first to catch the common cases
2851      // (integer literal, sizeof); if it's still ambiguous, we then consider
2852      // anything that's a simple-type-specifier followed by '(' as an
2853      // expression. This suffices because function types are not valid
2854      // underlying types anyway.
2855      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2856      // If the next token starts an expression, we know we're parsing a
2857      // bit-field. This is the common case.
2858      if (TPR == TPResult::True())
2859        PossibleBitfield = true;
2860      // If the next token starts a type-specifier-seq, it may be either a
2861      // a fixed underlying type or the start of a function-style cast in C++;
2862      // lookahead one more token to see if it's obvious that we have a
2863      // fixed underlying type.
2864      else if (TPR == TPResult::False() &&
2865               GetLookAheadToken(2).getKind() == tok::semi) {
2866        // Consume the ':'.
2867        ConsumeToken();
2868      } else {
2869        // We have the start of a type-specifier-seq, so we have to perform
2870        // tentative parsing to determine whether we have an expression or a
2871        // type.
2872        TentativeParsingAction TPA(*this);
2873
2874        // Consume the ':'.
2875        ConsumeToken();
2876
2877        if ((getLang().CPlusPlus &&
2878             isCXXDeclarationSpecifier() != TPResult::True()) ||
2879            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2880          // We'll parse this as a bitfield later.
2881          PossibleBitfield = true;
2882          TPA.Revert();
2883        } else {
2884          // We have a type-specifier-seq.
2885          TPA.Commit();
2886        }
2887      }
2888    } else {
2889      // Consume the ':'.
2890      ConsumeToken();
2891    }
2892
2893    if (!PossibleBitfield) {
2894      SourceRange Range;
2895      BaseType = ParseTypeName(&Range);
2896
2897      if (!getLang().CPlusPlus0x && !getLang().ObjC2)
2898        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2899          << Range;
2900      if (getLang().CPlusPlus0x)
2901        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2902    }
2903  }
2904
2905  // There are three options here.  If we have 'enum foo;', then this is a
2906  // forward declaration.  If we have 'enum foo {...' then this is a
2907  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2908  //
2909  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2910  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2911  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2912  //
2913  Sema::TagUseKind TUK;
2914  if (Tok.is(tok::l_brace))
2915    TUK = Sema::TUK_Definition;
2916  else if (Tok.is(tok::semi))
2917    TUK = Sema::TUK_Declaration;
2918  else
2919    TUK = Sema::TUK_Reference;
2920
2921  // enums cannot be templates, although they can be referenced from a
2922  // template.
2923  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2924      TUK != Sema::TUK_Reference) {
2925    Diag(Tok, diag::err_enum_template);
2926
2927    // Skip the rest of this declarator, up until the comma or semicolon.
2928    SkipUntil(tok::comma, true);
2929    return;
2930  }
2931
2932  if (!Name && TUK != Sema::TUK_Definition) {
2933    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2934
2935    // Skip the rest of this declarator, up until the comma or semicolon.
2936    SkipUntil(tok::comma, true);
2937    return;
2938  }
2939
2940  bool Owned = false;
2941  bool IsDependent = false;
2942  const char *PrevSpec = 0;
2943  unsigned DiagID;
2944  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2945                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2946                                   AS, DS.getModulePrivateSpecLoc(),
2947                                   MultiTemplateParamsArg(Actions),
2948                                   Owned, IsDependent, IsScopedEnum,
2949                                   IsScopedUsingClassTag, BaseType);
2950
2951  if (IsDependent) {
2952    // This enum has a dependent nested-name-specifier. Handle it as a
2953    // dependent tag.
2954    if (!Name) {
2955      DS.SetTypeSpecError();
2956      Diag(Tok, diag::err_expected_type_name_after_typename);
2957      return;
2958    }
2959
2960    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2961                                                TUK, SS, Name, StartLoc,
2962                                                NameLoc);
2963    if (Type.isInvalid()) {
2964      DS.SetTypeSpecError();
2965      return;
2966    }
2967
2968    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2969                           NameLoc.isValid() ? NameLoc : StartLoc,
2970                           PrevSpec, DiagID, Type.get()))
2971      Diag(StartLoc, DiagID) << PrevSpec;
2972
2973    return;
2974  }
2975
2976  if (!TagDecl) {
2977    // The action failed to produce an enumeration tag. If this is a
2978    // definition, consume the entire definition.
2979    if (Tok.is(tok::l_brace)) {
2980      ConsumeBrace();
2981      SkipUntil(tok::r_brace);
2982    }
2983
2984    DS.SetTypeSpecError();
2985    return;
2986  }
2987
2988  if (Tok.is(tok::l_brace))
2989    ParseEnumBody(StartLoc, TagDecl);
2990
2991  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2992                         NameLoc.isValid() ? NameLoc : StartLoc,
2993                         PrevSpec, DiagID, TagDecl, Owned))
2994    Diag(StartLoc, DiagID) << PrevSpec;
2995}
2996
2997/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2998///       enumerator-list:
2999///         enumerator
3000///         enumerator-list ',' enumerator
3001///       enumerator:
3002///         enumeration-constant
3003///         enumeration-constant '=' constant-expression
3004///       enumeration-constant:
3005///         identifier
3006///
3007void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3008  // Enter the scope of the enum body and start the definition.
3009  ParseScope EnumScope(this, Scope::DeclScope);
3010  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3011
3012  BalancedDelimiterTracker T(*this, tok::l_brace);
3013  T.consumeOpen();
3014
3015  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3016  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
3017    Diag(Tok, diag::error_empty_enum);
3018
3019  SmallVector<Decl *, 32> EnumConstantDecls;
3020
3021  Decl *LastEnumConstDecl = 0;
3022
3023  // Parse the enumerator-list.
3024  while (Tok.is(tok::identifier)) {
3025    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3026    SourceLocation IdentLoc = ConsumeToken();
3027
3028    // If attributes exist after the enumerator, parse them.
3029    ParsedAttributes attrs(AttrFactory);
3030    MaybeParseGNUAttributes(attrs);
3031
3032    SourceLocation EqualLoc;
3033    ExprResult AssignedVal;
3034    if (Tok.is(tok::equal)) {
3035      EqualLoc = ConsumeToken();
3036      AssignedVal = ParseConstantExpression();
3037      if (AssignedVal.isInvalid())
3038        SkipUntil(tok::comma, tok::r_brace, true, true);
3039    }
3040
3041    // Install the enumerator constant into EnumDecl.
3042    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3043                                                    LastEnumConstDecl,
3044                                                    IdentLoc, Ident,
3045                                                    attrs.getList(), EqualLoc,
3046                                                    AssignedVal.release());
3047    EnumConstantDecls.push_back(EnumConstDecl);
3048    LastEnumConstDecl = EnumConstDecl;
3049
3050    if (Tok.is(tok::identifier)) {
3051      // We're missing a comma between enumerators.
3052      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3053      Diag(Loc, diag::err_enumerator_list_missing_comma)
3054        << FixItHint::CreateInsertion(Loc, ", ");
3055      continue;
3056    }
3057
3058    if (Tok.isNot(tok::comma))
3059      break;
3060    SourceLocation CommaLoc = ConsumeToken();
3061
3062    if (Tok.isNot(tok::identifier)) {
3063      if (!getLang().C99 && !getLang().CPlusPlus0x)
3064        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3065          << getLang().CPlusPlus
3066          << FixItHint::CreateRemoval(CommaLoc);
3067      else if (getLang().CPlusPlus0x)
3068        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3069          << FixItHint::CreateRemoval(CommaLoc);
3070    }
3071  }
3072
3073  // Eat the }.
3074  T.consumeClose();
3075
3076  // If attributes exist after the identifier list, parse them.
3077  ParsedAttributes attrs(AttrFactory);
3078  MaybeParseGNUAttributes(attrs);
3079
3080  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3081                        EnumDecl, EnumConstantDecls.data(),
3082                        EnumConstantDecls.size(), getCurScope(),
3083                        attrs.getList());
3084
3085  EnumScope.Exit();
3086  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3087                                   T.getCloseLocation());
3088}
3089
3090/// isTypeSpecifierQualifier - Return true if the current token could be the
3091/// start of a type-qualifier-list.
3092bool Parser::isTypeQualifier() const {
3093  switch (Tok.getKind()) {
3094  default: return false;
3095
3096    // type-qualifier only in OpenCL
3097  case tok::kw_private:
3098    return getLang().OpenCL;
3099
3100    // type-qualifier
3101  case tok::kw_const:
3102  case tok::kw_volatile:
3103  case tok::kw_restrict:
3104  case tok::kw___private:
3105  case tok::kw___local:
3106  case tok::kw___global:
3107  case tok::kw___constant:
3108  case tok::kw___read_only:
3109  case tok::kw___read_write:
3110  case tok::kw___write_only:
3111    return true;
3112  }
3113}
3114
3115/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3116/// is definitely a type-specifier.  Return false if it isn't part of a type
3117/// specifier or if we're not sure.
3118bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3119  switch (Tok.getKind()) {
3120  default: return false;
3121    // type-specifiers
3122  case tok::kw_short:
3123  case tok::kw_long:
3124  case tok::kw___int64:
3125  case tok::kw_signed:
3126  case tok::kw_unsigned:
3127  case tok::kw__Complex:
3128  case tok::kw__Imaginary:
3129  case tok::kw_void:
3130  case tok::kw_char:
3131  case tok::kw_wchar_t:
3132  case tok::kw_char16_t:
3133  case tok::kw_char32_t:
3134  case tok::kw_int:
3135  case tok::kw_half:
3136  case tok::kw_float:
3137  case tok::kw_double:
3138  case tok::kw_bool:
3139  case tok::kw__Bool:
3140  case tok::kw__Decimal32:
3141  case tok::kw__Decimal64:
3142  case tok::kw__Decimal128:
3143  case tok::kw___vector:
3144
3145    // struct-or-union-specifier (C99) or class-specifier (C++)
3146  case tok::kw_class:
3147  case tok::kw_struct:
3148  case tok::kw_union:
3149    // enum-specifier
3150  case tok::kw_enum:
3151
3152    // typedef-name
3153  case tok::annot_typename:
3154    return true;
3155  }
3156}
3157
3158/// isTypeSpecifierQualifier - Return true if the current token could be the
3159/// start of a specifier-qualifier-list.
3160bool Parser::isTypeSpecifierQualifier() {
3161  switch (Tok.getKind()) {
3162  default: return false;
3163
3164  case tok::identifier:   // foo::bar
3165    if (TryAltiVecVectorToken())
3166      return true;
3167    // Fall through.
3168  case tok::kw_typename:  // typename T::type
3169    // Annotate typenames and C++ scope specifiers.  If we get one, just
3170    // recurse to handle whatever we get.
3171    if (TryAnnotateTypeOrScopeToken())
3172      return true;
3173    if (Tok.is(tok::identifier))
3174      return false;
3175    return isTypeSpecifierQualifier();
3176
3177  case tok::coloncolon:   // ::foo::bar
3178    if (NextToken().is(tok::kw_new) ||    // ::new
3179        NextToken().is(tok::kw_delete))   // ::delete
3180      return false;
3181
3182    if (TryAnnotateTypeOrScopeToken())
3183      return true;
3184    return isTypeSpecifierQualifier();
3185
3186    // GNU attributes support.
3187  case tok::kw___attribute:
3188    // GNU typeof support.
3189  case tok::kw_typeof:
3190
3191    // type-specifiers
3192  case tok::kw_short:
3193  case tok::kw_long:
3194  case tok::kw___int64:
3195  case tok::kw_signed:
3196  case tok::kw_unsigned:
3197  case tok::kw__Complex:
3198  case tok::kw__Imaginary:
3199  case tok::kw_void:
3200  case tok::kw_char:
3201  case tok::kw_wchar_t:
3202  case tok::kw_char16_t:
3203  case tok::kw_char32_t:
3204  case tok::kw_int:
3205  case tok::kw_half:
3206  case tok::kw_float:
3207  case tok::kw_double:
3208  case tok::kw_bool:
3209  case tok::kw__Bool:
3210  case tok::kw__Decimal32:
3211  case tok::kw__Decimal64:
3212  case tok::kw__Decimal128:
3213  case tok::kw___vector:
3214
3215    // struct-or-union-specifier (C99) or class-specifier (C++)
3216  case tok::kw_class:
3217  case tok::kw_struct:
3218  case tok::kw_union:
3219    // enum-specifier
3220  case tok::kw_enum:
3221
3222    // type-qualifier
3223  case tok::kw_const:
3224  case tok::kw_volatile:
3225  case tok::kw_restrict:
3226
3227    // typedef-name
3228  case tok::annot_typename:
3229    return true;
3230
3231    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3232  case tok::less:
3233    return getLang().ObjC1;
3234
3235  case tok::kw___cdecl:
3236  case tok::kw___stdcall:
3237  case tok::kw___fastcall:
3238  case tok::kw___thiscall:
3239  case tok::kw___w64:
3240  case tok::kw___ptr64:
3241  case tok::kw___ptr32:
3242  case tok::kw___pascal:
3243  case tok::kw___unaligned:
3244
3245  case tok::kw___private:
3246  case tok::kw___local:
3247  case tok::kw___global:
3248  case tok::kw___constant:
3249  case tok::kw___read_only:
3250  case tok::kw___read_write:
3251  case tok::kw___write_only:
3252
3253    return true;
3254
3255  case tok::kw_private:
3256    return getLang().OpenCL;
3257
3258  // C1x _Atomic()
3259  case tok::kw__Atomic:
3260    return true;
3261  }
3262}
3263
3264/// isDeclarationSpecifier() - Return true if the current token is part of a
3265/// declaration specifier.
3266///
3267/// \param DisambiguatingWithExpression True to indicate that the purpose of
3268/// this check is to disambiguate between an expression and a declaration.
3269bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3270  switch (Tok.getKind()) {
3271  default: return false;
3272
3273  case tok::kw_private:
3274    return getLang().OpenCL;
3275
3276  case tok::identifier:   // foo::bar
3277    // Unfortunate hack to support "Class.factoryMethod" notation.
3278    if (getLang().ObjC1 && NextToken().is(tok::period))
3279      return false;
3280    if (TryAltiVecVectorToken())
3281      return true;
3282    // Fall through.
3283  case tok::kw_typename: // typename T::type
3284    // Annotate typenames and C++ scope specifiers.  If we get one, just
3285    // recurse to handle whatever we get.
3286    if (TryAnnotateTypeOrScopeToken())
3287      return true;
3288    if (Tok.is(tok::identifier))
3289      return false;
3290
3291    // If we're in Objective-C and we have an Objective-C class type followed
3292    // by an identifier and then either ':' or ']', in a place where an
3293    // expression is permitted, then this is probably a class message send
3294    // missing the initial '['. In this case, we won't consider this to be
3295    // the start of a declaration.
3296    if (DisambiguatingWithExpression &&
3297        isStartOfObjCClassMessageMissingOpenBracket())
3298      return false;
3299
3300    return isDeclarationSpecifier();
3301
3302  case tok::coloncolon:   // ::foo::bar
3303    if (NextToken().is(tok::kw_new) ||    // ::new
3304        NextToken().is(tok::kw_delete))   // ::delete
3305      return false;
3306
3307    // Annotate typenames and C++ scope specifiers.  If we get one, just
3308    // recurse to handle whatever we get.
3309    if (TryAnnotateTypeOrScopeToken())
3310      return true;
3311    return isDeclarationSpecifier();
3312
3313    // storage-class-specifier
3314  case tok::kw_typedef:
3315  case tok::kw_extern:
3316  case tok::kw___private_extern__:
3317  case tok::kw_static:
3318  case tok::kw_auto:
3319  case tok::kw_register:
3320  case tok::kw___thread:
3321
3322    // Modules
3323  case tok::kw___module_private__:
3324
3325    // type-specifiers
3326  case tok::kw_short:
3327  case tok::kw_long:
3328  case tok::kw___int64:
3329  case tok::kw_signed:
3330  case tok::kw_unsigned:
3331  case tok::kw__Complex:
3332  case tok::kw__Imaginary:
3333  case tok::kw_void:
3334  case tok::kw_char:
3335  case tok::kw_wchar_t:
3336  case tok::kw_char16_t:
3337  case tok::kw_char32_t:
3338
3339  case tok::kw_int:
3340  case tok::kw_half:
3341  case tok::kw_float:
3342  case tok::kw_double:
3343  case tok::kw_bool:
3344  case tok::kw__Bool:
3345  case tok::kw__Decimal32:
3346  case tok::kw__Decimal64:
3347  case tok::kw__Decimal128:
3348  case tok::kw___vector:
3349
3350    // struct-or-union-specifier (C99) or class-specifier (C++)
3351  case tok::kw_class:
3352  case tok::kw_struct:
3353  case tok::kw_union:
3354    // enum-specifier
3355  case tok::kw_enum:
3356
3357    // type-qualifier
3358  case tok::kw_const:
3359  case tok::kw_volatile:
3360  case tok::kw_restrict:
3361
3362    // function-specifier
3363  case tok::kw_inline:
3364  case tok::kw_virtual:
3365  case tok::kw_explicit:
3366
3367    // static_assert-declaration
3368  case tok::kw__Static_assert:
3369
3370    // GNU typeof support.
3371  case tok::kw_typeof:
3372
3373    // GNU attributes.
3374  case tok::kw___attribute:
3375    return true;
3376
3377    // C++0x decltype.
3378  case tok::kw_decltype:
3379    return true;
3380
3381    // C1x _Atomic()
3382  case tok::kw__Atomic:
3383    return true;
3384
3385    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3386  case tok::less:
3387    return getLang().ObjC1;
3388
3389    // typedef-name
3390  case tok::annot_typename:
3391    return !DisambiguatingWithExpression ||
3392           !isStartOfObjCClassMessageMissingOpenBracket();
3393
3394  case tok::kw___declspec:
3395  case tok::kw___cdecl:
3396  case tok::kw___stdcall:
3397  case tok::kw___fastcall:
3398  case tok::kw___thiscall:
3399  case tok::kw___w64:
3400  case tok::kw___ptr64:
3401  case tok::kw___ptr32:
3402  case tok::kw___forceinline:
3403  case tok::kw___pascal:
3404  case tok::kw___unaligned:
3405
3406  case tok::kw___private:
3407  case tok::kw___local:
3408  case tok::kw___global:
3409  case tok::kw___constant:
3410  case tok::kw___read_only:
3411  case tok::kw___read_write:
3412  case tok::kw___write_only:
3413
3414    return true;
3415  }
3416}
3417
3418bool Parser::isConstructorDeclarator() {
3419  TentativeParsingAction TPA(*this);
3420
3421  // Parse the C++ scope specifier.
3422  CXXScopeSpec SS;
3423  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
3424    TPA.Revert();
3425    return false;
3426  }
3427
3428  // Parse the constructor name.
3429  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3430    // We already know that we have a constructor name; just consume
3431    // the token.
3432    ConsumeToken();
3433  } else {
3434    TPA.Revert();
3435    return false;
3436  }
3437
3438  // Current class name must be followed by a left parentheses.
3439  if (Tok.isNot(tok::l_paren)) {
3440    TPA.Revert();
3441    return false;
3442  }
3443  ConsumeParen();
3444
3445  // A right parentheses or ellipsis signals that we have a constructor.
3446  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3447    TPA.Revert();
3448    return true;
3449  }
3450
3451  // If we need to, enter the specified scope.
3452  DeclaratorScopeObj DeclScopeObj(*this, SS);
3453  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3454    DeclScopeObj.EnterDeclaratorScope();
3455
3456  // Optionally skip Microsoft attributes.
3457  ParsedAttributes Attrs(AttrFactory);
3458  MaybeParseMicrosoftAttributes(Attrs);
3459
3460  // Check whether the next token(s) are part of a declaration
3461  // specifier, in which case we have the start of a parameter and,
3462  // therefore, we know that this is a constructor.
3463  bool IsConstructor = isDeclarationSpecifier();
3464  TPA.Revert();
3465  return IsConstructor;
3466}
3467
3468/// ParseTypeQualifierListOpt
3469///          type-qualifier-list: [C99 6.7.5]
3470///            type-qualifier
3471/// [vendor]   attributes
3472///              [ only if VendorAttributesAllowed=true ]
3473///            type-qualifier-list type-qualifier
3474/// [vendor]   type-qualifier-list attributes
3475///              [ only if VendorAttributesAllowed=true ]
3476/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3477///              [ only if CXX0XAttributesAllowed=true ]
3478/// Note: vendor can be GNU, MS, etc.
3479///
3480void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3481                                       bool VendorAttributesAllowed,
3482                                       bool CXX0XAttributesAllowed) {
3483  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3484    SourceLocation Loc = Tok.getLocation();
3485    ParsedAttributesWithRange attrs(AttrFactory);
3486    ParseCXX0XAttributes(attrs);
3487    if (CXX0XAttributesAllowed)
3488      DS.takeAttributesFrom(attrs);
3489    else
3490      Diag(Loc, diag::err_attributes_not_allowed);
3491  }
3492
3493  SourceLocation EndLoc;
3494
3495  while (1) {
3496    bool isInvalid = false;
3497    const char *PrevSpec = 0;
3498    unsigned DiagID = 0;
3499    SourceLocation Loc = Tok.getLocation();
3500
3501    switch (Tok.getKind()) {
3502    case tok::code_completion:
3503      Actions.CodeCompleteTypeQualifiers(DS);
3504      return cutOffParsing();
3505
3506    case tok::kw_const:
3507      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3508                                 getLang());
3509      break;
3510    case tok::kw_volatile:
3511      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3512                                 getLang());
3513      break;
3514    case tok::kw_restrict:
3515      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3516                                 getLang());
3517      break;
3518
3519    // OpenCL qualifiers:
3520    case tok::kw_private:
3521      if (!getLang().OpenCL)
3522        goto DoneWithTypeQuals;
3523    case tok::kw___private:
3524    case tok::kw___global:
3525    case tok::kw___local:
3526    case tok::kw___constant:
3527    case tok::kw___read_only:
3528    case tok::kw___write_only:
3529    case tok::kw___read_write:
3530      ParseOpenCLQualifiers(DS);
3531      break;
3532
3533    case tok::kw___w64:
3534    case tok::kw___ptr64:
3535    case tok::kw___ptr32:
3536    case tok::kw___cdecl:
3537    case tok::kw___stdcall:
3538    case tok::kw___fastcall:
3539    case tok::kw___thiscall:
3540    case tok::kw___unaligned:
3541      if (VendorAttributesAllowed) {
3542        ParseMicrosoftTypeAttributes(DS.getAttributes());
3543        continue;
3544      }
3545      goto DoneWithTypeQuals;
3546    case tok::kw___pascal:
3547      if (VendorAttributesAllowed) {
3548        ParseBorlandTypeAttributes(DS.getAttributes());
3549        continue;
3550      }
3551      goto DoneWithTypeQuals;
3552    case tok::kw___attribute:
3553      if (VendorAttributesAllowed) {
3554        ParseGNUAttributes(DS.getAttributes());
3555        continue; // do *not* consume the next token!
3556      }
3557      // otherwise, FALL THROUGH!
3558    default:
3559      DoneWithTypeQuals:
3560      // If this is not a type-qualifier token, we're done reading type
3561      // qualifiers.  First verify that DeclSpec's are consistent.
3562      DS.Finish(Diags, PP);
3563      if (EndLoc.isValid())
3564        DS.SetRangeEnd(EndLoc);
3565      return;
3566    }
3567
3568    // If the specifier combination wasn't legal, issue a diagnostic.
3569    if (isInvalid) {
3570      assert(PrevSpec && "Method did not return previous specifier!");
3571      Diag(Tok, DiagID) << PrevSpec;
3572    }
3573    EndLoc = ConsumeToken();
3574  }
3575}
3576
3577
3578/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3579///
3580void Parser::ParseDeclarator(Declarator &D) {
3581  /// This implements the 'declarator' production in the C grammar, then checks
3582  /// for well-formedness and issues diagnostics.
3583  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3584}
3585
3586/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3587/// is parsed by the function passed to it. Pass null, and the direct-declarator
3588/// isn't parsed at all, making this function effectively parse the C++
3589/// ptr-operator production.
3590///
3591///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3592/// [C]     pointer[opt] direct-declarator
3593/// [C++]   direct-declarator
3594/// [C++]   ptr-operator declarator
3595///
3596///       pointer: [C99 6.7.5]
3597///         '*' type-qualifier-list[opt]
3598///         '*' type-qualifier-list[opt] pointer
3599///
3600///       ptr-operator:
3601///         '*' cv-qualifier-seq[opt]
3602///         '&'
3603/// [C++0x] '&&'
3604/// [GNU]   '&' restrict[opt] attributes[opt]
3605/// [GNU?]  '&&' restrict[opt] attributes[opt]
3606///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3607void Parser::ParseDeclaratorInternal(Declarator &D,
3608                                     DirectDeclParseFunction DirectDeclParser) {
3609  if (Diags.hasAllExtensionsSilenced())
3610    D.setExtension();
3611
3612  // C++ member pointers start with a '::' or a nested-name.
3613  // Member pointers get special handling, since there's no place for the
3614  // scope spec in the generic path below.
3615  if (getLang().CPlusPlus &&
3616      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3617       Tok.is(tok::annot_cxxscope))) {
3618    CXXScopeSpec SS;
3619    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
3620
3621    if (SS.isNotEmpty()) {
3622      if (Tok.isNot(tok::star)) {
3623        // The scope spec really belongs to the direct-declarator.
3624        D.getCXXScopeSpec() = SS;
3625        if (DirectDeclParser)
3626          (this->*DirectDeclParser)(D);
3627        return;
3628      }
3629
3630      SourceLocation Loc = ConsumeToken();
3631      D.SetRangeEnd(Loc);
3632      DeclSpec DS(AttrFactory);
3633      ParseTypeQualifierListOpt(DS);
3634      D.ExtendWithDeclSpec(DS);
3635
3636      // Recurse to parse whatever is left.
3637      ParseDeclaratorInternal(D, DirectDeclParser);
3638
3639      // Sema will have to catch (syntactically invalid) pointers into global
3640      // scope. It has to catch pointers into namespace scope anyway.
3641      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3642                                                      Loc),
3643                    DS.getAttributes(),
3644                    /* Don't replace range end. */SourceLocation());
3645      return;
3646    }
3647  }
3648
3649  tok::TokenKind Kind = Tok.getKind();
3650  // Not a pointer, C++ reference, or block.
3651  if (Kind != tok::star && Kind != tok::caret &&
3652      (Kind != tok::amp || !getLang().CPlusPlus) &&
3653      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3654      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3655    if (DirectDeclParser)
3656      (this->*DirectDeclParser)(D);
3657    return;
3658  }
3659
3660  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3661  // '&&' -> rvalue reference
3662  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3663  D.SetRangeEnd(Loc);
3664
3665  if (Kind == tok::star || Kind == tok::caret) {
3666    // Is a pointer.
3667    DeclSpec DS(AttrFactory);
3668
3669    ParseTypeQualifierListOpt(DS);
3670    D.ExtendWithDeclSpec(DS);
3671
3672    // Recursively parse the declarator.
3673    ParseDeclaratorInternal(D, DirectDeclParser);
3674    if (Kind == tok::star)
3675      // Remember that we parsed a pointer type, and remember the type-quals.
3676      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3677                                                DS.getConstSpecLoc(),
3678                                                DS.getVolatileSpecLoc(),
3679                                                DS.getRestrictSpecLoc()),
3680                    DS.getAttributes(),
3681                    SourceLocation());
3682    else
3683      // Remember that we parsed a Block type, and remember the type-quals.
3684      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3685                                                     Loc),
3686                    DS.getAttributes(),
3687                    SourceLocation());
3688  } else {
3689    // Is a reference
3690    DeclSpec DS(AttrFactory);
3691
3692    // Complain about rvalue references in C++03, but then go on and build
3693    // the declarator.
3694    if (Kind == tok::ampamp)
3695      Diag(Loc, getLang().CPlusPlus0x ?
3696           diag::warn_cxx98_compat_rvalue_reference :
3697           diag::ext_rvalue_reference);
3698
3699    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3700    // cv-qualifiers are introduced through the use of a typedef or of a
3701    // template type argument, in which case the cv-qualifiers are ignored.
3702    //
3703    // [GNU] Retricted references are allowed.
3704    // [GNU] Attributes on references are allowed.
3705    // [C++0x] Attributes on references are not allowed.
3706    ParseTypeQualifierListOpt(DS, true, false);
3707    D.ExtendWithDeclSpec(DS);
3708
3709    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3710      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3711        Diag(DS.getConstSpecLoc(),
3712             diag::err_invalid_reference_qualifier_application) << "const";
3713      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3714        Diag(DS.getVolatileSpecLoc(),
3715             diag::err_invalid_reference_qualifier_application) << "volatile";
3716    }
3717
3718    // Recursively parse the declarator.
3719    ParseDeclaratorInternal(D, DirectDeclParser);
3720
3721    if (D.getNumTypeObjects() > 0) {
3722      // C++ [dcl.ref]p4: There shall be no references to references.
3723      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3724      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3725        if (const IdentifierInfo *II = D.getIdentifier())
3726          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3727           << II;
3728        else
3729          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3730            << "type name";
3731
3732        // Once we've complained about the reference-to-reference, we
3733        // can go ahead and build the (technically ill-formed)
3734        // declarator: reference collapsing will take care of it.
3735      }
3736    }
3737
3738    // Remember that we parsed a reference type. It doesn't have type-quals.
3739    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3740                                                Kind == tok::amp),
3741                  DS.getAttributes(),
3742                  SourceLocation());
3743  }
3744}
3745
3746/// ParseDirectDeclarator
3747///       direct-declarator: [C99 6.7.5]
3748/// [C99]   identifier
3749///         '(' declarator ')'
3750/// [GNU]   '(' attributes declarator ')'
3751/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3752/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3753/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3754/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3755/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3756///         direct-declarator '(' parameter-type-list ')'
3757///         direct-declarator '(' identifier-list[opt] ')'
3758/// [GNU]   direct-declarator '(' parameter-forward-declarations
3759///                    parameter-type-list[opt] ')'
3760/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3761///                    cv-qualifier-seq[opt] exception-specification[opt]
3762/// [C++]   declarator-id
3763///
3764///       declarator-id: [C++ 8]
3765///         '...'[opt] id-expression
3766///         '::'[opt] nested-name-specifier[opt] type-name
3767///
3768///       id-expression: [C++ 5.1]
3769///         unqualified-id
3770///         qualified-id
3771///
3772///       unqualified-id: [C++ 5.1]
3773///         identifier
3774///         operator-function-id
3775///         conversion-function-id
3776///          '~' class-name
3777///         template-id
3778///
3779void Parser::ParseDirectDeclarator(Declarator &D) {
3780  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3781
3782  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3783    // ParseDeclaratorInternal might already have parsed the scope.
3784    if (D.getCXXScopeSpec().isEmpty()) {
3785      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
3786    }
3787
3788    if (D.getCXXScopeSpec().isValid()) {
3789      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3790        // Change the declaration context for name lookup, until this function
3791        // is exited (and the declarator has been parsed).
3792        DeclScopeObj.EnterDeclaratorScope();
3793    }
3794
3795    // C++0x [dcl.fct]p14:
3796    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3797    //   of a parameter-declaration-clause without a preceding comma. In
3798    //   this case, the ellipsis is parsed as part of the
3799    //   abstract-declarator if the type of the parameter names a template
3800    //   parameter pack that has not been expanded; otherwise, it is parsed
3801    //   as part of the parameter-declaration-clause.
3802    if (Tok.is(tok::ellipsis) &&
3803        !((D.getContext() == Declarator::PrototypeContext ||
3804           D.getContext() == Declarator::BlockLiteralContext) &&
3805          NextToken().is(tok::r_paren) &&
3806          !Actions.containsUnexpandedParameterPacks(D)))
3807      D.setEllipsisLoc(ConsumeToken());
3808
3809    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3810        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3811      // We found something that indicates the start of an unqualified-id.
3812      // Parse that unqualified-id.
3813      bool AllowConstructorName;
3814      if (D.getDeclSpec().hasTypeSpecifier())
3815        AllowConstructorName = false;
3816      else if (D.getCXXScopeSpec().isSet())
3817        AllowConstructorName =
3818          (D.getContext() == Declarator::FileContext ||
3819           (D.getContext() == Declarator::MemberContext &&
3820            D.getDeclSpec().isFriendSpecified()));
3821      else
3822        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3823
3824      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3825                             /*EnteringContext=*/true,
3826                             /*AllowDestructorName=*/true,
3827                             AllowConstructorName,
3828                             ParsedType(),
3829                             D.getName()) ||
3830          // Once we're past the identifier, if the scope was bad, mark the
3831          // whole declarator bad.
3832          D.getCXXScopeSpec().isInvalid()) {
3833        D.SetIdentifier(0, Tok.getLocation());
3834        D.setInvalidType(true);
3835      } else {
3836        // Parsed the unqualified-id; update range information and move along.
3837        if (D.getSourceRange().getBegin().isInvalid())
3838          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3839        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3840      }
3841      goto PastIdentifier;
3842    }
3843  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3844    assert(!getLang().CPlusPlus &&
3845           "There's a C++-specific check for tok::identifier above");
3846    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3847    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3848    ConsumeToken();
3849    goto PastIdentifier;
3850  }
3851
3852  if (Tok.is(tok::l_paren)) {
3853    // direct-declarator: '(' declarator ')'
3854    // direct-declarator: '(' attributes declarator ')'
3855    // Example: 'char (*X)'   or 'int (*XX)(void)'
3856    ParseParenDeclarator(D);
3857
3858    // If the declarator was parenthesized, we entered the declarator
3859    // scope when parsing the parenthesized declarator, then exited
3860    // the scope already. Re-enter the scope, if we need to.
3861    if (D.getCXXScopeSpec().isSet()) {
3862      // If there was an error parsing parenthesized declarator, declarator
3863      // scope may have been enterred before. Don't do it again.
3864      if (!D.isInvalidType() &&
3865          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3866        // Change the declaration context for name lookup, until this function
3867        // is exited (and the declarator has been parsed).
3868        DeclScopeObj.EnterDeclaratorScope();
3869    }
3870  } else if (D.mayOmitIdentifier()) {
3871    // This could be something simple like "int" (in which case the declarator
3872    // portion is empty), if an abstract-declarator is allowed.
3873    D.SetIdentifier(0, Tok.getLocation());
3874  } else {
3875    if (D.getContext() == Declarator::MemberContext)
3876      Diag(Tok, diag::err_expected_member_name_or_semi)
3877        << D.getDeclSpec().getSourceRange();
3878    else if (getLang().CPlusPlus)
3879      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3880    else
3881      Diag(Tok, diag::err_expected_ident_lparen);
3882    D.SetIdentifier(0, Tok.getLocation());
3883    D.setInvalidType(true);
3884  }
3885
3886 PastIdentifier:
3887  assert(D.isPastIdentifier() &&
3888         "Haven't past the location of the identifier yet?");
3889
3890  // Don't parse attributes unless we have an identifier.
3891  if (D.getIdentifier())
3892    MaybeParseCXX0XAttributes(D);
3893
3894  while (1) {
3895    if (Tok.is(tok::l_paren)) {
3896      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3897      // In such a case, check if we actually have a function declarator; if it
3898      // is not, the declarator has been fully parsed.
3899      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3900        // When not in file scope, warn for ambiguous function declarators, just
3901        // in case the author intended it as a variable definition.
3902        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3903        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3904          break;
3905      }
3906      ParsedAttributes attrs(AttrFactory);
3907      BalancedDelimiterTracker T(*this, tok::l_paren);
3908      T.consumeOpen();
3909      ParseFunctionDeclarator(D, attrs, T);
3910    } else if (Tok.is(tok::l_square)) {
3911      ParseBracketDeclarator(D);
3912    } else {
3913      break;
3914    }
3915  }
3916}
3917
3918/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3919/// only called before the identifier, so these are most likely just grouping
3920/// parens for precedence.  If we find that these are actually function
3921/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3922///
3923///       direct-declarator:
3924///         '(' declarator ')'
3925/// [GNU]   '(' attributes declarator ')'
3926///         direct-declarator '(' parameter-type-list ')'
3927///         direct-declarator '(' identifier-list[opt] ')'
3928/// [GNU]   direct-declarator '(' parameter-forward-declarations
3929///                    parameter-type-list[opt] ')'
3930///
3931void Parser::ParseParenDeclarator(Declarator &D) {
3932  BalancedDelimiterTracker T(*this, tok::l_paren);
3933  T.consumeOpen();
3934
3935  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3936
3937  // Eat any attributes before we look at whether this is a grouping or function
3938  // declarator paren.  If this is a grouping paren, the attribute applies to
3939  // the type being built up, for example:
3940  //     int (__attribute__(()) *x)(long y)
3941  // If this ends up not being a grouping paren, the attribute applies to the
3942  // first argument, for example:
3943  //     int (__attribute__(()) int x)
3944  // In either case, we need to eat any attributes to be able to determine what
3945  // sort of paren this is.
3946  //
3947  ParsedAttributes attrs(AttrFactory);
3948  bool RequiresArg = false;
3949  if (Tok.is(tok::kw___attribute)) {
3950    ParseGNUAttributes(attrs);
3951
3952    // We require that the argument list (if this is a non-grouping paren) be
3953    // present even if the attribute list was empty.
3954    RequiresArg = true;
3955  }
3956  // Eat any Microsoft extensions.
3957  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3958       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3959       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
3960       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
3961    ParseMicrosoftTypeAttributes(attrs);
3962  }
3963  // Eat any Borland extensions.
3964  if  (Tok.is(tok::kw___pascal))
3965    ParseBorlandTypeAttributes(attrs);
3966
3967  // If we haven't past the identifier yet (or where the identifier would be
3968  // stored, if this is an abstract declarator), then this is probably just
3969  // grouping parens. However, if this could be an abstract-declarator, then
3970  // this could also be the start of function arguments (consider 'void()').
3971  bool isGrouping;
3972
3973  if (!D.mayOmitIdentifier()) {
3974    // If this can't be an abstract-declarator, this *must* be a grouping
3975    // paren, because we haven't seen the identifier yet.
3976    isGrouping = true;
3977  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3978             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3979             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3980    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3981    // considered to be a type, not a K&R identifier-list.
3982    isGrouping = false;
3983  } else {
3984    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3985    isGrouping = true;
3986  }
3987
3988  // If this is a grouping paren, handle:
3989  // direct-declarator: '(' declarator ')'
3990  // direct-declarator: '(' attributes declarator ')'
3991  if (isGrouping) {
3992    bool hadGroupingParens = D.hasGroupingParens();
3993    D.setGroupingParens(true);
3994
3995    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3996    // Match the ')'.
3997    T.consumeClose();
3998    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
3999                                            T.getCloseLocation()),
4000                  attrs, T.getCloseLocation());
4001
4002    D.setGroupingParens(hadGroupingParens);
4003    return;
4004  }
4005
4006  // Okay, if this wasn't a grouping paren, it must be the start of a function
4007  // argument list.  Recognize that this declarator will never have an
4008  // identifier (and remember where it would have been), then call into
4009  // ParseFunctionDeclarator to handle of argument list.
4010  D.SetIdentifier(0, Tok.getLocation());
4011
4012  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4013}
4014
4015/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4016/// declarator D up to a paren, which indicates that we are parsing function
4017/// arguments.
4018///
4019/// If attrs is non-null, then the caller parsed those arguments immediately
4020/// after the open paren - they should be considered to be the first argument of
4021/// a parameter.  If RequiresArg is true, then the first argument of the
4022/// function is required to be present and required to not be an identifier
4023/// list.
4024///
4025/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
4026/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
4027/// (C++0x) trailing-return-type[opt].
4028///
4029/// [C++0x] exception-specification:
4030///           dynamic-exception-specification
4031///           noexcept-specification
4032///
4033void Parser::ParseFunctionDeclarator(Declarator &D,
4034                                     ParsedAttributes &attrs,
4035                                     BalancedDelimiterTracker &Tracker,
4036                                     bool RequiresArg) {
4037  // lparen is already consumed!
4038  assert(D.isPastIdentifier() && "Should not call before identifier!");
4039
4040  // This should be true when the function has typed arguments.
4041  // Otherwise, it is treated as a K&R-style function.
4042  bool HasProto = false;
4043  // Build up an array of information about the parsed arguments.
4044  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4045  // Remember where we see an ellipsis, if any.
4046  SourceLocation EllipsisLoc;
4047
4048  DeclSpec DS(AttrFactory);
4049  bool RefQualifierIsLValueRef = true;
4050  SourceLocation RefQualifierLoc;
4051  ExceptionSpecificationType ESpecType = EST_None;
4052  SourceRange ESpecRange;
4053  SmallVector<ParsedType, 2> DynamicExceptions;
4054  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4055  ExprResult NoexceptExpr;
4056  ParsedType TrailingReturnType;
4057
4058  SourceLocation EndLoc;
4059  if (isFunctionDeclaratorIdentifierList()) {
4060    if (RequiresArg)
4061      Diag(Tok, diag::err_argument_required_after_attribute);
4062
4063    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4064
4065    Tracker.consumeClose();
4066    EndLoc = Tracker.getCloseLocation();
4067  } else {
4068    // Enter function-declaration scope, limiting any declarators to the
4069    // function prototype scope, including parameter declarators.
4070    ParseScope PrototypeScope(this,
4071                              Scope::FunctionPrototypeScope|Scope::DeclScope);
4072
4073    if (Tok.isNot(tok::r_paren))
4074      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
4075    else if (RequiresArg)
4076      Diag(Tok, diag::err_argument_required_after_attribute);
4077
4078    HasProto = ParamInfo.size() || getLang().CPlusPlus;
4079
4080    // If we have the closing ')', eat it.
4081    Tracker.consumeClose();
4082    EndLoc = Tracker.getCloseLocation();
4083
4084    if (getLang().CPlusPlus) {
4085      MaybeParseCXX0XAttributes(attrs);
4086
4087      // Parse cv-qualifier-seq[opt].
4088      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4089        if (!DS.getSourceRange().getEnd().isInvalid())
4090          EndLoc = DS.getSourceRange().getEnd();
4091
4092      // Parse ref-qualifier[opt].
4093      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4094        Diag(Tok, getLang().CPlusPlus0x ?
4095             diag::warn_cxx98_compat_ref_qualifier :
4096             diag::ext_ref_qualifier);
4097
4098        RefQualifierIsLValueRef = Tok.is(tok::amp);
4099        RefQualifierLoc = ConsumeToken();
4100        EndLoc = RefQualifierLoc;
4101      }
4102
4103      // Parse exception-specification[opt].
4104      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4105                                                   DynamicExceptions,
4106                                                   DynamicExceptionRanges,
4107                                                   NoexceptExpr);
4108      if (ESpecType != EST_None)
4109        EndLoc = ESpecRange.getEnd();
4110
4111      // Parse trailing-return-type[opt].
4112      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
4113        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4114        SourceRange Range;
4115        TrailingReturnType = ParseTrailingReturnType(Range).get();
4116        if (Range.getEnd().isValid())
4117          EndLoc = Range.getEnd();
4118      }
4119    }
4120
4121    // Leave prototype scope.
4122    PrototypeScope.Exit();
4123  }
4124
4125  // Remember that we parsed a function type, and remember the attributes.
4126  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4127                                             /*isVariadic=*/EllipsisLoc.isValid(),
4128                                             EllipsisLoc,
4129                                             ParamInfo.data(), ParamInfo.size(),
4130                                             DS.getTypeQualifiers(),
4131                                             RefQualifierIsLValueRef,
4132                                             RefQualifierLoc,
4133                                             /*MutableLoc=*/SourceLocation(),
4134                                             ESpecType, ESpecRange.getBegin(),
4135                                             DynamicExceptions.data(),
4136                                             DynamicExceptionRanges.data(),
4137                                             DynamicExceptions.size(),
4138                                             NoexceptExpr.isUsable() ?
4139                                               NoexceptExpr.get() : 0,
4140                                             Tracker.getOpenLocation(),
4141                                             EndLoc, D,
4142                                             TrailingReturnType),
4143                attrs, EndLoc);
4144}
4145
4146/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4147/// identifier list form for a K&R-style function:  void foo(a,b,c)
4148///
4149/// Note that identifier-lists are only allowed for normal declarators, not for
4150/// abstract-declarators.
4151bool Parser::isFunctionDeclaratorIdentifierList() {
4152  return !getLang().CPlusPlus
4153         && Tok.is(tok::identifier)
4154         && !TryAltiVecVectorToken()
4155         // K&R identifier lists can't have typedefs as identifiers, per C99
4156         // 6.7.5.3p11.
4157         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4158         // Identifier lists follow a really simple grammar: the identifiers can
4159         // be followed *only* by a ", identifier" or ")".  However, K&R
4160         // identifier lists are really rare in the brave new modern world, and
4161         // it is very common for someone to typo a type in a non-K&R style
4162         // list.  If we are presented with something like: "void foo(intptr x,
4163         // float y)", we don't want to start parsing the function declarator as
4164         // though it is a K&R style declarator just because intptr is an
4165         // invalid type.
4166         //
4167         // To handle this, we check to see if the token after the first
4168         // identifier is a "," or ")".  Only then do we parse it as an
4169         // identifier list.
4170         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4171}
4172
4173/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4174/// we found a K&R-style identifier list instead of a typed parameter list.
4175///
4176/// After returning, ParamInfo will hold the parsed parameters.
4177///
4178///       identifier-list: [C99 6.7.5]
4179///         identifier
4180///         identifier-list ',' identifier
4181///
4182void Parser::ParseFunctionDeclaratorIdentifierList(
4183       Declarator &D,
4184       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4185  // If there was no identifier specified for the declarator, either we are in
4186  // an abstract-declarator, or we are in a parameter declarator which was found
4187  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4188  // diagnose this.
4189  if (!D.getIdentifier())
4190    Diag(Tok, diag::ext_ident_list_in_param);
4191
4192  // Maintain an efficient lookup of params we have seen so far.
4193  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4194
4195  while (1) {
4196    // If this isn't an identifier, report the error and skip until ')'.
4197    if (Tok.isNot(tok::identifier)) {
4198      Diag(Tok, diag::err_expected_ident);
4199      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4200      // Forget we parsed anything.
4201      ParamInfo.clear();
4202      return;
4203    }
4204
4205    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4206
4207    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4208    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4209      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4210
4211    // Verify that the argument identifier has not already been mentioned.
4212    if (!ParamsSoFar.insert(ParmII)) {
4213      Diag(Tok, diag::err_param_redefinition) << ParmII;
4214    } else {
4215      // Remember this identifier in ParamInfo.
4216      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4217                                                     Tok.getLocation(),
4218                                                     0));
4219    }
4220
4221    // Eat the identifier.
4222    ConsumeToken();
4223
4224    // The list continues if we see a comma.
4225    if (Tok.isNot(tok::comma))
4226      break;
4227    ConsumeToken();
4228  }
4229}
4230
4231/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4232/// after the opening parenthesis. This function will not parse a K&R-style
4233/// identifier list.
4234///
4235/// D is the declarator being parsed.  If attrs is non-null, then the caller
4236/// parsed those arguments immediately after the open paren - they should be
4237/// considered to be the first argument of a parameter.
4238///
4239/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4240/// be the location of the ellipsis, if any was parsed.
4241///
4242///       parameter-type-list: [C99 6.7.5]
4243///         parameter-list
4244///         parameter-list ',' '...'
4245/// [C++]   parameter-list '...'
4246///
4247///       parameter-list: [C99 6.7.5]
4248///         parameter-declaration
4249///         parameter-list ',' parameter-declaration
4250///
4251///       parameter-declaration: [C99 6.7.5]
4252///         declaration-specifiers declarator
4253/// [C++]   declaration-specifiers declarator '=' assignment-expression
4254/// [GNU]   declaration-specifiers declarator attributes
4255///         declaration-specifiers abstract-declarator[opt]
4256/// [C++]   declaration-specifiers abstract-declarator[opt]
4257///           '=' assignment-expression
4258/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4259///
4260void Parser::ParseParameterDeclarationClause(
4261       Declarator &D,
4262       ParsedAttributes &attrs,
4263       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4264       SourceLocation &EllipsisLoc) {
4265
4266  while (1) {
4267    if (Tok.is(tok::ellipsis)) {
4268      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4269      break;
4270    }
4271
4272    // Parse the declaration-specifiers.
4273    // Just use the ParsingDeclaration "scope" of the declarator.
4274    DeclSpec DS(AttrFactory);
4275
4276    // Skip any Microsoft attributes before a param.
4277    if (getLang().MicrosoftExt && Tok.is(tok::l_square))
4278      ParseMicrosoftAttributes(DS.getAttributes());
4279
4280    SourceLocation DSStart = Tok.getLocation();
4281
4282    // If the caller parsed attributes for the first argument, add them now.
4283    // Take them so that we only apply the attributes to the first parameter.
4284    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4285    // attributes lost? Should they even be allowed?
4286    // FIXME: If we can leave the attributes in the token stream somehow, we can
4287    // get rid of a parameter (attrs) and this statement. It might be too much
4288    // hassle.
4289    DS.takeAttributesFrom(attrs);
4290
4291    ParseDeclarationSpecifiers(DS);
4292
4293    // Parse the declarator.  This is "PrototypeContext", because we must
4294    // accept either 'declarator' or 'abstract-declarator' here.
4295    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4296    ParseDeclarator(ParmDecl);
4297
4298    // Parse GNU attributes, if present.
4299    MaybeParseGNUAttributes(ParmDecl);
4300
4301    // Remember this parsed parameter in ParamInfo.
4302    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4303
4304    // DefArgToks is used when the parsing of default arguments needs
4305    // to be delayed.
4306    CachedTokens *DefArgToks = 0;
4307
4308    // If no parameter was specified, verify that *something* was specified,
4309    // otherwise we have a missing type and identifier.
4310    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4311        ParmDecl.getNumTypeObjects() == 0) {
4312      // Completely missing, emit error.
4313      Diag(DSStart, diag::err_missing_param);
4314    } else {
4315      // Otherwise, we have something.  Add it and let semantic analysis try
4316      // to grok it and add the result to the ParamInfo we are building.
4317
4318      // Inform the actions module about the parameter declarator, so it gets
4319      // added to the current scope.
4320      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4321
4322      // Parse the default argument, if any. We parse the default
4323      // arguments in all dialects; the semantic analysis in
4324      // ActOnParamDefaultArgument will reject the default argument in
4325      // C.
4326      if (Tok.is(tok::equal)) {
4327        SourceLocation EqualLoc = Tok.getLocation();
4328
4329        // Parse the default argument
4330        if (D.getContext() == Declarator::MemberContext) {
4331          // If we're inside a class definition, cache the tokens
4332          // corresponding to the default argument. We'll actually parse
4333          // them when we see the end of the class definition.
4334          // FIXME: Templates will require something similar.
4335          // FIXME: Can we use a smart pointer for Toks?
4336          DefArgToks = new CachedTokens;
4337
4338          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4339                                    /*StopAtSemi=*/true,
4340                                    /*ConsumeFinalToken=*/false)) {
4341            delete DefArgToks;
4342            DefArgToks = 0;
4343            Actions.ActOnParamDefaultArgumentError(Param);
4344          } else {
4345            // Mark the end of the default argument so that we know when to
4346            // stop when we parse it later on.
4347            Token DefArgEnd;
4348            DefArgEnd.startToken();
4349            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4350            DefArgEnd.setLocation(Tok.getLocation());
4351            DefArgToks->push_back(DefArgEnd);
4352            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4353                                                (*DefArgToks)[1].getLocation());
4354          }
4355        } else {
4356          // Consume the '='.
4357          ConsumeToken();
4358
4359          // The argument isn't actually potentially evaluated unless it is
4360          // used.
4361          EnterExpressionEvaluationContext Eval(Actions,
4362                                              Sema::PotentiallyEvaluatedIfUsed);
4363
4364          ExprResult DefArgResult(ParseAssignmentExpression());
4365          if (DefArgResult.isInvalid()) {
4366            Actions.ActOnParamDefaultArgumentError(Param);
4367            SkipUntil(tok::comma, tok::r_paren, true, true);
4368          } else {
4369            // Inform the actions module about the default argument
4370            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4371                                              DefArgResult.take());
4372          }
4373        }
4374      }
4375
4376      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4377                                          ParmDecl.getIdentifierLoc(), Param,
4378                                          DefArgToks));
4379    }
4380
4381    // If the next token is a comma, consume it and keep reading arguments.
4382    if (Tok.isNot(tok::comma)) {
4383      if (Tok.is(tok::ellipsis)) {
4384        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4385
4386        if (!getLang().CPlusPlus) {
4387          // We have ellipsis without a preceding ',', which is ill-formed
4388          // in C. Complain and provide the fix.
4389          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4390            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4391        }
4392      }
4393
4394      break;
4395    }
4396
4397    // Consume the comma.
4398    ConsumeToken();
4399  }
4400
4401}
4402
4403/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4404/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4405/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4406/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4407/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4408void Parser::ParseBracketDeclarator(Declarator &D) {
4409  BalancedDelimiterTracker T(*this, tok::l_square);
4410  T.consumeOpen();
4411
4412  // C array syntax has many features, but by-far the most common is [] and [4].
4413  // This code does a fast path to handle some of the most obvious cases.
4414  if (Tok.getKind() == tok::r_square) {
4415    T.consumeClose();
4416    ParsedAttributes attrs(AttrFactory);
4417    MaybeParseCXX0XAttributes(attrs);
4418
4419    // Remember that we parsed the empty array type.
4420    ExprResult NumElements;
4421    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4422                                            T.getOpenLocation(),
4423                                            T.getCloseLocation()),
4424                  attrs, T.getCloseLocation());
4425    return;
4426  } else if (Tok.getKind() == tok::numeric_constant &&
4427             GetLookAheadToken(1).is(tok::r_square)) {
4428    // [4] is very common.  Parse the numeric constant expression.
4429    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4430    ConsumeToken();
4431
4432    T.consumeClose();
4433    ParsedAttributes attrs(AttrFactory);
4434    MaybeParseCXX0XAttributes(attrs);
4435
4436    // Remember that we parsed a array type, and remember its features.
4437    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4438                                            ExprRes.release(),
4439                                            T.getOpenLocation(),
4440                                            T.getCloseLocation()),
4441                  attrs, T.getCloseLocation());
4442    return;
4443  }
4444
4445  // If valid, this location is the position where we read the 'static' keyword.
4446  SourceLocation StaticLoc;
4447  if (Tok.is(tok::kw_static))
4448    StaticLoc = ConsumeToken();
4449
4450  // If there is a type-qualifier-list, read it now.
4451  // Type qualifiers in an array subscript are a C99 feature.
4452  DeclSpec DS(AttrFactory);
4453  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4454
4455  // If we haven't already read 'static', check to see if there is one after the
4456  // type-qualifier-list.
4457  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4458    StaticLoc = ConsumeToken();
4459
4460  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4461  bool isStar = false;
4462  ExprResult NumElements;
4463
4464  // Handle the case where we have '[*]' as the array size.  However, a leading
4465  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4466  // the the token after the star is a ']'.  Since stars in arrays are
4467  // infrequent, use of lookahead is not costly here.
4468  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4469    ConsumeToken();  // Eat the '*'.
4470
4471    if (StaticLoc.isValid()) {
4472      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4473      StaticLoc = SourceLocation();  // Drop the static.
4474    }
4475    isStar = true;
4476  } else if (Tok.isNot(tok::r_square)) {
4477    // Note, in C89, this production uses the constant-expr production instead
4478    // of assignment-expr.  The only difference is that assignment-expr allows
4479    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4480    // are not i-c-e's, so we don't need to distinguish between the two here.
4481
4482    // Parse the constant-expression or assignment-expression now (depending
4483    // on dialect).
4484    if (getLang().CPlusPlus)
4485      NumElements = ParseConstantExpression();
4486    else
4487      NumElements = ParseAssignmentExpression();
4488  }
4489
4490  // If there was an error parsing the assignment-expression, recover.
4491  if (NumElements.isInvalid()) {
4492    D.setInvalidType(true);
4493    // If the expression was invalid, skip it.
4494    SkipUntil(tok::r_square);
4495    return;
4496  }
4497
4498  T.consumeClose();
4499
4500  ParsedAttributes attrs(AttrFactory);
4501  MaybeParseCXX0XAttributes(attrs);
4502
4503  // Remember that we parsed a array type, and remember its features.
4504  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4505                                          StaticLoc.isValid(), isStar,
4506                                          NumElements.release(),
4507                                          T.getOpenLocation(),
4508                                          T.getCloseLocation()),
4509                attrs, T.getCloseLocation());
4510}
4511
4512/// [GNU]   typeof-specifier:
4513///           typeof ( expressions )
4514///           typeof ( type-name )
4515/// [GNU/C++] typeof unary-expression
4516///
4517void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4518  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4519  Token OpTok = Tok;
4520  SourceLocation StartLoc = ConsumeToken();
4521
4522  const bool hasParens = Tok.is(tok::l_paren);
4523
4524  bool isCastExpr;
4525  ParsedType CastTy;
4526  SourceRange CastRange;
4527  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4528                                                          CastTy, CastRange);
4529  if (hasParens)
4530    DS.setTypeofParensRange(CastRange);
4531
4532  if (CastRange.getEnd().isInvalid())
4533    // FIXME: Not accurate, the range gets one token more than it should.
4534    DS.SetRangeEnd(Tok.getLocation());
4535  else
4536    DS.SetRangeEnd(CastRange.getEnd());
4537
4538  if (isCastExpr) {
4539    if (!CastTy) {
4540      DS.SetTypeSpecError();
4541      return;
4542    }
4543
4544    const char *PrevSpec = 0;
4545    unsigned DiagID;
4546    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4547    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4548                           DiagID, CastTy))
4549      Diag(StartLoc, DiagID) << PrevSpec;
4550    return;
4551  }
4552
4553  // If we get here, the operand to the typeof was an expresion.
4554  if (Operand.isInvalid()) {
4555    DS.SetTypeSpecError();
4556    return;
4557  }
4558
4559  const char *PrevSpec = 0;
4560  unsigned DiagID;
4561  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4562  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4563                         DiagID, Operand.get()))
4564    Diag(StartLoc, DiagID) << PrevSpec;
4565}
4566
4567/// [C1X]   atomic-specifier:
4568///           _Atomic ( type-name )
4569///
4570void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4571  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4572
4573  SourceLocation StartLoc = ConsumeToken();
4574  BalancedDelimiterTracker T(*this, tok::l_paren);
4575  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4576    SkipUntil(tok::r_paren);
4577    return;
4578  }
4579
4580  TypeResult Result = ParseTypeName();
4581  if (Result.isInvalid()) {
4582    SkipUntil(tok::r_paren);
4583    return;
4584  }
4585
4586  // Match the ')'
4587  T.consumeClose();
4588
4589  if (T.getCloseLocation().isInvalid())
4590    return;
4591
4592  DS.setTypeofParensRange(T.getRange());
4593  DS.SetRangeEnd(T.getCloseLocation());
4594
4595  const char *PrevSpec = 0;
4596  unsigned DiagID;
4597  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4598                         DiagID, Result.release()))
4599    Diag(StartLoc, DiagID) << PrevSpec;
4600}
4601
4602
4603/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4604/// from TryAltiVecVectorToken.
4605bool Parser::TryAltiVecVectorTokenOutOfLine() {
4606  Token Next = NextToken();
4607  switch (Next.getKind()) {
4608  default: return false;
4609  case tok::kw_short:
4610  case tok::kw_long:
4611  case tok::kw_signed:
4612  case tok::kw_unsigned:
4613  case tok::kw_void:
4614  case tok::kw_char:
4615  case tok::kw_int:
4616  case tok::kw_float:
4617  case tok::kw_double:
4618  case tok::kw_bool:
4619  case tok::kw___pixel:
4620    Tok.setKind(tok::kw___vector);
4621    return true;
4622  case tok::identifier:
4623    if (Next.getIdentifierInfo() == Ident_pixel) {
4624      Tok.setKind(tok::kw___vector);
4625      return true;
4626    }
4627    return false;
4628  }
4629}
4630
4631bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4632                                      const char *&PrevSpec, unsigned &DiagID,
4633                                      bool &isInvalid) {
4634  if (Tok.getIdentifierInfo() == Ident_vector) {
4635    Token Next = NextToken();
4636    switch (Next.getKind()) {
4637    case tok::kw_short:
4638    case tok::kw_long:
4639    case tok::kw_signed:
4640    case tok::kw_unsigned:
4641    case tok::kw_void:
4642    case tok::kw_char:
4643    case tok::kw_int:
4644    case tok::kw_float:
4645    case tok::kw_double:
4646    case tok::kw_bool:
4647    case tok::kw___pixel:
4648      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4649      return true;
4650    case tok::identifier:
4651      if (Next.getIdentifierInfo() == Ident_pixel) {
4652        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4653        return true;
4654      }
4655      break;
4656    default:
4657      break;
4658    }
4659  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4660             DS.isTypeAltiVecVector()) {
4661    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4662    return true;
4663  }
4664  return false;
4665}
4666