ParseDecl.cpp revision aa4a99b4a62615db243f7a5c433169f2fc704420
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/StringSwitch.h"
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// C99 6.7: Declarations.
27//===----------------------------------------------------------------------===//
28
29/// ParseTypeName
30///       type-name: [C99 6.7.6]
31///         specifier-qualifier-list abstract-declarator[opt]
32///
33/// Called type-id in C++.
34TypeResult Parser::ParseTypeName(SourceRange *Range,
35                                 Declarator::TheContext Context,
36                                 AccessSpecifier AS,
37                                 Decl **OwnedType) {
38  // Parse the common declaration-specifiers piece.
39  DeclSpec DS(AttrFactory);
40  ParseSpecifierQualifierList(DS, AS);
41  if (OwnedType)
42    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
43
44  // Parse the abstract-declarator, if present.
45  Declarator DeclaratorInfo(DS, Context);
46  ParseDeclarator(DeclaratorInfo);
47  if (Range)
48    *Range = DeclaratorInfo.getSourceRange();
49
50  if (DeclaratorInfo.isInvalidType())
51    return true;
52
53  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
54}
55
56
57/// isAttributeLateParsed - Return true if the attribute has arguments that
58/// require late parsing.
59static bool isAttributeLateParsed(const IdentifierInfo &II) {
60    return llvm::StringSwitch<bool>(II.getName())
61#include "clang/Parse/AttrLateParsed.inc"
62        .Default(false);
63}
64
65
66/// ParseGNUAttributes - Parse a non-empty attributes list.
67///
68/// [GNU] attributes:
69///         attribute
70///         attributes attribute
71///
72/// [GNU]  attribute:
73///          '__attribute__' '(' '(' attribute-list ')' ')'
74///
75/// [GNU]  attribute-list:
76///          attrib
77///          attribute_list ',' attrib
78///
79/// [GNU]  attrib:
80///          empty
81///          attrib-name
82///          attrib-name '(' identifier ')'
83///          attrib-name '(' identifier ',' nonempty-expr-list ')'
84///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
85///
86/// [GNU]  attrib-name:
87///          identifier
88///          typespec
89///          typequal
90///          storageclass
91///
92/// FIXME: The GCC grammar/code for this construct implies we need two
93/// token lookahead. Comment from gcc: "If they start with an identifier
94/// which is followed by a comma or close parenthesis, then the arguments
95/// start with that identifier; otherwise they are an expression list."
96///
97/// At the moment, I am not doing 2 token lookahead. I am also unaware of
98/// any attributes that don't work (based on my limited testing). Most
99/// attributes are very simple in practice. Until we find a bug, I don't see
100/// a pressing need to implement the 2 token lookahead.
101
102void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
103                                SourceLocation *endLoc,
104                                LateParsedAttrList *LateAttrs) {
105  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
106
107  while (Tok.is(tok::kw___attribute)) {
108    ConsumeToken();
109    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
110                         "attribute")) {
111      SkipUntil(tok::r_paren, true); // skip until ) or ;
112      return;
113    }
114    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
115      SkipUntil(tok::r_paren, true); // skip until ) or ;
116      return;
117    }
118    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
119    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
120           Tok.is(tok::comma)) {
121      if (Tok.is(tok::comma)) {
122        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
123        ConsumeToken();
124        continue;
125      }
126      // we have an identifier or declaration specifier (const, int, etc.)
127      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
128      SourceLocation AttrNameLoc = ConsumeToken();
129
130      if (Tok.is(tok::l_paren)) {
131        // handle "parameterized" attributes
132        if (LateAttrs && !ClassStack.empty() &&
133            isAttributeLateParsed(*AttrName)) {
134          // Delayed parsing is only available for attributes that occur
135          // in certain locations within a class scope.
136          LateParsedAttribute *LA =
137            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
138          LateAttrs->push_back(LA);
139          getCurrentClass().LateParsedDeclarations.push_back(LA);
140
141          // consume everything up to and including the matching right parens
142          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
143
144          Token Eof;
145          Eof.startToken();
146          Eof.setLocation(Tok.getLocation());
147          LA->Toks.push_back(Eof);
148        } else {
149          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
150        }
151      } else {
152        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
153                     0, SourceLocation(), 0, 0);
154      }
155    }
156    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
157      SkipUntil(tok::r_paren, false);
158    SourceLocation Loc = Tok.getLocation();
159    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
160      SkipUntil(tok::r_paren, false);
161    }
162    if (endLoc)
163      *endLoc = Loc;
164  }
165}
166
167
168/// Parse the arguments to a parameterized GNU attribute
169void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
170                                   SourceLocation AttrNameLoc,
171                                   ParsedAttributes &Attrs,
172                                   SourceLocation *EndLoc) {
173
174  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
175
176  // Availability attributes have their own grammar.
177  if (AttrName->isStr("availability")) {
178    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
179    return;
180  }
181  // Thread safety attributes fit into the FIXME case above, so we
182  // just parse the arguments as a list of expressions
183  if (IsThreadSafetyAttribute(AttrName->getName())) {
184    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
185    return;
186  }
187
188  ConsumeParen(); // ignore the left paren loc for now
189
190  if (Tok.is(tok::identifier)) {
191    IdentifierInfo *ParmName = Tok.getIdentifierInfo();
192    SourceLocation ParmLoc = ConsumeToken();
193
194    if (Tok.is(tok::r_paren)) {
195      // __attribute__(( mode(byte) ))
196      SourceLocation RParen = ConsumeParen();
197      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
198                   ParmName, ParmLoc, 0, 0);
199    } else if (Tok.is(tok::comma)) {
200      ConsumeToken();
201      // __attribute__(( format(printf, 1, 2) ))
202      ExprVector ArgExprs(Actions);
203      bool ArgExprsOk = true;
204
205      // now parse the non-empty comma separated list of expressions
206      while (1) {
207        ExprResult ArgExpr(ParseAssignmentExpression());
208        if (ArgExpr.isInvalid()) {
209          ArgExprsOk = false;
210          SkipUntil(tok::r_paren);
211          break;
212        } else {
213          ArgExprs.push_back(ArgExpr.release());
214        }
215        if (Tok.isNot(tok::comma))
216          break;
217        ConsumeToken(); // Eat the comma, move to the next argument
218      }
219      if (ArgExprsOk && Tok.is(tok::r_paren)) {
220        SourceLocation RParen = ConsumeParen();
221        Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
222                     ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
223      }
224    }
225  } else { // not an identifier
226    switch (Tok.getKind()) {
227    case tok::r_paren: {
228    // parse a possibly empty comma separated list of expressions
229      // __attribute__(( nonnull() ))
230      SourceLocation RParen = ConsumeParen();
231      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
232                   0, SourceLocation(), 0, 0);
233      break;
234    }
235    case tok::kw_char:
236    case tok::kw_wchar_t:
237    case tok::kw_char16_t:
238    case tok::kw_char32_t:
239    case tok::kw_bool:
240    case tok::kw_short:
241    case tok::kw_int:
242    case tok::kw_long:
243    case tok::kw___int64:
244    case tok::kw_signed:
245    case tok::kw_unsigned:
246    case tok::kw_float:
247    case tok::kw_double:
248    case tok::kw_void:
249    case tok::kw_typeof: {
250      // If it's a builtin type name, eat it and expect a rparen
251      // __attribute__(( vec_type_hint(char) ))
252      SourceLocation EndLoc = ConsumeToken();
253      if (Tok.is(tok::r_paren))
254        EndLoc = ConsumeParen();
255      AttributeList *attr
256        = Attrs.addNew(AttrName, SourceRange(AttrNameLoc, EndLoc), 0,
257                       AttrNameLoc, 0, SourceLocation(), 0, 0);
258      if (attr->getKind() == AttributeList::AT_IBOutletCollection)
259        Diag(Tok, diag::err_iboutletcollection_builtintype);
260      break;
261    }
262    default:
263      // __attribute__(( aligned(16) ))
264      ExprVector ArgExprs(Actions);
265      bool ArgExprsOk = true;
266
267      // now parse the list of expressions
268      while (1) {
269        ExprResult ArgExpr(ParseAssignmentExpression());
270        if (ArgExpr.isInvalid()) {
271          ArgExprsOk = false;
272          SkipUntil(tok::r_paren);
273          break;
274        } else {
275          ArgExprs.push_back(ArgExpr.release());
276        }
277        if (Tok.isNot(tok::comma))
278          break;
279        ConsumeToken(); // Eat the comma, move to the next argument
280      }
281      // Match the ')'.
282      if (ArgExprsOk && Tok.is(tok::r_paren)) {
283        SourceLocation RParen = ConsumeParen();
284        Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0,
285                     AttrNameLoc, 0, SourceLocation(),
286                     ArgExprs.take(), ArgExprs.size());
287      }
288      break;
289    }
290  }
291}
292
293
294/// ParseMicrosoftDeclSpec - Parse an __declspec construct
295///
296/// [MS] decl-specifier:
297///             __declspec ( extended-decl-modifier-seq )
298///
299/// [MS] extended-decl-modifier-seq:
300///             extended-decl-modifier[opt]
301///             extended-decl-modifier extended-decl-modifier-seq
302
303void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
304  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
305
306  ConsumeToken();
307  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
308                       "declspec")) {
309    SkipUntil(tok::r_paren, true); // skip until ) or ;
310    return;
311  }
312
313  while (Tok.getIdentifierInfo()) {
314    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
315    SourceLocation AttrNameLoc = ConsumeToken();
316
317    // FIXME: Remove this when we have proper __declspec(property()) support.
318    // Just skip everything inside property().
319    if (AttrName->getName() == "property") {
320      ConsumeParen();
321      SkipUntil(tok::r_paren);
322    }
323    if (Tok.is(tok::l_paren)) {
324      ConsumeParen();
325      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
326      // correctly.
327      ExprResult ArgExpr(ParseAssignmentExpression());
328      if (!ArgExpr.isInvalid()) {
329        Expr *ExprList = ArgExpr.take();
330        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
331                     SourceLocation(), &ExprList, 1, true);
332      }
333      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
334        SkipUntil(tok::r_paren, false);
335    } else {
336      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
337                   0, SourceLocation(), 0, 0, true);
338    }
339  }
340  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
341    SkipUntil(tok::r_paren, false);
342  return;
343}
344
345void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
346  // Treat these like attributes
347  // FIXME: Allow Sema to distinguish between these and real attributes!
348  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
349         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
350         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
351         Tok.is(tok::kw___ptr32) ||
352         Tok.is(tok::kw___unaligned)) {
353    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
354    SourceLocation AttrNameLoc = ConsumeToken();
355    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
356        Tok.is(tok::kw___ptr32))
357      // FIXME: Support these properly!
358      continue;
359    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
360                 SourceLocation(), 0, 0, true);
361  }
362}
363
364void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
365  // Treat these like attributes
366  while (Tok.is(tok::kw___pascal)) {
367    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
368    SourceLocation AttrNameLoc = ConsumeToken();
369    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
370                 SourceLocation(), 0, 0, true);
371  }
372}
373
374void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
375  // Treat these like attributes
376  while (Tok.is(tok::kw___kernel)) {
377    SourceLocation AttrNameLoc = ConsumeToken();
378    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
379                 AttrNameLoc, 0, AttrNameLoc, 0,
380                 SourceLocation(), 0, 0, false);
381  }
382}
383
384void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
385  SourceLocation Loc = Tok.getLocation();
386  switch(Tok.getKind()) {
387    // OpenCL qualifiers:
388    case tok::kw___private:
389    case tok::kw_private:
390      DS.getAttributes().addNewInteger(
391          Actions.getASTContext(),
392          PP.getIdentifierInfo("address_space"), Loc, 0);
393      break;
394
395    case tok::kw___global:
396      DS.getAttributes().addNewInteger(
397          Actions.getASTContext(),
398          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
399      break;
400
401    case tok::kw___local:
402      DS.getAttributes().addNewInteger(
403          Actions.getASTContext(),
404          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
405      break;
406
407    case tok::kw___constant:
408      DS.getAttributes().addNewInteger(
409          Actions.getASTContext(),
410          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
411      break;
412
413    case tok::kw___read_only:
414      DS.getAttributes().addNewInteger(
415          Actions.getASTContext(),
416          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
417      break;
418
419    case tok::kw___write_only:
420      DS.getAttributes().addNewInteger(
421          Actions.getASTContext(),
422          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
423      break;
424
425    case tok::kw___read_write:
426      DS.getAttributes().addNewInteger(
427          Actions.getASTContext(),
428          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
429      break;
430    default: break;
431  }
432}
433
434/// \brief Parse a version number.
435///
436/// version:
437///   simple-integer
438///   simple-integer ',' simple-integer
439///   simple-integer ',' simple-integer ',' simple-integer
440VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
441  Range = Tok.getLocation();
442
443  if (!Tok.is(tok::numeric_constant)) {
444    Diag(Tok, diag::err_expected_version);
445    SkipUntil(tok::comma, tok::r_paren, true, true, true);
446    return VersionTuple();
447  }
448
449  // Parse the major (and possibly minor and subminor) versions, which
450  // are stored in the numeric constant. We utilize a quirk of the
451  // lexer, which is that it handles something like 1.2.3 as a single
452  // numeric constant, rather than two separate tokens.
453  llvm::SmallString<512> Buffer;
454  Buffer.resize(Tok.getLength()+1);
455  const char *ThisTokBegin = &Buffer[0];
456
457  // Get the spelling of the token, which eliminates trigraphs, etc.
458  bool Invalid = false;
459  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
460  if (Invalid)
461    return VersionTuple();
462
463  // Parse the major version.
464  unsigned AfterMajor = 0;
465  unsigned Major = 0;
466  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
467    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
468    ++AfterMajor;
469  }
470
471  if (AfterMajor == 0) {
472    Diag(Tok, diag::err_expected_version);
473    SkipUntil(tok::comma, tok::r_paren, true, true, true);
474    return VersionTuple();
475  }
476
477  if (AfterMajor == ActualLength) {
478    ConsumeToken();
479
480    // We only had a single version component.
481    if (Major == 0) {
482      Diag(Tok, diag::err_zero_version);
483      return VersionTuple();
484    }
485
486    return VersionTuple(Major);
487  }
488
489  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
490    Diag(Tok, diag::err_expected_version);
491    SkipUntil(tok::comma, tok::r_paren, true, true, true);
492    return VersionTuple();
493  }
494
495  // Parse the minor version.
496  unsigned AfterMinor = AfterMajor + 1;
497  unsigned Minor = 0;
498  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
499    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
500    ++AfterMinor;
501  }
502
503  if (AfterMinor == ActualLength) {
504    ConsumeToken();
505
506    // We had major.minor.
507    if (Major == 0 && Minor == 0) {
508      Diag(Tok, diag::err_zero_version);
509      return VersionTuple();
510    }
511
512    return VersionTuple(Major, Minor);
513  }
514
515  // If what follows is not a '.', we have a problem.
516  if (ThisTokBegin[AfterMinor] != '.') {
517    Diag(Tok, diag::err_expected_version);
518    SkipUntil(tok::comma, tok::r_paren, true, true, true);
519    return VersionTuple();
520  }
521
522  // Parse the subminor version.
523  unsigned AfterSubminor = AfterMinor + 1;
524  unsigned Subminor = 0;
525  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
526    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
527    ++AfterSubminor;
528  }
529
530  if (AfterSubminor != ActualLength) {
531    Diag(Tok, diag::err_expected_version);
532    SkipUntil(tok::comma, tok::r_paren, true, true, true);
533    return VersionTuple();
534  }
535  ConsumeToken();
536  return VersionTuple(Major, Minor, Subminor);
537}
538
539/// \brief Parse the contents of the "availability" attribute.
540///
541/// availability-attribute:
542///   'availability' '(' platform ',' version-arg-list ')'
543///
544/// platform:
545///   identifier
546///
547/// version-arg-list:
548///   version-arg
549///   version-arg ',' version-arg-list
550///
551/// version-arg:
552///   'introduced' '=' version
553///   'deprecated' '=' version
554///   'removed' = version
555///   'unavailable'
556void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
557                                        SourceLocation AvailabilityLoc,
558                                        ParsedAttributes &attrs,
559                                        SourceLocation *endLoc) {
560  SourceLocation PlatformLoc;
561  IdentifierInfo *Platform = 0;
562
563  enum { Introduced, Deprecated, Obsoleted, Unknown };
564  AvailabilityChange Changes[Unknown];
565
566  // Opening '('.
567  BalancedDelimiterTracker T(*this, tok::l_paren);
568  if (T.consumeOpen()) {
569    Diag(Tok, diag::err_expected_lparen);
570    return;
571  }
572
573  // Parse the platform name,
574  if (Tok.isNot(tok::identifier)) {
575    Diag(Tok, diag::err_availability_expected_platform);
576    SkipUntil(tok::r_paren);
577    return;
578  }
579  Platform = Tok.getIdentifierInfo();
580  PlatformLoc = ConsumeToken();
581
582  // Parse the ',' following the platform name.
583  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
584    return;
585
586  // If we haven't grabbed the pointers for the identifiers
587  // "introduced", "deprecated", and "obsoleted", do so now.
588  if (!Ident_introduced) {
589    Ident_introduced = PP.getIdentifierInfo("introduced");
590    Ident_deprecated = PP.getIdentifierInfo("deprecated");
591    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
592    Ident_unavailable = PP.getIdentifierInfo("unavailable");
593  }
594
595  // Parse the set of introductions/deprecations/removals.
596  SourceLocation UnavailableLoc;
597  do {
598    if (Tok.isNot(tok::identifier)) {
599      Diag(Tok, diag::err_availability_expected_change);
600      SkipUntil(tok::r_paren);
601      return;
602    }
603    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
604    SourceLocation KeywordLoc = ConsumeToken();
605
606    if (Keyword == Ident_unavailable) {
607      if (UnavailableLoc.isValid()) {
608        Diag(KeywordLoc, diag::err_availability_redundant)
609          << Keyword << SourceRange(UnavailableLoc);
610      }
611      UnavailableLoc = KeywordLoc;
612
613      if (Tok.isNot(tok::comma))
614        break;
615
616      ConsumeToken();
617      continue;
618    }
619
620    if (Tok.isNot(tok::equal)) {
621      Diag(Tok, diag::err_expected_equal_after)
622        << Keyword;
623      SkipUntil(tok::r_paren);
624      return;
625    }
626    ConsumeToken();
627
628    SourceRange VersionRange;
629    VersionTuple Version = ParseVersionTuple(VersionRange);
630
631    if (Version.empty()) {
632      SkipUntil(tok::r_paren);
633      return;
634    }
635
636    unsigned Index;
637    if (Keyword == Ident_introduced)
638      Index = Introduced;
639    else if (Keyword == Ident_deprecated)
640      Index = Deprecated;
641    else if (Keyword == Ident_obsoleted)
642      Index = Obsoleted;
643    else
644      Index = Unknown;
645
646    if (Index < Unknown) {
647      if (!Changes[Index].KeywordLoc.isInvalid()) {
648        Diag(KeywordLoc, diag::err_availability_redundant)
649          << Keyword
650          << SourceRange(Changes[Index].KeywordLoc,
651                         Changes[Index].VersionRange.getEnd());
652      }
653
654      Changes[Index].KeywordLoc = KeywordLoc;
655      Changes[Index].Version = Version;
656      Changes[Index].VersionRange = VersionRange;
657    } else {
658      Diag(KeywordLoc, diag::err_availability_unknown_change)
659        << Keyword << VersionRange;
660    }
661
662    if (Tok.isNot(tok::comma))
663      break;
664
665    ConsumeToken();
666  } while (true);
667
668  // Closing ')'.
669  if (T.consumeClose())
670    return;
671
672  if (endLoc)
673    *endLoc = T.getCloseLocation();
674
675  // The 'unavailable' availability cannot be combined with any other
676  // availability changes. Make sure that hasn't happened.
677  if (UnavailableLoc.isValid()) {
678    bool Complained = false;
679    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
680      if (Changes[Index].KeywordLoc.isValid()) {
681        if (!Complained) {
682          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
683            << SourceRange(Changes[Index].KeywordLoc,
684                           Changes[Index].VersionRange.getEnd());
685          Complained = true;
686        }
687
688        // Clear out the availability.
689        Changes[Index] = AvailabilityChange();
690      }
691    }
692  }
693
694  // Record this attribute
695  attrs.addNew(&Availability,
696               SourceRange(AvailabilityLoc, T.getCloseLocation()),
697               0, SourceLocation(),
698               Platform, PlatformLoc,
699               Changes[Introduced],
700               Changes[Deprecated],
701               Changes[Obsoleted],
702               UnavailableLoc, false, false);
703}
704
705
706// Late Parsed Attributes:
707// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
708
709void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
710
711void Parser::LateParsedClass::ParseLexedAttributes() {
712  Self->ParseLexedAttributes(*Class);
713}
714
715void Parser::LateParsedAttribute::ParseLexedAttributes() {
716  Self->ParseLexedAttribute(*this);
717}
718
719/// Wrapper class which calls ParseLexedAttribute, after setting up the
720/// scope appropriately.
721void Parser::ParseLexedAttributes(ParsingClass &Class) {
722  // Deal with templates
723  // FIXME: Test cases to make sure this does the right thing for templates.
724  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
725  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
726                                HasTemplateScope);
727  if (HasTemplateScope)
728    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
729
730  // Set or update the scope flags to include Scope::ThisScope.
731  bool AlreadyHasClassScope = Class.TopLevelClass;
732  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
733  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
734  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
735
736  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
737    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
738  }
739}
740
741/// \brief Finish parsing an attribute for which parsing was delayed.
742/// This will be called at the end of parsing a class declaration
743/// for each LateParsedAttribute. We consume the saved tokens and
744/// create an attribute with the arguments filled in. We add this
745/// to the Attribute list for the decl.
746void Parser::ParseLexedAttribute(LateParsedAttribute &LA) {
747  // Save the current token position.
748  SourceLocation OrigLoc = Tok.getLocation();
749
750  // Append the current token at the end of the new token stream so that it
751  // doesn't get lost.
752  LA.Toks.push_back(Tok);
753  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
754  // Consume the previously pushed token.
755  ConsumeAnyToken();
756
757  ParsedAttributes Attrs(AttrFactory);
758  SourceLocation endLoc;
759
760  // If the Decl is templatized, add template parameters to scope.
761  bool HasTemplateScope = LA.D && LA.D->isTemplateDecl();
762  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
763  if (HasTemplateScope)
764    Actions.ActOnReenterTemplateScope(Actions.CurScope, LA.D);
765
766  // If the Decl is on a function, add function parameters to the scope.
767  bool HasFunctionScope = LA.D && LA.D->isFunctionOrFunctionTemplate();
768  ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
769  if (HasFunctionScope)
770    Actions.ActOnReenterFunctionContext(Actions.CurScope, LA.D);
771
772  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
773
774  if (HasFunctionScope) {
775    Actions.ActOnExitFunctionContext();
776    FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
777  }
778  if (HasTemplateScope) {
779    TempScope.Exit();
780  }
781
782  // Late parsed attributes must be attached to Decls by hand.  If the
783  // LA.D is not set, then this was not done properly.
784  assert(LA.D && "No decl attached to late parsed attribute");
785  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.D, Attrs);
786
787  if (Tok.getLocation() != OrigLoc) {
788    // Due to a parsing error, we either went over the cached tokens or
789    // there are still cached tokens left, so we skip the leftover tokens.
790    // Since this is an uncommon situation that should be avoided, use the
791    // expensive isBeforeInTranslationUnit call.
792    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
793                                                        OrigLoc))
794    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
795        ConsumeAnyToken();
796  }
797}
798
799/// \brief Wrapper around a case statement checking if AttrName is
800/// one of the thread safety attributes
801bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
802  return llvm::StringSwitch<bool>(AttrName)
803      .Case("guarded_by", true)
804      .Case("guarded_var", true)
805      .Case("pt_guarded_by", true)
806      .Case("pt_guarded_var", true)
807      .Case("lockable", true)
808      .Case("scoped_lockable", true)
809      .Case("no_thread_safety_analysis", true)
810      .Case("acquired_after", true)
811      .Case("acquired_before", true)
812      .Case("exclusive_lock_function", true)
813      .Case("shared_lock_function", true)
814      .Case("exclusive_trylock_function", true)
815      .Case("shared_trylock_function", true)
816      .Case("unlock_function", true)
817      .Case("lock_returned", true)
818      .Case("locks_excluded", true)
819      .Case("exclusive_locks_required", true)
820      .Case("shared_locks_required", true)
821      .Default(false);
822}
823
824/// \brief Parse the contents of thread safety attributes. These
825/// should always be parsed as an expression list.
826///
827/// We need to special case the parsing due to the fact that if the first token
828/// of the first argument is an identifier, the main parse loop will store
829/// that token as a "parameter" and the rest of
830/// the arguments will be added to a list of "arguments". However,
831/// subsequent tokens in the first argument are lost. We instead parse each
832/// argument as an expression and add all arguments to the list of "arguments".
833/// In future, we will take advantage of this special case to also
834/// deal with some argument scoping issues here (for example, referring to a
835/// function parameter in the attribute on that function).
836void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
837                                        SourceLocation AttrNameLoc,
838                                        ParsedAttributes &Attrs,
839                                        SourceLocation *EndLoc) {
840  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
841
842  BalancedDelimiterTracker T(*this, tok::l_paren);
843  T.consumeOpen();
844
845  ExprVector ArgExprs(Actions);
846  bool ArgExprsOk = true;
847
848  // now parse the list of expressions
849  while (1) {
850    ExprResult ArgExpr(ParseAssignmentExpression());
851    if (ArgExpr.isInvalid()) {
852      ArgExprsOk = false;
853      T.consumeClose();
854      break;
855    } else {
856      ArgExprs.push_back(ArgExpr.release());
857    }
858    if (Tok.isNot(tok::comma))
859      break;
860    ConsumeToken(); // Eat the comma, move to the next argument
861  }
862  // Match the ')'.
863  if (ArgExprsOk && !T.consumeClose()) {
864    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
865                 ArgExprs.take(), ArgExprs.size());
866  }
867  if (EndLoc)
868    *EndLoc = T.getCloseLocation();
869}
870
871void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
872  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
873    << attrs.Range;
874}
875
876/// ParseDeclaration - Parse a full 'declaration', which consists of
877/// declaration-specifiers, some number of declarators, and a semicolon.
878/// 'Context' should be a Declarator::TheContext value.  This returns the
879/// location of the semicolon in DeclEnd.
880///
881///       declaration: [C99 6.7]
882///         block-declaration ->
883///           simple-declaration
884///           others                   [FIXME]
885/// [C++]   template-declaration
886/// [C++]   namespace-definition
887/// [C++]   using-directive
888/// [C++]   using-declaration
889/// [C++0x/C1X] static_assert-declaration
890///         others... [FIXME]
891///
892Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
893                                                unsigned Context,
894                                                SourceLocation &DeclEnd,
895                                          ParsedAttributesWithRange &attrs) {
896  ParenBraceBracketBalancer BalancerRAIIObj(*this);
897  // Must temporarily exit the objective-c container scope for
898  // parsing c none objective-c decls.
899  ObjCDeclContextSwitch ObjCDC(*this);
900
901  Decl *SingleDecl = 0;
902  Decl *OwnedType = 0;
903  switch (Tok.getKind()) {
904  case tok::kw_template:
905  case tok::kw_export:
906    ProhibitAttributes(attrs);
907    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
908    break;
909  case tok::kw_inline:
910    // Could be the start of an inline namespace. Allowed as an ext in C++03.
911    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
912      ProhibitAttributes(attrs);
913      SourceLocation InlineLoc = ConsumeToken();
914      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
915      break;
916    }
917    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
918                                  true);
919  case tok::kw_namespace:
920    ProhibitAttributes(attrs);
921    SingleDecl = ParseNamespace(Context, DeclEnd);
922    break;
923  case tok::kw_using:
924    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
925                                                  DeclEnd, attrs, &OwnedType);
926    break;
927  case tok::kw_static_assert:
928  case tok::kw__Static_assert:
929    ProhibitAttributes(attrs);
930    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
931    break;
932  default:
933    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
934  }
935
936  // This routine returns a DeclGroup, if the thing we parsed only contains a
937  // single decl, convert it now. Alias declarations can also declare a type;
938  // include that too if it is present.
939  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
940}
941
942///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
943///         declaration-specifiers init-declarator-list[opt] ';'
944///[C90/C++]init-declarator-list ';'                             [TODO]
945/// [OMP]   threadprivate-directive                              [TODO]
946///
947///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
948///         attribute-specifier-seq[opt] type-specifier-seq declarator
949///
950/// If RequireSemi is false, this does not check for a ';' at the end of the
951/// declaration.  If it is true, it checks for and eats it.
952///
953/// If FRI is non-null, we might be parsing a for-range-declaration instead
954/// of a simple-declaration. If we find that we are, we also parse the
955/// for-range-initializer, and place it here.
956Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
957                                                      unsigned Context,
958                                                      SourceLocation &DeclEnd,
959                                                      ParsedAttributes &attrs,
960                                                      bool RequireSemi,
961                                                      ForRangeInit *FRI) {
962  // Parse the common declaration-specifiers piece.
963  ParsingDeclSpec DS(*this);
964  DS.takeAttributesFrom(attrs);
965
966  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
967                             getDeclSpecContextFromDeclaratorContext(Context));
968  StmtResult R = Actions.ActOnVlaStmt(DS);
969  if (R.isUsable())
970    Stmts.push_back(R.release());
971
972  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
973  // declaration-specifiers init-declarator-list[opt] ';'
974  if (Tok.is(tok::semi)) {
975    if (RequireSemi) ConsumeToken();
976    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
977                                                       DS);
978    DS.complete(TheDecl);
979    return Actions.ConvertDeclToDeclGroup(TheDecl);
980  }
981
982  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
983}
984
985/// ParseDeclGroup - Having concluded that this is either a function
986/// definition or a group of object declarations, actually parse the
987/// result.
988Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
989                                              unsigned Context,
990                                              bool AllowFunctionDefinitions,
991                                              SourceLocation *DeclEnd,
992                                              ForRangeInit *FRI) {
993  // Parse the first declarator.
994  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
995  ParseDeclarator(D);
996
997  // Bail out if the first declarator didn't seem well-formed.
998  if (!D.hasName() && !D.mayOmitIdentifier()) {
999    // Skip until ; or }.
1000    SkipUntil(tok::r_brace, true, true);
1001    if (Tok.is(tok::semi))
1002      ConsumeToken();
1003    return DeclGroupPtrTy();
1004  }
1005
1006  // Check to see if we have a function *definition* which must have a body.
1007  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1008      // Look at the next token to make sure that this isn't a function
1009      // declaration.  We have to check this because __attribute__ might be the
1010      // start of a function definition in GCC-extended K&R C.
1011      !isDeclarationAfterDeclarator()) {
1012
1013    if (isStartOfFunctionDefinition(D)) {
1014      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1015        Diag(Tok, diag::err_function_declared_typedef);
1016
1017        // Recover by treating the 'typedef' as spurious.
1018        DS.ClearStorageClassSpecs();
1019      }
1020
1021      Decl *TheDecl = ParseFunctionDefinition(D);
1022      return Actions.ConvertDeclToDeclGroup(TheDecl);
1023    }
1024
1025    if (isDeclarationSpecifier()) {
1026      // If there is an invalid declaration specifier right after the function
1027      // prototype, then we must be in a missing semicolon case where this isn't
1028      // actually a body.  Just fall through into the code that handles it as a
1029      // prototype, and let the top-level code handle the erroneous declspec
1030      // where it would otherwise expect a comma or semicolon.
1031    } else {
1032      Diag(Tok, diag::err_expected_fn_body);
1033      SkipUntil(tok::semi);
1034      return DeclGroupPtrTy();
1035    }
1036  }
1037
1038  if (ParseAttributesAfterDeclarator(D))
1039    return DeclGroupPtrTy();
1040
1041  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1042  // must parse and analyze the for-range-initializer before the declaration is
1043  // analyzed.
1044  if (FRI && Tok.is(tok::colon)) {
1045    FRI->ColonLoc = ConsumeToken();
1046    if (Tok.is(tok::l_brace))
1047      FRI->RangeExpr = ParseBraceInitializer();
1048    else
1049      FRI->RangeExpr = ParseExpression();
1050    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1051    Actions.ActOnCXXForRangeDecl(ThisDecl);
1052    Actions.FinalizeDeclaration(ThisDecl);
1053    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1054  }
1055
1056  SmallVector<Decl *, 8> DeclsInGroup;
1057  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1058  D.complete(FirstDecl);
1059  if (FirstDecl)
1060    DeclsInGroup.push_back(FirstDecl);
1061
1062  // If we don't have a comma, it is either the end of the list (a ';') or an
1063  // error, bail out.
1064  while (Tok.is(tok::comma)) {
1065    // Consume the comma.
1066    ConsumeToken();
1067
1068    // Parse the next declarator.
1069    D.clear();
1070
1071    // Accept attributes in an init-declarator.  In the first declarator in a
1072    // declaration, these would be part of the declspec.  In subsequent
1073    // declarators, they become part of the declarator itself, so that they
1074    // don't apply to declarators after *this* one.  Examples:
1075    //    short __attribute__((common)) var;    -> declspec
1076    //    short var __attribute__((common));    -> declarator
1077    //    short x, __attribute__((common)) var;    -> declarator
1078    MaybeParseGNUAttributes(D);
1079
1080    ParseDeclarator(D);
1081
1082    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1083    D.complete(ThisDecl);
1084    if (ThisDecl)
1085      DeclsInGroup.push_back(ThisDecl);
1086  }
1087
1088  if (DeclEnd)
1089    *DeclEnd = Tok.getLocation();
1090
1091  if (Context != Declarator::ForContext &&
1092      ExpectAndConsume(tok::semi,
1093                       Context == Declarator::FileContext
1094                         ? diag::err_invalid_token_after_toplevel_declarator
1095                         : diag::err_expected_semi_declaration)) {
1096    // Okay, there was no semicolon and one was expected.  If we see a
1097    // declaration specifier, just assume it was missing and continue parsing.
1098    // Otherwise things are very confused and we skip to recover.
1099    if (!isDeclarationSpecifier()) {
1100      SkipUntil(tok::r_brace, true, true);
1101      if (Tok.is(tok::semi))
1102        ConsumeToken();
1103    }
1104  }
1105
1106  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1107                                         DeclsInGroup.data(),
1108                                         DeclsInGroup.size());
1109}
1110
1111/// Parse an optional simple-asm-expr and attributes, and attach them to a
1112/// declarator. Returns true on an error.
1113bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
1114  // If a simple-asm-expr is present, parse it.
1115  if (Tok.is(tok::kw_asm)) {
1116    SourceLocation Loc;
1117    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1118    if (AsmLabel.isInvalid()) {
1119      SkipUntil(tok::semi, true, true);
1120      return true;
1121    }
1122
1123    D.setAsmLabel(AsmLabel.release());
1124    D.SetRangeEnd(Loc);
1125  }
1126
1127  MaybeParseGNUAttributes(D);
1128  return false;
1129}
1130
1131/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1132/// declarator'. This method parses the remainder of the declaration
1133/// (including any attributes or initializer, among other things) and
1134/// finalizes the declaration.
1135///
1136///       init-declarator: [C99 6.7]
1137///         declarator
1138///         declarator '=' initializer
1139/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1140/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1141/// [C++]   declarator initializer[opt]
1142///
1143/// [C++] initializer:
1144/// [C++]   '=' initializer-clause
1145/// [C++]   '(' expression-list ')'
1146/// [C++0x] '=' 'default'                                                [TODO]
1147/// [C++0x] '=' 'delete'
1148/// [C++0x] braced-init-list
1149///
1150/// According to the standard grammar, =default and =delete are function
1151/// definitions, but that definitely doesn't fit with the parser here.
1152///
1153Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1154                                     const ParsedTemplateInfo &TemplateInfo) {
1155  if (ParseAttributesAfterDeclarator(D))
1156    return 0;
1157
1158  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1159}
1160
1161Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1162                                     const ParsedTemplateInfo &TemplateInfo) {
1163  // Inform the current actions module that we just parsed this declarator.
1164  Decl *ThisDecl = 0;
1165  switch (TemplateInfo.Kind) {
1166  case ParsedTemplateInfo::NonTemplate:
1167    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1168    break;
1169
1170  case ParsedTemplateInfo::Template:
1171  case ParsedTemplateInfo::ExplicitSpecialization:
1172    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1173                             MultiTemplateParamsArg(Actions,
1174                                          TemplateInfo.TemplateParams->data(),
1175                                          TemplateInfo.TemplateParams->size()),
1176                                               D);
1177    break;
1178
1179  case ParsedTemplateInfo::ExplicitInstantiation: {
1180    DeclResult ThisRes
1181      = Actions.ActOnExplicitInstantiation(getCurScope(),
1182                                           TemplateInfo.ExternLoc,
1183                                           TemplateInfo.TemplateLoc,
1184                                           D);
1185    if (ThisRes.isInvalid()) {
1186      SkipUntil(tok::semi, true, true);
1187      return 0;
1188    }
1189
1190    ThisDecl = ThisRes.get();
1191    break;
1192    }
1193  }
1194
1195  bool TypeContainsAuto =
1196    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1197
1198  // Parse declarator '=' initializer.
1199  if (isTokenEqualOrMistypedEqualEqual(
1200                               diag::err_invalid_equalequal_after_declarator)) {
1201    ConsumeToken();
1202    if (Tok.is(tok::kw_delete)) {
1203      if (D.isFunctionDeclarator())
1204        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1205          << 1 /* delete */;
1206      else
1207        Diag(ConsumeToken(), diag::err_deleted_non_function);
1208    } else if (Tok.is(tok::kw_default)) {
1209      if (D.isFunctionDeclarator())
1210        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
1211          << 1 /* delete */;
1212      else
1213        Diag(ConsumeToken(), diag::err_default_special_members);
1214    } else {
1215      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1216        EnterScope(0);
1217        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1218      }
1219
1220      if (Tok.is(tok::code_completion)) {
1221        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1222        cutOffParsing();
1223        return 0;
1224      }
1225
1226      ExprResult Init(ParseInitializer());
1227
1228      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1229        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1230        ExitScope();
1231      }
1232
1233      if (Init.isInvalid()) {
1234        SkipUntil(tok::comma, true, true);
1235        Actions.ActOnInitializerError(ThisDecl);
1236      } else
1237        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1238                                     /*DirectInit=*/false, TypeContainsAuto);
1239    }
1240  } else if (Tok.is(tok::l_paren)) {
1241    // Parse C++ direct initializer: '(' expression-list ')'
1242    BalancedDelimiterTracker T(*this, tok::l_paren);
1243    T.consumeOpen();
1244
1245    ExprVector Exprs(Actions);
1246    CommaLocsTy CommaLocs;
1247
1248    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1249      EnterScope(0);
1250      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1251    }
1252
1253    if (ParseExpressionList(Exprs, CommaLocs)) {
1254      SkipUntil(tok::r_paren);
1255
1256      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1257        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1258        ExitScope();
1259      }
1260    } else {
1261      // Match the ')'.
1262      T.consumeClose();
1263
1264      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1265             "Unexpected number of commas!");
1266
1267      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1268        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1269        ExitScope();
1270      }
1271
1272      Actions.AddCXXDirectInitializerToDecl(ThisDecl, T.getOpenLocation(),
1273                                            move_arg(Exprs),
1274                                            T.getCloseLocation(),
1275                                            TypeContainsAuto);
1276    }
1277  } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1278    // Parse C++0x braced-init-list.
1279    if (D.getCXXScopeSpec().isSet()) {
1280      EnterScope(0);
1281      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1282    }
1283
1284    ExprResult Init(ParseBraceInitializer());
1285
1286    if (D.getCXXScopeSpec().isSet()) {
1287      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1288      ExitScope();
1289    }
1290
1291    if (Init.isInvalid()) {
1292      Actions.ActOnInitializerError(ThisDecl);
1293    } else
1294      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1295                                   /*DirectInit=*/true, TypeContainsAuto);
1296
1297  } else {
1298    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1299  }
1300
1301  Actions.FinalizeDeclaration(ThisDecl);
1302
1303  return ThisDecl;
1304}
1305
1306/// ParseSpecifierQualifierList
1307///        specifier-qualifier-list:
1308///          type-specifier specifier-qualifier-list[opt]
1309///          type-qualifier specifier-qualifier-list[opt]
1310/// [GNU]    attributes     specifier-qualifier-list[opt]
1311///
1312void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1313  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1314  /// parse declaration-specifiers and complain about extra stuff.
1315  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1316  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1317
1318  // Validate declspec for type-name.
1319  unsigned Specs = DS.getParsedSpecifiers();
1320  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1321      !DS.hasAttributes())
1322    Diag(Tok, diag::err_typename_requires_specqual);
1323
1324  // Issue diagnostic and remove storage class if present.
1325  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1326    if (DS.getStorageClassSpecLoc().isValid())
1327      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1328    else
1329      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1330    DS.ClearStorageClassSpecs();
1331  }
1332
1333  // Issue diagnostic and remove function specfier if present.
1334  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1335    if (DS.isInlineSpecified())
1336      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1337    if (DS.isVirtualSpecified())
1338      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1339    if (DS.isExplicitSpecified())
1340      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1341    DS.ClearFunctionSpecs();
1342  }
1343}
1344
1345/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1346/// specified token is valid after the identifier in a declarator which
1347/// immediately follows the declspec.  For example, these things are valid:
1348///
1349///      int x   [             4];         // direct-declarator
1350///      int x   (             int y);     // direct-declarator
1351///  int(int x   )                         // direct-declarator
1352///      int x   ;                         // simple-declaration
1353///      int x   =             17;         // init-declarator-list
1354///      int x   ,             y;          // init-declarator-list
1355///      int x   __asm__       ("foo");    // init-declarator-list
1356///      int x   :             4;          // struct-declarator
1357///      int x   {             5};         // C++'0x unified initializers
1358///
1359/// This is not, because 'x' does not immediately follow the declspec (though
1360/// ')' happens to be valid anyway).
1361///    int (x)
1362///
1363static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1364  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1365         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1366         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1367}
1368
1369
1370/// ParseImplicitInt - This method is called when we have an non-typename
1371/// identifier in a declspec (which normally terminates the decl spec) when
1372/// the declspec has no type specifier.  In this case, the declspec is either
1373/// malformed or is "implicit int" (in K&R and C89).
1374///
1375/// This method handles diagnosing this prettily and returns false if the
1376/// declspec is done being processed.  If it recovers and thinks there may be
1377/// other pieces of declspec after it, it returns true.
1378///
1379bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1380                              const ParsedTemplateInfo &TemplateInfo,
1381                              AccessSpecifier AS) {
1382  assert(Tok.is(tok::identifier) && "should have identifier");
1383
1384  SourceLocation Loc = Tok.getLocation();
1385  // If we see an identifier that is not a type name, we normally would
1386  // parse it as the identifer being declared.  However, when a typename
1387  // is typo'd or the definition is not included, this will incorrectly
1388  // parse the typename as the identifier name and fall over misparsing
1389  // later parts of the diagnostic.
1390  //
1391  // As such, we try to do some look-ahead in cases where this would
1392  // otherwise be an "implicit-int" case to see if this is invalid.  For
1393  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1394  // an identifier with implicit int, we'd get a parse error because the
1395  // next token is obviously invalid for a type.  Parse these as a case
1396  // with an invalid type specifier.
1397  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1398
1399  // Since we know that this either implicit int (which is rare) or an
1400  // error, we'd do lookahead to try to do better recovery.
1401  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1402    // If this token is valid for implicit int, e.g. "static x = 4", then
1403    // we just avoid eating the identifier, so it will be parsed as the
1404    // identifier in the declarator.
1405    return false;
1406  }
1407
1408  // Otherwise, if we don't consume this token, we are going to emit an
1409  // error anyway.  Try to recover from various common problems.  Check
1410  // to see if this was a reference to a tag name without a tag specified.
1411  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1412  //
1413  // C++ doesn't need this, and isTagName doesn't take SS.
1414  if (SS == 0) {
1415    const char *TagName = 0, *FixitTagName = 0;
1416    tok::TokenKind TagKind = tok::unknown;
1417
1418    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1419      default: break;
1420      case DeclSpec::TST_enum:
1421        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1422      case DeclSpec::TST_union:
1423        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1424      case DeclSpec::TST_struct:
1425        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1426      case DeclSpec::TST_class:
1427        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1428    }
1429
1430    if (TagName) {
1431      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1432        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1433        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1434
1435      // Parse this as a tag as if the missing tag were present.
1436      if (TagKind == tok::kw_enum)
1437        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1438      else
1439        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1440      return true;
1441    }
1442  }
1443
1444  // This is almost certainly an invalid type name. Let the action emit a
1445  // diagnostic and attempt to recover.
1446  ParsedType T;
1447  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1448                                      getCurScope(), SS, T)) {
1449    // The action emitted a diagnostic, so we don't have to.
1450    if (T) {
1451      // The action has suggested that the type T could be used. Set that as
1452      // the type in the declaration specifiers, consume the would-be type
1453      // name token, and we're done.
1454      const char *PrevSpec;
1455      unsigned DiagID;
1456      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1457      DS.SetRangeEnd(Tok.getLocation());
1458      ConsumeToken();
1459
1460      // There may be other declaration specifiers after this.
1461      return true;
1462    }
1463
1464    // Fall through; the action had no suggestion for us.
1465  } else {
1466    // The action did not emit a diagnostic, so emit one now.
1467    SourceRange R;
1468    if (SS) R = SS->getRange();
1469    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1470  }
1471
1472  // Mark this as an error.
1473  const char *PrevSpec;
1474  unsigned DiagID;
1475  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1476  DS.SetRangeEnd(Tok.getLocation());
1477  ConsumeToken();
1478
1479  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1480  // avoid rippling error messages on subsequent uses of the same type,
1481  // could be useful if #include was forgotten.
1482  return false;
1483}
1484
1485/// \brief Determine the declaration specifier context from the declarator
1486/// context.
1487///
1488/// \param Context the declarator context, which is one of the
1489/// Declarator::TheContext enumerator values.
1490Parser::DeclSpecContext
1491Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1492  if (Context == Declarator::MemberContext)
1493    return DSC_class;
1494  if (Context == Declarator::FileContext)
1495    return DSC_top_level;
1496  return DSC_normal;
1497}
1498
1499/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1500///
1501/// FIXME: Simply returns an alignof() expression if the argument is a
1502/// type. Ideally, the type should be propagated directly into Sema.
1503///
1504/// [C1X/C++0x] type-id
1505/// [C1X]       constant-expression
1506/// [C++0x]     assignment-expression
1507ExprResult Parser::ParseAlignArgument(SourceLocation Start) {
1508  if (isTypeIdInParens()) {
1509    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1510    SourceLocation TypeLoc = Tok.getLocation();
1511    ParsedType Ty = ParseTypeName().get();
1512    SourceRange TypeRange(Start, Tok.getLocation());
1513    return Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1514                                                Ty.getAsOpaquePtr(), TypeRange);
1515  } else
1516    return ParseConstantExpression();
1517}
1518
1519/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1520/// attribute to Attrs.
1521///
1522/// alignment-specifier:
1523/// [C1X]   '_Alignas' '(' type-id ')'
1524/// [C1X]   '_Alignas' '(' constant-expression ')'
1525/// [C++0x] 'alignas' '(' type-id ')'
1526/// [C++0x] 'alignas' '(' assignment-expression ')'
1527void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1528                                     SourceLocation *endLoc) {
1529  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1530         "Not an alignment-specifier!");
1531
1532  SourceLocation KWLoc = Tok.getLocation();
1533  ConsumeToken();
1534
1535  BalancedDelimiterTracker T(*this, tok::l_paren);
1536  if (T.expectAndConsume(diag::err_expected_lparen))
1537    return;
1538
1539  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation());
1540  if (ArgExpr.isInvalid()) {
1541    SkipUntil(tok::r_paren);
1542    return;
1543  }
1544
1545  T.consumeClose();
1546  if (endLoc)
1547    *endLoc = T.getCloseLocation();
1548
1549  ExprVector ArgExprs(Actions);
1550  ArgExprs.push_back(ArgExpr.release());
1551  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1552               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1553}
1554
1555/// ParseDeclarationSpecifiers
1556///       declaration-specifiers: [C99 6.7]
1557///         storage-class-specifier declaration-specifiers[opt]
1558///         type-specifier declaration-specifiers[opt]
1559/// [C99]   function-specifier declaration-specifiers[opt]
1560/// [C1X]   alignment-specifier declaration-specifiers[opt]
1561/// [GNU]   attributes declaration-specifiers[opt]
1562/// [Clang] '__module_private__' declaration-specifiers[opt]
1563///
1564///       storage-class-specifier: [C99 6.7.1]
1565///         'typedef'
1566///         'extern'
1567///         'static'
1568///         'auto'
1569///         'register'
1570/// [C++]   'mutable'
1571/// [GNU]   '__thread'
1572///       function-specifier: [C99 6.7.4]
1573/// [C99]   'inline'
1574/// [C++]   'virtual'
1575/// [C++]   'explicit'
1576/// [OpenCL] '__kernel'
1577///       'friend': [C++ dcl.friend]
1578///       'constexpr': [C++0x dcl.constexpr]
1579
1580///
1581void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1582                                        const ParsedTemplateInfo &TemplateInfo,
1583                                        AccessSpecifier AS,
1584                                        DeclSpecContext DSContext) {
1585  if (DS.getSourceRange().isInvalid()) {
1586    DS.SetRangeStart(Tok.getLocation());
1587    DS.SetRangeEnd(Tok.getLocation());
1588  }
1589
1590  while (1) {
1591    bool isInvalid = false;
1592    const char *PrevSpec = 0;
1593    unsigned DiagID = 0;
1594
1595    SourceLocation Loc = Tok.getLocation();
1596
1597    switch (Tok.getKind()) {
1598    default:
1599    DoneWithDeclSpec:
1600      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1601      MaybeParseCXX0XAttributes(DS.getAttributes());
1602
1603      // If this is not a declaration specifier token, we're done reading decl
1604      // specifiers.  First verify that DeclSpec's are consistent.
1605      DS.Finish(Diags, PP);
1606      return;
1607
1608    case tok::code_completion: {
1609      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1610      if (DS.hasTypeSpecifier()) {
1611        bool AllowNonIdentifiers
1612          = (getCurScope()->getFlags() & (Scope::ControlScope |
1613                                          Scope::BlockScope |
1614                                          Scope::TemplateParamScope |
1615                                          Scope::FunctionPrototypeScope |
1616                                          Scope::AtCatchScope)) == 0;
1617        bool AllowNestedNameSpecifiers
1618          = DSContext == DSC_top_level ||
1619            (DSContext == DSC_class && DS.isFriendSpecified());
1620
1621        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1622                                     AllowNonIdentifiers,
1623                                     AllowNestedNameSpecifiers);
1624        return cutOffParsing();
1625      }
1626
1627      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1628        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1629      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1630        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1631                                    : Sema::PCC_Template;
1632      else if (DSContext == DSC_class)
1633        CCC = Sema::PCC_Class;
1634      else if (ObjCImpDecl)
1635        CCC = Sema::PCC_ObjCImplementation;
1636
1637      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1638      return cutOffParsing();
1639    }
1640
1641    case tok::coloncolon: // ::foo::bar
1642      // C++ scope specifier.  Annotate and loop, or bail out on error.
1643      if (TryAnnotateCXXScopeToken(true)) {
1644        if (!DS.hasTypeSpecifier())
1645          DS.SetTypeSpecError();
1646        goto DoneWithDeclSpec;
1647      }
1648      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1649        goto DoneWithDeclSpec;
1650      continue;
1651
1652    case tok::annot_cxxscope: {
1653      if (DS.hasTypeSpecifier())
1654        goto DoneWithDeclSpec;
1655
1656      CXXScopeSpec SS;
1657      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1658                                                   Tok.getAnnotationRange(),
1659                                                   SS);
1660
1661      // We are looking for a qualified typename.
1662      Token Next = NextToken();
1663      if (Next.is(tok::annot_template_id) &&
1664          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1665            ->Kind == TNK_Type_template) {
1666        // We have a qualified template-id, e.g., N::A<int>
1667
1668        // C++ [class.qual]p2:
1669        //   In a lookup in which the constructor is an acceptable lookup
1670        //   result and the nested-name-specifier nominates a class C:
1671        //
1672        //     - if the name specified after the
1673        //       nested-name-specifier, when looked up in C, is the
1674        //       injected-class-name of C (Clause 9), or
1675        //
1676        //     - if the name specified after the nested-name-specifier
1677        //       is the same as the identifier or the
1678        //       simple-template-id's template-name in the last
1679        //       component of the nested-name-specifier,
1680        //
1681        //   the name is instead considered to name the constructor of
1682        //   class C.
1683        //
1684        // Thus, if the template-name is actually the constructor
1685        // name, then the code is ill-formed; this interpretation is
1686        // reinforced by the NAD status of core issue 635.
1687        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1688        if ((DSContext == DSC_top_level ||
1689             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1690            TemplateId->Name &&
1691            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1692          if (isConstructorDeclarator()) {
1693            // The user meant this to be an out-of-line constructor
1694            // definition, but template arguments are not allowed
1695            // there.  Just allow this as a constructor; we'll
1696            // complain about it later.
1697            goto DoneWithDeclSpec;
1698          }
1699
1700          // The user meant this to name a type, but it actually names
1701          // a constructor with some extraneous template
1702          // arguments. Complain, then parse it as a type as the user
1703          // intended.
1704          Diag(TemplateId->TemplateNameLoc,
1705               diag::err_out_of_line_template_id_names_constructor)
1706            << TemplateId->Name;
1707        }
1708
1709        DS.getTypeSpecScope() = SS;
1710        ConsumeToken(); // The C++ scope.
1711        assert(Tok.is(tok::annot_template_id) &&
1712               "ParseOptionalCXXScopeSpecifier not working");
1713        AnnotateTemplateIdTokenAsType();
1714        continue;
1715      }
1716
1717      if (Next.is(tok::annot_typename)) {
1718        DS.getTypeSpecScope() = SS;
1719        ConsumeToken(); // The C++ scope.
1720        if (Tok.getAnnotationValue()) {
1721          ParsedType T = getTypeAnnotation(Tok);
1722          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1723                                         Tok.getAnnotationEndLoc(),
1724                                         PrevSpec, DiagID, T);
1725        }
1726        else
1727          DS.SetTypeSpecError();
1728        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1729        ConsumeToken(); // The typename
1730      }
1731
1732      if (Next.isNot(tok::identifier))
1733        goto DoneWithDeclSpec;
1734
1735      // If we're in a context where the identifier could be a class name,
1736      // check whether this is a constructor declaration.
1737      if ((DSContext == DSC_top_level ||
1738           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1739          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1740                                     &SS)) {
1741        if (isConstructorDeclarator())
1742          goto DoneWithDeclSpec;
1743
1744        // As noted in C++ [class.qual]p2 (cited above), when the name
1745        // of the class is qualified in a context where it could name
1746        // a constructor, its a constructor name. However, we've
1747        // looked at the declarator, and the user probably meant this
1748        // to be a type. Complain that it isn't supposed to be treated
1749        // as a type, then proceed to parse it as a type.
1750        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1751          << Next.getIdentifierInfo();
1752      }
1753
1754      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1755                                               Next.getLocation(),
1756                                               getCurScope(), &SS,
1757                                               false, false, ParsedType(),
1758                                               /*NonTrivialSourceInfo=*/true);
1759
1760      // If the referenced identifier is not a type, then this declspec is
1761      // erroneous: We already checked about that it has no type specifier, and
1762      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1763      // typename.
1764      if (TypeRep == 0) {
1765        ConsumeToken();   // Eat the scope spec so the identifier is current.
1766        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1767        goto DoneWithDeclSpec;
1768      }
1769
1770      DS.getTypeSpecScope() = SS;
1771      ConsumeToken(); // The C++ scope.
1772
1773      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1774                                     DiagID, TypeRep);
1775      if (isInvalid)
1776        break;
1777
1778      DS.SetRangeEnd(Tok.getLocation());
1779      ConsumeToken(); // The typename.
1780
1781      continue;
1782    }
1783
1784    case tok::annot_typename: {
1785      if (Tok.getAnnotationValue()) {
1786        ParsedType T = getTypeAnnotation(Tok);
1787        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1788                                       DiagID, T);
1789      } else
1790        DS.SetTypeSpecError();
1791
1792      if (isInvalid)
1793        break;
1794
1795      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1796      ConsumeToken(); // The typename
1797
1798      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1799      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1800      // Objective-C interface.
1801      if (Tok.is(tok::less) && getLang().ObjC1)
1802        ParseObjCProtocolQualifiers(DS);
1803
1804      continue;
1805    }
1806
1807    case tok::kw___is_signed:
1808      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1809      // typically treats it as a trait. If we see __is_signed as it appears
1810      // in libstdc++, e.g.,
1811      //
1812      //   static const bool __is_signed;
1813      //
1814      // then treat __is_signed as an identifier rather than as a keyword.
1815      if (DS.getTypeSpecType() == TST_bool &&
1816          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1817          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1818        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1819        Tok.setKind(tok::identifier);
1820      }
1821
1822      // We're done with the declaration-specifiers.
1823      goto DoneWithDeclSpec;
1824
1825      // typedef-name
1826    case tok::identifier: {
1827      // In C++, check to see if this is a scope specifier like foo::bar::, if
1828      // so handle it as such.  This is important for ctor parsing.
1829      if (getLang().CPlusPlus) {
1830        if (TryAnnotateCXXScopeToken(true)) {
1831          if (!DS.hasTypeSpecifier())
1832            DS.SetTypeSpecError();
1833          goto DoneWithDeclSpec;
1834        }
1835        if (!Tok.is(tok::identifier))
1836          continue;
1837      }
1838
1839      // This identifier can only be a typedef name if we haven't already seen
1840      // a type-specifier.  Without this check we misparse:
1841      //  typedef int X; struct Y { short X; };  as 'short int'.
1842      if (DS.hasTypeSpecifier())
1843        goto DoneWithDeclSpec;
1844
1845      // Check for need to substitute AltiVec keyword tokens.
1846      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1847        break;
1848
1849      // It has to be available as a typedef too!
1850      ParsedType TypeRep =
1851        Actions.getTypeName(*Tok.getIdentifierInfo(),
1852                            Tok.getLocation(), getCurScope());
1853
1854      // If this is not a typedef name, don't parse it as part of the declspec,
1855      // it must be an implicit int or an error.
1856      if (!TypeRep) {
1857        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1858        goto DoneWithDeclSpec;
1859      }
1860
1861      // If we're in a context where the identifier could be a class name,
1862      // check whether this is a constructor declaration.
1863      if (getLang().CPlusPlus && DSContext == DSC_class &&
1864          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1865          isConstructorDeclarator())
1866        goto DoneWithDeclSpec;
1867
1868      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1869                                     DiagID, TypeRep);
1870      if (isInvalid)
1871        break;
1872
1873      DS.SetRangeEnd(Tok.getLocation());
1874      ConsumeToken(); // The identifier
1875
1876      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1877      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1878      // Objective-C interface.
1879      if (Tok.is(tok::less) && getLang().ObjC1)
1880        ParseObjCProtocolQualifiers(DS);
1881
1882      // Need to support trailing type qualifiers (e.g. "id<p> const").
1883      // If a type specifier follows, it will be diagnosed elsewhere.
1884      continue;
1885    }
1886
1887      // type-name
1888    case tok::annot_template_id: {
1889      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1890      if (TemplateId->Kind != TNK_Type_template) {
1891        // This template-id does not refer to a type name, so we're
1892        // done with the type-specifiers.
1893        goto DoneWithDeclSpec;
1894      }
1895
1896      // If we're in a context where the template-id could be a
1897      // constructor name or specialization, check whether this is a
1898      // constructor declaration.
1899      if (getLang().CPlusPlus && DSContext == DSC_class &&
1900          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1901          isConstructorDeclarator())
1902        goto DoneWithDeclSpec;
1903
1904      // Turn the template-id annotation token into a type annotation
1905      // token, then try again to parse it as a type-specifier.
1906      AnnotateTemplateIdTokenAsType();
1907      continue;
1908    }
1909
1910    // GNU attributes support.
1911    case tok::kw___attribute:
1912      ParseGNUAttributes(DS.getAttributes());
1913      continue;
1914
1915    // Microsoft declspec support.
1916    case tok::kw___declspec:
1917      ParseMicrosoftDeclSpec(DS.getAttributes());
1918      continue;
1919
1920    // Microsoft single token adornments.
1921    case tok::kw___forceinline:
1922      // FIXME: Add handling here!
1923      break;
1924
1925    case tok::kw___ptr64:
1926    case tok::kw___ptr32:
1927    case tok::kw___w64:
1928    case tok::kw___cdecl:
1929    case tok::kw___stdcall:
1930    case tok::kw___fastcall:
1931    case tok::kw___thiscall:
1932    case tok::kw___unaligned:
1933      ParseMicrosoftTypeAttributes(DS.getAttributes());
1934      continue;
1935
1936    // Borland single token adornments.
1937    case tok::kw___pascal:
1938      ParseBorlandTypeAttributes(DS.getAttributes());
1939      continue;
1940
1941    // OpenCL single token adornments.
1942    case tok::kw___kernel:
1943      ParseOpenCLAttributes(DS.getAttributes());
1944      continue;
1945
1946    // storage-class-specifier
1947    case tok::kw_typedef:
1948      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
1949                                         PrevSpec, DiagID);
1950      break;
1951    case tok::kw_extern:
1952      if (DS.isThreadSpecified())
1953        Diag(Tok, diag::ext_thread_before) << "extern";
1954      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
1955                                         PrevSpec, DiagID);
1956      break;
1957    case tok::kw___private_extern__:
1958      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
1959                                         Loc, PrevSpec, DiagID);
1960      break;
1961    case tok::kw_static:
1962      if (DS.isThreadSpecified())
1963        Diag(Tok, diag::ext_thread_before) << "static";
1964      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
1965                                         PrevSpec, DiagID);
1966      break;
1967    case tok::kw_auto:
1968      if (getLang().CPlusPlus0x) {
1969        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1970          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1971                                             PrevSpec, DiagID);
1972          if (!isInvalid)
1973            Diag(Tok, diag::ext_auto_storage_class)
1974              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1975        } else
1976          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1977                                         DiagID);
1978      } else
1979        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
1980                                           PrevSpec, DiagID);
1981      break;
1982    case tok::kw_register:
1983      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
1984                                         PrevSpec, DiagID);
1985      break;
1986    case tok::kw_mutable:
1987      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
1988                                         PrevSpec, DiagID);
1989      break;
1990    case tok::kw___thread:
1991      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1992      break;
1993
1994    // function-specifier
1995    case tok::kw_inline:
1996      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1997      break;
1998    case tok::kw_virtual:
1999      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2000      break;
2001    case tok::kw_explicit:
2002      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2003      break;
2004
2005    // alignment-specifier
2006    case tok::kw__Alignas:
2007      if (!getLang().C1X)
2008        Diag(Tok, diag::ext_c1x_alignas);
2009      ParseAlignmentSpecifier(DS.getAttributes());
2010      continue;
2011
2012    // friend
2013    case tok::kw_friend:
2014      if (DSContext == DSC_class)
2015        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2016      else {
2017        PrevSpec = ""; // not actually used by the diagnostic
2018        DiagID = diag::err_friend_invalid_in_context;
2019        isInvalid = true;
2020      }
2021      break;
2022
2023    // Modules
2024    case tok::kw___module_private__:
2025      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2026      break;
2027
2028    // constexpr
2029    case tok::kw_constexpr:
2030      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2031      break;
2032
2033    // type-specifier
2034    case tok::kw_short:
2035      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2036                                      DiagID);
2037      break;
2038    case tok::kw_long:
2039      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2040        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2041                                        DiagID);
2042      else
2043        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2044                                        DiagID);
2045      break;
2046    case tok::kw___int64:
2047        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2048                                        DiagID);
2049      break;
2050    case tok::kw_signed:
2051      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2052                                     DiagID);
2053      break;
2054    case tok::kw_unsigned:
2055      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2056                                     DiagID);
2057      break;
2058    case tok::kw__Complex:
2059      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2060                                        DiagID);
2061      break;
2062    case tok::kw__Imaginary:
2063      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2064                                        DiagID);
2065      break;
2066    case tok::kw_void:
2067      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2068                                     DiagID);
2069      break;
2070    case tok::kw_char:
2071      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2072                                     DiagID);
2073      break;
2074    case tok::kw_int:
2075      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2076                                     DiagID);
2077      break;
2078     case tok::kw_half:
2079       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2080                                      DiagID);
2081       break;
2082    case tok::kw_float:
2083      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2084                                     DiagID);
2085      break;
2086    case tok::kw_double:
2087      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2088                                     DiagID);
2089      break;
2090    case tok::kw_wchar_t:
2091      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2092                                     DiagID);
2093      break;
2094    case tok::kw_char16_t:
2095      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2096                                     DiagID);
2097      break;
2098    case tok::kw_char32_t:
2099      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2100                                     DiagID);
2101      break;
2102    case tok::kw_bool:
2103    case tok::kw__Bool:
2104      if (Tok.is(tok::kw_bool) &&
2105          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2106          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2107        PrevSpec = ""; // Not used by the diagnostic.
2108        DiagID = diag::err_bool_redeclaration;
2109        // For better error recovery.
2110        Tok.setKind(tok::identifier);
2111        isInvalid = true;
2112      } else {
2113        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2114                                       DiagID);
2115      }
2116      break;
2117    case tok::kw__Decimal32:
2118      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2119                                     DiagID);
2120      break;
2121    case tok::kw__Decimal64:
2122      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2123                                     DiagID);
2124      break;
2125    case tok::kw__Decimal128:
2126      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2127                                     DiagID);
2128      break;
2129    case tok::kw___vector:
2130      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2131      break;
2132    case tok::kw___pixel:
2133      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2134      break;
2135    case tok::kw___unknown_anytype:
2136      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2137                                     PrevSpec, DiagID);
2138      break;
2139
2140    // class-specifier:
2141    case tok::kw_class:
2142    case tok::kw_struct:
2143    case tok::kw_union: {
2144      tok::TokenKind Kind = Tok.getKind();
2145      ConsumeToken();
2146      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
2147      continue;
2148    }
2149
2150    // enum-specifier:
2151    case tok::kw_enum:
2152      ConsumeToken();
2153      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
2154      continue;
2155
2156    // cv-qualifier:
2157    case tok::kw_const:
2158      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2159                                 getLang());
2160      break;
2161    case tok::kw_volatile:
2162      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2163                                 getLang());
2164      break;
2165    case tok::kw_restrict:
2166      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2167                                 getLang());
2168      break;
2169
2170    // C++ typename-specifier:
2171    case tok::kw_typename:
2172      if (TryAnnotateTypeOrScopeToken()) {
2173        DS.SetTypeSpecError();
2174        goto DoneWithDeclSpec;
2175      }
2176      if (!Tok.is(tok::kw_typename))
2177        continue;
2178      break;
2179
2180    // GNU typeof support.
2181    case tok::kw_typeof:
2182      ParseTypeofSpecifier(DS);
2183      continue;
2184
2185    case tok::kw_decltype:
2186      ParseDecltypeSpecifier(DS);
2187      continue;
2188
2189    case tok::kw___underlying_type:
2190      ParseUnderlyingTypeSpecifier(DS);
2191      continue;
2192
2193    case tok::kw__Atomic:
2194      ParseAtomicSpecifier(DS);
2195      continue;
2196
2197    // OpenCL qualifiers:
2198    case tok::kw_private:
2199      if (!getLang().OpenCL)
2200        goto DoneWithDeclSpec;
2201    case tok::kw___private:
2202    case tok::kw___global:
2203    case tok::kw___local:
2204    case tok::kw___constant:
2205    case tok::kw___read_only:
2206    case tok::kw___write_only:
2207    case tok::kw___read_write:
2208      ParseOpenCLQualifiers(DS);
2209      break;
2210
2211    case tok::less:
2212      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2213      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2214      // but we support it.
2215      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
2216        goto DoneWithDeclSpec;
2217
2218      if (!ParseObjCProtocolQualifiers(DS))
2219        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2220          << FixItHint::CreateInsertion(Loc, "id")
2221          << SourceRange(Loc, DS.getSourceRange().getEnd());
2222
2223      // Need to support trailing type qualifiers (e.g. "id<p> const").
2224      // If a type specifier follows, it will be diagnosed elsewhere.
2225      continue;
2226    }
2227    // If the specifier wasn't legal, issue a diagnostic.
2228    if (isInvalid) {
2229      assert(PrevSpec && "Method did not return previous specifier!");
2230      assert(DiagID);
2231
2232      if (DiagID == diag::ext_duplicate_declspec)
2233        Diag(Tok, DiagID)
2234          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2235      else
2236        Diag(Tok, DiagID) << PrevSpec;
2237    }
2238
2239    DS.SetRangeEnd(Tok.getLocation());
2240    if (DiagID != diag::err_bool_redeclaration)
2241      ConsumeToken();
2242  }
2243}
2244
2245/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
2246/// primarily follow the C++ grammar with additions for C99 and GNU,
2247/// which together subsume the C grammar. Note that the C++
2248/// type-specifier also includes the C type-qualifier (for const,
2249/// volatile, and C99 restrict). Returns true if a type-specifier was
2250/// found (and parsed), false otherwise.
2251///
2252///       type-specifier: [C++ 7.1.5]
2253///         simple-type-specifier
2254///         class-specifier
2255///         enum-specifier
2256///         elaborated-type-specifier  [TODO]
2257///         cv-qualifier
2258///
2259///       cv-qualifier: [C++ 7.1.5.1]
2260///         'const'
2261///         'volatile'
2262/// [C99]   'restrict'
2263///
2264///       simple-type-specifier: [ C++ 7.1.5.2]
2265///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
2266///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
2267///         'char'
2268///         'wchar_t'
2269///         'bool'
2270///         'short'
2271///         'int'
2272///         'long'
2273///         'signed'
2274///         'unsigned'
2275///         'float'
2276///         'double'
2277///         'void'
2278/// [C99]   '_Bool'
2279/// [C99]   '_Complex'
2280/// [C99]   '_Imaginary'  // Removed in TC2?
2281/// [GNU]   '_Decimal32'
2282/// [GNU]   '_Decimal64'
2283/// [GNU]   '_Decimal128'
2284/// [GNU]   typeof-specifier
2285/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
2286/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
2287/// [C++0x] 'decltype' ( expression )
2288/// [AltiVec] '__vector'
2289bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
2290                                        const char *&PrevSpec,
2291                                        unsigned &DiagID,
2292                                        const ParsedTemplateInfo &TemplateInfo,
2293                                        bool SuppressDeclarations) {
2294  SourceLocation Loc = Tok.getLocation();
2295
2296  switch (Tok.getKind()) {
2297  case tok::identifier:   // foo::bar
2298    // If we already have a type specifier, this identifier is not a type.
2299    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
2300        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
2301        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
2302      return false;
2303    // Check for need to substitute AltiVec keyword tokens.
2304    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2305      break;
2306    // Fall through.
2307  case tok::kw_typename:  // typename foo::bar
2308    // Annotate typenames and C++ scope specifiers.  If we get one, just
2309    // recurse to handle whatever we get.
2310    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2311                                    /*NeedType=*/true))
2312      return true;
2313    if (Tok.is(tok::identifier))
2314      return false;
2315    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2316                                      TemplateInfo, SuppressDeclarations);
2317  case tok::coloncolon:   // ::foo::bar
2318    if (NextToken().is(tok::kw_new) ||    // ::new
2319        NextToken().is(tok::kw_delete))   // ::delete
2320      return false;
2321
2322    // Annotate typenames and C++ scope specifiers.  If we get one, just
2323    // recurse to handle whatever we get.
2324    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2325                                    /*NeedType=*/true))
2326      return true;
2327    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2328                                      TemplateInfo, SuppressDeclarations);
2329
2330  // simple-type-specifier:
2331  case tok::annot_typename: {
2332    if (ParsedType T = getTypeAnnotation(Tok)) {
2333      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2334                                     Tok.getAnnotationEndLoc(), PrevSpec,
2335                                     DiagID, T);
2336    } else
2337      DS.SetTypeSpecError();
2338    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2339    ConsumeToken(); // The typename
2340
2341    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2342    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2343    // Objective-C interface.  If we don't have Objective-C or a '<', this is
2344    // just a normal reference to a typedef name.
2345    if (Tok.is(tok::less) && getLang().ObjC1)
2346      ParseObjCProtocolQualifiers(DS);
2347
2348    return true;
2349  }
2350
2351  case tok::kw_short:
2352    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2353    break;
2354  case tok::kw_long:
2355    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2356      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2357                                      DiagID);
2358    else
2359      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2360                                      DiagID);
2361    break;
2362  case tok::kw___int64:
2363      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2364                                      DiagID);
2365    break;
2366  case tok::kw_signed:
2367    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2368    break;
2369  case tok::kw_unsigned:
2370    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2371                                   DiagID);
2372    break;
2373  case tok::kw__Complex:
2374    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2375                                      DiagID);
2376    break;
2377  case tok::kw__Imaginary:
2378    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2379                                      DiagID);
2380    break;
2381  case tok::kw_void:
2382    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2383    break;
2384  case tok::kw_char:
2385    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2386    break;
2387  case tok::kw_int:
2388    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2389    break;
2390  case tok::kw_half:
2391    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
2392    break;
2393  case tok::kw_float:
2394    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2395    break;
2396  case tok::kw_double:
2397    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2398    break;
2399  case tok::kw_wchar_t:
2400    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2401    break;
2402  case tok::kw_char16_t:
2403    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2404    break;
2405  case tok::kw_char32_t:
2406    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2407    break;
2408  case tok::kw_bool:
2409  case tok::kw__Bool:
2410    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2411    break;
2412  case tok::kw__Decimal32:
2413    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2414                                   DiagID);
2415    break;
2416  case tok::kw__Decimal64:
2417    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2418                                   DiagID);
2419    break;
2420  case tok::kw__Decimal128:
2421    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2422                                   DiagID);
2423    break;
2424  case tok::kw___vector:
2425    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2426    break;
2427  case tok::kw___pixel:
2428    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2429    break;
2430
2431  // class-specifier:
2432  case tok::kw_class:
2433  case tok::kw_struct:
2434  case tok::kw_union: {
2435    tok::TokenKind Kind = Tok.getKind();
2436    ConsumeToken();
2437    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2438                        SuppressDeclarations);
2439    return true;
2440  }
2441
2442  // enum-specifier:
2443  case tok::kw_enum:
2444    ConsumeToken();
2445    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2446    return true;
2447
2448  // cv-qualifier:
2449  case tok::kw_const:
2450    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2451                               DiagID, getLang());
2452    break;
2453  case tok::kw_volatile:
2454    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2455                               DiagID, getLang());
2456    break;
2457  case tok::kw_restrict:
2458    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2459                               DiagID, getLang());
2460    break;
2461
2462  // GNU typeof support.
2463  case tok::kw_typeof:
2464    ParseTypeofSpecifier(DS);
2465    return true;
2466
2467  // C++0x decltype support.
2468  case tok::kw_decltype:
2469    ParseDecltypeSpecifier(DS);
2470    return true;
2471
2472  // C++0x type traits support.
2473  case tok::kw___underlying_type:
2474    ParseUnderlyingTypeSpecifier(DS);
2475    return true;
2476
2477  case tok::kw__Atomic:
2478    ParseAtomicSpecifier(DS);
2479    return true;
2480
2481  // OpenCL qualifiers:
2482  case tok::kw_private:
2483    if (!getLang().OpenCL)
2484      return false;
2485  case tok::kw___private:
2486  case tok::kw___global:
2487  case tok::kw___local:
2488  case tok::kw___constant:
2489  case tok::kw___read_only:
2490  case tok::kw___write_only:
2491  case tok::kw___read_write:
2492    ParseOpenCLQualifiers(DS);
2493    break;
2494
2495  // C++0x auto support.
2496  case tok::kw_auto:
2497    // This is only called in situations where a storage-class specifier is
2498    // illegal, so we can assume an auto type specifier was intended even in
2499    // C++98. In C++98 mode, DeclSpec::Finish will produce an appropriate
2500    // extension diagnostic.
2501    if (!getLang().CPlusPlus)
2502      return false;
2503
2504    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2505    break;
2506
2507  case tok::kw___ptr64:
2508  case tok::kw___ptr32:
2509  case tok::kw___w64:
2510  case tok::kw___cdecl:
2511  case tok::kw___stdcall:
2512  case tok::kw___fastcall:
2513  case tok::kw___thiscall:
2514  case tok::kw___unaligned:
2515    ParseMicrosoftTypeAttributes(DS.getAttributes());
2516    return true;
2517
2518  case tok::kw___pascal:
2519    ParseBorlandTypeAttributes(DS.getAttributes());
2520    return true;
2521
2522  default:
2523    // Not a type-specifier; do nothing.
2524    return false;
2525  }
2526
2527  // If the specifier combination wasn't legal, issue a diagnostic.
2528  if (isInvalid) {
2529    assert(PrevSpec && "Method did not return previous specifier!");
2530    // Pick between error or extwarn.
2531    Diag(Tok, DiagID) << PrevSpec;
2532  }
2533  DS.SetRangeEnd(Tok.getLocation());
2534  ConsumeToken(); // whatever we parsed above.
2535  return true;
2536}
2537
2538/// ParseStructDeclaration - Parse a struct declaration without the terminating
2539/// semicolon.
2540///
2541///       struct-declaration:
2542///         specifier-qualifier-list struct-declarator-list
2543/// [GNU]   __extension__ struct-declaration
2544/// [GNU]   specifier-qualifier-list
2545///       struct-declarator-list:
2546///         struct-declarator
2547///         struct-declarator-list ',' struct-declarator
2548/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2549///       struct-declarator:
2550///         declarator
2551/// [GNU]   declarator attributes[opt]
2552///         declarator[opt] ':' constant-expression
2553/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2554///
2555void Parser::
2556ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2557
2558  if (Tok.is(tok::kw___extension__)) {
2559    // __extension__ silences extension warnings in the subexpression.
2560    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2561    ConsumeToken();
2562    return ParseStructDeclaration(DS, Fields);
2563  }
2564
2565  // Parse the common specifier-qualifiers-list piece.
2566  ParseSpecifierQualifierList(DS);
2567
2568  // If there are no declarators, this is a free-standing declaration
2569  // specifier. Let the actions module cope with it.
2570  if (Tok.is(tok::semi)) {
2571    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2572    return;
2573  }
2574
2575  // Read struct-declarators until we find the semicolon.
2576  bool FirstDeclarator = true;
2577  while (1) {
2578    ParsingDeclRAIIObject PD(*this);
2579    FieldDeclarator DeclaratorInfo(DS);
2580
2581    // Attributes are only allowed here on successive declarators.
2582    if (!FirstDeclarator)
2583      MaybeParseGNUAttributes(DeclaratorInfo.D);
2584
2585    /// struct-declarator: declarator
2586    /// struct-declarator: declarator[opt] ':' constant-expression
2587    if (Tok.isNot(tok::colon)) {
2588      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2589      ColonProtectionRAIIObject X(*this);
2590      ParseDeclarator(DeclaratorInfo.D);
2591    }
2592
2593    if (Tok.is(tok::colon)) {
2594      ConsumeToken();
2595      ExprResult Res(ParseConstantExpression());
2596      if (Res.isInvalid())
2597        SkipUntil(tok::semi, true, true);
2598      else
2599        DeclaratorInfo.BitfieldSize = Res.release();
2600    }
2601
2602    // If attributes exist after the declarator, parse them.
2603    MaybeParseGNUAttributes(DeclaratorInfo.D);
2604
2605    // We're done with this declarator;  invoke the callback.
2606    Decl *D = Fields.invoke(DeclaratorInfo);
2607    PD.complete(D);
2608
2609    // If we don't have a comma, it is either the end of the list (a ';')
2610    // or an error, bail out.
2611    if (Tok.isNot(tok::comma))
2612      return;
2613
2614    // Consume the comma.
2615    ConsumeToken();
2616
2617    FirstDeclarator = false;
2618  }
2619}
2620
2621/// ParseStructUnionBody
2622///       struct-contents:
2623///         struct-declaration-list
2624/// [EXT]   empty
2625/// [GNU]   "struct-declaration-list" without terminatoring ';'
2626///       struct-declaration-list:
2627///         struct-declaration
2628///         struct-declaration-list struct-declaration
2629/// [OBC]   '@' 'defs' '(' class-name ')'
2630///
2631void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2632                                  unsigned TagType, Decl *TagDecl) {
2633  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2634                                      "parsing struct/union body");
2635
2636  BalancedDelimiterTracker T(*this, tok::l_brace);
2637  if (T.consumeOpen())
2638    return;
2639
2640  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2641  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2642
2643  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2644  // C++.
2645  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2646    Diag(Tok, diag::ext_empty_struct_union)
2647      << (TagType == TST_union);
2648
2649  SmallVector<Decl *, 32> FieldDecls;
2650
2651  // While we still have something to read, read the declarations in the struct.
2652  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2653    // Each iteration of this loop reads one struct-declaration.
2654
2655    // Check for extraneous top-level semicolon.
2656    if (Tok.is(tok::semi)) {
2657      Diag(Tok, diag::ext_extra_struct_semi)
2658        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2659        << FixItHint::CreateRemoval(Tok.getLocation());
2660      ConsumeToken();
2661      continue;
2662    }
2663
2664    // Parse all the comma separated declarators.
2665    DeclSpec DS(AttrFactory);
2666
2667    if (!Tok.is(tok::at)) {
2668      struct CFieldCallback : FieldCallback {
2669        Parser &P;
2670        Decl *TagDecl;
2671        SmallVectorImpl<Decl *> &FieldDecls;
2672
2673        CFieldCallback(Parser &P, Decl *TagDecl,
2674                       SmallVectorImpl<Decl *> &FieldDecls) :
2675          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2676
2677        virtual Decl *invoke(FieldDeclarator &FD) {
2678          // Install the declarator into the current TagDecl.
2679          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2680                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2681                                                 FD.D, FD.BitfieldSize);
2682          FieldDecls.push_back(Field);
2683          return Field;
2684        }
2685      } Callback(*this, TagDecl, FieldDecls);
2686
2687      ParseStructDeclaration(DS, Callback);
2688    } else { // Handle @defs
2689      ConsumeToken();
2690      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2691        Diag(Tok, diag::err_unexpected_at);
2692        SkipUntil(tok::semi, true);
2693        continue;
2694      }
2695      ConsumeToken();
2696      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2697      if (!Tok.is(tok::identifier)) {
2698        Diag(Tok, diag::err_expected_ident);
2699        SkipUntil(tok::semi, true);
2700        continue;
2701      }
2702      SmallVector<Decl *, 16> Fields;
2703      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2704                        Tok.getIdentifierInfo(), Fields);
2705      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2706      ConsumeToken();
2707      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2708    }
2709
2710    if (Tok.is(tok::semi)) {
2711      ConsumeToken();
2712    } else if (Tok.is(tok::r_brace)) {
2713      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2714      break;
2715    } else {
2716      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2717      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2718      SkipUntil(tok::r_brace, true, true);
2719      // If we stopped at a ';', eat it.
2720      if (Tok.is(tok::semi)) ConsumeToken();
2721    }
2722  }
2723
2724  T.consumeClose();
2725
2726  ParsedAttributes attrs(AttrFactory);
2727  // If attributes exist after struct contents, parse them.
2728  MaybeParseGNUAttributes(attrs);
2729
2730  Actions.ActOnFields(getCurScope(),
2731                      RecordLoc, TagDecl, FieldDecls,
2732                      T.getOpenLocation(), T.getCloseLocation(),
2733                      attrs.getList());
2734  StructScope.Exit();
2735  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2736                                   T.getCloseLocation());
2737}
2738
2739/// ParseEnumSpecifier
2740///       enum-specifier: [C99 6.7.2.2]
2741///         'enum' identifier[opt] '{' enumerator-list '}'
2742///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2743/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2744///                                                 '}' attributes[opt]
2745///         'enum' identifier
2746/// [GNU]   'enum' attributes[opt] identifier
2747///
2748/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2749/// [C++0x] enum-head '{' enumerator-list ','  '}'
2750///
2751///       enum-head: [C++0x]
2752///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2753///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2754///
2755///       enum-key: [C++0x]
2756///         'enum'
2757///         'enum' 'class'
2758///         'enum' 'struct'
2759///
2760///       enum-base: [C++0x]
2761///         ':' type-specifier-seq
2762///
2763/// [C++] elaborated-type-specifier:
2764/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2765///
2766void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2767                                const ParsedTemplateInfo &TemplateInfo,
2768                                AccessSpecifier AS) {
2769  // Parse the tag portion of this.
2770  if (Tok.is(tok::code_completion)) {
2771    // Code completion for an enum name.
2772    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2773    return cutOffParsing();
2774  }
2775
2776  bool IsScopedEnum = false;
2777  bool IsScopedUsingClassTag = false;
2778
2779  if (getLang().CPlusPlus0x &&
2780      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2781    IsScopedEnum = true;
2782    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2783    ConsumeToken();
2784  }
2785
2786  // If attributes exist after tag, parse them.
2787  ParsedAttributes attrs(AttrFactory);
2788  MaybeParseGNUAttributes(attrs);
2789
2790  bool AllowFixedUnderlyingType
2791    = getLang().CPlusPlus0x || getLang().MicrosoftExt || getLang().ObjC2;
2792
2793  CXXScopeSpec &SS = DS.getTypeSpecScope();
2794  if (getLang().CPlusPlus) {
2795    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2796    // if a fixed underlying type is allowed.
2797    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2798
2799    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
2800      return;
2801
2802    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2803      Diag(Tok, diag::err_expected_ident);
2804      if (Tok.isNot(tok::l_brace)) {
2805        // Has no name and is not a definition.
2806        // Skip the rest of this declarator, up until the comma or semicolon.
2807        SkipUntil(tok::comma, true);
2808        return;
2809      }
2810    }
2811  }
2812
2813  // Must have either 'enum name' or 'enum {...}'.
2814  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2815      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2816    Diag(Tok, diag::err_expected_ident_lbrace);
2817
2818    // Skip the rest of this declarator, up until the comma or semicolon.
2819    SkipUntil(tok::comma, true);
2820    return;
2821  }
2822
2823  // If an identifier is present, consume and remember it.
2824  IdentifierInfo *Name = 0;
2825  SourceLocation NameLoc;
2826  if (Tok.is(tok::identifier)) {
2827    Name = Tok.getIdentifierInfo();
2828    NameLoc = ConsumeToken();
2829  }
2830
2831  if (!Name && IsScopedEnum) {
2832    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2833    // declaration of a scoped enumeration.
2834    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2835    IsScopedEnum = false;
2836    IsScopedUsingClassTag = false;
2837  }
2838
2839  TypeResult BaseType;
2840
2841  // Parse the fixed underlying type.
2842  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2843    bool PossibleBitfield = false;
2844    if (getCurScope()->getFlags() & Scope::ClassScope) {
2845      // If we're in class scope, this can either be an enum declaration with
2846      // an underlying type, or a declaration of a bitfield member. We try to
2847      // use a simple disambiguation scheme first to catch the common cases
2848      // (integer literal, sizeof); if it's still ambiguous, we then consider
2849      // anything that's a simple-type-specifier followed by '(' as an
2850      // expression. This suffices because function types are not valid
2851      // underlying types anyway.
2852      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2853      // If the next token starts an expression, we know we're parsing a
2854      // bit-field. This is the common case.
2855      if (TPR == TPResult::True())
2856        PossibleBitfield = true;
2857      // If the next token starts a type-specifier-seq, it may be either a
2858      // a fixed underlying type or the start of a function-style cast in C++;
2859      // lookahead one more token to see if it's obvious that we have a
2860      // fixed underlying type.
2861      else if (TPR == TPResult::False() &&
2862               GetLookAheadToken(2).getKind() == tok::semi) {
2863        // Consume the ':'.
2864        ConsumeToken();
2865      } else {
2866        // We have the start of a type-specifier-seq, so we have to perform
2867        // tentative parsing to determine whether we have an expression or a
2868        // type.
2869        TentativeParsingAction TPA(*this);
2870
2871        // Consume the ':'.
2872        ConsumeToken();
2873
2874        if ((getLang().CPlusPlus &&
2875             isCXXDeclarationSpecifier() != TPResult::True()) ||
2876            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2877          // We'll parse this as a bitfield later.
2878          PossibleBitfield = true;
2879          TPA.Revert();
2880        } else {
2881          // We have a type-specifier-seq.
2882          TPA.Commit();
2883        }
2884      }
2885    } else {
2886      // Consume the ':'.
2887      ConsumeToken();
2888    }
2889
2890    if (!PossibleBitfield) {
2891      SourceRange Range;
2892      BaseType = ParseTypeName(&Range);
2893
2894      if (!getLang().CPlusPlus0x && !getLang().ObjC2)
2895        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2896          << Range;
2897    }
2898  }
2899
2900  // There are three options here.  If we have 'enum foo;', then this is a
2901  // forward declaration.  If we have 'enum foo {...' then this is a
2902  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2903  //
2904  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2905  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2906  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2907  //
2908  Sema::TagUseKind TUK;
2909  if (Tok.is(tok::l_brace))
2910    TUK = Sema::TUK_Definition;
2911  else if (Tok.is(tok::semi))
2912    TUK = Sema::TUK_Declaration;
2913  else
2914    TUK = Sema::TUK_Reference;
2915
2916  // enums cannot be templates, although they can be referenced from a
2917  // template.
2918  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2919      TUK != Sema::TUK_Reference) {
2920    Diag(Tok, diag::err_enum_template);
2921
2922    // Skip the rest of this declarator, up until the comma or semicolon.
2923    SkipUntil(tok::comma, true);
2924    return;
2925  }
2926
2927  if (!Name && TUK != Sema::TUK_Definition) {
2928    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2929
2930    // Skip the rest of this declarator, up until the comma or semicolon.
2931    SkipUntil(tok::comma, true);
2932    return;
2933  }
2934
2935  bool Owned = false;
2936  bool IsDependent = false;
2937  const char *PrevSpec = 0;
2938  unsigned DiagID;
2939  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2940                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2941                                   AS, DS.getModulePrivateSpecLoc(),
2942                                   MultiTemplateParamsArg(Actions),
2943                                   Owned, IsDependent, IsScopedEnum,
2944                                   IsScopedUsingClassTag, BaseType);
2945
2946  if (IsDependent) {
2947    // This enum has a dependent nested-name-specifier. Handle it as a
2948    // dependent tag.
2949    if (!Name) {
2950      DS.SetTypeSpecError();
2951      Diag(Tok, diag::err_expected_type_name_after_typename);
2952      return;
2953    }
2954
2955    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2956                                                TUK, SS, Name, StartLoc,
2957                                                NameLoc);
2958    if (Type.isInvalid()) {
2959      DS.SetTypeSpecError();
2960      return;
2961    }
2962
2963    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2964                           NameLoc.isValid() ? NameLoc : StartLoc,
2965                           PrevSpec, DiagID, Type.get()))
2966      Diag(StartLoc, DiagID) << PrevSpec;
2967
2968    return;
2969  }
2970
2971  if (!TagDecl) {
2972    // The action failed to produce an enumeration tag. If this is a
2973    // definition, consume the entire definition.
2974    if (Tok.is(tok::l_brace)) {
2975      ConsumeBrace();
2976      SkipUntil(tok::r_brace);
2977    }
2978
2979    DS.SetTypeSpecError();
2980    return;
2981  }
2982
2983  if (Tok.is(tok::l_brace))
2984    ParseEnumBody(StartLoc, TagDecl);
2985
2986  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2987                         NameLoc.isValid() ? NameLoc : StartLoc,
2988                         PrevSpec, DiagID, TagDecl, Owned))
2989    Diag(StartLoc, DiagID) << PrevSpec;
2990}
2991
2992/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2993///       enumerator-list:
2994///         enumerator
2995///         enumerator-list ',' enumerator
2996///       enumerator:
2997///         enumeration-constant
2998///         enumeration-constant '=' constant-expression
2999///       enumeration-constant:
3000///         identifier
3001///
3002void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3003  // Enter the scope of the enum body and start the definition.
3004  ParseScope EnumScope(this, Scope::DeclScope);
3005  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3006
3007  BalancedDelimiterTracker T(*this, tok::l_brace);
3008  T.consumeOpen();
3009
3010  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3011  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
3012    Diag(Tok, diag::error_empty_enum);
3013
3014  SmallVector<Decl *, 32> EnumConstantDecls;
3015
3016  Decl *LastEnumConstDecl = 0;
3017
3018  // Parse the enumerator-list.
3019  while (Tok.is(tok::identifier)) {
3020    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3021    SourceLocation IdentLoc = ConsumeToken();
3022
3023    // If attributes exist after the enumerator, parse them.
3024    ParsedAttributes attrs(AttrFactory);
3025    MaybeParseGNUAttributes(attrs);
3026
3027    SourceLocation EqualLoc;
3028    ExprResult AssignedVal;
3029    if (Tok.is(tok::equal)) {
3030      EqualLoc = ConsumeToken();
3031      AssignedVal = ParseConstantExpression();
3032      if (AssignedVal.isInvalid())
3033        SkipUntil(tok::comma, tok::r_brace, true, true);
3034    }
3035
3036    // Install the enumerator constant into EnumDecl.
3037    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3038                                                    LastEnumConstDecl,
3039                                                    IdentLoc, Ident,
3040                                                    attrs.getList(), EqualLoc,
3041                                                    AssignedVal.release());
3042    EnumConstantDecls.push_back(EnumConstDecl);
3043    LastEnumConstDecl = EnumConstDecl;
3044
3045    if (Tok.is(tok::identifier)) {
3046      // We're missing a comma between enumerators.
3047      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3048      Diag(Loc, diag::err_enumerator_list_missing_comma)
3049        << FixItHint::CreateInsertion(Loc, ", ");
3050      continue;
3051    }
3052
3053    if (Tok.isNot(tok::comma))
3054      break;
3055    SourceLocation CommaLoc = ConsumeToken();
3056
3057    if (Tok.isNot(tok::identifier) &&
3058        !(getLang().C99 || getLang().CPlusPlus0x))
3059      Diag(CommaLoc, diag::ext_enumerator_list_comma)
3060        << getLang().CPlusPlus
3061        << FixItHint::CreateRemoval(CommaLoc);
3062  }
3063
3064  // Eat the }.
3065  T.consumeClose();
3066
3067  // If attributes exist after the identifier list, parse them.
3068  ParsedAttributes attrs(AttrFactory);
3069  MaybeParseGNUAttributes(attrs);
3070
3071  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3072                        EnumDecl, EnumConstantDecls.data(),
3073                        EnumConstantDecls.size(), getCurScope(),
3074                        attrs.getList());
3075
3076  EnumScope.Exit();
3077  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3078                                   T.getCloseLocation());
3079}
3080
3081/// isTypeSpecifierQualifier - Return true if the current token could be the
3082/// start of a type-qualifier-list.
3083bool Parser::isTypeQualifier() const {
3084  switch (Tok.getKind()) {
3085  default: return false;
3086
3087    // type-qualifier only in OpenCL
3088  case tok::kw_private:
3089    return getLang().OpenCL;
3090
3091    // type-qualifier
3092  case tok::kw_const:
3093  case tok::kw_volatile:
3094  case tok::kw_restrict:
3095  case tok::kw___private:
3096  case tok::kw___local:
3097  case tok::kw___global:
3098  case tok::kw___constant:
3099  case tok::kw___read_only:
3100  case tok::kw___read_write:
3101  case tok::kw___write_only:
3102    return true;
3103  }
3104}
3105
3106/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3107/// is definitely a type-specifier.  Return false if it isn't part of a type
3108/// specifier or if we're not sure.
3109bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3110  switch (Tok.getKind()) {
3111  default: return false;
3112    // type-specifiers
3113  case tok::kw_short:
3114  case tok::kw_long:
3115  case tok::kw___int64:
3116  case tok::kw_signed:
3117  case tok::kw_unsigned:
3118  case tok::kw__Complex:
3119  case tok::kw__Imaginary:
3120  case tok::kw_void:
3121  case tok::kw_char:
3122  case tok::kw_wchar_t:
3123  case tok::kw_char16_t:
3124  case tok::kw_char32_t:
3125  case tok::kw_int:
3126  case tok::kw_half:
3127  case tok::kw_float:
3128  case tok::kw_double:
3129  case tok::kw_bool:
3130  case tok::kw__Bool:
3131  case tok::kw__Decimal32:
3132  case tok::kw__Decimal64:
3133  case tok::kw__Decimal128:
3134  case tok::kw___vector:
3135
3136    // struct-or-union-specifier (C99) or class-specifier (C++)
3137  case tok::kw_class:
3138  case tok::kw_struct:
3139  case tok::kw_union:
3140    // enum-specifier
3141  case tok::kw_enum:
3142
3143    // typedef-name
3144  case tok::annot_typename:
3145    return true;
3146  }
3147}
3148
3149/// isTypeSpecifierQualifier - Return true if the current token could be the
3150/// start of a specifier-qualifier-list.
3151bool Parser::isTypeSpecifierQualifier() {
3152  switch (Tok.getKind()) {
3153  default: return false;
3154
3155  case tok::identifier:   // foo::bar
3156    if (TryAltiVecVectorToken())
3157      return true;
3158    // Fall through.
3159  case tok::kw_typename:  // typename T::type
3160    // Annotate typenames and C++ scope specifiers.  If we get one, just
3161    // recurse to handle whatever we get.
3162    if (TryAnnotateTypeOrScopeToken())
3163      return true;
3164    if (Tok.is(tok::identifier))
3165      return false;
3166    return isTypeSpecifierQualifier();
3167
3168  case tok::coloncolon:   // ::foo::bar
3169    if (NextToken().is(tok::kw_new) ||    // ::new
3170        NextToken().is(tok::kw_delete))   // ::delete
3171      return false;
3172
3173    if (TryAnnotateTypeOrScopeToken())
3174      return true;
3175    return isTypeSpecifierQualifier();
3176
3177    // GNU attributes support.
3178  case tok::kw___attribute:
3179    // GNU typeof support.
3180  case tok::kw_typeof:
3181
3182    // type-specifiers
3183  case tok::kw_short:
3184  case tok::kw_long:
3185  case tok::kw___int64:
3186  case tok::kw_signed:
3187  case tok::kw_unsigned:
3188  case tok::kw__Complex:
3189  case tok::kw__Imaginary:
3190  case tok::kw_void:
3191  case tok::kw_char:
3192  case tok::kw_wchar_t:
3193  case tok::kw_char16_t:
3194  case tok::kw_char32_t:
3195  case tok::kw_int:
3196  case tok::kw_half:
3197  case tok::kw_float:
3198  case tok::kw_double:
3199  case tok::kw_bool:
3200  case tok::kw__Bool:
3201  case tok::kw__Decimal32:
3202  case tok::kw__Decimal64:
3203  case tok::kw__Decimal128:
3204  case tok::kw___vector:
3205
3206    // struct-or-union-specifier (C99) or class-specifier (C++)
3207  case tok::kw_class:
3208  case tok::kw_struct:
3209  case tok::kw_union:
3210    // enum-specifier
3211  case tok::kw_enum:
3212
3213    // type-qualifier
3214  case tok::kw_const:
3215  case tok::kw_volatile:
3216  case tok::kw_restrict:
3217
3218    // typedef-name
3219  case tok::annot_typename:
3220    return true;
3221
3222    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3223  case tok::less:
3224    return getLang().ObjC1;
3225
3226  case tok::kw___cdecl:
3227  case tok::kw___stdcall:
3228  case tok::kw___fastcall:
3229  case tok::kw___thiscall:
3230  case tok::kw___w64:
3231  case tok::kw___ptr64:
3232  case tok::kw___ptr32:
3233  case tok::kw___pascal:
3234  case tok::kw___unaligned:
3235
3236  case tok::kw___private:
3237  case tok::kw___local:
3238  case tok::kw___global:
3239  case tok::kw___constant:
3240  case tok::kw___read_only:
3241  case tok::kw___read_write:
3242  case tok::kw___write_only:
3243
3244    return true;
3245
3246  case tok::kw_private:
3247    return getLang().OpenCL;
3248
3249  // C1x _Atomic()
3250  case tok::kw__Atomic:
3251    return true;
3252  }
3253}
3254
3255/// isDeclarationSpecifier() - Return true if the current token is part of a
3256/// declaration specifier.
3257///
3258/// \param DisambiguatingWithExpression True to indicate that the purpose of
3259/// this check is to disambiguate between an expression and a declaration.
3260bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3261  switch (Tok.getKind()) {
3262  default: return false;
3263
3264  case tok::kw_private:
3265    return getLang().OpenCL;
3266
3267  case tok::identifier:   // foo::bar
3268    // Unfortunate hack to support "Class.factoryMethod" notation.
3269    if (getLang().ObjC1 && NextToken().is(tok::period))
3270      return false;
3271    if (TryAltiVecVectorToken())
3272      return true;
3273    // Fall through.
3274  case tok::kw_typename: // typename T::type
3275    // Annotate typenames and C++ scope specifiers.  If we get one, just
3276    // recurse to handle whatever we get.
3277    if (TryAnnotateTypeOrScopeToken())
3278      return true;
3279    if (Tok.is(tok::identifier))
3280      return false;
3281
3282    // If we're in Objective-C and we have an Objective-C class type followed
3283    // by an identifier and then either ':' or ']', in a place where an
3284    // expression is permitted, then this is probably a class message send
3285    // missing the initial '['. In this case, we won't consider this to be
3286    // the start of a declaration.
3287    if (DisambiguatingWithExpression &&
3288        isStartOfObjCClassMessageMissingOpenBracket())
3289      return false;
3290
3291    return isDeclarationSpecifier();
3292
3293  case tok::coloncolon:   // ::foo::bar
3294    if (NextToken().is(tok::kw_new) ||    // ::new
3295        NextToken().is(tok::kw_delete))   // ::delete
3296      return false;
3297
3298    // Annotate typenames and C++ scope specifiers.  If we get one, just
3299    // recurse to handle whatever we get.
3300    if (TryAnnotateTypeOrScopeToken())
3301      return true;
3302    return isDeclarationSpecifier();
3303
3304    // storage-class-specifier
3305  case tok::kw_typedef:
3306  case tok::kw_extern:
3307  case tok::kw___private_extern__:
3308  case tok::kw_static:
3309  case tok::kw_auto:
3310  case tok::kw_register:
3311  case tok::kw___thread:
3312
3313    // Modules
3314  case tok::kw___module_private__:
3315
3316    // type-specifiers
3317  case tok::kw_short:
3318  case tok::kw_long:
3319  case tok::kw___int64:
3320  case tok::kw_signed:
3321  case tok::kw_unsigned:
3322  case tok::kw__Complex:
3323  case tok::kw__Imaginary:
3324  case tok::kw_void:
3325  case tok::kw_char:
3326  case tok::kw_wchar_t:
3327  case tok::kw_char16_t:
3328  case tok::kw_char32_t:
3329
3330  case tok::kw_int:
3331  case tok::kw_half:
3332  case tok::kw_float:
3333  case tok::kw_double:
3334  case tok::kw_bool:
3335  case tok::kw__Bool:
3336  case tok::kw__Decimal32:
3337  case tok::kw__Decimal64:
3338  case tok::kw__Decimal128:
3339  case tok::kw___vector:
3340
3341    // struct-or-union-specifier (C99) or class-specifier (C++)
3342  case tok::kw_class:
3343  case tok::kw_struct:
3344  case tok::kw_union:
3345    // enum-specifier
3346  case tok::kw_enum:
3347
3348    // type-qualifier
3349  case tok::kw_const:
3350  case tok::kw_volatile:
3351  case tok::kw_restrict:
3352
3353    // function-specifier
3354  case tok::kw_inline:
3355  case tok::kw_virtual:
3356  case tok::kw_explicit:
3357
3358    // static_assert-declaration
3359  case tok::kw__Static_assert:
3360
3361    // GNU typeof support.
3362  case tok::kw_typeof:
3363
3364    // GNU attributes.
3365  case tok::kw___attribute:
3366    return true;
3367
3368    // C++0x decltype.
3369  case tok::kw_decltype:
3370    return true;
3371
3372    // C1x _Atomic()
3373  case tok::kw__Atomic:
3374    return true;
3375
3376    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3377  case tok::less:
3378    return getLang().ObjC1;
3379
3380    // typedef-name
3381  case tok::annot_typename:
3382    return !DisambiguatingWithExpression ||
3383           !isStartOfObjCClassMessageMissingOpenBracket();
3384
3385  case tok::kw___declspec:
3386  case tok::kw___cdecl:
3387  case tok::kw___stdcall:
3388  case tok::kw___fastcall:
3389  case tok::kw___thiscall:
3390  case tok::kw___w64:
3391  case tok::kw___ptr64:
3392  case tok::kw___ptr32:
3393  case tok::kw___forceinline:
3394  case tok::kw___pascal:
3395  case tok::kw___unaligned:
3396
3397  case tok::kw___private:
3398  case tok::kw___local:
3399  case tok::kw___global:
3400  case tok::kw___constant:
3401  case tok::kw___read_only:
3402  case tok::kw___read_write:
3403  case tok::kw___write_only:
3404
3405    return true;
3406  }
3407}
3408
3409bool Parser::isConstructorDeclarator() {
3410  TentativeParsingAction TPA(*this);
3411
3412  // Parse the C++ scope specifier.
3413  CXXScopeSpec SS;
3414  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
3415    TPA.Revert();
3416    return false;
3417  }
3418
3419  // Parse the constructor name.
3420  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3421    // We already know that we have a constructor name; just consume
3422    // the token.
3423    ConsumeToken();
3424  } else {
3425    TPA.Revert();
3426    return false;
3427  }
3428
3429  // Current class name must be followed by a left parentheses.
3430  if (Tok.isNot(tok::l_paren)) {
3431    TPA.Revert();
3432    return false;
3433  }
3434  ConsumeParen();
3435
3436  // A right parentheses or ellipsis signals that we have a constructor.
3437  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3438    TPA.Revert();
3439    return true;
3440  }
3441
3442  // If we need to, enter the specified scope.
3443  DeclaratorScopeObj DeclScopeObj(*this, SS);
3444  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3445    DeclScopeObj.EnterDeclaratorScope();
3446
3447  // Optionally skip Microsoft attributes.
3448  ParsedAttributes Attrs(AttrFactory);
3449  MaybeParseMicrosoftAttributes(Attrs);
3450
3451  // Check whether the next token(s) are part of a declaration
3452  // specifier, in which case we have the start of a parameter and,
3453  // therefore, we know that this is a constructor.
3454  bool IsConstructor = isDeclarationSpecifier();
3455  TPA.Revert();
3456  return IsConstructor;
3457}
3458
3459/// ParseTypeQualifierListOpt
3460///          type-qualifier-list: [C99 6.7.5]
3461///            type-qualifier
3462/// [vendor]   attributes
3463///              [ only if VendorAttributesAllowed=true ]
3464///            type-qualifier-list type-qualifier
3465/// [vendor]   type-qualifier-list attributes
3466///              [ only if VendorAttributesAllowed=true ]
3467/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3468///              [ only if CXX0XAttributesAllowed=true ]
3469/// Note: vendor can be GNU, MS, etc.
3470///
3471void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3472                                       bool VendorAttributesAllowed,
3473                                       bool CXX0XAttributesAllowed) {
3474  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3475    SourceLocation Loc = Tok.getLocation();
3476    ParsedAttributesWithRange attrs(AttrFactory);
3477    ParseCXX0XAttributes(attrs);
3478    if (CXX0XAttributesAllowed)
3479      DS.takeAttributesFrom(attrs);
3480    else
3481      Diag(Loc, diag::err_attributes_not_allowed);
3482  }
3483
3484  SourceLocation EndLoc;
3485
3486  while (1) {
3487    bool isInvalid = false;
3488    const char *PrevSpec = 0;
3489    unsigned DiagID = 0;
3490    SourceLocation Loc = Tok.getLocation();
3491
3492    switch (Tok.getKind()) {
3493    case tok::code_completion:
3494      Actions.CodeCompleteTypeQualifiers(DS);
3495      return cutOffParsing();
3496
3497    case tok::kw_const:
3498      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3499                                 getLang());
3500      break;
3501    case tok::kw_volatile:
3502      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3503                                 getLang());
3504      break;
3505    case tok::kw_restrict:
3506      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3507                                 getLang());
3508      break;
3509
3510    // OpenCL qualifiers:
3511    case tok::kw_private:
3512      if (!getLang().OpenCL)
3513        goto DoneWithTypeQuals;
3514    case tok::kw___private:
3515    case tok::kw___global:
3516    case tok::kw___local:
3517    case tok::kw___constant:
3518    case tok::kw___read_only:
3519    case tok::kw___write_only:
3520    case tok::kw___read_write:
3521      ParseOpenCLQualifiers(DS);
3522      break;
3523
3524    case tok::kw___w64:
3525    case tok::kw___ptr64:
3526    case tok::kw___ptr32:
3527    case tok::kw___cdecl:
3528    case tok::kw___stdcall:
3529    case tok::kw___fastcall:
3530    case tok::kw___thiscall:
3531    case tok::kw___unaligned:
3532      if (VendorAttributesAllowed) {
3533        ParseMicrosoftTypeAttributes(DS.getAttributes());
3534        continue;
3535      }
3536      goto DoneWithTypeQuals;
3537    case tok::kw___pascal:
3538      if (VendorAttributesAllowed) {
3539        ParseBorlandTypeAttributes(DS.getAttributes());
3540        continue;
3541      }
3542      goto DoneWithTypeQuals;
3543    case tok::kw___attribute:
3544      if (VendorAttributesAllowed) {
3545        ParseGNUAttributes(DS.getAttributes());
3546        continue; // do *not* consume the next token!
3547      }
3548      // otherwise, FALL THROUGH!
3549    default:
3550      DoneWithTypeQuals:
3551      // If this is not a type-qualifier token, we're done reading type
3552      // qualifiers.  First verify that DeclSpec's are consistent.
3553      DS.Finish(Diags, PP);
3554      if (EndLoc.isValid())
3555        DS.SetRangeEnd(EndLoc);
3556      return;
3557    }
3558
3559    // If the specifier combination wasn't legal, issue a diagnostic.
3560    if (isInvalid) {
3561      assert(PrevSpec && "Method did not return previous specifier!");
3562      Diag(Tok, DiagID) << PrevSpec;
3563    }
3564    EndLoc = ConsumeToken();
3565  }
3566}
3567
3568
3569/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3570///
3571void Parser::ParseDeclarator(Declarator &D) {
3572  /// This implements the 'declarator' production in the C grammar, then checks
3573  /// for well-formedness and issues diagnostics.
3574  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3575}
3576
3577/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3578/// is parsed by the function passed to it. Pass null, and the direct-declarator
3579/// isn't parsed at all, making this function effectively parse the C++
3580/// ptr-operator production.
3581///
3582///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3583/// [C]     pointer[opt] direct-declarator
3584/// [C++]   direct-declarator
3585/// [C++]   ptr-operator declarator
3586///
3587///       pointer: [C99 6.7.5]
3588///         '*' type-qualifier-list[opt]
3589///         '*' type-qualifier-list[opt] pointer
3590///
3591///       ptr-operator:
3592///         '*' cv-qualifier-seq[opt]
3593///         '&'
3594/// [C++0x] '&&'
3595/// [GNU]   '&' restrict[opt] attributes[opt]
3596/// [GNU?]  '&&' restrict[opt] attributes[opt]
3597///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3598void Parser::ParseDeclaratorInternal(Declarator &D,
3599                                     DirectDeclParseFunction DirectDeclParser) {
3600  if (Diags.hasAllExtensionsSilenced())
3601    D.setExtension();
3602
3603  // C++ member pointers start with a '::' or a nested-name.
3604  // Member pointers get special handling, since there's no place for the
3605  // scope spec in the generic path below.
3606  if (getLang().CPlusPlus &&
3607      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3608       Tok.is(tok::annot_cxxscope))) {
3609    CXXScopeSpec SS;
3610    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
3611
3612    if (SS.isNotEmpty()) {
3613      if (Tok.isNot(tok::star)) {
3614        // The scope spec really belongs to the direct-declarator.
3615        D.getCXXScopeSpec() = SS;
3616        if (DirectDeclParser)
3617          (this->*DirectDeclParser)(D);
3618        return;
3619      }
3620
3621      SourceLocation Loc = ConsumeToken();
3622      D.SetRangeEnd(Loc);
3623      DeclSpec DS(AttrFactory);
3624      ParseTypeQualifierListOpt(DS);
3625      D.ExtendWithDeclSpec(DS);
3626
3627      // Recurse to parse whatever is left.
3628      ParseDeclaratorInternal(D, DirectDeclParser);
3629
3630      // Sema will have to catch (syntactically invalid) pointers into global
3631      // scope. It has to catch pointers into namespace scope anyway.
3632      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3633                                                      Loc),
3634                    DS.getAttributes(),
3635                    /* Don't replace range end. */SourceLocation());
3636      return;
3637    }
3638  }
3639
3640  tok::TokenKind Kind = Tok.getKind();
3641  // Not a pointer, C++ reference, or block.
3642  if (Kind != tok::star && Kind != tok::caret &&
3643      (Kind != tok::amp || !getLang().CPlusPlus) &&
3644      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3645      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3646    if (DirectDeclParser)
3647      (this->*DirectDeclParser)(D);
3648    return;
3649  }
3650
3651  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3652  // '&&' -> rvalue reference
3653  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3654  D.SetRangeEnd(Loc);
3655
3656  if (Kind == tok::star || Kind == tok::caret) {
3657    // Is a pointer.
3658    DeclSpec DS(AttrFactory);
3659
3660    ParseTypeQualifierListOpt(DS);
3661    D.ExtendWithDeclSpec(DS);
3662
3663    // Recursively parse the declarator.
3664    ParseDeclaratorInternal(D, DirectDeclParser);
3665    if (Kind == tok::star)
3666      // Remember that we parsed a pointer type, and remember the type-quals.
3667      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3668                                                DS.getConstSpecLoc(),
3669                                                DS.getVolatileSpecLoc(),
3670                                                DS.getRestrictSpecLoc()),
3671                    DS.getAttributes(),
3672                    SourceLocation());
3673    else
3674      // Remember that we parsed a Block type, and remember the type-quals.
3675      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3676                                                     Loc),
3677                    DS.getAttributes(),
3678                    SourceLocation());
3679  } else {
3680    // Is a reference
3681    DeclSpec DS(AttrFactory);
3682
3683    // Complain about rvalue references in C++03, but then go on and build
3684    // the declarator.
3685    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
3686      Diag(Loc, diag::ext_rvalue_reference);
3687
3688    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3689    // cv-qualifiers are introduced through the use of a typedef or of a
3690    // template type argument, in which case the cv-qualifiers are ignored.
3691    //
3692    // [GNU] Retricted references are allowed.
3693    // [GNU] Attributes on references are allowed.
3694    // [C++0x] Attributes on references are not allowed.
3695    ParseTypeQualifierListOpt(DS, true, false);
3696    D.ExtendWithDeclSpec(DS);
3697
3698    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3699      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3700        Diag(DS.getConstSpecLoc(),
3701             diag::err_invalid_reference_qualifier_application) << "const";
3702      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3703        Diag(DS.getVolatileSpecLoc(),
3704             diag::err_invalid_reference_qualifier_application) << "volatile";
3705    }
3706
3707    // Recursively parse the declarator.
3708    ParseDeclaratorInternal(D, DirectDeclParser);
3709
3710    if (D.getNumTypeObjects() > 0) {
3711      // C++ [dcl.ref]p4: There shall be no references to references.
3712      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3713      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3714        if (const IdentifierInfo *II = D.getIdentifier())
3715          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3716           << II;
3717        else
3718          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3719            << "type name";
3720
3721        // Once we've complained about the reference-to-reference, we
3722        // can go ahead and build the (technically ill-formed)
3723        // declarator: reference collapsing will take care of it.
3724      }
3725    }
3726
3727    // Remember that we parsed a reference type. It doesn't have type-quals.
3728    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3729                                                Kind == tok::amp),
3730                  DS.getAttributes(),
3731                  SourceLocation());
3732  }
3733}
3734
3735/// ParseDirectDeclarator
3736///       direct-declarator: [C99 6.7.5]
3737/// [C99]   identifier
3738///         '(' declarator ')'
3739/// [GNU]   '(' attributes declarator ')'
3740/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3741/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3742/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3743/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3744/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3745///         direct-declarator '(' parameter-type-list ')'
3746///         direct-declarator '(' identifier-list[opt] ')'
3747/// [GNU]   direct-declarator '(' parameter-forward-declarations
3748///                    parameter-type-list[opt] ')'
3749/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3750///                    cv-qualifier-seq[opt] exception-specification[opt]
3751/// [C++]   declarator-id
3752///
3753///       declarator-id: [C++ 8]
3754///         '...'[opt] id-expression
3755///         '::'[opt] nested-name-specifier[opt] type-name
3756///
3757///       id-expression: [C++ 5.1]
3758///         unqualified-id
3759///         qualified-id
3760///
3761///       unqualified-id: [C++ 5.1]
3762///         identifier
3763///         operator-function-id
3764///         conversion-function-id
3765///          '~' class-name
3766///         template-id
3767///
3768void Parser::ParseDirectDeclarator(Declarator &D) {
3769  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3770
3771  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3772    // ParseDeclaratorInternal might already have parsed the scope.
3773    if (D.getCXXScopeSpec().isEmpty()) {
3774      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
3775    }
3776
3777    if (D.getCXXScopeSpec().isValid()) {
3778      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3779        // Change the declaration context for name lookup, until this function
3780        // is exited (and the declarator has been parsed).
3781        DeclScopeObj.EnterDeclaratorScope();
3782    }
3783
3784    // C++0x [dcl.fct]p14:
3785    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3786    //   of a parameter-declaration-clause without a preceding comma. In
3787    //   this case, the ellipsis is parsed as part of the
3788    //   abstract-declarator if the type of the parameter names a template
3789    //   parameter pack that has not been expanded; otherwise, it is parsed
3790    //   as part of the parameter-declaration-clause.
3791    if (Tok.is(tok::ellipsis) &&
3792        !((D.getContext() == Declarator::PrototypeContext ||
3793           D.getContext() == Declarator::BlockLiteralContext) &&
3794          NextToken().is(tok::r_paren) &&
3795          !Actions.containsUnexpandedParameterPacks(D)))
3796      D.setEllipsisLoc(ConsumeToken());
3797
3798    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3799        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3800      // We found something that indicates the start of an unqualified-id.
3801      // Parse that unqualified-id.
3802      bool AllowConstructorName;
3803      if (D.getDeclSpec().hasTypeSpecifier())
3804        AllowConstructorName = false;
3805      else if (D.getCXXScopeSpec().isSet())
3806        AllowConstructorName =
3807          (D.getContext() == Declarator::FileContext ||
3808           (D.getContext() == Declarator::MemberContext &&
3809            D.getDeclSpec().isFriendSpecified()));
3810      else
3811        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3812
3813      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3814                             /*EnteringContext=*/true,
3815                             /*AllowDestructorName=*/true,
3816                             AllowConstructorName,
3817                             ParsedType(),
3818                             D.getName()) ||
3819          // Once we're past the identifier, if the scope was bad, mark the
3820          // whole declarator bad.
3821          D.getCXXScopeSpec().isInvalid()) {
3822        D.SetIdentifier(0, Tok.getLocation());
3823        D.setInvalidType(true);
3824      } else {
3825        // Parsed the unqualified-id; update range information and move along.
3826        if (D.getSourceRange().getBegin().isInvalid())
3827          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3828        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3829      }
3830      goto PastIdentifier;
3831    }
3832  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3833    assert(!getLang().CPlusPlus &&
3834           "There's a C++-specific check for tok::identifier above");
3835    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3836    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3837    ConsumeToken();
3838    goto PastIdentifier;
3839  }
3840
3841  if (Tok.is(tok::l_paren)) {
3842    // direct-declarator: '(' declarator ')'
3843    // direct-declarator: '(' attributes declarator ')'
3844    // Example: 'char (*X)'   or 'int (*XX)(void)'
3845    ParseParenDeclarator(D);
3846
3847    // If the declarator was parenthesized, we entered the declarator
3848    // scope when parsing the parenthesized declarator, then exited
3849    // the scope already. Re-enter the scope, if we need to.
3850    if (D.getCXXScopeSpec().isSet()) {
3851      // If there was an error parsing parenthesized declarator, declarator
3852      // scope may have been enterred before. Don't do it again.
3853      if (!D.isInvalidType() &&
3854          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3855        // Change the declaration context for name lookup, until this function
3856        // is exited (and the declarator has been parsed).
3857        DeclScopeObj.EnterDeclaratorScope();
3858    }
3859  } else if (D.mayOmitIdentifier()) {
3860    // This could be something simple like "int" (in which case the declarator
3861    // portion is empty), if an abstract-declarator is allowed.
3862    D.SetIdentifier(0, Tok.getLocation());
3863  } else {
3864    if (D.getContext() == Declarator::MemberContext)
3865      Diag(Tok, diag::err_expected_member_name_or_semi)
3866        << D.getDeclSpec().getSourceRange();
3867    else if (getLang().CPlusPlus)
3868      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3869    else
3870      Diag(Tok, diag::err_expected_ident_lparen);
3871    D.SetIdentifier(0, Tok.getLocation());
3872    D.setInvalidType(true);
3873  }
3874
3875 PastIdentifier:
3876  assert(D.isPastIdentifier() &&
3877         "Haven't past the location of the identifier yet?");
3878
3879  // Don't parse attributes unless we have an identifier.
3880  if (D.getIdentifier())
3881    MaybeParseCXX0XAttributes(D);
3882
3883  while (1) {
3884    if (Tok.is(tok::l_paren)) {
3885      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3886      // In such a case, check if we actually have a function declarator; if it
3887      // is not, the declarator has been fully parsed.
3888      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
3889        // When not in file scope, warn for ambiguous function declarators, just
3890        // in case the author intended it as a variable definition.
3891        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
3892        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
3893          break;
3894      }
3895      ParsedAttributes attrs(AttrFactory);
3896      BalancedDelimiterTracker T(*this, tok::l_paren);
3897      T.consumeOpen();
3898      ParseFunctionDeclarator(D, attrs, T);
3899    } else if (Tok.is(tok::l_square)) {
3900      ParseBracketDeclarator(D);
3901    } else {
3902      break;
3903    }
3904  }
3905}
3906
3907/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3908/// only called before the identifier, so these are most likely just grouping
3909/// parens for precedence.  If we find that these are actually function
3910/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3911///
3912///       direct-declarator:
3913///         '(' declarator ')'
3914/// [GNU]   '(' attributes declarator ')'
3915///         direct-declarator '(' parameter-type-list ')'
3916///         direct-declarator '(' identifier-list[opt] ')'
3917/// [GNU]   direct-declarator '(' parameter-forward-declarations
3918///                    parameter-type-list[opt] ')'
3919///
3920void Parser::ParseParenDeclarator(Declarator &D) {
3921  BalancedDelimiterTracker T(*this, tok::l_paren);
3922  T.consumeOpen();
3923
3924  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3925
3926  // Eat any attributes before we look at whether this is a grouping or function
3927  // declarator paren.  If this is a grouping paren, the attribute applies to
3928  // the type being built up, for example:
3929  //     int (__attribute__(()) *x)(long y)
3930  // If this ends up not being a grouping paren, the attribute applies to the
3931  // first argument, for example:
3932  //     int (__attribute__(()) int x)
3933  // In either case, we need to eat any attributes to be able to determine what
3934  // sort of paren this is.
3935  //
3936  ParsedAttributes attrs(AttrFactory);
3937  bool RequiresArg = false;
3938  if (Tok.is(tok::kw___attribute)) {
3939    ParseGNUAttributes(attrs);
3940
3941    // We require that the argument list (if this is a non-grouping paren) be
3942    // present even if the attribute list was empty.
3943    RequiresArg = true;
3944  }
3945  // Eat any Microsoft extensions.
3946  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3947       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3948       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
3949       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
3950    ParseMicrosoftTypeAttributes(attrs);
3951  }
3952  // Eat any Borland extensions.
3953  if  (Tok.is(tok::kw___pascal))
3954    ParseBorlandTypeAttributes(attrs);
3955
3956  // If we haven't past the identifier yet (or where the identifier would be
3957  // stored, if this is an abstract declarator), then this is probably just
3958  // grouping parens. However, if this could be an abstract-declarator, then
3959  // this could also be the start of function arguments (consider 'void()').
3960  bool isGrouping;
3961
3962  if (!D.mayOmitIdentifier()) {
3963    // If this can't be an abstract-declarator, this *must* be a grouping
3964    // paren, because we haven't seen the identifier yet.
3965    isGrouping = true;
3966  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3967             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3968             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3969    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3970    // considered to be a type, not a K&R identifier-list.
3971    isGrouping = false;
3972  } else {
3973    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3974    isGrouping = true;
3975  }
3976
3977  // If this is a grouping paren, handle:
3978  // direct-declarator: '(' declarator ')'
3979  // direct-declarator: '(' attributes declarator ')'
3980  if (isGrouping) {
3981    bool hadGroupingParens = D.hasGroupingParens();
3982    D.setGroupingParens(true);
3983
3984    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3985    // Match the ')'.
3986    T.consumeClose();
3987    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
3988                                            T.getCloseLocation()),
3989                  attrs, T.getCloseLocation());
3990
3991    D.setGroupingParens(hadGroupingParens);
3992    return;
3993  }
3994
3995  // Okay, if this wasn't a grouping paren, it must be the start of a function
3996  // argument list.  Recognize that this declarator will never have an
3997  // identifier (and remember where it would have been), then call into
3998  // ParseFunctionDeclarator to handle of argument list.
3999  D.SetIdentifier(0, Tok.getLocation());
4000
4001  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4002}
4003
4004/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4005/// declarator D up to a paren, which indicates that we are parsing function
4006/// arguments.
4007///
4008/// If attrs is non-null, then the caller parsed those arguments immediately
4009/// after the open paren - they should be considered to be the first argument of
4010/// a parameter.  If RequiresArg is true, then the first argument of the
4011/// function is required to be present and required to not be an identifier
4012/// list.
4013///
4014/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
4015/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
4016/// (C++0x) trailing-return-type[opt].
4017///
4018/// [C++0x] exception-specification:
4019///           dynamic-exception-specification
4020///           noexcept-specification
4021///
4022void Parser::ParseFunctionDeclarator(Declarator &D,
4023                                     ParsedAttributes &attrs,
4024                                     BalancedDelimiterTracker &Tracker,
4025                                     bool RequiresArg) {
4026  // lparen is already consumed!
4027  assert(D.isPastIdentifier() && "Should not call before identifier!");
4028
4029  // This should be true when the function has typed arguments.
4030  // Otherwise, it is treated as a K&R-style function.
4031  bool HasProto = false;
4032  // Build up an array of information about the parsed arguments.
4033  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4034  // Remember where we see an ellipsis, if any.
4035  SourceLocation EllipsisLoc;
4036
4037  DeclSpec DS(AttrFactory);
4038  bool RefQualifierIsLValueRef = true;
4039  SourceLocation RefQualifierLoc;
4040  ExceptionSpecificationType ESpecType = EST_None;
4041  SourceRange ESpecRange;
4042  SmallVector<ParsedType, 2> DynamicExceptions;
4043  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4044  ExprResult NoexceptExpr;
4045  ParsedType TrailingReturnType;
4046
4047  SourceLocation EndLoc;
4048  if (isFunctionDeclaratorIdentifierList()) {
4049    if (RequiresArg)
4050      Diag(Tok, diag::err_argument_required_after_attribute);
4051
4052    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4053
4054    Tracker.consumeClose();
4055    EndLoc = Tracker.getCloseLocation();
4056  } else {
4057    // Enter function-declaration scope, limiting any declarators to the
4058    // function prototype scope, including parameter declarators.
4059    ParseScope PrototypeScope(this,
4060                              Scope::FunctionPrototypeScope|Scope::DeclScope);
4061
4062    if (Tok.isNot(tok::r_paren))
4063      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
4064    else if (RequiresArg)
4065      Diag(Tok, diag::err_argument_required_after_attribute);
4066
4067    HasProto = ParamInfo.size() || getLang().CPlusPlus;
4068
4069    // If we have the closing ')', eat it.
4070    Tracker.consumeClose();
4071    EndLoc = Tracker.getCloseLocation();
4072
4073    if (getLang().CPlusPlus) {
4074      MaybeParseCXX0XAttributes(attrs);
4075
4076      // Parse cv-qualifier-seq[opt].
4077      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4078        if (!DS.getSourceRange().getEnd().isInvalid())
4079          EndLoc = DS.getSourceRange().getEnd();
4080
4081      // Parse ref-qualifier[opt].
4082      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4083        if (!getLang().CPlusPlus0x)
4084          Diag(Tok, diag::ext_ref_qualifier);
4085
4086        RefQualifierIsLValueRef = Tok.is(tok::amp);
4087        RefQualifierLoc = ConsumeToken();
4088        EndLoc = RefQualifierLoc;
4089      }
4090
4091      // Parse exception-specification[opt].
4092      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4093                                                   DynamicExceptions,
4094                                                   DynamicExceptionRanges,
4095                                                   NoexceptExpr);
4096      if (ESpecType != EST_None)
4097        EndLoc = ESpecRange.getEnd();
4098
4099      // Parse trailing-return-type[opt].
4100      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
4101        SourceRange Range;
4102        TrailingReturnType = ParseTrailingReturnType(Range).get();
4103        if (Range.getEnd().isValid())
4104          EndLoc = Range.getEnd();
4105      }
4106    }
4107
4108    // Leave prototype scope.
4109    PrototypeScope.Exit();
4110  }
4111
4112  // Remember that we parsed a function type, and remember the attributes.
4113  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4114                                             /*isVariadic=*/EllipsisLoc.isValid(),
4115                                             EllipsisLoc,
4116                                             ParamInfo.data(), ParamInfo.size(),
4117                                             DS.getTypeQualifiers(),
4118                                             RefQualifierIsLValueRef,
4119                                             RefQualifierLoc,
4120                                             /*MutableLoc=*/SourceLocation(),
4121                                             ESpecType, ESpecRange.getBegin(),
4122                                             DynamicExceptions.data(),
4123                                             DynamicExceptionRanges.data(),
4124                                             DynamicExceptions.size(),
4125                                             NoexceptExpr.isUsable() ?
4126                                               NoexceptExpr.get() : 0,
4127                                             Tracker.getOpenLocation(),
4128                                             EndLoc, D,
4129                                             TrailingReturnType),
4130                attrs, EndLoc);
4131}
4132
4133/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4134/// identifier list form for a K&R-style function:  void foo(a,b,c)
4135///
4136/// Note that identifier-lists are only allowed for normal declarators, not for
4137/// abstract-declarators.
4138bool Parser::isFunctionDeclaratorIdentifierList() {
4139  return !getLang().CPlusPlus
4140         && Tok.is(tok::identifier)
4141         && !TryAltiVecVectorToken()
4142         // K&R identifier lists can't have typedefs as identifiers, per C99
4143         // 6.7.5.3p11.
4144         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4145         // Identifier lists follow a really simple grammar: the identifiers can
4146         // be followed *only* by a ", identifier" or ")".  However, K&R
4147         // identifier lists are really rare in the brave new modern world, and
4148         // it is very common for someone to typo a type in a non-K&R style
4149         // list.  If we are presented with something like: "void foo(intptr x,
4150         // float y)", we don't want to start parsing the function declarator as
4151         // though it is a K&R style declarator just because intptr is an
4152         // invalid type.
4153         //
4154         // To handle this, we check to see if the token after the first
4155         // identifier is a "," or ")".  Only then do we parse it as an
4156         // identifier list.
4157         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4158}
4159
4160/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4161/// we found a K&R-style identifier list instead of a typed parameter list.
4162///
4163/// After returning, ParamInfo will hold the parsed parameters.
4164///
4165///       identifier-list: [C99 6.7.5]
4166///         identifier
4167///         identifier-list ',' identifier
4168///
4169void Parser::ParseFunctionDeclaratorIdentifierList(
4170       Declarator &D,
4171       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4172  // If there was no identifier specified for the declarator, either we are in
4173  // an abstract-declarator, or we are in a parameter declarator which was found
4174  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4175  // diagnose this.
4176  if (!D.getIdentifier())
4177    Diag(Tok, diag::ext_ident_list_in_param);
4178
4179  // Maintain an efficient lookup of params we have seen so far.
4180  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4181
4182  while (1) {
4183    // If this isn't an identifier, report the error and skip until ')'.
4184    if (Tok.isNot(tok::identifier)) {
4185      Diag(Tok, diag::err_expected_ident);
4186      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4187      // Forget we parsed anything.
4188      ParamInfo.clear();
4189      return;
4190    }
4191
4192    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4193
4194    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4195    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4196      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4197
4198    // Verify that the argument identifier has not already been mentioned.
4199    if (!ParamsSoFar.insert(ParmII)) {
4200      Diag(Tok, diag::err_param_redefinition) << ParmII;
4201    } else {
4202      // Remember this identifier in ParamInfo.
4203      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4204                                                     Tok.getLocation(),
4205                                                     0));
4206    }
4207
4208    // Eat the identifier.
4209    ConsumeToken();
4210
4211    // The list continues if we see a comma.
4212    if (Tok.isNot(tok::comma))
4213      break;
4214    ConsumeToken();
4215  }
4216}
4217
4218/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4219/// after the opening parenthesis. This function will not parse a K&R-style
4220/// identifier list.
4221///
4222/// D is the declarator being parsed.  If attrs is non-null, then the caller
4223/// parsed those arguments immediately after the open paren - they should be
4224/// considered to be the first argument of a parameter.
4225///
4226/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4227/// be the location of the ellipsis, if any was parsed.
4228///
4229///       parameter-type-list: [C99 6.7.5]
4230///         parameter-list
4231///         parameter-list ',' '...'
4232/// [C++]   parameter-list '...'
4233///
4234///       parameter-list: [C99 6.7.5]
4235///         parameter-declaration
4236///         parameter-list ',' parameter-declaration
4237///
4238///       parameter-declaration: [C99 6.7.5]
4239///         declaration-specifiers declarator
4240/// [C++]   declaration-specifiers declarator '=' assignment-expression
4241/// [GNU]   declaration-specifiers declarator attributes
4242///         declaration-specifiers abstract-declarator[opt]
4243/// [C++]   declaration-specifiers abstract-declarator[opt]
4244///           '=' assignment-expression
4245/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4246///
4247void Parser::ParseParameterDeclarationClause(
4248       Declarator &D,
4249       ParsedAttributes &attrs,
4250       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4251       SourceLocation &EllipsisLoc) {
4252
4253  while (1) {
4254    if (Tok.is(tok::ellipsis)) {
4255      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4256      break;
4257    }
4258
4259    // Parse the declaration-specifiers.
4260    // Just use the ParsingDeclaration "scope" of the declarator.
4261    DeclSpec DS(AttrFactory);
4262
4263    // Skip any Microsoft attributes before a param.
4264    if (getLang().MicrosoftExt && Tok.is(tok::l_square))
4265      ParseMicrosoftAttributes(DS.getAttributes());
4266
4267    SourceLocation DSStart = Tok.getLocation();
4268
4269    // If the caller parsed attributes for the first argument, add them now.
4270    // Take them so that we only apply the attributes to the first parameter.
4271    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4272    // attributes lost? Should they even be allowed?
4273    // FIXME: If we can leave the attributes in the token stream somehow, we can
4274    // get rid of a parameter (attrs) and this statement. It might be too much
4275    // hassle.
4276    DS.takeAttributesFrom(attrs);
4277
4278    ParseDeclarationSpecifiers(DS);
4279
4280    // Parse the declarator.  This is "PrototypeContext", because we must
4281    // accept either 'declarator' or 'abstract-declarator' here.
4282    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4283    ParseDeclarator(ParmDecl);
4284
4285    // Parse GNU attributes, if present.
4286    MaybeParseGNUAttributes(ParmDecl);
4287
4288    // Remember this parsed parameter in ParamInfo.
4289    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4290
4291    // DefArgToks is used when the parsing of default arguments needs
4292    // to be delayed.
4293    CachedTokens *DefArgToks = 0;
4294
4295    // If no parameter was specified, verify that *something* was specified,
4296    // otherwise we have a missing type and identifier.
4297    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4298        ParmDecl.getNumTypeObjects() == 0) {
4299      // Completely missing, emit error.
4300      Diag(DSStart, diag::err_missing_param);
4301    } else {
4302      // Otherwise, we have something.  Add it and let semantic analysis try
4303      // to grok it and add the result to the ParamInfo we are building.
4304
4305      // Inform the actions module about the parameter declarator, so it gets
4306      // added to the current scope.
4307      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4308
4309      // Parse the default argument, if any. We parse the default
4310      // arguments in all dialects; the semantic analysis in
4311      // ActOnParamDefaultArgument will reject the default argument in
4312      // C.
4313      if (Tok.is(tok::equal)) {
4314        SourceLocation EqualLoc = Tok.getLocation();
4315
4316        // Parse the default argument
4317        if (D.getContext() == Declarator::MemberContext) {
4318          // If we're inside a class definition, cache the tokens
4319          // corresponding to the default argument. We'll actually parse
4320          // them when we see the end of the class definition.
4321          // FIXME: Templates will require something similar.
4322          // FIXME: Can we use a smart pointer for Toks?
4323          DefArgToks = new CachedTokens;
4324
4325          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4326                                    /*StopAtSemi=*/true,
4327                                    /*ConsumeFinalToken=*/false)) {
4328            delete DefArgToks;
4329            DefArgToks = 0;
4330            Actions.ActOnParamDefaultArgumentError(Param);
4331          } else {
4332            // Mark the end of the default argument so that we know when to
4333            // stop when we parse it later on.
4334            Token DefArgEnd;
4335            DefArgEnd.startToken();
4336            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4337            DefArgEnd.setLocation(Tok.getLocation());
4338            DefArgToks->push_back(DefArgEnd);
4339            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4340                                                (*DefArgToks)[1].getLocation());
4341          }
4342        } else {
4343          // Consume the '='.
4344          ConsumeToken();
4345
4346          // The argument isn't actually potentially evaluated unless it is
4347          // used.
4348          EnterExpressionEvaluationContext Eval(Actions,
4349                                              Sema::PotentiallyEvaluatedIfUsed);
4350
4351          ExprResult DefArgResult(ParseAssignmentExpression());
4352          if (DefArgResult.isInvalid()) {
4353            Actions.ActOnParamDefaultArgumentError(Param);
4354            SkipUntil(tok::comma, tok::r_paren, true, true);
4355          } else {
4356            // Inform the actions module about the default argument
4357            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4358                                              DefArgResult.take());
4359          }
4360        }
4361      }
4362
4363      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4364                                          ParmDecl.getIdentifierLoc(), Param,
4365                                          DefArgToks));
4366    }
4367
4368    // If the next token is a comma, consume it and keep reading arguments.
4369    if (Tok.isNot(tok::comma)) {
4370      if (Tok.is(tok::ellipsis)) {
4371        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4372
4373        if (!getLang().CPlusPlus) {
4374          // We have ellipsis without a preceding ',', which is ill-formed
4375          // in C. Complain and provide the fix.
4376          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4377            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4378        }
4379      }
4380
4381      break;
4382    }
4383
4384    // Consume the comma.
4385    ConsumeToken();
4386  }
4387
4388}
4389
4390/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4391/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4392/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4393/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4394/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4395void Parser::ParseBracketDeclarator(Declarator &D) {
4396  BalancedDelimiterTracker T(*this, tok::l_square);
4397  T.consumeOpen();
4398
4399  // C array syntax has many features, but by-far the most common is [] and [4].
4400  // This code does a fast path to handle some of the most obvious cases.
4401  if (Tok.getKind() == tok::r_square) {
4402    T.consumeClose();
4403    ParsedAttributes attrs(AttrFactory);
4404    MaybeParseCXX0XAttributes(attrs);
4405
4406    // Remember that we parsed the empty array type.
4407    ExprResult NumElements;
4408    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4409                                            T.getOpenLocation(),
4410                                            T.getCloseLocation()),
4411                  attrs, T.getCloseLocation());
4412    return;
4413  } else if (Tok.getKind() == tok::numeric_constant &&
4414             GetLookAheadToken(1).is(tok::r_square)) {
4415    // [4] is very common.  Parse the numeric constant expression.
4416    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4417    ConsumeToken();
4418
4419    T.consumeClose();
4420    ParsedAttributes attrs(AttrFactory);
4421    MaybeParseCXX0XAttributes(attrs);
4422
4423    // Remember that we parsed a array type, and remember its features.
4424    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4425                                            ExprRes.release(),
4426                                            T.getOpenLocation(),
4427                                            T.getCloseLocation()),
4428                  attrs, T.getCloseLocation());
4429    return;
4430  }
4431
4432  // If valid, this location is the position where we read the 'static' keyword.
4433  SourceLocation StaticLoc;
4434  if (Tok.is(tok::kw_static))
4435    StaticLoc = ConsumeToken();
4436
4437  // If there is a type-qualifier-list, read it now.
4438  // Type qualifiers in an array subscript are a C99 feature.
4439  DeclSpec DS(AttrFactory);
4440  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4441
4442  // If we haven't already read 'static', check to see if there is one after the
4443  // type-qualifier-list.
4444  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4445    StaticLoc = ConsumeToken();
4446
4447  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4448  bool isStar = false;
4449  ExprResult NumElements;
4450
4451  // Handle the case where we have '[*]' as the array size.  However, a leading
4452  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4453  // the the token after the star is a ']'.  Since stars in arrays are
4454  // infrequent, use of lookahead is not costly here.
4455  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4456    ConsumeToken();  // Eat the '*'.
4457
4458    if (StaticLoc.isValid()) {
4459      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4460      StaticLoc = SourceLocation();  // Drop the static.
4461    }
4462    isStar = true;
4463  } else if (Tok.isNot(tok::r_square)) {
4464    // Note, in C89, this production uses the constant-expr production instead
4465    // of assignment-expr.  The only difference is that assignment-expr allows
4466    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4467    // are not i-c-e's, so we don't need to distinguish between the two here.
4468
4469    // Parse the constant-expression or assignment-expression now (depending
4470    // on dialect).
4471    if (getLang().CPlusPlus)
4472      NumElements = ParseConstantExpression();
4473    else
4474      NumElements = ParseAssignmentExpression();
4475  }
4476
4477  // If there was an error parsing the assignment-expression, recover.
4478  if (NumElements.isInvalid()) {
4479    D.setInvalidType(true);
4480    // If the expression was invalid, skip it.
4481    SkipUntil(tok::r_square);
4482    return;
4483  }
4484
4485  T.consumeClose();
4486
4487  ParsedAttributes attrs(AttrFactory);
4488  MaybeParseCXX0XAttributes(attrs);
4489
4490  // Remember that we parsed a array type, and remember its features.
4491  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4492                                          StaticLoc.isValid(), isStar,
4493                                          NumElements.release(),
4494                                          T.getOpenLocation(),
4495                                          T.getCloseLocation()),
4496                attrs, T.getCloseLocation());
4497}
4498
4499/// [GNU]   typeof-specifier:
4500///           typeof ( expressions )
4501///           typeof ( type-name )
4502/// [GNU/C++] typeof unary-expression
4503///
4504void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4505  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4506  Token OpTok = Tok;
4507  SourceLocation StartLoc = ConsumeToken();
4508
4509  const bool hasParens = Tok.is(tok::l_paren);
4510
4511  bool isCastExpr;
4512  ParsedType CastTy;
4513  SourceRange CastRange;
4514  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4515                                                          CastTy, CastRange);
4516  if (hasParens)
4517    DS.setTypeofParensRange(CastRange);
4518
4519  if (CastRange.getEnd().isInvalid())
4520    // FIXME: Not accurate, the range gets one token more than it should.
4521    DS.SetRangeEnd(Tok.getLocation());
4522  else
4523    DS.SetRangeEnd(CastRange.getEnd());
4524
4525  if (isCastExpr) {
4526    if (!CastTy) {
4527      DS.SetTypeSpecError();
4528      return;
4529    }
4530
4531    const char *PrevSpec = 0;
4532    unsigned DiagID;
4533    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4534    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4535                           DiagID, CastTy))
4536      Diag(StartLoc, DiagID) << PrevSpec;
4537    return;
4538  }
4539
4540  // If we get here, the operand to the typeof was an expresion.
4541  if (Operand.isInvalid()) {
4542    DS.SetTypeSpecError();
4543    return;
4544  }
4545
4546  const char *PrevSpec = 0;
4547  unsigned DiagID;
4548  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4549  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4550                         DiagID, Operand.get()))
4551    Diag(StartLoc, DiagID) << PrevSpec;
4552}
4553
4554/// [C1X]   atomic-specifier:
4555///           _Atomic ( type-name )
4556///
4557void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4558  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4559
4560  SourceLocation StartLoc = ConsumeToken();
4561  BalancedDelimiterTracker T(*this, tok::l_paren);
4562  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4563    SkipUntil(tok::r_paren);
4564    return;
4565  }
4566
4567  TypeResult Result = ParseTypeName();
4568  if (Result.isInvalid()) {
4569    SkipUntil(tok::r_paren);
4570    return;
4571  }
4572
4573  // Match the ')'
4574  T.consumeClose();
4575
4576  if (T.getCloseLocation().isInvalid())
4577    return;
4578
4579  DS.setTypeofParensRange(T.getRange());
4580  DS.SetRangeEnd(T.getCloseLocation());
4581
4582  const char *PrevSpec = 0;
4583  unsigned DiagID;
4584  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4585                         DiagID, Result.release()))
4586    Diag(StartLoc, DiagID) << PrevSpec;
4587}
4588
4589
4590/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4591/// from TryAltiVecVectorToken.
4592bool Parser::TryAltiVecVectorTokenOutOfLine() {
4593  Token Next = NextToken();
4594  switch (Next.getKind()) {
4595  default: return false;
4596  case tok::kw_short:
4597  case tok::kw_long:
4598  case tok::kw_signed:
4599  case tok::kw_unsigned:
4600  case tok::kw_void:
4601  case tok::kw_char:
4602  case tok::kw_int:
4603  case tok::kw_float:
4604  case tok::kw_double:
4605  case tok::kw_bool:
4606  case tok::kw___pixel:
4607    Tok.setKind(tok::kw___vector);
4608    return true;
4609  case tok::identifier:
4610    if (Next.getIdentifierInfo() == Ident_pixel) {
4611      Tok.setKind(tok::kw___vector);
4612      return true;
4613    }
4614    return false;
4615  }
4616}
4617
4618bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4619                                      const char *&PrevSpec, unsigned &DiagID,
4620                                      bool &isInvalid) {
4621  if (Tok.getIdentifierInfo() == Ident_vector) {
4622    Token Next = NextToken();
4623    switch (Next.getKind()) {
4624    case tok::kw_short:
4625    case tok::kw_long:
4626    case tok::kw_signed:
4627    case tok::kw_unsigned:
4628    case tok::kw_void:
4629    case tok::kw_char:
4630    case tok::kw_int:
4631    case tok::kw_float:
4632    case tok::kw_double:
4633    case tok::kw_bool:
4634    case tok::kw___pixel:
4635      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4636      return true;
4637    case tok::identifier:
4638      if (Next.getIdentifierInfo() == Ident_pixel) {
4639        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4640        return true;
4641      }
4642      break;
4643    default:
4644      break;
4645    }
4646  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4647             DS.isTypeAltiVecVector()) {
4648    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4649    return true;
4650  }
4651  return false;
4652}
4653