ParseDecl.cpp revision d7c56e1114bfe7d461786903bb720d2c6efc05a1
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/StringSwitch.h"
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// C99 6.7: Declarations.
27//===----------------------------------------------------------------------===//
28
29/// ParseTypeName
30///       type-name: [C99 6.7.6]
31///         specifier-qualifier-list abstract-declarator[opt]
32///
33/// Called type-id in C++.
34TypeResult Parser::ParseTypeName(SourceRange *Range,
35                                 Declarator::TheContext Context,
36                                 AccessSpecifier AS,
37                                 Decl **OwnedType) {
38  // Parse the common declaration-specifiers piece.
39  DeclSpec DS(AttrFactory);
40  ParseSpecifierQualifierList(DS, AS);
41  if (OwnedType)
42    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
43
44  // Parse the abstract-declarator, if present.
45  Declarator DeclaratorInfo(DS, Context);
46  ParseDeclarator(DeclaratorInfo);
47  if (Range)
48    *Range = DeclaratorInfo.getSourceRange();
49
50  if (DeclaratorInfo.isInvalidType())
51    return true;
52
53  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
54}
55
56
57/// isAttributeLateParsed - Return true if the attribute has arguments that
58/// require late parsing.
59static bool isAttributeLateParsed(const IdentifierInfo &II) {
60    return llvm::StringSwitch<bool>(II.getName())
61#include "clang/Parse/AttrLateParsed.inc"
62        .Default(false);
63}
64
65
66/// ParseGNUAttributes - Parse a non-empty attributes list.
67///
68/// [GNU] attributes:
69///         attribute
70///         attributes attribute
71///
72/// [GNU]  attribute:
73///          '__attribute__' '(' '(' attribute-list ')' ')'
74///
75/// [GNU]  attribute-list:
76///          attrib
77///          attribute_list ',' attrib
78///
79/// [GNU]  attrib:
80///          empty
81///          attrib-name
82///          attrib-name '(' identifier ')'
83///          attrib-name '(' identifier ',' nonempty-expr-list ')'
84///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
85///
86/// [GNU]  attrib-name:
87///          identifier
88///          typespec
89///          typequal
90///          storageclass
91///
92/// FIXME: The GCC grammar/code for this construct implies we need two
93/// token lookahead. Comment from gcc: "If they start with an identifier
94/// which is followed by a comma or close parenthesis, then the arguments
95/// start with that identifier; otherwise they are an expression list."
96///
97/// GCC does not require the ',' between attribs in an attribute-list.
98///
99/// At the moment, I am not doing 2 token lookahead. I am also unaware of
100/// any attributes that don't work (based on my limited testing). Most
101/// attributes are very simple in practice. Until we find a bug, I don't see
102/// a pressing need to implement the 2 token lookahead.
103
104void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
105                                SourceLocation *endLoc,
106                                LateParsedAttrList *LateAttrs) {
107  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
108
109  while (Tok.is(tok::kw___attribute)) {
110    ConsumeToken();
111    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
112                         "attribute")) {
113      SkipUntil(tok::r_paren, true); // skip until ) or ;
114      return;
115    }
116    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
117      SkipUntil(tok::r_paren, true); // skip until ) or ;
118      return;
119    }
120    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
121    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
122           Tok.is(tok::comma)) {
123      if (Tok.is(tok::comma)) {
124        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
125        ConsumeToken();
126        continue;
127      }
128      // we have an identifier or declaration specifier (const, int, etc.)
129      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
130      SourceLocation AttrNameLoc = ConsumeToken();
131
132      if (Tok.is(tok::l_paren)) {
133        // handle "parameterized" attributes
134        if (LateAttrs && !ClassStack.empty() &&
135            isAttributeLateParsed(*AttrName)) {
136          // Delayed parsing is only available for attributes that occur
137          // in certain locations within a class scope.
138          LateParsedAttribute *LA =
139            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
140          LateAttrs->push_back(LA);
141          getCurrentClass().LateParsedDeclarations.push_back(LA);
142
143          // consume everything up to and including the matching right parens
144          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
145
146          Token Eof;
147          Eof.startToken();
148          Eof.setLocation(Tok.getLocation());
149          LA->Toks.push_back(Eof);
150        } else {
151          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
152        }
153      } else {
154        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
155                     0, SourceLocation(), 0, 0);
156      }
157    }
158    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
159      SkipUntil(tok::r_paren, false);
160    SourceLocation Loc = Tok.getLocation();
161    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
162      SkipUntil(tok::r_paren, false);
163    }
164    if (endLoc)
165      *endLoc = Loc;
166  }
167}
168
169
170/// Parse the arguments to a parameterized GNU attribute
171void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
172                                   SourceLocation AttrNameLoc,
173                                   ParsedAttributes &Attrs,
174                                   SourceLocation *EndLoc) {
175
176  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
177
178  // Availability attributes have their own grammar.
179  if (AttrName->isStr("availability")) {
180    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
181    return;
182  }
183  // Thread safety attributes fit into the FIXME case above, so we
184  // just parse the arguments as a list of expressions
185  if (IsThreadSafetyAttribute(AttrName->getName())) {
186    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
187    return;
188  }
189
190  ConsumeParen(); // ignore the left paren loc for now
191
192  IdentifierInfo *ParmName = 0;
193  SourceLocation ParmLoc;
194  bool BuiltinType = false;
195
196  switch (Tok.getKind()) {
197  case tok::kw_char:
198  case tok::kw_wchar_t:
199  case tok::kw_char16_t:
200  case tok::kw_char32_t:
201  case tok::kw_bool:
202  case tok::kw_short:
203  case tok::kw_int:
204  case tok::kw_long:
205  case tok::kw___int64:
206  case tok::kw_signed:
207  case tok::kw_unsigned:
208  case tok::kw_float:
209  case tok::kw_double:
210  case tok::kw_void:
211  case tok::kw_typeof:
212    // __attribute__(( vec_type_hint(char) ))
213    // FIXME: Don't just discard the builtin type token.
214    ConsumeToken();
215    BuiltinType = true;
216    break;
217
218  case tok::identifier:
219    ParmName = Tok.getIdentifierInfo();
220    ParmLoc = ConsumeToken();
221    break;
222
223  default:
224    break;
225  }
226
227  ExprVector ArgExprs(Actions);
228
229  if (!BuiltinType &&
230      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
231    // Eat the comma.
232    if (ParmLoc.isValid())
233      ConsumeToken();
234
235    // Parse the non-empty comma-separated list of expressions.
236    while (1) {
237      ExprResult ArgExpr(ParseAssignmentExpression());
238      if (ArgExpr.isInvalid()) {
239        SkipUntil(tok::r_paren);
240        return;
241      }
242      ArgExprs.push_back(ArgExpr.release());
243      if (Tok.isNot(tok::comma))
244        break;
245      ConsumeToken(); // Eat the comma, move to the next argument
246    }
247  }
248  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
249    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
250                          tok::greater)) {
251      while (Tok.is(tok::identifier)) {
252        ConsumeToken();
253        if (Tok.is(tok::greater))
254          break;
255        if (Tok.is(tok::comma)) {
256          ConsumeToken();
257          continue;
258        }
259      }
260      if (Tok.isNot(tok::greater))
261        Diag(Tok, diag::err_iboutletcollection_with_protocol);
262      SkipUntil(tok::r_paren, false, true); // skip until ')'
263    }
264  }
265
266  SourceLocation RParen = Tok.getLocation();
267  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
268    AttributeList *attr =
269      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
270                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
271    if (BuiltinType && attr->getKind() == AttributeList::AT_IBOutletCollection)
272      Diag(Tok, diag::err_iboutletcollection_builtintype);
273  }
274}
275
276
277/// ParseMicrosoftDeclSpec - Parse an __declspec construct
278///
279/// [MS] decl-specifier:
280///             __declspec ( extended-decl-modifier-seq )
281///
282/// [MS] extended-decl-modifier-seq:
283///             extended-decl-modifier[opt]
284///             extended-decl-modifier extended-decl-modifier-seq
285
286void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
287  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
288
289  ConsumeToken();
290  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
291                       "declspec")) {
292    SkipUntil(tok::r_paren, true); // skip until ) or ;
293    return;
294  }
295
296  while (Tok.getIdentifierInfo()) {
297    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
298    SourceLocation AttrNameLoc = ConsumeToken();
299
300    // FIXME: Remove this when we have proper __declspec(property()) support.
301    // Just skip everything inside property().
302    if (AttrName->getName() == "property") {
303      ConsumeParen();
304      SkipUntil(tok::r_paren);
305    }
306    if (Tok.is(tok::l_paren)) {
307      ConsumeParen();
308      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
309      // correctly.
310      ExprResult ArgExpr(ParseAssignmentExpression());
311      if (!ArgExpr.isInvalid()) {
312        Expr *ExprList = ArgExpr.take();
313        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
314                     SourceLocation(), &ExprList, 1, true);
315      }
316      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
317        SkipUntil(tok::r_paren, false);
318    } else {
319      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
320                   0, SourceLocation(), 0, 0, true);
321    }
322  }
323  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
324    SkipUntil(tok::r_paren, false);
325  return;
326}
327
328void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
329  // Treat these like attributes
330  // FIXME: Allow Sema to distinguish between these and real attributes!
331  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
332         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
333         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
334         Tok.is(tok::kw___ptr32) ||
335         Tok.is(tok::kw___unaligned)) {
336    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
337    SourceLocation AttrNameLoc = ConsumeToken();
338    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
339        Tok.is(tok::kw___ptr32))
340      // FIXME: Support these properly!
341      continue;
342    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
343                 SourceLocation(), 0, 0, true);
344  }
345}
346
347void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
348  // Treat these like attributes
349  while (Tok.is(tok::kw___pascal)) {
350    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
351    SourceLocation AttrNameLoc = ConsumeToken();
352    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
353                 SourceLocation(), 0, 0, true);
354  }
355}
356
357void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
358  // Treat these like attributes
359  while (Tok.is(tok::kw___kernel)) {
360    SourceLocation AttrNameLoc = ConsumeToken();
361    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
362                 AttrNameLoc, 0, AttrNameLoc, 0,
363                 SourceLocation(), 0, 0, false);
364  }
365}
366
367void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
368  SourceLocation Loc = Tok.getLocation();
369  switch(Tok.getKind()) {
370    // OpenCL qualifiers:
371    case tok::kw___private:
372    case tok::kw_private:
373      DS.getAttributes().addNewInteger(
374          Actions.getASTContext(),
375          PP.getIdentifierInfo("address_space"), Loc, 0);
376      break;
377
378    case tok::kw___global:
379      DS.getAttributes().addNewInteger(
380          Actions.getASTContext(),
381          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
382      break;
383
384    case tok::kw___local:
385      DS.getAttributes().addNewInteger(
386          Actions.getASTContext(),
387          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
388      break;
389
390    case tok::kw___constant:
391      DS.getAttributes().addNewInteger(
392          Actions.getASTContext(),
393          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
394      break;
395
396    case tok::kw___read_only:
397      DS.getAttributes().addNewInteger(
398          Actions.getASTContext(),
399          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
400      break;
401
402    case tok::kw___write_only:
403      DS.getAttributes().addNewInteger(
404          Actions.getASTContext(),
405          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
406      break;
407
408    case tok::kw___read_write:
409      DS.getAttributes().addNewInteger(
410          Actions.getASTContext(),
411          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
412      break;
413    default: break;
414  }
415}
416
417/// \brief Parse a version number.
418///
419/// version:
420///   simple-integer
421///   simple-integer ',' simple-integer
422///   simple-integer ',' simple-integer ',' simple-integer
423VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
424  Range = Tok.getLocation();
425
426  if (!Tok.is(tok::numeric_constant)) {
427    Diag(Tok, diag::err_expected_version);
428    SkipUntil(tok::comma, tok::r_paren, true, true, true);
429    return VersionTuple();
430  }
431
432  // Parse the major (and possibly minor and subminor) versions, which
433  // are stored in the numeric constant. We utilize a quirk of the
434  // lexer, which is that it handles something like 1.2.3 as a single
435  // numeric constant, rather than two separate tokens.
436  llvm::SmallString<512> Buffer;
437  Buffer.resize(Tok.getLength()+1);
438  const char *ThisTokBegin = &Buffer[0];
439
440  // Get the spelling of the token, which eliminates trigraphs, etc.
441  bool Invalid = false;
442  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
443  if (Invalid)
444    return VersionTuple();
445
446  // Parse the major version.
447  unsigned AfterMajor = 0;
448  unsigned Major = 0;
449  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
450    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
451    ++AfterMajor;
452  }
453
454  if (AfterMajor == 0) {
455    Diag(Tok, diag::err_expected_version);
456    SkipUntil(tok::comma, tok::r_paren, true, true, true);
457    return VersionTuple();
458  }
459
460  if (AfterMajor == ActualLength) {
461    ConsumeToken();
462
463    // We only had a single version component.
464    if (Major == 0) {
465      Diag(Tok, diag::err_zero_version);
466      return VersionTuple();
467    }
468
469    return VersionTuple(Major);
470  }
471
472  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
473    Diag(Tok, diag::err_expected_version);
474    SkipUntil(tok::comma, tok::r_paren, true, true, true);
475    return VersionTuple();
476  }
477
478  // Parse the minor version.
479  unsigned AfterMinor = AfterMajor + 1;
480  unsigned Minor = 0;
481  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
482    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
483    ++AfterMinor;
484  }
485
486  if (AfterMinor == ActualLength) {
487    ConsumeToken();
488
489    // We had major.minor.
490    if (Major == 0 && Minor == 0) {
491      Diag(Tok, diag::err_zero_version);
492      return VersionTuple();
493    }
494
495    return VersionTuple(Major, Minor);
496  }
497
498  // If what follows is not a '.', we have a problem.
499  if (ThisTokBegin[AfterMinor] != '.') {
500    Diag(Tok, diag::err_expected_version);
501    SkipUntil(tok::comma, tok::r_paren, true, true, true);
502    return VersionTuple();
503  }
504
505  // Parse the subminor version.
506  unsigned AfterSubminor = AfterMinor + 1;
507  unsigned Subminor = 0;
508  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
509    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
510    ++AfterSubminor;
511  }
512
513  if (AfterSubminor != ActualLength) {
514    Diag(Tok, diag::err_expected_version);
515    SkipUntil(tok::comma, tok::r_paren, true, true, true);
516    return VersionTuple();
517  }
518  ConsumeToken();
519  return VersionTuple(Major, Minor, Subminor);
520}
521
522/// \brief Parse the contents of the "availability" attribute.
523///
524/// availability-attribute:
525///   'availability' '(' platform ',' version-arg-list, opt-message')'
526///
527/// platform:
528///   identifier
529///
530/// version-arg-list:
531///   version-arg
532///   version-arg ',' version-arg-list
533///
534/// version-arg:
535///   'introduced' '=' version
536///   'deprecated' '=' version
537///   'removed' = version
538///   'unavailable'
539/// opt-message:
540///   'message' '=' <string>
541void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
542                                        SourceLocation AvailabilityLoc,
543                                        ParsedAttributes &attrs,
544                                        SourceLocation *endLoc) {
545  SourceLocation PlatformLoc;
546  IdentifierInfo *Platform = 0;
547
548  enum { Introduced, Deprecated, Obsoleted, Unknown };
549  AvailabilityChange Changes[Unknown];
550  ExprResult MessageExpr;
551
552  // Opening '('.
553  BalancedDelimiterTracker T(*this, tok::l_paren);
554  if (T.consumeOpen()) {
555    Diag(Tok, diag::err_expected_lparen);
556    return;
557  }
558
559  // Parse the platform name,
560  if (Tok.isNot(tok::identifier)) {
561    Diag(Tok, diag::err_availability_expected_platform);
562    SkipUntil(tok::r_paren);
563    return;
564  }
565  Platform = Tok.getIdentifierInfo();
566  PlatformLoc = ConsumeToken();
567
568  // Parse the ',' following the platform name.
569  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
570    return;
571
572  // If we haven't grabbed the pointers for the identifiers
573  // "introduced", "deprecated", and "obsoleted", do so now.
574  if (!Ident_introduced) {
575    Ident_introduced = PP.getIdentifierInfo("introduced");
576    Ident_deprecated = PP.getIdentifierInfo("deprecated");
577    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
578    Ident_unavailable = PP.getIdentifierInfo("unavailable");
579    Ident_message = PP.getIdentifierInfo("message");
580  }
581
582  // Parse the set of introductions/deprecations/removals.
583  SourceLocation UnavailableLoc;
584  do {
585    if (Tok.isNot(tok::identifier)) {
586      Diag(Tok, diag::err_availability_expected_change);
587      SkipUntil(tok::r_paren);
588      return;
589    }
590    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
591    SourceLocation KeywordLoc = ConsumeToken();
592
593    if (Keyword == Ident_unavailable) {
594      if (UnavailableLoc.isValid()) {
595        Diag(KeywordLoc, diag::err_availability_redundant)
596          << Keyword << SourceRange(UnavailableLoc);
597      }
598      UnavailableLoc = KeywordLoc;
599
600      if (Tok.isNot(tok::comma))
601        break;
602
603      ConsumeToken();
604      continue;
605    }
606
607    if (Tok.isNot(tok::equal)) {
608      Diag(Tok, diag::err_expected_equal_after)
609        << Keyword;
610      SkipUntil(tok::r_paren);
611      return;
612    }
613    ConsumeToken();
614    if (Keyword == Ident_message) {
615      if (!isTokenStringLiteral()) {
616        Diag(Tok, diag::err_expected_string_literal);
617        SkipUntil(tok::r_paren);
618        return;
619      }
620      MessageExpr = ParseStringLiteralExpression();
621      break;
622    }
623
624    SourceRange VersionRange;
625    VersionTuple Version = ParseVersionTuple(VersionRange);
626
627    if (Version.empty()) {
628      SkipUntil(tok::r_paren);
629      return;
630    }
631
632    unsigned Index;
633    if (Keyword == Ident_introduced)
634      Index = Introduced;
635    else if (Keyword == Ident_deprecated)
636      Index = Deprecated;
637    else if (Keyword == Ident_obsoleted)
638      Index = Obsoleted;
639    else
640      Index = Unknown;
641
642    if (Index < Unknown) {
643      if (!Changes[Index].KeywordLoc.isInvalid()) {
644        Diag(KeywordLoc, diag::err_availability_redundant)
645          << Keyword
646          << SourceRange(Changes[Index].KeywordLoc,
647                         Changes[Index].VersionRange.getEnd());
648      }
649
650      Changes[Index].KeywordLoc = KeywordLoc;
651      Changes[Index].Version = Version;
652      Changes[Index].VersionRange = VersionRange;
653    } else {
654      Diag(KeywordLoc, diag::err_availability_unknown_change)
655        << Keyword << VersionRange;
656    }
657
658    if (Tok.isNot(tok::comma))
659      break;
660
661    ConsumeToken();
662  } while (true);
663
664  // Closing ')'.
665  if (T.consumeClose())
666    return;
667
668  if (endLoc)
669    *endLoc = T.getCloseLocation();
670
671  // The 'unavailable' availability cannot be combined with any other
672  // availability changes. Make sure that hasn't happened.
673  if (UnavailableLoc.isValid()) {
674    bool Complained = false;
675    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
676      if (Changes[Index].KeywordLoc.isValid()) {
677        if (!Complained) {
678          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
679            << SourceRange(Changes[Index].KeywordLoc,
680                           Changes[Index].VersionRange.getEnd());
681          Complained = true;
682        }
683
684        // Clear out the availability.
685        Changes[Index] = AvailabilityChange();
686      }
687    }
688  }
689
690  // Record this attribute
691  attrs.addNew(&Availability,
692               SourceRange(AvailabilityLoc, T.getCloseLocation()),
693               0, SourceLocation(),
694               Platform, PlatformLoc,
695               Changes[Introduced],
696               Changes[Deprecated],
697               Changes[Obsoleted],
698               UnavailableLoc, MessageExpr.take(),
699               false, false);
700}
701
702
703// Late Parsed Attributes:
704// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
705
706void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
707
708void Parser::LateParsedClass::ParseLexedAttributes() {
709  Self->ParseLexedAttributes(*Class);
710}
711
712void Parser::LateParsedAttribute::ParseLexedAttributes() {
713  Self->ParseLexedAttribute(*this);
714}
715
716/// Wrapper class which calls ParseLexedAttribute, after setting up the
717/// scope appropriately.
718void Parser::ParseLexedAttributes(ParsingClass &Class) {
719  // Deal with templates
720  // FIXME: Test cases to make sure this does the right thing for templates.
721  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
722  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
723                                HasTemplateScope);
724  if (HasTemplateScope)
725    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
726
727  // Set or update the scope flags to include Scope::ThisScope.
728  bool AlreadyHasClassScope = Class.TopLevelClass;
729  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
730  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
731  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
732
733  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
734    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
735  }
736}
737
738/// \brief Finish parsing an attribute for which parsing was delayed.
739/// This will be called at the end of parsing a class declaration
740/// for each LateParsedAttribute. We consume the saved tokens and
741/// create an attribute with the arguments filled in. We add this
742/// to the Attribute list for the decl.
743void Parser::ParseLexedAttribute(LateParsedAttribute &LA) {
744  // Save the current token position.
745  SourceLocation OrigLoc = Tok.getLocation();
746
747  // Append the current token at the end of the new token stream so that it
748  // doesn't get lost.
749  LA.Toks.push_back(Tok);
750  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
751  // Consume the previously pushed token.
752  ConsumeAnyToken();
753
754  ParsedAttributes Attrs(AttrFactory);
755  SourceLocation endLoc;
756
757  // If the Decl is templatized, add template parameters to scope.
758  bool HasTemplateScope = LA.D && LA.D->isTemplateDecl();
759  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
760  if (HasTemplateScope)
761    Actions.ActOnReenterTemplateScope(Actions.CurScope, LA.D);
762
763  // If the Decl is on a function, add function parameters to the scope.
764  bool HasFunctionScope = LA.D && LA.D->isFunctionOrFunctionTemplate();
765  ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
766  if (HasFunctionScope)
767    Actions.ActOnReenterFunctionContext(Actions.CurScope, LA.D);
768
769  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
770
771  if (HasFunctionScope) {
772    Actions.ActOnExitFunctionContext();
773    FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
774  }
775  if (HasTemplateScope) {
776    TempScope.Exit();
777  }
778
779  // Late parsed attributes must be attached to Decls by hand.  If the
780  // LA.D is not set, then this was not done properly.
781  assert(LA.D && "No decl attached to late parsed attribute");
782  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.D, Attrs);
783
784  if (Tok.getLocation() != OrigLoc) {
785    // Due to a parsing error, we either went over the cached tokens or
786    // there are still cached tokens left, so we skip the leftover tokens.
787    // Since this is an uncommon situation that should be avoided, use the
788    // expensive isBeforeInTranslationUnit call.
789    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
790                                                        OrigLoc))
791    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
792        ConsumeAnyToken();
793  }
794}
795
796/// \brief Wrapper around a case statement checking if AttrName is
797/// one of the thread safety attributes
798bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
799  return llvm::StringSwitch<bool>(AttrName)
800      .Case("guarded_by", true)
801      .Case("guarded_var", true)
802      .Case("pt_guarded_by", true)
803      .Case("pt_guarded_var", true)
804      .Case("lockable", true)
805      .Case("scoped_lockable", true)
806      .Case("no_thread_safety_analysis", true)
807      .Case("acquired_after", true)
808      .Case("acquired_before", true)
809      .Case("exclusive_lock_function", true)
810      .Case("shared_lock_function", true)
811      .Case("exclusive_trylock_function", true)
812      .Case("shared_trylock_function", true)
813      .Case("unlock_function", true)
814      .Case("lock_returned", true)
815      .Case("locks_excluded", true)
816      .Case("exclusive_locks_required", true)
817      .Case("shared_locks_required", true)
818      .Default(false);
819}
820
821/// \brief Parse the contents of thread safety attributes. These
822/// should always be parsed as an expression list.
823///
824/// We need to special case the parsing due to the fact that if the first token
825/// of the first argument is an identifier, the main parse loop will store
826/// that token as a "parameter" and the rest of
827/// the arguments will be added to a list of "arguments". However,
828/// subsequent tokens in the first argument are lost. We instead parse each
829/// argument as an expression and add all arguments to the list of "arguments".
830/// In future, we will take advantage of this special case to also
831/// deal with some argument scoping issues here (for example, referring to a
832/// function parameter in the attribute on that function).
833void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
834                                        SourceLocation AttrNameLoc,
835                                        ParsedAttributes &Attrs,
836                                        SourceLocation *EndLoc) {
837  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
838
839  BalancedDelimiterTracker T(*this, tok::l_paren);
840  T.consumeOpen();
841
842  ExprVector ArgExprs(Actions);
843  bool ArgExprsOk = true;
844
845  // now parse the list of expressions
846  while (Tok.isNot(tok::r_paren)) {
847    ExprResult ArgExpr(ParseAssignmentExpression());
848    if (ArgExpr.isInvalid()) {
849      ArgExprsOk = false;
850      T.consumeClose();
851      break;
852    } else {
853      ArgExprs.push_back(ArgExpr.release());
854    }
855    if (Tok.isNot(tok::comma))
856      break;
857    ConsumeToken(); // Eat the comma, move to the next argument
858  }
859  // Match the ')'.
860  if (ArgExprsOk && !T.consumeClose() && ArgExprs.size() > 0) {
861    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
862                 ArgExprs.take(), ArgExprs.size());
863  }
864  if (EndLoc)
865    *EndLoc = T.getCloseLocation();
866}
867
868void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
869  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
870    << attrs.Range;
871}
872
873/// ParseDeclaration - Parse a full 'declaration', which consists of
874/// declaration-specifiers, some number of declarators, and a semicolon.
875/// 'Context' should be a Declarator::TheContext value.  This returns the
876/// location of the semicolon in DeclEnd.
877///
878///       declaration: [C99 6.7]
879///         block-declaration ->
880///           simple-declaration
881///           others                   [FIXME]
882/// [C++]   template-declaration
883/// [C++]   namespace-definition
884/// [C++]   using-directive
885/// [C++]   using-declaration
886/// [C++0x/C11] static_assert-declaration
887///         others... [FIXME]
888///
889Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
890                                                unsigned Context,
891                                                SourceLocation &DeclEnd,
892                                          ParsedAttributesWithRange &attrs) {
893  ParenBraceBracketBalancer BalancerRAIIObj(*this);
894  // Must temporarily exit the objective-c container scope for
895  // parsing c none objective-c decls.
896  ObjCDeclContextSwitch ObjCDC(*this);
897
898  Decl *SingleDecl = 0;
899  Decl *OwnedType = 0;
900  switch (Tok.getKind()) {
901  case tok::kw_template:
902  case tok::kw_export:
903    ProhibitAttributes(attrs);
904    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
905    break;
906  case tok::kw_inline:
907    // Could be the start of an inline namespace. Allowed as an ext in C++03.
908    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
909      ProhibitAttributes(attrs);
910      SourceLocation InlineLoc = ConsumeToken();
911      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
912      break;
913    }
914    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
915                                  true);
916  case tok::kw_namespace:
917    ProhibitAttributes(attrs);
918    SingleDecl = ParseNamespace(Context, DeclEnd);
919    break;
920  case tok::kw_using:
921    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
922                                                  DeclEnd, attrs, &OwnedType);
923    break;
924  case tok::kw_static_assert:
925  case tok::kw__Static_assert:
926    ProhibitAttributes(attrs);
927    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
928    break;
929  default:
930    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
931  }
932
933  // This routine returns a DeclGroup, if the thing we parsed only contains a
934  // single decl, convert it now. Alias declarations can also declare a type;
935  // include that too if it is present.
936  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
937}
938
939///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
940///         declaration-specifiers init-declarator-list[opt] ';'
941///[C90/C++]init-declarator-list ';'                             [TODO]
942/// [OMP]   threadprivate-directive                              [TODO]
943///
944///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
945///         attribute-specifier-seq[opt] type-specifier-seq declarator
946///
947/// If RequireSemi is false, this does not check for a ';' at the end of the
948/// declaration.  If it is true, it checks for and eats it.
949///
950/// If FRI is non-null, we might be parsing a for-range-declaration instead
951/// of a simple-declaration. If we find that we are, we also parse the
952/// for-range-initializer, and place it here.
953Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
954                                                      unsigned Context,
955                                                      SourceLocation &DeclEnd,
956                                                      ParsedAttributes &attrs,
957                                                      bool RequireSemi,
958                                                      ForRangeInit *FRI) {
959  // Parse the common declaration-specifiers piece.
960  ParsingDeclSpec DS(*this);
961  DS.takeAttributesFrom(attrs);
962
963  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
964                             getDeclSpecContextFromDeclaratorContext(Context));
965  StmtResult R = Actions.ActOnVlaStmt(DS);
966  if (R.isUsable())
967    Stmts.push_back(R.release());
968
969  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
970  // declaration-specifiers init-declarator-list[opt] ';'
971  if (Tok.is(tok::semi)) {
972    if (RequireSemi) ConsumeToken();
973    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
974                                                       DS);
975    DS.complete(TheDecl);
976    return Actions.ConvertDeclToDeclGroup(TheDecl);
977  }
978
979  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
980}
981
982/// Returns true if this might be the start of a declarator, or a common typo
983/// for a declarator.
984bool Parser::MightBeDeclarator(unsigned Context) {
985  switch (Tok.getKind()) {
986  case tok::annot_cxxscope:
987  case tok::annot_template_id:
988  case tok::caret:
989  case tok::code_completion:
990  case tok::coloncolon:
991  case tok::ellipsis:
992  case tok::kw___attribute:
993  case tok::kw_operator:
994  case tok::l_paren:
995  case tok::star:
996    return true;
997
998  case tok::amp:
999  case tok::ampamp:
1000  case tok::colon: // Might be a typo for '::'.
1001    return getLang().CPlusPlus;
1002
1003  case tok::identifier:
1004    switch (NextToken().getKind()) {
1005    case tok::code_completion:
1006    case tok::coloncolon:
1007    case tok::comma:
1008    case tok::equal:
1009    case tok::equalequal: // Might be a typo for '='.
1010    case tok::kw_alignas:
1011    case tok::kw_asm:
1012    case tok::kw___attribute:
1013    case tok::l_brace:
1014    case tok::l_paren:
1015    case tok::l_square:
1016    case tok::less:
1017    case tok::r_brace:
1018    case tok::r_paren:
1019    case tok::r_square:
1020    case tok::semi:
1021      return true;
1022
1023    case tok::colon:
1024      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1025      // and in block scope it's probably a label.
1026      return getLang().CPlusPlus && Context == Declarator::FileContext;
1027
1028    default:
1029      return false;
1030    }
1031
1032  default:
1033    return false;
1034  }
1035}
1036
1037/// ParseDeclGroup - Having concluded that this is either a function
1038/// definition or a group of object declarations, actually parse the
1039/// result.
1040Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1041                                              unsigned Context,
1042                                              bool AllowFunctionDefinitions,
1043                                              SourceLocation *DeclEnd,
1044                                              ForRangeInit *FRI) {
1045  // Parse the first declarator.
1046  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1047  ParseDeclarator(D);
1048
1049  // Bail out if the first declarator didn't seem well-formed.
1050  if (!D.hasName() && !D.mayOmitIdentifier()) {
1051    // Skip until ; or }.
1052    SkipUntil(tok::r_brace, true, true);
1053    if (Tok.is(tok::semi))
1054      ConsumeToken();
1055    return DeclGroupPtrTy();
1056  }
1057
1058  // Check to see if we have a function *definition* which must have a body.
1059  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1060      // Look at the next token to make sure that this isn't a function
1061      // declaration.  We have to check this because __attribute__ might be the
1062      // start of a function definition in GCC-extended K&R C.
1063      !isDeclarationAfterDeclarator()) {
1064
1065    if (isStartOfFunctionDefinition(D)) {
1066      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1067        Diag(Tok, diag::err_function_declared_typedef);
1068
1069        // Recover by treating the 'typedef' as spurious.
1070        DS.ClearStorageClassSpecs();
1071      }
1072
1073      Decl *TheDecl = ParseFunctionDefinition(D);
1074      return Actions.ConvertDeclToDeclGroup(TheDecl);
1075    }
1076
1077    if (isDeclarationSpecifier()) {
1078      // If there is an invalid declaration specifier right after the function
1079      // prototype, then we must be in a missing semicolon case where this isn't
1080      // actually a body.  Just fall through into the code that handles it as a
1081      // prototype, and let the top-level code handle the erroneous declspec
1082      // where it would otherwise expect a comma or semicolon.
1083    } else {
1084      Diag(Tok, diag::err_expected_fn_body);
1085      SkipUntil(tok::semi);
1086      return DeclGroupPtrTy();
1087    }
1088  }
1089
1090  if (ParseAttributesAfterDeclarator(D))
1091    return DeclGroupPtrTy();
1092
1093  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1094  // must parse and analyze the for-range-initializer before the declaration is
1095  // analyzed.
1096  if (FRI && Tok.is(tok::colon)) {
1097    FRI->ColonLoc = ConsumeToken();
1098    if (Tok.is(tok::l_brace))
1099      FRI->RangeExpr = ParseBraceInitializer();
1100    else
1101      FRI->RangeExpr = ParseExpression();
1102    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1103    Actions.ActOnCXXForRangeDecl(ThisDecl);
1104    Actions.FinalizeDeclaration(ThisDecl);
1105    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1106  }
1107
1108  SmallVector<Decl *, 8> DeclsInGroup;
1109  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1110  D.complete(FirstDecl);
1111  if (FirstDecl)
1112    DeclsInGroup.push_back(FirstDecl);
1113
1114  bool ExpectSemi = Context != Declarator::ForContext;
1115
1116  // If we don't have a comma, it is either the end of the list (a ';') or an
1117  // error, bail out.
1118  while (Tok.is(tok::comma)) {
1119    SourceLocation CommaLoc = ConsumeToken();
1120
1121    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1122      // This comma was followed by a line-break and something which can't be
1123      // the start of a declarator. The comma was probably a typo for a
1124      // semicolon.
1125      Diag(CommaLoc, diag::err_expected_semi_declaration)
1126        << FixItHint::CreateReplacement(CommaLoc, ";");
1127      ExpectSemi = false;
1128      break;
1129    }
1130
1131    // Parse the next declarator.
1132    D.clear();
1133
1134    // Accept attributes in an init-declarator.  In the first declarator in a
1135    // declaration, these would be part of the declspec.  In subsequent
1136    // declarators, they become part of the declarator itself, so that they
1137    // don't apply to declarators after *this* one.  Examples:
1138    //    short __attribute__((common)) var;    -> declspec
1139    //    short var __attribute__((common));    -> declarator
1140    //    short x, __attribute__((common)) var;    -> declarator
1141    MaybeParseGNUAttributes(D);
1142
1143    ParseDeclarator(D);
1144
1145    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1146    D.complete(ThisDecl);
1147    if (ThisDecl)
1148      DeclsInGroup.push_back(ThisDecl);
1149  }
1150
1151  if (DeclEnd)
1152    *DeclEnd = Tok.getLocation();
1153
1154  if (ExpectSemi &&
1155      ExpectAndConsume(tok::semi,
1156                       Context == Declarator::FileContext
1157                         ? diag::err_invalid_token_after_toplevel_declarator
1158                         : diag::err_expected_semi_declaration)) {
1159    // Okay, there was no semicolon and one was expected.  If we see a
1160    // declaration specifier, just assume it was missing and continue parsing.
1161    // Otherwise things are very confused and we skip to recover.
1162    if (!isDeclarationSpecifier()) {
1163      SkipUntil(tok::r_brace, true, true);
1164      if (Tok.is(tok::semi))
1165        ConsumeToken();
1166    }
1167  }
1168
1169  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1170                                         DeclsInGroup.data(),
1171                                         DeclsInGroup.size());
1172}
1173
1174/// Parse an optional simple-asm-expr and attributes, and attach them to a
1175/// declarator. Returns true on an error.
1176bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
1177  // If a simple-asm-expr is present, parse it.
1178  if (Tok.is(tok::kw_asm)) {
1179    SourceLocation Loc;
1180    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1181    if (AsmLabel.isInvalid()) {
1182      SkipUntil(tok::semi, true, true);
1183      return true;
1184    }
1185
1186    D.setAsmLabel(AsmLabel.release());
1187    D.SetRangeEnd(Loc);
1188  }
1189
1190  MaybeParseGNUAttributes(D);
1191  return false;
1192}
1193
1194/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1195/// declarator'. This method parses the remainder of the declaration
1196/// (including any attributes or initializer, among other things) and
1197/// finalizes the declaration.
1198///
1199///       init-declarator: [C99 6.7]
1200///         declarator
1201///         declarator '=' initializer
1202/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1203/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1204/// [C++]   declarator initializer[opt]
1205///
1206/// [C++] initializer:
1207/// [C++]   '=' initializer-clause
1208/// [C++]   '(' expression-list ')'
1209/// [C++0x] '=' 'default'                                                [TODO]
1210/// [C++0x] '=' 'delete'
1211/// [C++0x] braced-init-list
1212///
1213/// According to the standard grammar, =default and =delete are function
1214/// definitions, but that definitely doesn't fit with the parser here.
1215///
1216Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1217                                     const ParsedTemplateInfo &TemplateInfo) {
1218  if (ParseAttributesAfterDeclarator(D))
1219    return 0;
1220
1221  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1222}
1223
1224Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1225                                     const ParsedTemplateInfo &TemplateInfo) {
1226  // Inform the current actions module that we just parsed this declarator.
1227  Decl *ThisDecl = 0;
1228  switch (TemplateInfo.Kind) {
1229  case ParsedTemplateInfo::NonTemplate:
1230    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1231    break;
1232
1233  case ParsedTemplateInfo::Template:
1234  case ParsedTemplateInfo::ExplicitSpecialization:
1235    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1236                             MultiTemplateParamsArg(Actions,
1237                                          TemplateInfo.TemplateParams->data(),
1238                                          TemplateInfo.TemplateParams->size()),
1239                                               D);
1240    break;
1241
1242  case ParsedTemplateInfo::ExplicitInstantiation: {
1243    DeclResult ThisRes
1244      = Actions.ActOnExplicitInstantiation(getCurScope(),
1245                                           TemplateInfo.ExternLoc,
1246                                           TemplateInfo.TemplateLoc,
1247                                           D);
1248    if (ThisRes.isInvalid()) {
1249      SkipUntil(tok::semi, true, true);
1250      return 0;
1251    }
1252
1253    ThisDecl = ThisRes.get();
1254    break;
1255    }
1256  }
1257
1258  bool TypeContainsAuto =
1259    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1260
1261  // Parse declarator '=' initializer.
1262  if (isTokenEqualOrMistypedEqualEqual(
1263                               diag::err_invalid_equalequal_after_declarator)) {
1264    ConsumeToken();
1265    if (Tok.is(tok::kw_delete)) {
1266      if (D.isFunctionDeclarator())
1267        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1268          << 1 /* delete */;
1269      else
1270        Diag(ConsumeToken(), diag::err_deleted_non_function);
1271    } else if (Tok.is(tok::kw_default)) {
1272      if (D.isFunctionDeclarator())
1273        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
1274          << 1 /* delete */;
1275      else
1276        Diag(ConsumeToken(), diag::err_default_special_members);
1277    } else {
1278      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1279        EnterScope(0);
1280        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1281      }
1282
1283      if (Tok.is(tok::code_completion)) {
1284        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1285        cutOffParsing();
1286        return 0;
1287      }
1288
1289      ExprResult Init(ParseInitializer());
1290
1291      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1292        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1293        ExitScope();
1294      }
1295
1296      if (Init.isInvalid()) {
1297        SkipUntil(tok::comma, true, true);
1298        Actions.ActOnInitializerError(ThisDecl);
1299      } else
1300        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1301                                     /*DirectInit=*/false, TypeContainsAuto);
1302    }
1303  } else if (Tok.is(tok::l_paren)) {
1304    // Parse C++ direct initializer: '(' expression-list ')'
1305    BalancedDelimiterTracker T(*this, tok::l_paren);
1306    T.consumeOpen();
1307
1308    ExprVector Exprs(Actions);
1309    CommaLocsTy CommaLocs;
1310
1311    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1312      EnterScope(0);
1313      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1314    }
1315
1316    if (ParseExpressionList(Exprs, CommaLocs)) {
1317      SkipUntil(tok::r_paren);
1318
1319      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1320        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1321        ExitScope();
1322      }
1323    } else {
1324      // Match the ')'.
1325      T.consumeClose();
1326
1327      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1328             "Unexpected number of commas!");
1329
1330      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1331        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1332        ExitScope();
1333      }
1334
1335      Actions.AddCXXDirectInitializerToDecl(ThisDecl, T.getOpenLocation(),
1336                                            move_arg(Exprs),
1337                                            T.getCloseLocation(),
1338                                            TypeContainsAuto);
1339    }
1340  } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1341    // Parse C++0x braced-init-list.
1342    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1343
1344    if (D.getCXXScopeSpec().isSet()) {
1345      EnterScope(0);
1346      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1347    }
1348
1349    ExprResult Init(ParseBraceInitializer());
1350
1351    if (D.getCXXScopeSpec().isSet()) {
1352      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1353      ExitScope();
1354    }
1355
1356    if (Init.isInvalid()) {
1357      Actions.ActOnInitializerError(ThisDecl);
1358    } else
1359      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1360                                   /*DirectInit=*/true, TypeContainsAuto);
1361
1362  } else {
1363    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1364  }
1365
1366  Actions.FinalizeDeclaration(ThisDecl);
1367
1368  return ThisDecl;
1369}
1370
1371/// ParseSpecifierQualifierList
1372///        specifier-qualifier-list:
1373///          type-specifier specifier-qualifier-list[opt]
1374///          type-qualifier specifier-qualifier-list[opt]
1375/// [GNU]    attributes     specifier-qualifier-list[opt]
1376///
1377void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1378  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1379  /// parse declaration-specifiers and complain about extra stuff.
1380  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1381  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1382
1383  // Validate declspec for type-name.
1384  unsigned Specs = DS.getParsedSpecifiers();
1385  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1386      !DS.hasAttributes())
1387    Diag(Tok, diag::err_typename_requires_specqual);
1388
1389  // Issue diagnostic and remove storage class if present.
1390  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1391    if (DS.getStorageClassSpecLoc().isValid())
1392      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1393    else
1394      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1395    DS.ClearStorageClassSpecs();
1396  }
1397
1398  // Issue diagnostic and remove function specfier if present.
1399  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1400    if (DS.isInlineSpecified())
1401      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1402    if (DS.isVirtualSpecified())
1403      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1404    if (DS.isExplicitSpecified())
1405      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1406    DS.ClearFunctionSpecs();
1407  }
1408}
1409
1410/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1411/// specified token is valid after the identifier in a declarator which
1412/// immediately follows the declspec.  For example, these things are valid:
1413///
1414///      int x   [             4];         // direct-declarator
1415///      int x   (             int y);     // direct-declarator
1416///  int(int x   )                         // direct-declarator
1417///      int x   ;                         // simple-declaration
1418///      int x   =             17;         // init-declarator-list
1419///      int x   ,             y;          // init-declarator-list
1420///      int x   __asm__       ("foo");    // init-declarator-list
1421///      int x   :             4;          // struct-declarator
1422///      int x   {             5};         // C++'0x unified initializers
1423///
1424/// This is not, because 'x' does not immediately follow the declspec (though
1425/// ')' happens to be valid anyway).
1426///    int (x)
1427///
1428static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1429  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1430         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1431         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1432}
1433
1434
1435/// ParseImplicitInt - This method is called when we have an non-typename
1436/// identifier in a declspec (which normally terminates the decl spec) when
1437/// the declspec has no type specifier.  In this case, the declspec is either
1438/// malformed or is "implicit int" (in K&R and C89).
1439///
1440/// This method handles diagnosing this prettily and returns false if the
1441/// declspec is done being processed.  If it recovers and thinks there may be
1442/// other pieces of declspec after it, it returns true.
1443///
1444bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1445                              const ParsedTemplateInfo &TemplateInfo,
1446                              AccessSpecifier AS) {
1447  assert(Tok.is(tok::identifier) && "should have identifier");
1448
1449  SourceLocation Loc = Tok.getLocation();
1450  // If we see an identifier that is not a type name, we normally would
1451  // parse it as the identifer being declared.  However, when a typename
1452  // is typo'd or the definition is not included, this will incorrectly
1453  // parse the typename as the identifier name and fall over misparsing
1454  // later parts of the diagnostic.
1455  //
1456  // As such, we try to do some look-ahead in cases where this would
1457  // otherwise be an "implicit-int" case to see if this is invalid.  For
1458  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1459  // an identifier with implicit int, we'd get a parse error because the
1460  // next token is obviously invalid for a type.  Parse these as a case
1461  // with an invalid type specifier.
1462  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1463
1464  // Since we know that this either implicit int (which is rare) or an
1465  // error, we'd do lookahead to try to do better recovery.
1466  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1467    // If this token is valid for implicit int, e.g. "static x = 4", then
1468    // we just avoid eating the identifier, so it will be parsed as the
1469    // identifier in the declarator.
1470    return false;
1471  }
1472
1473  // Otherwise, if we don't consume this token, we are going to emit an
1474  // error anyway.  Try to recover from various common problems.  Check
1475  // to see if this was a reference to a tag name without a tag specified.
1476  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1477  //
1478  // C++ doesn't need this, and isTagName doesn't take SS.
1479  if (SS == 0) {
1480    const char *TagName = 0, *FixitTagName = 0;
1481    tok::TokenKind TagKind = tok::unknown;
1482
1483    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1484      default: break;
1485      case DeclSpec::TST_enum:
1486        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1487      case DeclSpec::TST_union:
1488        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1489      case DeclSpec::TST_struct:
1490        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1491      case DeclSpec::TST_class:
1492        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1493    }
1494
1495    if (TagName) {
1496      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1497        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1498        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1499
1500      // Parse this as a tag as if the missing tag were present.
1501      if (TagKind == tok::kw_enum)
1502        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1503      else
1504        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1505      return true;
1506    }
1507  }
1508
1509  // This is almost certainly an invalid type name. Let the action emit a
1510  // diagnostic and attempt to recover.
1511  ParsedType T;
1512  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1513                                      getCurScope(), SS, T)) {
1514    // The action emitted a diagnostic, so we don't have to.
1515    if (T) {
1516      // The action has suggested that the type T could be used. Set that as
1517      // the type in the declaration specifiers, consume the would-be type
1518      // name token, and we're done.
1519      const char *PrevSpec;
1520      unsigned DiagID;
1521      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1522      DS.SetRangeEnd(Tok.getLocation());
1523      ConsumeToken();
1524
1525      // There may be other declaration specifiers after this.
1526      return true;
1527    }
1528
1529    // Fall through; the action had no suggestion for us.
1530  } else {
1531    // The action did not emit a diagnostic, so emit one now.
1532    SourceRange R;
1533    if (SS) R = SS->getRange();
1534    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1535  }
1536
1537  // Mark this as an error.
1538  const char *PrevSpec;
1539  unsigned DiagID;
1540  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1541  DS.SetRangeEnd(Tok.getLocation());
1542  ConsumeToken();
1543
1544  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1545  // avoid rippling error messages on subsequent uses of the same type,
1546  // could be useful if #include was forgotten.
1547  return false;
1548}
1549
1550/// \brief Determine the declaration specifier context from the declarator
1551/// context.
1552///
1553/// \param Context the declarator context, which is one of the
1554/// Declarator::TheContext enumerator values.
1555Parser::DeclSpecContext
1556Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1557  if (Context == Declarator::MemberContext)
1558    return DSC_class;
1559  if (Context == Declarator::FileContext)
1560    return DSC_top_level;
1561  return DSC_normal;
1562}
1563
1564/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1565///
1566/// FIXME: Simply returns an alignof() expression if the argument is a
1567/// type. Ideally, the type should be propagated directly into Sema.
1568///
1569/// [C11]   type-id
1570/// [C11]   constant-expression
1571/// [C++0x] type-id ...[opt]
1572/// [C++0x] assignment-expression ...[opt]
1573ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1574                                      SourceLocation &EllipsisLoc) {
1575  ExprResult ER;
1576  if (isTypeIdInParens()) {
1577    SourceLocation TypeLoc = Tok.getLocation();
1578    ParsedType Ty = ParseTypeName().get();
1579    SourceRange TypeRange(Start, Tok.getLocation());
1580    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1581                                               Ty.getAsOpaquePtr(), TypeRange);
1582  } else
1583    ER = ParseConstantExpression();
1584
1585  if (getLang().CPlusPlus0x && Tok.is(tok::ellipsis))
1586    EllipsisLoc = ConsumeToken();
1587
1588  return ER;
1589}
1590
1591/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1592/// attribute to Attrs.
1593///
1594/// alignment-specifier:
1595/// [C11]   '_Alignas' '(' type-id ')'
1596/// [C11]   '_Alignas' '(' constant-expression ')'
1597/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1598/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1599void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1600                                     SourceLocation *endLoc) {
1601  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1602         "Not an alignment-specifier!");
1603
1604  SourceLocation KWLoc = Tok.getLocation();
1605  ConsumeToken();
1606
1607  BalancedDelimiterTracker T(*this, tok::l_paren);
1608  if (T.expectAndConsume(diag::err_expected_lparen))
1609    return;
1610
1611  SourceLocation EllipsisLoc;
1612  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1613  if (ArgExpr.isInvalid()) {
1614    SkipUntil(tok::r_paren);
1615    return;
1616  }
1617
1618  T.consumeClose();
1619  if (endLoc)
1620    *endLoc = T.getCloseLocation();
1621
1622  // FIXME: Handle pack-expansions here.
1623  if (EllipsisLoc.isValid()) {
1624    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1625    return;
1626  }
1627
1628  ExprVector ArgExprs(Actions);
1629  ArgExprs.push_back(ArgExpr.release());
1630  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1631               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1632}
1633
1634/// ParseDeclarationSpecifiers
1635///       declaration-specifiers: [C99 6.7]
1636///         storage-class-specifier declaration-specifiers[opt]
1637///         type-specifier declaration-specifiers[opt]
1638/// [C99]   function-specifier declaration-specifiers[opt]
1639/// [C11]   alignment-specifier declaration-specifiers[opt]
1640/// [GNU]   attributes declaration-specifiers[opt]
1641/// [Clang] '__module_private__' declaration-specifiers[opt]
1642///
1643///       storage-class-specifier: [C99 6.7.1]
1644///         'typedef'
1645///         'extern'
1646///         'static'
1647///         'auto'
1648///         'register'
1649/// [C++]   'mutable'
1650/// [GNU]   '__thread'
1651///       function-specifier: [C99 6.7.4]
1652/// [C99]   'inline'
1653/// [C++]   'virtual'
1654/// [C++]   'explicit'
1655/// [OpenCL] '__kernel'
1656///       'friend': [C++ dcl.friend]
1657///       'constexpr': [C++0x dcl.constexpr]
1658
1659///
1660void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1661                                        const ParsedTemplateInfo &TemplateInfo,
1662                                        AccessSpecifier AS,
1663                                        DeclSpecContext DSContext) {
1664  if (DS.getSourceRange().isInvalid()) {
1665    DS.SetRangeStart(Tok.getLocation());
1666    DS.SetRangeEnd(Tok.getLocation());
1667  }
1668
1669  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1670  while (1) {
1671    bool isInvalid = false;
1672    const char *PrevSpec = 0;
1673    unsigned DiagID = 0;
1674
1675    SourceLocation Loc = Tok.getLocation();
1676
1677    switch (Tok.getKind()) {
1678    default:
1679    DoneWithDeclSpec:
1680      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1681      MaybeParseCXX0XAttributes(DS.getAttributes());
1682
1683      // If this is not a declaration specifier token, we're done reading decl
1684      // specifiers.  First verify that DeclSpec's are consistent.
1685      DS.Finish(Diags, PP);
1686      return;
1687
1688    case tok::code_completion: {
1689      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1690      if (DS.hasTypeSpecifier()) {
1691        bool AllowNonIdentifiers
1692          = (getCurScope()->getFlags() & (Scope::ControlScope |
1693                                          Scope::BlockScope |
1694                                          Scope::TemplateParamScope |
1695                                          Scope::FunctionPrototypeScope |
1696                                          Scope::AtCatchScope)) == 0;
1697        bool AllowNestedNameSpecifiers
1698          = DSContext == DSC_top_level ||
1699            (DSContext == DSC_class && DS.isFriendSpecified());
1700
1701        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1702                                     AllowNonIdentifiers,
1703                                     AllowNestedNameSpecifiers);
1704        return cutOffParsing();
1705      }
1706
1707      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1708        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1709      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1710        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1711                                    : Sema::PCC_Template;
1712      else if (DSContext == DSC_class)
1713        CCC = Sema::PCC_Class;
1714      else if (ObjCImpDecl)
1715        CCC = Sema::PCC_ObjCImplementation;
1716
1717      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1718      return cutOffParsing();
1719    }
1720
1721    case tok::coloncolon: // ::foo::bar
1722      // C++ scope specifier.  Annotate and loop, or bail out on error.
1723      if (TryAnnotateCXXScopeToken(true)) {
1724        if (!DS.hasTypeSpecifier())
1725          DS.SetTypeSpecError();
1726        goto DoneWithDeclSpec;
1727      }
1728      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1729        goto DoneWithDeclSpec;
1730      continue;
1731
1732    case tok::annot_cxxscope: {
1733      if (DS.hasTypeSpecifier())
1734        goto DoneWithDeclSpec;
1735
1736      CXXScopeSpec SS;
1737      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1738                                                   Tok.getAnnotationRange(),
1739                                                   SS);
1740
1741      // We are looking for a qualified typename.
1742      Token Next = NextToken();
1743      if (Next.is(tok::annot_template_id) &&
1744          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1745            ->Kind == TNK_Type_template) {
1746        // We have a qualified template-id, e.g., N::A<int>
1747
1748        // C++ [class.qual]p2:
1749        //   In a lookup in which the constructor is an acceptable lookup
1750        //   result and the nested-name-specifier nominates a class C:
1751        //
1752        //     - if the name specified after the
1753        //       nested-name-specifier, when looked up in C, is the
1754        //       injected-class-name of C (Clause 9), or
1755        //
1756        //     - if the name specified after the nested-name-specifier
1757        //       is the same as the identifier or the
1758        //       simple-template-id's template-name in the last
1759        //       component of the nested-name-specifier,
1760        //
1761        //   the name is instead considered to name the constructor of
1762        //   class C.
1763        //
1764        // Thus, if the template-name is actually the constructor
1765        // name, then the code is ill-formed; this interpretation is
1766        // reinforced by the NAD status of core issue 635.
1767        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1768        if ((DSContext == DSC_top_level ||
1769             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1770            TemplateId->Name &&
1771            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1772          if (isConstructorDeclarator()) {
1773            // The user meant this to be an out-of-line constructor
1774            // definition, but template arguments are not allowed
1775            // there.  Just allow this as a constructor; we'll
1776            // complain about it later.
1777            goto DoneWithDeclSpec;
1778          }
1779
1780          // The user meant this to name a type, but it actually names
1781          // a constructor with some extraneous template
1782          // arguments. Complain, then parse it as a type as the user
1783          // intended.
1784          Diag(TemplateId->TemplateNameLoc,
1785               diag::err_out_of_line_template_id_names_constructor)
1786            << TemplateId->Name;
1787        }
1788
1789        DS.getTypeSpecScope() = SS;
1790        ConsumeToken(); // The C++ scope.
1791        assert(Tok.is(tok::annot_template_id) &&
1792               "ParseOptionalCXXScopeSpecifier not working");
1793        AnnotateTemplateIdTokenAsType();
1794        continue;
1795      }
1796
1797      if (Next.is(tok::annot_typename)) {
1798        DS.getTypeSpecScope() = SS;
1799        ConsumeToken(); // The C++ scope.
1800        if (Tok.getAnnotationValue()) {
1801          ParsedType T = getTypeAnnotation(Tok);
1802          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1803                                         Tok.getAnnotationEndLoc(),
1804                                         PrevSpec, DiagID, T);
1805        }
1806        else
1807          DS.SetTypeSpecError();
1808        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1809        ConsumeToken(); // The typename
1810      }
1811
1812      if (Next.isNot(tok::identifier))
1813        goto DoneWithDeclSpec;
1814
1815      // If we're in a context where the identifier could be a class name,
1816      // check whether this is a constructor declaration.
1817      if ((DSContext == DSC_top_level ||
1818           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1819          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1820                                     &SS)) {
1821        if (isConstructorDeclarator())
1822          goto DoneWithDeclSpec;
1823
1824        // As noted in C++ [class.qual]p2 (cited above), when the name
1825        // of the class is qualified in a context where it could name
1826        // a constructor, its a constructor name. However, we've
1827        // looked at the declarator, and the user probably meant this
1828        // to be a type. Complain that it isn't supposed to be treated
1829        // as a type, then proceed to parse it as a type.
1830        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1831          << Next.getIdentifierInfo();
1832      }
1833
1834      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1835                                               Next.getLocation(),
1836                                               getCurScope(), &SS,
1837                                               false, false, ParsedType(),
1838                                               /*NonTrivialSourceInfo=*/true);
1839
1840      // If the referenced identifier is not a type, then this declspec is
1841      // erroneous: We already checked about that it has no type specifier, and
1842      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1843      // typename.
1844      if (TypeRep == 0) {
1845        ConsumeToken();   // Eat the scope spec so the identifier is current.
1846        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1847        goto DoneWithDeclSpec;
1848      }
1849
1850      DS.getTypeSpecScope() = SS;
1851      ConsumeToken(); // The C++ scope.
1852
1853      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1854                                     DiagID, TypeRep);
1855      if (isInvalid)
1856        break;
1857
1858      DS.SetRangeEnd(Tok.getLocation());
1859      ConsumeToken(); // The typename.
1860
1861      continue;
1862    }
1863
1864    case tok::annot_typename: {
1865      if (Tok.getAnnotationValue()) {
1866        ParsedType T = getTypeAnnotation(Tok);
1867        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1868                                       DiagID, T);
1869      } else
1870        DS.SetTypeSpecError();
1871
1872      if (isInvalid)
1873        break;
1874
1875      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1876      ConsumeToken(); // The typename
1877
1878      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1879      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1880      // Objective-C interface.
1881      if (Tok.is(tok::less) && getLang().ObjC1)
1882        ParseObjCProtocolQualifiers(DS);
1883
1884      continue;
1885    }
1886
1887    case tok::kw___is_signed:
1888      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1889      // typically treats it as a trait. If we see __is_signed as it appears
1890      // in libstdc++, e.g.,
1891      //
1892      //   static const bool __is_signed;
1893      //
1894      // then treat __is_signed as an identifier rather than as a keyword.
1895      if (DS.getTypeSpecType() == TST_bool &&
1896          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1897          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1898        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1899        Tok.setKind(tok::identifier);
1900      }
1901
1902      // We're done with the declaration-specifiers.
1903      goto DoneWithDeclSpec;
1904
1905      // typedef-name
1906    case tok::kw_decltype:
1907    case tok::identifier: {
1908      // In C++, check to see if this is a scope specifier like foo::bar::, if
1909      // so handle it as such.  This is important for ctor parsing.
1910      if (getLang().CPlusPlus) {
1911        if (TryAnnotateCXXScopeToken(true)) {
1912          if (!DS.hasTypeSpecifier())
1913            DS.SetTypeSpecError();
1914          goto DoneWithDeclSpec;
1915        }
1916        if (!Tok.is(tok::identifier))
1917          continue;
1918      }
1919
1920      // This identifier can only be a typedef name if we haven't already seen
1921      // a type-specifier.  Without this check we misparse:
1922      //  typedef int X; struct Y { short X; };  as 'short int'.
1923      if (DS.hasTypeSpecifier())
1924        goto DoneWithDeclSpec;
1925
1926      // Check for need to substitute AltiVec keyword tokens.
1927      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1928        break;
1929
1930      // It has to be available as a typedef too!
1931      ParsedType TypeRep =
1932        Actions.getTypeName(*Tok.getIdentifierInfo(),
1933                            Tok.getLocation(), getCurScope());
1934
1935      // If this is not a typedef name, don't parse it as part of the declspec,
1936      // it must be an implicit int or an error.
1937      if (!TypeRep) {
1938        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1939        goto DoneWithDeclSpec;
1940      }
1941
1942      // If we're in a context where the identifier could be a class name,
1943      // check whether this is a constructor declaration.
1944      if (getLang().CPlusPlus && DSContext == DSC_class &&
1945          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1946          isConstructorDeclarator())
1947        goto DoneWithDeclSpec;
1948
1949      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1950                                     DiagID, TypeRep);
1951      if (isInvalid)
1952        break;
1953
1954      DS.SetRangeEnd(Tok.getLocation());
1955      ConsumeToken(); // The identifier
1956
1957      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1958      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1959      // Objective-C interface.
1960      if (Tok.is(tok::less) && getLang().ObjC1)
1961        ParseObjCProtocolQualifiers(DS);
1962
1963      // Need to support trailing type qualifiers (e.g. "id<p> const").
1964      // If a type specifier follows, it will be diagnosed elsewhere.
1965      continue;
1966    }
1967
1968      // type-name
1969    case tok::annot_template_id: {
1970      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1971      if (TemplateId->Kind != TNK_Type_template) {
1972        // This template-id does not refer to a type name, so we're
1973        // done with the type-specifiers.
1974        goto DoneWithDeclSpec;
1975      }
1976
1977      // If we're in a context where the template-id could be a
1978      // constructor name or specialization, check whether this is a
1979      // constructor declaration.
1980      if (getLang().CPlusPlus && DSContext == DSC_class &&
1981          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1982          isConstructorDeclarator())
1983        goto DoneWithDeclSpec;
1984
1985      // Turn the template-id annotation token into a type annotation
1986      // token, then try again to parse it as a type-specifier.
1987      AnnotateTemplateIdTokenAsType();
1988      continue;
1989    }
1990
1991    // GNU attributes support.
1992    case tok::kw___attribute:
1993      ParseGNUAttributes(DS.getAttributes());
1994      continue;
1995
1996    // Microsoft declspec support.
1997    case tok::kw___declspec:
1998      ParseMicrosoftDeclSpec(DS.getAttributes());
1999      continue;
2000
2001    // Microsoft single token adornments.
2002    case tok::kw___forceinline:
2003      // FIXME: Add handling here!
2004      break;
2005
2006    case tok::kw___ptr64:
2007    case tok::kw___ptr32:
2008    case tok::kw___w64:
2009    case tok::kw___cdecl:
2010    case tok::kw___stdcall:
2011    case tok::kw___fastcall:
2012    case tok::kw___thiscall:
2013    case tok::kw___unaligned:
2014      ParseMicrosoftTypeAttributes(DS.getAttributes());
2015      continue;
2016
2017    // Borland single token adornments.
2018    case tok::kw___pascal:
2019      ParseBorlandTypeAttributes(DS.getAttributes());
2020      continue;
2021
2022    // OpenCL single token adornments.
2023    case tok::kw___kernel:
2024      ParseOpenCLAttributes(DS.getAttributes());
2025      continue;
2026
2027    // storage-class-specifier
2028    case tok::kw_typedef:
2029      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2030                                         PrevSpec, DiagID);
2031      break;
2032    case tok::kw_extern:
2033      if (DS.isThreadSpecified())
2034        Diag(Tok, diag::ext_thread_before) << "extern";
2035      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2036                                         PrevSpec, DiagID);
2037      break;
2038    case tok::kw___private_extern__:
2039      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2040                                         Loc, PrevSpec, DiagID);
2041      break;
2042    case tok::kw_static:
2043      if (DS.isThreadSpecified())
2044        Diag(Tok, diag::ext_thread_before) << "static";
2045      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2046                                         PrevSpec, DiagID);
2047      break;
2048    case tok::kw_auto:
2049      if (getLang().CPlusPlus0x) {
2050        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2051          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2052                                             PrevSpec, DiagID);
2053          if (!isInvalid)
2054            Diag(Tok, diag::ext_auto_storage_class)
2055              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2056        } else
2057          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2058                                         DiagID);
2059      } else
2060        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2061                                           PrevSpec, DiagID);
2062      break;
2063    case tok::kw_register:
2064      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2065                                         PrevSpec, DiagID);
2066      break;
2067    case tok::kw_mutable:
2068      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2069                                         PrevSpec, DiagID);
2070      break;
2071    case tok::kw___thread:
2072      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2073      break;
2074
2075    // function-specifier
2076    case tok::kw_inline:
2077      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2078      break;
2079    case tok::kw_virtual:
2080      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2081      break;
2082    case tok::kw_explicit:
2083      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2084      break;
2085
2086    // alignment-specifier
2087    case tok::kw__Alignas:
2088      if (!getLang().C11)
2089        Diag(Tok, diag::ext_c11_alignas);
2090      ParseAlignmentSpecifier(DS.getAttributes());
2091      continue;
2092
2093    // friend
2094    case tok::kw_friend:
2095      if (DSContext == DSC_class)
2096        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2097      else {
2098        PrevSpec = ""; // not actually used by the diagnostic
2099        DiagID = diag::err_friend_invalid_in_context;
2100        isInvalid = true;
2101      }
2102      break;
2103
2104    // Modules
2105    case tok::kw___module_private__:
2106      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2107      break;
2108
2109    // constexpr
2110    case tok::kw_constexpr:
2111      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2112      break;
2113
2114    // type-specifier
2115    case tok::kw_short:
2116      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2117                                      DiagID);
2118      break;
2119    case tok::kw_long:
2120      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2121        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2122                                        DiagID);
2123      else
2124        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2125                                        DiagID);
2126      break;
2127    case tok::kw___int64:
2128        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2129                                        DiagID);
2130      break;
2131    case tok::kw_signed:
2132      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2133                                     DiagID);
2134      break;
2135    case tok::kw_unsigned:
2136      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2137                                     DiagID);
2138      break;
2139    case tok::kw__Complex:
2140      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2141                                        DiagID);
2142      break;
2143    case tok::kw__Imaginary:
2144      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2145                                        DiagID);
2146      break;
2147    case tok::kw_void:
2148      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2149                                     DiagID);
2150      break;
2151    case tok::kw_char:
2152      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2153                                     DiagID);
2154      break;
2155    case tok::kw_int:
2156      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2157                                     DiagID);
2158      break;
2159     case tok::kw_half:
2160       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2161                                      DiagID);
2162       break;
2163    case tok::kw_float:
2164      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2165                                     DiagID);
2166      break;
2167    case tok::kw_double:
2168      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2169                                     DiagID);
2170      break;
2171    case tok::kw_wchar_t:
2172      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2173                                     DiagID);
2174      break;
2175    case tok::kw_char16_t:
2176      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2177                                     DiagID);
2178      break;
2179    case tok::kw_char32_t:
2180      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2181                                     DiagID);
2182      break;
2183    case tok::kw_bool:
2184    case tok::kw__Bool:
2185      if (Tok.is(tok::kw_bool) &&
2186          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2187          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2188        PrevSpec = ""; // Not used by the diagnostic.
2189        DiagID = diag::err_bool_redeclaration;
2190        // For better error recovery.
2191        Tok.setKind(tok::identifier);
2192        isInvalid = true;
2193      } else {
2194        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2195                                       DiagID);
2196      }
2197      break;
2198    case tok::kw__Decimal32:
2199      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2200                                     DiagID);
2201      break;
2202    case tok::kw__Decimal64:
2203      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2204                                     DiagID);
2205      break;
2206    case tok::kw__Decimal128:
2207      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2208                                     DiagID);
2209      break;
2210    case tok::kw___vector:
2211      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2212      break;
2213    case tok::kw___pixel:
2214      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2215      break;
2216    case tok::kw___unknown_anytype:
2217      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2218                                     PrevSpec, DiagID);
2219      break;
2220
2221    // class-specifier:
2222    case tok::kw_class:
2223    case tok::kw_struct:
2224    case tok::kw_union: {
2225      tok::TokenKind Kind = Tok.getKind();
2226      ConsumeToken();
2227      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext);
2228      continue;
2229    }
2230
2231    // enum-specifier:
2232    case tok::kw_enum:
2233      ConsumeToken();
2234      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
2235      continue;
2236
2237    // cv-qualifier:
2238    case tok::kw_const:
2239      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2240                                 getLang());
2241      break;
2242    case tok::kw_volatile:
2243      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2244                                 getLang());
2245      break;
2246    case tok::kw_restrict:
2247      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2248                                 getLang());
2249      break;
2250
2251    // C++ typename-specifier:
2252    case tok::kw_typename:
2253      if (TryAnnotateTypeOrScopeToken()) {
2254        DS.SetTypeSpecError();
2255        goto DoneWithDeclSpec;
2256      }
2257      if (!Tok.is(tok::kw_typename))
2258        continue;
2259      break;
2260
2261    // GNU typeof support.
2262    case tok::kw_typeof:
2263      ParseTypeofSpecifier(DS);
2264      continue;
2265
2266    case tok::annot_decltype:
2267      ParseDecltypeSpecifier(DS);
2268      continue;
2269
2270    case tok::kw___underlying_type:
2271      ParseUnderlyingTypeSpecifier(DS);
2272      continue;
2273
2274    case tok::kw__Atomic:
2275      ParseAtomicSpecifier(DS);
2276      continue;
2277
2278    // OpenCL qualifiers:
2279    case tok::kw_private:
2280      if (!getLang().OpenCL)
2281        goto DoneWithDeclSpec;
2282    case tok::kw___private:
2283    case tok::kw___global:
2284    case tok::kw___local:
2285    case tok::kw___constant:
2286    case tok::kw___read_only:
2287    case tok::kw___write_only:
2288    case tok::kw___read_write:
2289      ParseOpenCLQualifiers(DS);
2290      break;
2291
2292    case tok::less:
2293      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2294      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2295      // but we support it.
2296      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
2297        goto DoneWithDeclSpec;
2298
2299      if (!ParseObjCProtocolQualifiers(DS))
2300        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2301          << FixItHint::CreateInsertion(Loc, "id")
2302          << SourceRange(Loc, DS.getSourceRange().getEnd());
2303
2304      // Need to support trailing type qualifiers (e.g. "id<p> const").
2305      // If a type specifier follows, it will be diagnosed elsewhere.
2306      continue;
2307    }
2308    // If the specifier wasn't legal, issue a diagnostic.
2309    if (isInvalid) {
2310      assert(PrevSpec && "Method did not return previous specifier!");
2311      assert(DiagID);
2312
2313      if (DiagID == diag::ext_duplicate_declspec)
2314        Diag(Tok, DiagID)
2315          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2316      else
2317        Diag(Tok, DiagID) << PrevSpec;
2318    }
2319
2320    DS.SetRangeEnd(Tok.getLocation());
2321    if (DiagID != diag::err_bool_redeclaration)
2322      ConsumeToken();
2323  }
2324}
2325
2326/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
2327/// primarily follow the C++ grammar with additions for C99 and GNU,
2328/// which together subsume the C grammar. Note that the C++
2329/// type-specifier also includes the C type-qualifier (for const,
2330/// volatile, and C99 restrict). Returns true if a type-specifier was
2331/// found (and parsed), false otherwise.
2332///
2333///       type-specifier: [C++ 7.1.5]
2334///         simple-type-specifier
2335///         class-specifier
2336///         enum-specifier
2337///         elaborated-type-specifier  [TODO]
2338///         cv-qualifier
2339///
2340///       cv-qualifier: [C++ 7.1.5.1]
2341///         'const'
2342///         'volatile'
2343/// [C99]   'restrict'
2344///
2345///       simple-type-specifier: [ C++ 7.1.5.2]
2346///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
2347///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
2348///         'char'
2349///         'wchar_t'
2350///         'bool'
2351///         'short'
2352///         'int'
2353///         'long'
2354///         'signed'
2355///         'unsigned'
2356///         'float'
2357///         'double'
2358///         'void'
2359/// [C99]   '_Bool'
2360/// [C99]   '_Complex'
2361/// [C99]   '_Imaginary'  // Removed in TC2?
2362/// [GNU]   '_Decimal32'
2363/// [GNU]   '_Decimal64'
2364/// [GNU]   '_Decimal128'
2365/// [GNU]   typeof-specifier
2366/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
2367/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
2368/// [C++0x] 'decltype' ( expression )
2369/// [AltiVec] '__vector'
2370bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
2371                                        const char *&PrevSpec,
2372                                        unsigned &DiagID,
2373                                        const ParsedTemplateInfo &TemplateInfo,
2374                                        bool SuppressDeclarations) {
2375  SourceLocation Loc = Tok.getLocation();
2376
2377  switch (Tok.getKind()) {
2378  case tok::identifier:   // foo::bar
2379    // If we already have a type specifier, this identifier is not a type.
2380    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
2381        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
2382        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
2383      return false;
2384    // Check for need to substitute AltiVec keyword tokens.
2385    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2386      break;
2387    // Fall through.
2388  case tok::kw_decltype:
2389  case tok::kw_typename:  // typename foo::bar
2390    // Annotate typenames and C++ scope specifiers.  If we get one, just
2391    // recurse to handle whatever we get.
2392    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2393                                    /*NeedType=*/true))
2394      return true;
2395    if (Tok.is(tok::identifier))
2396      return false;
2397    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2398                                      TemplateInfo, SuppressDeclarations);
2399  case tok::coloncolon:   // ::foo::bar
2400    if (NextToken().is(tok::kw_new) ||    // ::new
2401        NextToken().is(tok::kw_delete))   // ::delete
2402      return false;
2403
2404    // Annotate typenames and C++ scope specifiers.  If we get one, just
2405    // recurse to handle whatever we get.
2406    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2407                                    /*NeedType=*/true))
2408      return true;
2409    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2410                                      TemplateInfo, SuppressDeclarations);
2411
2412  // simple-type-specifier:
2413  case tok::annot_typename: {
2414    if (ParsedType T = getTypeAnnotation(Tok)) {
2415      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2416                                     Tok.getAnnotationEndLoc(), PrevSpec,
2417                                     DiagID, T);
2418    } else
2419      DS.SetTypeSpecError();
2420    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2421    ConsumeToken(); // The typename
2422
2423    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2424    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2425    // Objective-C interface.  If we don't have Objective-C or a '<', this is
2426    // just a normal reference to a typedef name.
2427    if (Tok.is(tok::less) && getLang().ObjC1)
2428      ParseObjCProtocolQualifiers(DS);
2429
2430    return true;
2431  }
2432
2433  case tok::kw_short:
2434    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2435    break;
2436  case tok::kw_long:
2437    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2438      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2439                                      DiagID);
2440    else
2441      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2442                                      DiagID);
2443    break;
2444  case tok::kw___int64:
2445      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2446                                      DiagID);
2447    break;
2448  case tok::kw_signed:
2449    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2450    break;
2451  case tok::kw_unsigned:
2452    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2453                                   DiagID);
2454    break;
2455  case tok::kw__Complex:
2456    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2457                                      DiagID);
2458    break;
2459  case tok::kw__Imaginary:
2460    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2461                                      DiagID);
2462    break;
2463  case tok::kw_void:
2464    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2465    break;
2466  case tok::kw_char:
2467    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2468    break;
2469  case tok::kw_int:
2470    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2471    break;
2472  case tok::kw_half:
2473    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
2474    break;
2475  case tok::kw_float:
2476    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2477    break;
2478  case tok::kw_double:
2479    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2480    break;
2481  case tok::kw_wchar_t:
2482    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2483    break;
2484  case tok::kw_char16_t:
2485    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2486    break;
2487  case tok::kw_char32_t:
2488    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2489    break;
2490  case tok::kw_bool:
2491  case tok::kw__Bool:
2492    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2493    break;
2494  case tok::kw__Decimal32:
2495    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2496                                   DiagID);
2497    break;
2498  case tok::kw__Decimal64:
2499    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2500                                   DiagID);
2501    break;
2502  case tok::kw__Decimal128:
2503    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2504                                   DiagID);
2505    break;
2506  case tok::kw___vector:
2507    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2508    break;
2509  case tok::kw___pixel:
2510    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2511    break;
2512
2513  // class-specifier:
2514  case tok::kw_class:
2515  case tok::kw_struct:
2516  case tok::kw_union: {
2517    tok::TokenKind Kind = Tok.getKind();
2518    ConsumeToken();
2519    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2520                        /*EnteringContext=*/false,
2521                        SuppressDeclarations);
2522    return true;
2523  }
2524
2525  // enum-specifier:
2526  case tok::kw_enum:
2527    ConsumeToken();
2528    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2529    return true;
2530
2531  // cv-qualifier:
2532  case tok::kw_const:
2533    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2534                               DiagID, getLang());
2535    break;
2536  case tok::kw_volatile:
2537    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2538                               DiagID, getLang());
2539    break;
2540  case tok::kw_restrict:
2541    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2542                               DiagID, getLang());
2543    break;
2544
2545  // GNU typeof support.
2546  case tok::kw_typeof:
2547    ParseTypeofSpecifier(DS);
2548    return true;
2549
2550  // C++0x decltype support.
2551  case tok::annot_decltype:
2552    ParseDecltypeSpecifier(DS);
2553    return true;
2554
2555  // C++0x type traits support.
2556  case tok::kw___underlying_type:
2557    ParseUnderlyingTypeSpecifier(DS);
2558    return true;
2559
2560  case tok::kw__Atomic:
2561    ParseAtomicSpecifier(DS);
2562    return true;
2563
2564  // OpenCL qualifiers:
2565  case tok::kw_private:
2566    if (!getLang().OpenCL)
2567      return false;
2568  case tok::kw___private:
2569  case tok::kw___global:
2570  case tok::kw___local:
2571  case tok::kw___constant:
2572  case tok::kw___read_only:
2573  case tok::kw___write_only:
2574  case tok::kw___read_write:
2575    ParseOpenCLQualifiers(DS);
2576    break;
2577
2578  // C++0x auto support.
2579  case tok::kw_auto:
2580    // This is only called in situations where a storage-class specifier is
2581    // illegal, so we can assume an auto type specifier was intended even in
2582    // C++98. In C++98 mode, DeclSpec::Finish will produce an appropriate
2583    // extension diagnostic.
2584    if (!getLang().CPlusPlus)
2585      return false;
2586
2587    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2588    break;
2589
2590  case tok::kw___ptr64:
2591  case tok::kw___ptr32:
2592  case tok::kw___w64:
2593  case tok::kw___cdecl:
2594  case tok::kw___stdcall:
2595  case tok::kw___fastcall:
2596  case tok::kw___thiscall:
2597  case tok::kw___unaligned:
2598    ParseMicrosoftTypeAttributes(DS.getAttributes());
2599    return true;
2600
2601  case tok::kw___pascal:
2602    ParseBorlandTypeAttributes(DS.getAttributes());
2603    return true;
2604
2605  default:
2606    // Not a type-specifier; do nothing.
2607    return false;
2608  }
2609
2610  // If the specifier combination wasn't legal, issue a diagnostic.
2611  if (isInvalid) {
2612    assert(PrevSpec && "Method did not return previous specifier!");
2613    // Pick between error or extwarn.
2614    Diag(Tok, DiagID) << PrevSpec;
2615  }
2616  DS.SetRangeEnd(Tok.getLocation());
2617  ConsumeToken(); // whatever we parsed above.
2618  return true;
2619}
2620
2621/// ParseStructDeclaration - Parse a struct declaration without the terminating
2622/// semicolon.
2623///
2624///       struct-declaration:
2625///         specifier-qualifier-list struct-declarator-list
2626/// [GNU]   __extension__ struct-declaration
2627/// [GNU]   specifier-qualifier-list
2628///       struct-declarator-list:
2629///         struct-declarator
2630///         struct-declarator-list ',' struct-declarator
2631/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2632///       struct-declarator:
2633///         declarator
2634/// [GNU]   declarator attributes[opt]
2635///         declarator[opt] ':' constant-expression
2636/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2637///
2638void Parser::
2639ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2640
2641  if (Tok.is(tok::kw___extension__)) {
2642    // __extension__ silences extension warnings in the subexpression.
2643    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2644    ConsumeToken();
2645    return ParseStructDeclaration(DS, Fields);
2646  }
2647
2648  // Parse the common specifier-qualifiers-list piece.
2649  ParseSpecifierQualifierList(DS);
2650
2651  // If there are no declarators, this is a free-standing declaration
2652  // specifier. Let the actions module cope with it.
2653  if (Tok.is(tok::semi)) {
2654    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2655    return;
2656  }
2657
2658  // Read struct-declarators until we find the semicolon.
2659  bool FirstDeclarator = true;
2660  while (1) {
2661    ParsingDeclRAIIObject PD(*this);
2662    FieldDeclarator DeclaratorInfo(DS);
2663
2664    // Attributes are only allowed here on successive declarators.
2665    if (!FirstDeclarator)
2666      MaybeParseGNUAttributes(DeclaratorInfo.D);
2667
2668    /// struct-declarator: declarator
2669    /// struct-declarator: declarator[opt] ':' constant-expression
2670    if (Tok.isNot(tok::colon)) {
2671      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2672      ColonProtectionRAIIObject X(*this);
2673      ParseDeclarator(DeclaratorInfo.D);
2674    }
2675
2676    if (Tok.is(tok::colon)) {
2677      ConsumeToken();
2678      ExprResult Res(ParseConstantExpression());
2679      if (Res.isInvalid())
2680        SkipUntil(tok::semi, true, true);
2681      else
2682        DeclaratorInfo.BitfieldSize = Res.release();
2683    }
2684
2685    // If attributes exist after the declarator, parse them.
2686    MaybeParseGNUAttributes(DeclaratorInfo.D);
2687
2688    // We're done with this declarator;  invoke the callback.
2689    Decl *D = Fields.invoke(DeclaratorInfo);
2690    PD.complete(D);
2691
2692    // If we don't have a comma, it is either the end of the list (a ';')
2693    // or an error, bail out.
2694    if (Tok.isNot(tok::comma))
2695      return;
2696
2697    // Consume the comma.
2698    ConsumeToken();
2699
2700    FirstDeclarator = false;
2701  }
2702}
2703
2704/// ParseStructUnionBody
2705///       struct-contents:
2706///         struct-declaration-list
2707/// [EXT]   empty
2708/// [GNU]   "struct-declaration-list" without terminatoring ';'
2709///       struct-declaration-list:
2710///         struct-declaration
2711///         struct-declaration-list struct-declaration
2712/// [OBC]   '@' 'defs' '(' class-name ')'
2713///
2714void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2715                                  unsigned TagType, Decl *TagDecl) {
2716  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2717                                      "parsing struct/union body");
2718
2719  BalancedDelimiterTracker T(*this, tok::l_brace);
2720  if (T.consumeOpen())
2721    return;
2722
2723  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2724  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2725
2726  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2727  // C++.
2728  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus) {
2729    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2730    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2731  }
2732
2733  SmallVector<Decl *, 32> FieldDecls;
2734
2735  // While we still have something to read, read the declarations in the struct.
2736  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2737    // Each iteration of this loop reads one struct-declaration.
2738
2739    // Check for extraneous top-level semicolon.
2740    if (Tok.is(tok::semi)) {
2741      Diag(Tok, diag::ext_extra_struct_semi)
2742        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2743        << FixItHint::CreateRemoval(Tok.getLocation());
2744      ConsumeToken();
2745      continue;
2746    }
2747
2748    // Parse all the comma separated declarators.
2749    DeclSpec DS(AttrFactory);
2750
2751    if (!Tok.is(tok::at)) {
2752      struct CFieldCallback : FieldCallback {
2753        Parser &P;
2754        Decl *TagDecl;
2755        SmallVectorImpl<Decl *> &FieldDecls;
2756
2757        CFieldCallback(Parser &P, Decl *TagDecl,
2758                       SmallVectorImpl<Decl *> &FieldDecls) :
2759          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2760
2761        virtual Decl *invoke(FieldDeclarator &FD) {
2762          // Install the declarator into the current TagDecl.
2763          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2764                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2765                                                 FD.D, FD.BitfieldSize);
2766          FieldDecls.push_back(Field);
2767          return Field;
2768        }
2769      } Callback(*this, TagDecl, FieldDecls);
2770
2771      ParseStructDeclaration(DS, Callback);
2772    } else { // Handle @defs
2773      ConsumeToken();
2774      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2775        Diag(Tok, diag::err_unexpected_at);
2776        SkipUntil(tok::semi, true);
2777        continue;
2778      }
2779      ConsumeToken();
2780      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2781      if (!Tok.is(tok::identifier)) {
2782        Diag(Tok, diag::err_expected_ident);
2783        SkipUntil(tok::semi, true);
2784        continue;
2785      }
2786      SmallVector<Decl *, 16> Fields;
2787      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2788                        Tok.getIdentifierInfo(), Fields);
2789      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2790      ConsumeToken();
2791      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2792    }
2793
2794    if (Tok.is(tok::semi)) {
2795      ConsumeToken();
2796    } else if (Tok.is(tok::r_brace)) {
2797      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2798      break;
2799    } else {
2800      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2801      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2802      SkipUntil(tok::r_brace, true, true);
2803      // If we stopped at a ';', eat it.
2804      if (Tok.is(tok::semi)) ConsumeToken();
2805    }
2806  }
2807
2808  T.consumeClose();
2809
2810  ParsedAttributes attrs(AttrFactory);
2811  // If attributes exist after struct contents, parse them.
2812  MaybeParseGNUAttributes(attrs);
2813
2814  Actions.ActOnFields(getCurScope(),
2815                      RecordLoc, TagDecl, FieldDecls,
2816                      T.getOpenLocation(), T.getCloseLocation(),
2817                      attrs.getList());
2818  StructScope.Exit();
2819  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2820                                   T.getCloseLocation());
2821}
2822
2823/// ParseEnumSpecifier
2824///       enum-specifier: [C99 6.7.2.2]
2825///         'enum' identifier[opt] '{' enumerator-list '}'
2826///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2827/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2828///                                                 '}' attributes[opt]
2829///         'enum' identifier
2830/// [GNU]   'enum' attributes[opt] identifier
2831///
2832/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2833/// [C++0x] enum-head '{' enumerator-list ','  '}'
2834///
2835///       enum-head: [C++0x]
2836///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2837///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2838///
2839///       enum-key: [C++0x]
2840///         'enum'
2841///         'enum' 'class'
2842///         'enum' 'struct'
2843///
2844///       enum-base: [C++0x]
2845///         ':' type-specifier-seq
2846///
2847/// [C++] elaborated-type-specifier:
2848/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2849///
2850void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2851                                const ParsedTemplateInfo &TemplateInfo,
2852                                AccessSpecifier AS) {
2853  // Parse the tag portion of this.
2854  if (Tok.is(tok::code_completion)) {
2855    // Code completion for an enum name.
2856    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2857    return cutOffParsing();
2858  }
2859
2860  bool IsScopedEnum = false;
2861  bool IsScopedUsingClassTag = false;
2862
2863  if (getLang().CPlusPlus0x &&
2864      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2865    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2866    IsScopedEnum = true;
2867    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2868    ConsumeToken();
2869  }
2870
2871  // If attributes exist after tag, parse them.
2872  ParsedAttributes attrs(AttrFactory);
2873  MaybeParseGNUAttributes(attrs);
2874
2875  bool AllowFixedUnderlyingType
2876    = getLang().CPlusPlus0x || getLang().MicrosoftExt || getLang().ObjC2;
2877
2878  CXXScopeSpec &SS = DS.getTypeSpecScope();
2879  if (getLang().CPlusPlus) {
2880    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2881    // if a fixed underlying type is allowed.
2882    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2883
2884    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2885                                       /*EnteringContext=*/false))
2886      return;
2887
2888    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2889      Diag(Tok, diag::err_expected_ident);
2890      if (Tok.isNot(tok::l_brace)) {
2891        // Has no name and is not a definition.
2892        // Skip the rest of this declarator, up until the comma or semicolon.
2893        SkipUntil(tok::comma, true);
2894        return;
2895      }
2896    }
2897  }
2898
2899  // Must have either 'enum name' or 'enum {...}'.
2900  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2901      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2902    Diag(Tok, diag::err_expected_ident_lbrace);
2903
2904    // Skip the rest of this declarator, up until the comma or semicolon.
2905    SkipUntil(tok::comma, true);
2906    return;
2907  }
2908
2909  // If an identifier is present, consume and remember it.
2910  IdentifierInfo *Name = 0;
2911  SourceLocation NameLoc;
2912  if (Tok.is(tok::identifier)) {
2913    Name = Tok.getIdentifierInfo();
2914    NameLoc = ConsumeToken();
2915  }
2916
2917  if (!Name && IsScopedEnum) {
2918    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2919    // declaration of a scoped enumeration.
2920    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2921    IsScopedEnum = false;
2922    IsScopedUsingClassTag = false;
2923  }
2924
2925  TypeResult BaseType;
2926
2927  // Parse the fixed underlying type.
2928  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2929    bool PossibleBitfield = false;
2930    if (getCurScope()->getFlags() & Scope::ClassScope) {
2931      // If we're in class scope, this can either be an enum declaration with
2932      // an underlying type, or a declaration of a bitfield member. We try to
2933      // use a simple disambiguation scheme first to catch the common cases
2934      // (integer literal, sizeof); if it's still ambiguous, we then consider
2935      // anything that's a simple-type-specifier followed by '(' as an
2936      // expression. This suffices because function types are not valid
2937      // underlying types anyway.
2938      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2939      // If the next token starts an expression, we know we're parsing a
2940      // bit-field. This is the common case.
2941      if (TPR == TPResult::True())
2942        PossibleBitfield = true;
2943      // If the next token starts a type-specifier-seq, it may be either a
2944      // a fixed underlying type or the start of a function-style cast in C++;
2945      // lookahead one more token to see if it's obvious that we have a
2946      // fixed underlying type.
2947      else if (TPR == TPResult::False() &&
2948               GetLookAheadToken(2).getKind() == tok::semi) {
2949        // Consume the ':'.
2950        ConsumeToken();
2951      } else {
2952        // We have the start of a type-specifier-seq, so we have to perform
2953        // tentative parsing to determine whether we have an expression or a
2954        // type.
2955        TentativeParsingAction TPA(*this);
2956
2957        // Consume the ':'.
2958        ConsumeToken();
2959
2960        if ((getLang().CPlusPlus &&
2961             isCXXDeclarationSpecifier() != TPResult::True()) ||
2962            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2963          // We'll parse this as a bitfield later.
2964          PossibleBitfield = true;
2965          TPA.Revert();
2966        } else {
2967          // We have a type-specifier-seq.
2968          TPA.Commit();
2969        }
2970      }
2971    } else {
2972      // Consume the ':'.
2973      ConsumeToken();
2974    }
2975
2976    if (!PossibleBitfield) {
2977      SourceRange Range;
2978      BaseType = ParseTypeName(&Range);
2979
2980      if (!getLang().CPlusPlus0x && !getLang().ObjC2)
2981        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2982          << Range;
2983      if (getLang().CPlusPlus0x)
2984        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2985    }
2986  }
2987
2988  // There are three options here.  If we have 'enum foo;', then this is a
2989  // forward declaration.  If we have 'enum foo {...' then this is a
2990  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2991  //
2992  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2993  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2994  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2995  //
2996  Sema::TagUseKind TUK;
2997  if (Tok.is(tok::l_brace))
2998    TUK = Sema::TUK_Definition;
2999  else if (Tok.is(tok::semi))
3000    TUK = Sema::TUK_Declaration;
3001  else
3002    TUK = Sema::TUK_Reference;
3003
3004  // enums cannot be templates, although they can be referenced from a
3005  // template.
3006  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3007      TUK != Sema::TUK_Reference) {
3008    Diag(Tok, diag::err_enum_template);
3009
3010    // Skip the rest of this declarator, up until the comma or semicolon.
3011    SkipUntil(tok::comma, true);
3012    return;
3013  }
3014
3015  if (!Name && TUK != Sema::TUK_Definition) {
3016    Diag(Tok, diag::err_enumerator_unnamed_no_def);
3017
3018    // Skip the rest of this declarator, up until the comma or semicolon.
3019    SkipUntil(tok::comma, true);
3020    return;
3021  }
3022
3023  bool Owned = false;
3024  bool IsDependent = false;
3025  const char *PrevSpec = 0;
3026  unsigned DiagID;
3027  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3028                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
3029                                   AS, DS.getModulePrivateSpecLoc(),
3030                                   MultiTemplateParamsArg(Actions),
3031                                   Owned, IsDependent, IsScopedEnum,
3032                                   IsScopedUsingClassTag, BaseType);
3033
3034  if (IsDependent) {
3035    // This enum has a dependent nested-name-specifier. Handle it as a
3036    // dependent tag.
3037    if (!Name) {
3038      DS.SetTypeSpecError();
3039      Diag(Tok, diag::err_expected_type_name_after_typename);
3040      return;
3041    }
3042
3043    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
3044                                                TUK, SS, Name, StartLoc,
3045                                                NameLoc);
3046    if (Type.isInvalid()) {
3047      DS.SetTypeSpecError();
3048      return;
3049    }
3050
3051    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3052                           NameLoc.isValid() ? NameLoc : StartLoc,
3053                           PrevSpec, DiagID, Type.get()))
3054      Diag(StartLoc, DiagID) << PrevSpec;
3055
3056    return;
3057  }
3058
3059  if (!TagDecl) {
3060    // The action failed to produce an enumeration tag. If this is a
3061    // definition, consume the entire definition.
3062    if (Tok.is(tok::l_brace)) {
3063      ConsumeBrace();
3064      SkipUntil(tok::r_brace);
3065    }
3066
3067    DS.SetTypeSpecError();
3068    return;
3069  }
3070
3071  if (Tok.is(tok::l_brace))
3072    ParseEnumBody(StartLoc, TagDecl);
3073
3074  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3075                         NameLoc.isValid() ? NameLoc : StartLoc,
3076                         PrevSpec, DiagID, TagDecl, Owned))
3077    Diag(StartLoc, DiagID) << PrevSpec;
3078}
3079
3080/// ParseEnumBody - Parse a {} enclosed enumerator-list.
3081///       enumerator-list:
3082///         enumerator
3083///         enumerator-list ',' enumerator
3084///       enumerator:
3085///         enumeration-constant
3086///         enumeration-constant '=' constant-expression
3087///       enumeration-constant:
3088///         identifier
3089///
3090void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3091  // Enter the scope of the enum body and start the definition.
3092  ParseScope EnumScope(this, Scope::DeclScope);
3093  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3094
3095  BalancedDelimiterTracker T(*this, tok::l_brace);
3096  T.consumeOpen();
3097
3098  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3099  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
3100    Diag(Tok, diag::error_empty_enum);
3101
3102  SmallVector<Decl *, 32> EnumConstantDecls;
3103
3104  Decl *LastEnumConstDecl = 0;
3105
3106  // Parse the enumerator-list.
3107  while (Tok.is(tok::identifier)) {
3108    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3109    SourceLocation IdentLoc = ConsumeToken();
3110
3111    // If attributes exist after the enumerator, parse them.
3112    ParsedAttributes attrs(AttrFactory);
3113    MaybeParseGNUAttributes(attrs);
3114
3115    SourceLocation EqualLoc;
3116    ExprResult AssignedVal;
3117    ParsingDeclRAIIObject PD(*this);
3118
3119    if (Tok.is(tok::equal)) {
3120      EqualLoc = ConsumeToken();
3121      AssignedVal = ParseConstantExpression();
3122      if (AssignedVal.isInvalid())
3123        SkipUntil(tok::comma, tok::r_brace, true, true);
3124    }
3125
3126    // Install the enumerator constant into EnumDecl.
3127    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3128                                                    LastEnumConstDecl,
3129                                                    IdentLoc, Ident,
3130                                                    attrs.getList(), EqualLoc,
3131                                                    AssignedVal.release());
3132    PD.complete(EnumConstDecl);
3133
3134    EnumConstantDecls.push_back(EnumConstDecl);
3135    LastEnumConstDecl = EnumConstDecl;
3136
3137    if (Tok.is(tok::identifier)) {
3138      // We're missing a comma between enumerators.
3139      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3140      Diag(Loc, diag::err_enumerator_list_missing_comma)
3141        << FixItHint::CreateInsertion(Loc, ", ");
3142      continue;
3143    }
3144
3145    if (Tok.isNot(tok::comma))
3146      break;
3147    SourceLocation CommaLoc = ConsumeToken();
3148
3149    if (Tok.isNot(tok::identifier)) {
3150      if (!getLang().C99 && !getLang().CPlusPlus0x)
3151        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3152          << getLang().CPlusPlus
3153          << FixItHint::CreateRemoval(CommaLoc);
3154      else if (getLang().CPlusPlus0x)
3155        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3156          << FixItHint::CreateRemoval(CommaLoc);
3157    }
3158  }
3159
3160  // Eat the }.
3161  T.consumeClose();
3162
3163  // If attributes exist after the identifier list, parse them.
3164  ParsedAttributes attrs(AttrFactory);
3165  MaybeParseGNUAttributes(attrs);
3166
3167  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3168                        EnumDecl, EnumConstantDecls.data(),
3169                        EnumConstantDecls.size(), getCurScope(),
3170                        attrs.getList());
3171
3172  EnumScope.Exit();
3173  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3174                                   T.getCloseLocation());
3175}
3176
3177/// isTypeSpecifierQualifier - Return true if the current token could be the
3178/// start of a type-qualifier-list.
3179bool Parser::isTypeQualifier() const {
3180  switch (Tok.getKind()) {
3181  default: return false;
3182
3183    // type-qualifier only in OpenCL
3184  case tok::kw_private:
3185    return getLang().OpenCL;
3186
3187    // type-qualifier
3188  case tok::kw_const:
3189  case tok::kw_volatile:
3190  case tok::kw_restrict:
3191  case tok::kw___private:
3192  case tok::kw___local:
3193  case tok::kw___global:
3194  case tok::kw___constant:
3195  case tok::kw___read_only:
3196  case tok::kw___read_write:
3197  case tok::kw___write_only:
3198    return true;
3199  }
3200}
3201
3202/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3203/// is definitely a type-specifier.  Return false if it isn't part of a type
3204/// specifier or if we're not sure.
3205bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3206  switch (Tok.getKind()) {
3207  default: return false;
3208    // type-specifiers
3209  case tok::kw_short:
3210  case tok::kw_long:
3211  case tok::kw___int64:
3212  case tok::kw_signed:
3213  case tok::kw_unsigned:
3214  case tok::kw__Complex:
3215  case tok::kw__Imaginary:
3216  case tok::kw_void:
3217  case tok::kw_char:
3218  case tok::kw_wchar_t:
3219  case tok::kw_char16_t:
3220  case tok::kw_char32_t:
3221  case tok::kw_int:
3222  case tok::kw_half:
3223  case tok::kw_float:
3224  case tok::kw_double:
3225  case tok::kw_bool:
3226  case tok::kw__Bool:
3227  case tok::kw__Decimal32:
3228  case tok::kw__Decimal64:
3229  case tok::kw__Decimal128:
3230  case tok::kw___vector:
3231
3232    // struct-or-union-specifier (C99) or class-specifier (C++)
3233  case tok::kw_class:
3234  case tok::kw_struct:
3235  case tok::kw_union:
3236    // enum-specifier
3237  case tok::kw_enum:
3238
3239    // typedef-name
3240  case tok::annot_typename:
3241    return true;
3242  }
3243}
3244
3245/// isTypeSpecifierQualifier - Return true if the current token could be the
3246/// start of a specifier-qualifier-list.
3247bool Parser::isTypeSpecifierQualifier() {
3248  switch (Tok.getKind()) {
3249  default: return false;
3250
3251  case tok::identifier:   // foo::bar
3252    if (TryAltiVecVectorToken())
3253      return true;
3254    // Fall through.
3255  case tok::kw_typename:  // typename T::type
3256    // Annotate typenames and C++ scope specifiers.  If we get one, just
3257    // recurse to handle whatever we get.
3258    if (TryAnnotateTypeOrScopeToken())
3259      return true;
3260    if (Tok.is(tok::identifier))
3261      return false;
3262    return isTypeSpecifierQualifier();
3263
3264  case tok::coloncolon:   // ::foo::bar
3265    if (NextToken().is(tok::kw_new) ||    // ::new
3266        NextToken().is(tok::kw_delete))   // ::delete
3267      return false;
3268
3269    if (TryAnnotateTypeOrScopeToken())
3270      return true;
3271    return isTypeSpecifierQualifier();
3272
3273    // GNU attributes support.
3274  case tok::kw___attribute:
3275    // GNU typeof support.
3276  case tok::kw_typeof:
3277
3278    // type-specifiers
3279  case tok::kw_short:
3280  case tok::kw_long:
3281  case tok::kw___int64:
3282  case tok::kw_signed:
3283  case tok::kw_unsigned:
3284  case tok::kw__Complex:
3285  case tok::kw__Imaginary:
3286  case tok::kw_void:
3287  case tok::kw_char:
3288  case tok::kw_wchar_t:
3289  case tok::kw_char16_t:
3290  case tok::kw_char32_t:
3291  case tok::kw_int:
3292  case tok::kw_half:
3293  case tok::kw_float:
3294  case tok::kw_double:
3295  case tok::kw_bool:
3296  case tok::kw__Bool:
3297  case tok::kw__Decimal32:
3298  case tok::kw__Decimal64:
3299  case tok::kw__Decimal128:
3300  case tok::kw___vector:
3301
3302    // struct-or-union-specifier (C99) or class-specifier (C++)
3303  case tok::kw_class:
3304  case tok::kw_struct:
3305  case tok::kw_union:
3306    // enum-specifier
3307  case tok::kw_enum:
3308
3309    // type-qualifier
3310  case tok::kw_const:
3311  case tok::kw_volatile:
3312  case tok::kw_restrict:
3313
3314    // typedef-name
3315  case tok::annot_typename:
3316    return true;
3317
3318    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3319  case tok::less:
3320    return getLang().ObjC1;
3321
3322  case tok::kw___cdecl:
3323  case tok::kw___stdcall:
3324  case tok::kw___fastcall:
3325  case tok::kw___thiscall:
3326  case tok::kw___w64:
3327  case tok::kw___ptr64:
3328  case tok::kw___ptr32:
3329  case tok::kw___pascal:
3330  case tok::kw___unaligned:
3331
3332  case tok::kw___private:
3333  case tok::kw___local:
3334  case tok::kw___global:
3335  case tok::kw___constant:
3336  case tok::kw___read_only:
3337  case tok::kw___read_write:
3338  case tok::kw___write_only:
3339
3340    return true;
3341
3342  case tok::kw_private:
3343    return getLang().OpenCL;
3344
3345  // C11 _Atomic()
3346  case tok::kw__Atomic:
3347    return true;
3348  }
3349}
3350
3351/// isDeclarationSpecifier() - Return true if the current token is part of a
3352/// declaration specifier.
3353///
3354/// \param DisambiguatingWithExpression True to indicate that the purpose of
3355/// this check is to disambiguate between an expression and a declaration.
3356bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3357  switch (Tok.getKind()) {
3358  default: return false;
3359
3360  case tok::kw_private:
3361    return getLang().OpenCL;
3362
3363  case tok::identifier:   // foo::bar
3364    // Unfortunate hack to support "Class.factoryMethod" notation.
3365    if (getLang().ObjC1 && NextToken().is(tok::period))
3366      return false;
3367    if (TryAltiVecVectorToken())
3368      return true;
3369    // Fall through.
3370  case tok::kw_decltype: // decltype(T())::type
3371  case tok::kw_typename: // typename T::type
3372    // Annotate typenames and C++ scope specifiers.  If we get one, just
3373    // recurse to handle whatever we get.
3374    if (TryAnnotateTypeOrScopeToken())
3375      return true;
3376    if (Tok.is(tok::identifier))
3377      return false;
3378
3379    // If we're in Objective-C and we have an Objective-C class type followed
3380    // by an identifier and then either ':' or ']', in a place where an
3381    // expression is permitted, then this is probably a class message send
3382    // missing the initial '['. In this case, we won't consider this to be
3383    // the start of a declaration.
3384    if (DisambiguatingWithExpression &&
3385        isStartOfObjCClassMessageMissingOpenBracket())
3386      return false;
3387
3388    return isDeclarationSpecifier();
3389
3390  case tok::coloncolon:   // ::foo::bar
3391    if (NextToken().is(tok::kw_new) ||    // ::new
3392        NextToken().is(tok::kw_delete))   // ::delete
3393      return false;
3394
3395    // Annotate typenames and C++ scope specifiers.  If we get one, just
3396    // recurse to handle whatever we get.
3397    if (TryAnnotateTypeOrScopeToken())
3398      return true;
3399    return isDeclarationSpecifier();
3400
3401    // storage-class-specifier
3402  case tok::kw_typedef:
3403  case tok::kw_extern:
3404  case tok::kw___private_extern__:
3405  case tok::kw_static:
3406  case tok::kw_auto:
3407  case tok::kw_register:
3408  case tok::kw___thread:
3409
3410    // Modules
3411  case tok::kw___module_private__:
3412
3413    // type-specifiers
3414  case tok::kw_short:
3415  case tok::kw_long:
3416  case tok::kw___int64:
3417  case tok::kw_signed:
3418  case tok::kw_unsigned:
3419  case tok::kw__Complex:
3420  case tok::kw__Imaginary:
3421  case tok::kw_void:
3422  case tok::kw_char:
3423  case tok::kw_wchar_t:
3424  case tok::kw_char16_t:
3425  case tok::kw_char32_t:
3426
3427  case tok::kw_int:
3428  case tok::kw_half:
3429  case tok::kw_float:
3430  case tok::kw_double:
3431  case tok::kw_bool:
3432  case tok::kw__Bool:
3433  case tok::kw__Decimal32:
3434  case tok::kw__Decimal64:
3435  case tok::kw__Decimal128:
3436  case tok::kw___vector:
3437
3438    // struct-or-union-specifier (C99) or class-specifier (C++)
3439  case tok::kw_class:
3440  case tok::kw_struct:
3441  case tok::kw_union:
3442    // enum-specifier
3443  case tok::kw_enum:
3444
3445    // type-qualifier
3446  case tok::kw_const:
3447  case tok::kw_volatile:
3448  case tok::kw_restrict:
3449
3450    // function-specifier
3451  case tok::kw_inline:
3452  case tok::kw_virtual:
3453  case tok::kw_explicit:
3454
3455    // static_assert-declaration
3456  case tok::kw__Static_assert:
3457
3458    // GNU typeof support.
3459  case tok::kw_typeof:
3460
3461    // GNU attributes.
3462  case tok::kw___attribute:
3463    return true;
3464
3465    // C++0x decltype.
3466  case tok::annot_decltype:
3467    return true;
3468
3469    // C11 _Atomic()
3470  case tok::kw__Atomic:
3471    return true;
3472
3473    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3474  case tok::less:
3475    return getLang().ObjC1;
3476
3477    // typedef-name
3478  case tok::annot_typename:
3479    return !DisambiguatingWithExpression ||
3480           !isStartOfObjCClassMessageMissingOpenBracket();
3481
3482  case tok::kw___declspec:
3483  case tok::kw___cdecl:
3484  case tok::kw___stdcall:
3485  case tok::kw___fastcall:
3486  case tok::kw___thiscall:
3487  case tok::kw___w64:
3488  case tok::kw___ptr64:
3489  case tok::kw___ptr32:
3490  case tok::kw___forceinline:
3491  case tok::kw___pascal:
3492  case tok::kw___unaligned:
3493
3494  case tok::kw___private:
3495  case tok::kw___local:
3496  case tok::kw___global:
3497  case tok::kw___constant:
3498  case tok::kw___read_only:
3499  case tok::kw___read_write:
3500  case tok::kw___write_only:
3501
3502    return true;
3503  }
3504}
3505
3506bool Parser::isConstructorDeclarator() {
3507  TentativeParsingAction TPA(*this);
3508
3509  // Parse the C++ scope specifier.
3510  CXXScopeSpec SS;
3511  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3512                                     /*EnteringContext=*/true)) {
3513    TPA.Revert();
3514    return false;
3515  }
3516
3517  // Parse the constructor name.
3518  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3519    // We already know that we have a constructor name; just consume
3520    // the token.
3521    ConsumeToken();
3522  } else {
3523    TPA.Revert();
3524    return false;
3525  }
3526
3527  // Current class name must be followed by a left parentheses.
3528  if (Tok.isNot(tok::l_paren)) {
3529    TPA.Revert();
3530    return false;
3531  }
3532  ConsumeParen();
3533
3534  // A right parentheses or ellipsis signals that we have a constructor.
3535  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3536    TPA.Revert();
3537    return true;
3538  }
3539
3540  // If we need to, enter the specified scope.
3541  DeclaratorScopeObj DeclScopeObj(*this, SS);
3542  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3543    DeclScopeObj.EnterDeclaratorScope();
3544
3545  // Optionally skip Microsoft attributes.
3546  ParsedAttributes Attrs(AttrFactory);
3547  MaybeParseMicrosoftAttributes(Attrs);
3548
3549  // Check whether the next token(s) are part of a declaration
3550  // specifier, in which case we have the start of a parameter and,
3551  // therefore, we know that this is a constructor.
3552  bool IsConstructor = isDeclarationSpecifier();
3553  TPA.Revert();
3554  return IsConstructor;
3555}
3556
3557/// ParseTypeQualifierListOpt
3558///          type-qualifier-list: [C99 6.7.5]
3559///            type-qualifier
3560/// [vendor]   attributes
3561///              [ only if VendorAttributesAllowed=true ]
3562///            type-qualifier-list type-qualifier
3563/// [vendor]   type-qualifier-list attributes
3564///              [ only if VendorAttributesAllowed=true ]
3565/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3566///              [ only if CXX0XAttributesAllowed=true ]
3567/// Note: vendor can be GNU, MS, etc.
3568///
3569void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3570                                       bool VendorAttributesAllowed,
3571                                       bool CXX0XAttributesAllowed) {
3572  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3573    SourceLocation Loc = Tok.getLocation();
3574    ParsedAttributesWithRange attrs(AttrFactory);
3575    ParseCXX0XAttributes(attrs);
3576    if (CXX0XAttributesAllowed)
3577      DS.takeAttributesFrom(attrs);
3578    else
3579      Diag(Loc, diag::err_attributes_not_allowed);
3580  }
3581
3582  SourceLocation EndLoc;
3583
3584  while (1) {
3585    bool isInvalid = false;
3586    const char *PrevSpec = 0;
3587    unsigned DiagID = 0;
3588    SourceLocation Loc = Tok.getLocation();
3589
3590    switch (Tok.getKind()) {
3591    case tok::code_completion:
3592      Actions.CodeCompleteTypeQualifiers(DS);
3593      return cutOffParsing();
3594
3595    case tok::kw_const:
3596      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3597                                 getLang());
3598      break;
3599    case tok::kw_volatile:
3600      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3601                                 getLang());
3602      break;
3603    case tok::kw_restrict:
3604      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3605                                 getLang());
3606      break;
3607
3608    // OpenCL qualifiers:
3609    case tok::kw_private:
3610      if (!getLang().OpenCL)
3611        goto DoneWithTypeQuals;
3612    case tok::kw___private:
3613    case tok::kw___global:
3614    case tok::kw___local:
3615    case tok::kw___constant:
3616    case tok::kw___read_only:
3617    case tok::kw___write_only:
3618    case tok::kw___read_write:
3619      ParseOpenCLQualifiers(DS);
3620      break;
3621
3622    case tok::kw___w64:
3623    case tok::kw___ptr64:
3624    case tok::kw___ptr32:
3625    case tok::kw___cdecl:
3626    case tok::kw___stdcall:
3627    case tok::kw___fastcall:
3628    case tok::kw___thiscall:
3629    case tok::kw___unaligned:
3630      if (VendorAttributesAllowed) {
3631        ParseMicrosoftTypeAttributes(DS.getAttributes());
3632        continue;
3633      }
3634      goto DoneWithTypeQuals;
3635    case tok::kw___pascal:
3636      if (VendorAttributesAllowed) {
3637        ParseBorlandTypeAttributes(DS.getAttributes());
3638        continue;
3639      }
3640      goto DoneWithTypeQuals;
3641    case tok::kw___attribute:
3642      if (VendorAttributesAllowed) {
3643        ParseGNUAttributes(DS.getAttributes());
3644        continue; // do *not* consume the next token!
3645      }
3646      // otherwise, FALL THROUGH!
3647    default:
3648      DoneWithTypeQuals:
3649      // If this is not a type-qualifier token, we're done reading type
3650      // qualifiers.  First verify that DeclSpec's are consistent.
3651      DS.Finish(Diags, PP);
3652      if (EndLoc.isValid())
3653        DS.SetRangeEnd(EndLoc);
3654      return;
3655    }
3656
3657    // If the specifier combination wasn't legal, issue a diagnostic.
3658    if (isInvalid) {
3659      assert(PrevSpec && "Method did not return previous specifier!");
3660      Diag(Tok, DiagID) << PrevSpec;
3661    }
3662    EndLoc = ConsumeToken();
3663  }
3664}
3665
3666
3667/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3668///
3669void Parser::ParseDeclarator(Declarator &D) {
3670  /// This implements the 'declarator' production in the C grammar, then checks
3671  /// for well-formedness and issues diagnostics.
3672  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3673}
3674
3675/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3676/// is parsed by the function passed to it. Pass null, and the direct-declarator
3677/// isn't parsed at all, making this function effectively parse the C++
3678/// ptr-operator production.
3679///
3680/// If the grammar of this construct is extended, matching changes must also be
3681/// made to TryParseDeclarator and MightBeDeclarator.
3682///
3683///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3684/// [C]     pointer[opt] direct-declarator
3685/// [C++]   direct-declarator
3686/// [C++]   ptr-operator declarator
3687///
3688///       pointer: [C99 6.7.5]
3689///         '*' type-qualifier-list[opt]
3690///         '*' type-qualifier-list[opt] pointer
3691///
3692///       ptr-operator:
3693///         '*' cv-qualifier-seq[opt]
3694///         '&'
3695/// [C++0x] '&&'
3696/// [GNU]   '&' restrict[opt] attributes[opt]
3697/// [GNU?]  '&&' restrict[opt] attributes[opt]
3698///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3699void Parser::ParseDeclaratorInternal(Declarator &D,
3700                                     DirectDeclParseFunction DirectDeclParser) {
3701  if (Diags.hasAllExtensionsSilenced())
3702    D.setExtension();
3703
3704  // C++ member pointers start with a '::' or a nested-name.
3705  // Member pointers get special handling, since there's no place for the
3706  // scope spec in the generic path below.
3707  if (getLang().CPlusPlus &&
3708      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3709       Tok.is(tok::annot_cxxscope))) {
3710    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3711                           D.getContext() == Declarator::MemberContext;
3712    CXXScopeSpec SS;
3713    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3714
3715    if (SS.isNotEmpty()) {
3716      if (Tok.isNot(tok::star)) {
3717        // The scope spec really belongs to the direct-declarator.
3718        D.getCXXScopeSpec() = SS;
3719        if (DirectDeclParser)
3720          (this->*DirectDeclParser)(D);
3721        return;
3722      }
3723
3724      SourceLocation Loc = ConsumeToken();
3725      D.SetRangeEnd(Loc);
3726      DeclSpec DS(AttrFactory);
3727      ParseTypeQualifierListOpt(DS);
3728      D.ExtendWithDeclSpec(DS);
3729
3730      // Recurse to parse whatever is left.
3731      ParseDeclaratorInternal(D, DirectDeclParser);
3732
3733      // Sema will have to catch (syntactically invalid) pointers into global
3734      // scope. It has to catch pointers into namespace scope anyway.
3735      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3736                                                      Loc),
3737                    DS.getAttributes(),
3738                    /* Don't replace range end. */SourceLocation());
3739      return;
3740    }
3741  }
3742
3743  tok::TokenKind Kind = Tok.getKind();
3744  // Not a pointer, C++ reference, or block.
3745  if (Kind != tok::star && Kind != tok::caret &&
3746      (Kind != tok::amp || !getLang().CPlusPlus) &&
3747      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3748      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3749    if (DirectDeclParser)
3750      (this->*DirectDeclParser)(D);
3751    return;
3752  }
3753
3754  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3755  // '&&' -> rvalue reference
3756  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3757  D.SetRangeEnd(Loc);
3758
3759  if (Kind == tok::star || Kind == tok::caret) {
3760    // Is a pointer.
3761    DeclSpec DS(AttrFactory);
3762
3763    ParseTypeQualifierListOpt(DS);
3764    D.ExtendWithDeclSpec(DS);
3765
3766    // Recursively parse the declarator.
3767    ParseDeclaratorInternal(D, DirectDeclParser);
3768    if (Kind == tok::star)
3769      // Remember that we parsed a pointer type, and remember the type-quals.
3770      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3771                                                DS.getConstSpecLoc(),
3772                                                DS.getVolatileSpecLoc(),
3773                                                DS.getRestrictSpecLoc()),
3774                    DS.getAttributes(),
3775                    SourceLocation());
3776    else
3777      // Remember that we parsed a Block type, and remember the type-quals.
3778      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3779                                                     Loc),
3780                    DS.getAttributes(),
3781                    SourceLocation());
3782  } else {
3783    // Is a reference
3784    DeclSpec DS(AttrFactory);
3785
3786    // Complain about rvalue references in C++03, but then go on and build
3787    // the declarator.
3788    if (Kind == tok::ampamp)
3789      Diag(Loc, getLang().CPlusPlus0x ?
3790           diag::warn_cxx98_compat_rvalue_reference :
3791           diag::ext_rvalue_reference);
3792
3793    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3794    // cv-qualifiers are introduced through the use of a typedef or of a
3795    // template type argument, in which case the cv-qualifiers are ignored.
3796    //
3797    // [GNU] Retricted references are allowed.
3798    // [GNU] Attributes on references are allowed.
3799    // [C++0x] Attributes on references are not allowed.
3800    ParseTypeQualifierListOpt(DS, true, false);
3801    D.ExtendWithDeclSpec(DS);
3802
3803    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3804      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3805        Diag(DS.getConstSpecLoc(),
3806             diag::err_invalid_reference_qualifier_application) << "const";
3807      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3808        Diag(DS.getVolatileSpecLoc(),
3809             diag::err_invalid_reference_qualifier_application) << "volatile";
3810    }
3811
3812    // Recursively parse the declarator.
3813    ParseDeclaratorInternal(D, DirectDeclParser);
3814
3815    if (D.getNumTypeObjects() > 0) {
3816      // C++ [dcl.ref]p4: There shall be no references to references.
3817      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3818      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3819        if (const IdentifierInfo *II = D.getIdentifier())
3820          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3821           << II;
3822        else
3823          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3824            << "type name";
3825
3826        // Once we've complained about the reference-to-reference, we
3827        // can go ahead and build the (technically ill-formed)
3828        // declarator: reference collapsing will take care of it.
3829      }
3830    }
3831
3832    // Remember that we parsed a reference type. It doesn't have type-quals.
3833    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3834                                                Kind == tok::amp),
3835                  DS.getAttributes(),
3836                  SourceLocation());
3837  }
3838}
3839
3840/// ParseDirectDeclarator
3841///       direct-declarator: [C99 6.7.5]
3842/// [C99]   identifier
3843///         '(' declarator ')'
3844/// [GNU]   '(' attributes declarator ')'
3845/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3846/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3847/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3848/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3849/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3850///         direct-declarator '(' parameter-type-list ')'
3851///         direct-declarator '(' identifier-list[opt] ')'
3852/// [GNU]   direct-declarator '(' parameter-forward-declarations
3853///                    parameter-type-list[opt] ')'
3854/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3855///                    cv-qualifier-seq[opt] exception-specification[opt]
3856/// [C++]   declarator-id
3857///
3858///       declarator-id: [C++ 8]
3859///         '...'[opt] id-expression
3860///         '::'[opt] nested-name-specifier[opt] type-name
3861///
3862///       id-expression: [C++ 5.1]
3863///         unqualified-id
3864///         qualified-id
3865///
3866///       unqualified-id: [C++ 5.1]
3867///         identifier
3868///         operator-function-id
3869///         conversion-function-id
3870///          '~' class-name
3871///         template-id
3872///
3873void Parser::ParseDirectDeclarator(Declarator &D) {
3874  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3875
3876  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3877    // ParseDeclaratorInternal might already have parsed the scope.
3878    if (D.getCXXScopeSpec().isEmpty()) {
3879      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3880                             D.getContext() == Declarator::MemberContext;
3881      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3882                                     EnteringContext);
3883    }
3884
3885    if (D.getCXXScopeSpec().isValid()) {
3886      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3887        // Change the declaration context for name lookup, until this function
3888        // is exited (and the declarator has been parsed).
3889        DeclScopeObj.EnterDeclaratorScope();
3890    }
3891
3892    // C++0x [dcl.fct]p14:
3893    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3894    //   of a parameter-declaration-clause without a preceding comma. In
3895    //   this case, the ellipsis is parsed as part of the
3896    //   abstract-declarator if the type of the parameter names a template
3897    //   parameter pack that has not been expanded; otherwise, it is parsed
3898    //   as part of the parameter-declaration-clause.
3899    if (Tok.is(tok::ellipsis) &&
3900        !((D.getContext() == Declarator::PrototypeContext ||
3901           D.getContext() == Declarator::BlockLiteralContext) &&
3902          NextToken().is(tok::r_paren) &&
3903          !Actions.containsUnexpandedParameterPacks(D)))
3904      D.setEllipsisLoc(ConsumeToken());
3905
3906    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3907        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3908      // We found something that indicates the start of an unqualified-id.
3909      // Parse that unqualified-id.
3910      bool AllowConstructorName;
3911      if (D.getDeclSpec().hasTypeSpecifier())
3912        AllowConstructorName = false;
3913      else if (D.getCXXScopeSpec().isSet())
3914        AllowConstructorName =
3915          (D.getContext() == Declarator::FileContext ||
3916           (D.getContext() == Declarator::MemberContext &&
3917            D.getDeclSpec().isFriendSpecified()));
3918      else
3919        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3920
3921      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3922                             /*EnteringContext=*/true,
3923                             /*AllowDestructorName=*/true,
3924                             AllowConstructorName,
3925                             ParsedType(),
3926                             D.getName()) ||
3927          // Once we're past the identifier, if the scope was bad, mark the
3928          // whole declarator bad.
3929          D.getCXXScopeSpec().isInvalid()) {
3930        D.SetIdentifier(0, Tok.getLocation());
3931        D.setInvalidType(true);
3932      } else {
3933        // Parsed the unqualified-id; update range information and move along.
3934        if (D.getSourceRange().getBegin().isInvalid())
3935          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3936        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3937      }
3938      goto PastIdentifier;
3939    }
3940  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3941    assert(!getLang().CPlusPlus &&
3942           "There's a C++-specific check for tok::identifier above");
3943    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3944    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3945    ConsumeToken();
3946    goto PastIdentifier;
3947  }
3948
3949  if (Tok.is(tok::l_paren)) {
3950    // direct-declarator: '(' declarator ')'
3951    // direct-declarator: '(' attributes declarator ')'
3952    // Example: 'char (*X)'   or 'int (*XX)(void)'
3953    ParseParenDeclarator(D);
3954
3955    // If the declarator was parenthesized, we entered the declarator
3956    // scope when parsing the parenthesized declarator, then exited
3957    // the scope already. Re-enter the scope, if we need to.
3958    if (D.getCXXScopeSpec().isSet()) {
3959      // If there was an error parsing parenthesized declarator, declarator
3960      // scope may have been enterred before. Don't do it again.
3961      if (!D.isInvalidType() &&
3962          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3963        // Change the declaration context for name lookup, until this function
3964        // is exited (and the declarator has been parsed).
3965        DeclScopeObj.EnterDeclaratorScope();
3966    }
3967  } else if (D.mayOmitIdentifier()) {
3968    // This could be something simple like "int" (in which case the declarator
3969    // portion is empty), if an abstract-declarator is allowed.
3970    D.SetIdentifier(0, Tok.getLocation());
3971  } else {
3972    if (D.getContext() == Declarator::MemberContext)
3973      Diag(Tok, diag::err_expected_member_name_or_semi)
3974        << D.getDeclSpec().getSourceRange();
3975    else if (getLang().CPlusPlus)
3976      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
3977    else
3978      Diag(Tok, diag::err_expected_ident_lparen);
3979    D.SetIdentifier(0, Tok.getLocation());
3980    D.setInvalidType(true);
3981  }
3982
3983 PastIdentifier:
3984  assert(D.isPastIdentifier() &&
3985         "Haven't past the location of the identifier yet?");
3986
3987  // Don't parse attributes unless we have an identifier.
3988  if (D.getIdentifier())
3989    MaybeParseCXX0XAttributes(D);
3990
3991  while (1) {
3992    if (Tok.is(tok::l_paren)) {
3993      // Enter function-declaration scope, limiting any declarators to the
3994      // function prototype scope, including parameter declarators.
3995      ParseScope PrototypeScope(this,
3996                                Scope::FunctionPrototypeScope|Scope::DeclScope);
3997      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
3998      // In such a case, check if we actually have a function declarator; if it
3999      // is not, the declarator has been fully parsed.
4000      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4001        // When not in file scope, warn for ambiguous function declarators, just
4002        // in case the author intended it as a variable definition.
4003        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
4004        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
4005          break;
4006      }
4007      ParsedAttributes attrs(AttrFactory);
4008      BalancedDelimiterTracker T(*this, tok::l_paren);
4009      T.consumeOpen();
4010      ParseFunctionDeclarator(D, attrs, T);
4011      PrototypeScope.Exit();
4012    } else if (Tok.is(tok::l_square)) {
4013      ParseBracketDeclarator(D);
4014    } else {
4015      break;
4016    }
4017  }
4018}
4019
4020/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
4021/// only called before the identifier, so these are most likely just grouping
4022/// parens for precedence.  If we find that these are actually function
4023/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4024///
4025///       direct-declarator:
4026///         '(' declarator ')'
4027/// [GNU]   '(' attributes declarator ')'
4028///         direct-declarator '(' parameter-type-list ')'
4029///         direct-declarator '(' identifier-list[opt] ')'
4030/// [GNU]   direct-declarator '(' parameter-forward-declarations
4031///                    parameter-type-list[opt] ')'
4032///
4033void Parser::ParseParenDeclarator(Declarator &D) {
4034  BalancedDelimiterTracker T(*this, tok::l_paren);
4035  T.consumeOpen();
4036
4037  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4038
4039  // Eat any attributes before we look at whether this is a grouping or function
4040  // declarator paren.  If this is a grouping paren, the attribute applies to
4041  // the type being built up, for example:
4042  //     int (__attribute__(()) *x)(long y)
4043  // If this ends up not being a grouping paren, the attribute applies to the
4044  // first argument, for example:
4045  //     int (__attribute__(()) int x)
4046  // In either case, we need to eat any attributes to be able to determine what
4047  // sort of paren this is.
4048  //
4049  ParsedAttributes attrs(AttrFactory);
4050  bool RequiresArg = false;
4051  if (Tok.is(tok::kw___attribute)) {
4052    ParseGNUAttributes(attrs);
4053
4054    // We require that the argument list (if this is a non-grouping paren) be
4055    // present even if the attribute list was empty.
4056    RequiresArg = true;
4057  }
4058  // Eat any Microsoft extensions.
4059  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
4060       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
4061       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
4062       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
4063    ParseMicrosoftTypeAttributes(attrs);
4064  }
4065  // Eat any Borland extensions.
4066  if  (Tok.is(tok::kw___pascal))
4067    ParseBorlandTypeAttributes(attrs);
4068
4069  // If we haven't past the identifier yet (or where the identifier would be
4070  // stored, if this is an abstract declarator), then this is probably just
4071  // grouping parens. However, if this could be an abstract-declarator, then
4072  // this could also be the start of function arguments (consider 'void()').
4073  bool isGrouping;
4074
4075  if (!D.mayOmitIdentifier()) {
4076    // If this can't be an abstract-declarator, this *must* be a grouping
4077    // paren, because we haven't seen the identifier yet.
4078    isGrouping = true;
4079  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4080             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
4081             isDeclarationSpecifier()) {       // 'int(int)' is a function.
4082    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4083    // considered to be a type, not a K&R identifier-list.
4084    isGrouping = false;
4085  } else {
4086    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4087    isGrouping = true;
4088  }
4089
4090  // If this is a grouping paren, handle:
4091  // direct-declarator: '(' declarator ')'
4092  // direct-declarator: '(' attributes declarator ')'
4093  if (isGrouping) {
4094    bool hadGroupingParens = D.hasGroupingParens();
4095    D.setGroupingParens(true);
4096
4097    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4098    // Match the ')'.
4099    T.consumeClose();
4100    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
4101                                            T.getCloseLocation()),
4102                  attrs, T.getCloseLocation());
4103
4104    D.setGroupingParens(hadGroupingParens);
4105    return;
4106  }
4107
4108  // Okay, if this wasn't a grouping paren, it must be the start of a function
4109  // argument list.  Recognize that this declarator will never have an
4110  // identifier (and remember where it would have been), then call into
4111  // ParseFunctionDeclarator to handle of argument list.
4112  D.SetIdentifier(0, Tok.getLocation());
4113
4114  // Enter function-declaration scope, limiting any declarators to the
4115  // function prototype scope, including parameter declarators.
4116  ParseScope PrototypeScope(this,
4117                            Scope::FunctionPrototypeScope|Scope::DeclScope);
4118  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4119  PrototypeScope.Exit();
4120}
4121
4122/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4123/// declarator D up to a paren, which indicates that we are parsing function
4124/// arguments.
4125///
4126/// If attrs is non-null, then the caller parsed those arguments immediately
4127/// after the open paren - they should be considered to be the first argument of
4128/// a parameter.  If RequiresArg is true, then the first argument of the
4129/// function is required to be present and required to not be an identifier
4130/// list.
4131///
4132/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
4133/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
4134/// (C++0x) trailing-return-type[opt].
4135///
4136/// [C++0x] exception-specification:
4137///           dynamic-exception-specification
4138///           noexcept-specification
4139///
4140void Parser::ParseFunctionDeclarator(Declarator &D,
4141                                     ParsedAttributes &attrs,
4142                                     BalancedDelimiterTracker &Tracker,
4143                                     bool RequiresArg) {
4144  assert(getCurScope()->isFunctionPrototypeScope() &&
4145         "Should call from a Function scope");
4146  // lparen is already consumed!
4147  assert(D.isPastIdentifier() && "Should not call before identifier!");
4148
4149  // This should be true when the function has typed arguments.
4150  // Otherwise, it is treated as a K&R-style function.
4151  bool HasProto = false;
4152  // Build up an array of information about the parsed arguments.
4153  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4154  // Remember where we see an ellipsis, if any.
4155  SourceLocation EllipsisLoc;
4156
4157  DeclSpec DS(AttrFactory);
4158  bool RefQualifierIsLValueRef = true;
4159  SourceLocation RefQualifierLoc;
4160  SourceLocation ConstQualifierLoc;
4161  SourceLocation VolatileQualifierLoc;
4162  ExceptionSpecificationType ESpecType = EST_None;
4163  SourceRange ESpecRange;
4164  SmallVector<ParsedType, 2> DynamicExceptions;
4165  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4166  ExprResult NoexceptExpr;
4167  ParsedType TrailingReturnType;
4168
4169  SourceLocation EndLoc;
4170  if (isFunctionDeclaratorIdentifierList()) {
4171    if (RequiresArg)
4172      Diag(Tok, diag::err_argument_required_after_attribute);
4173
4174    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4175
4176    Tracker.consumeClose();
4177    EndLoc = Tracker.getCloseLocation();
4178  } else {
4179    if (Tok.isNot(tok::r_paren))
4180      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
4181    else if (RequiresArg)
4182      Diag(Tok, diag::err_argument_required_after_attribute);
4183
4184    HasProto = ParamInfo.size() || getLang().CPlusPlus;
4185
4186    // If we have the closing ')', eat it.
4187    Tracker.consumeClose();
4188    EndLoc = Tracker.getCloseLocation();
4189
4190    if (getLang().CPlusPlus) {
4191      MaybeParseCXX0XAttributes(attrs);
4192
4193      // Parse cv-qualifier-seq[opt].
4194      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4195        if (!DS.getSourceRange().getEnd().isInvalid()) {
4196          EndLoc = DS.getSourceRange().getEnd();
4197          ConstQualifierLoc = DS.getConstSpecLoc();
4198          VolatileQualifierLoc = DS.getVolatileSpecLoc();
4199        }
4200
4201      // Parse ref-qualifier[opt].
4202      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4203        Diag(Tok, getLang().CPlusPlus0x ?
4204             diag::warn_cxx98_compat_ref_qualifier :
4205             diag::ext_ref_qualifier);
4206
4207        RefQualifierIsLValueRef = Tok.is(tok::amp);
4208        RefQualifierLoc = ConsumeToken();
4209        EndLoc = RefQualifierLoc;
4210      }
4211
4212      // Parse exception-specification[opt].
4213      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4214                                                   DynamicExceptions,
4215                                                   DynamicExceptionRanges,
4216                                                   NoexceptExpr);
4217      if (ESpecType != EST_None)
4218        EndLoc = ESpecRange.getEnd();
4219
4220      // Parse trailing-return-type[opt].
4221      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
4222        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4223        SourceRange Range;
4224        TrailingReturnType = ParseTrailingReturnType(Range).get();
4225        if (Range.getEnd().isValid())
4226          EndLoc = Range.getEnd();
4227      }
4228    }
4229  }
4230
4231  // Remember that we parsed a function type, and remember the attributes.
4232  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4233                                             /*isVariadic=*/EllipsisLoc.isValid(),
4234                                             EllipsisLoc,
4235                                             ParamInfo.data(), ParamInfo.size(),
4236                                             DS.getTypeQualifiers(),
4237                                             RefQualifierIsLValueRef,
4238                                             RefQualifierLoc, ConstQualifierLoc,
4239                                             VolatileQualifierLoc,
4240                                             /*MutableLoc=*/SourceLocation(),
4241                                             ESpecType, ESpecRange.getBegin(),
4242                                             DynamicExceptions.data(),
4243                                             DynamicExceptionRanges.data(),
4244                                             DynamicExceptions.size(),
4245                                             NoexceptExpr.isUsable() ?
4246                                               NoexceptExpr.get() : 0,
4247                                             Tracker.getOpenLocation(),
4248                                             EndLoc, D,
4249                                             TrailingReturnType),
4250                attrs, EndLoc);
4251}
4252
4253/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4254/// identifier list form for a K&R-style function:  void foo(a,b,c)
4255///
4256/// Note that identifier-lists are only allowed for normal declarators, not for
4257/// abstract-declarators.
4258bool Parser::isFunctionDeclaratorIdentifierList() {
4259  return !getLang().CPlusPlus
4260         && Tok.is(tok::identifier)
4261         && !TryAltiVecVectorToken()
4262         // K&R identifier lists can't have typedefs as identifiers, per C99
4263         // 6.7.5.3p11.
4264         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4265         // Identifier lists follow a really simple grammar: the identifiers can
4266         // be followed *only* by a ", identifier" or ")".  However, K&R
4267         // identifier lists are really rare in the brave new modern world, and
4268         // it is very common for someone to typo a type in a non-K&R style
4269         // list.  If we are presented with something like: "void foo(intptr x,
4270         // float y)", we don't want to start parsing the function declarator as
4271         // though it is a K&R style declarator just because intptr is an
4272         // invalid type.
4273         //
4274         // To handle this, we check to see if the token after the first
4275         // identifier is a "," or ")".  Only then do we parse it as an
4276         // identifier list.
4277         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4278}
4279
4280/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4281/// we found a K&R-style identifier list instead of a typed parameter list.
4282///
4283/// After returning, ParamInfo will hold the parsed parameters.
4284///
4285///       identifier-list: [C99 6.7.5]
4286///         identifier
4287///         identifier-list ',' identifier
4288///
4289void Parser::ParseFunctionDeclaratorIdentifierList(
4290       Declarator &D,
4291       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4292  // If there was no identifier specified for the declarator, either we are in
4293  // an abstract-declarator, or we are in a parameter declarator which was found
4294  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4295  // diagnose this.
4296  if (!D.getIdentifier())
4297    Diag(Tok, diag::ext_ident_list_in_param);
4298
4299  // Maintain an efficient lookup of params we have seen so far.
4300  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4301
4302  while (1) {
4303    // If this isn't an identifier, report the error and skip until ')'.
4304    if (Tok.isNot(tok::identifier)) {
4305      Diag(Tok, diag::err_expected_ident);
4306      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4307      // Forget we parsed anything.
4308      ParamInfo.clear();
4309      return;
4310    }
4311
4312    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4313
4314    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4315    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4316      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4317
4318    // Verify that the argument identifier has not already been mentioned.
4319    if (!ParamsSoFar.insert(ParmII)) {
4320      Diag(Tok, diag::err_param_redefinition) << ParmII;
4321    } else {
4322      // Remember this identifier in ParamInfo.
4323      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4324                                                     Tok.getLocation(),
4325                                                     0));
4326    }
4327
4328    // Eat the identifier.
4329    ConsumeToken();
4330
4331    // The list continues if we see a comma.
4332    if (Tok.isNot(tok::comma))
4333      break;
4334    ConsumeToken();
4335  }
4336}
4337
4338/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4339/// after the opening parenthesis. This function will not parse a K&R-style
4340/// identifier list.
4341///
4342/// D is the declarator being parsed.  If attrs is non-null, then the caller
4343/// parsed those arguments immediately after the open paren - they should be
4344/// considered to be the first argument of a parameter.
4345///
4346/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4347/// be the location of the ellipsis, if any was parsed.
4348///
4349///       parameter-type-list: [C99 6.7.5]
4350///         parameter-list
4351///         parameter-list ',' '...'
4352/// [C++]   parameter-list '...'
4353///
4354///       parameter-list: [C99 6.7.5]
4355///         parameter-declaration
4356///         parameter-list ',' parameter-declaration
4357///
4358///       parameter-declaration: [C99 6.7.5]
4359///         declaration-specifiers declarator
4360/// [C++]   declaration-specifiers declarator '=' assignment-expression
4361/// [GNU]   declaration-specifiers declarator attributes
4362///         declaration-specifiers abstract-declarator[opt]
4363/// [C++]   declaration-specifiers abstract-declarator[opt]
4364///           '=' assignment-expression
4365/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4366///
4367void Parser::ParseParameterDeclarationClause(
4368       Declarator &D,
4369       ParsedAttributes &attrs,
4370       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4371       SourceLocation &EllipsisLoc) {
4372
4373  while (1) {
4374    if (Tok.is(tok::ellipsis)) {
4375      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4376      break;
4377    }
4378
4379    // Parse the declaration-specifiers.
4380    // Just use the ParsingDeclaration "scope" of the declarator.
4381    DeclSpec DS(AttrFactory);
4382
4383    // Skip any Microsoft attributes before a param.
4384    if (getLang().MicrosoftExt && Tok.is(tok::l_square))
4385      ParseMicrosoftAttributes(DS.getAttributes());
4386
4387    SourceLocation DSStart = Tok.getLocation();
4388
4389    // If the caller parsed attributes for the first argument, add them now.
4390    // Take them so that we only apply the attributes to the first parameter.
4391    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4392    // attributes lost? Should they even be allowed?
4393    // FIXME: If we can leave the attributes in the token stream somehow, we can
4394    // get rid of a parameter (attrs) and this statement. It might be too much
4395    // hassle.
4396    DS.takeAttributesFrom(attrs);
4397
4398    ParseDeclarationSpecifiers(DS);
4399
4400    // Parse the declarator.  This is "PrototypeContext", because we must
4401    // accept either 'declarator' or 'abstract-declarator' here.
4402    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4403    ParseDeclarator(ParmDecl);
4404
4405    // Parse GNU attributes, if present.
4406    MaybeParseGNUAttributes(ParmDecl);
4407
4408    // Remember this parsed parameter in ParamInfo.
4409    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4410
4411    // DefArgToks is used when the parsing of default arguments needs
4412    // to be delayed.
4413    CachedTokens *DefArgToks = 0;
4414
4415    // If no parameter was specified, verify that *something* was specified,
4416    // otherwise we have a missing type and identifier.
4417    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4418        ParmDecl.getNumTypeObjects() == 0) {
4419      // Completely missing, emit error.
4420      Diag(DSStart, diag::err_missing_param);
4421    } else {
4422      // Otherwise, we have something.  Add it and let semantic analysis try
4423      // to grok it and add the result to the ParamInfo we are building.
4424
4425      // Inform the actions module about the parameter declarator, so it gets
4426      // added to the current scope.
4427      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4428
4429      // Parse the default argument, if any. We parse the default
4430      // arguments in all dialects; the semantic analysis in
4431      // ActOnParamDefaultArgument will reject the default argument in
4432      // C.
4433      if (Tok.is(tok::equal)) {
4434        SourceLocation EqualLoc = Tok.getLocation();
4435
4436        // Parse the default argument
4437        if (D.getContext() == Declarator::MemberContext) {
4438          // If we're inside a class definition, cache the tokens
4439          // corresponding to the default argument. We'll actually parse
4440          // them when we see the end of the class definition.
4441          // FIXME: Templates will require something similar.
4442          // FIXME: Can we use a smart pointer for Toks?
4443          DefArgToks = new CachedTokens;
4444
4445          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4446                                    /*StopAtSemi=*/true,
4447                                    /*ConsumeFinalToken=*/false)) {
4448            delete DefArgToks;
4449            DefArgToks = 0;
4450            Actions.ActOnParamDefaultArgumentError(Param);
4451          } else {
4452            // Mark the end of the default argument so that we know when to
4453            // stop when we parse it later on.
4454            Token DefArgEnd;
4455            DefArgEnd.startToken();
4456            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4457            DefArgEnd.setLocation(Tok.getLocation());
4458            DefArgToks->push_back(DefArgEnd);
4459            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4460                                                (*DefArgToks)[1].getLocation());
4461          }
4462        } else {
4463          // Consume the '='.
4464          ConsumeToken();
4465
4466          // The argument isn't actually potentially evaluated unless it is
4467          // used.
4468          EnterExpressionEvaluationContext Eval(Actions,
4469                                              Sema::PotentiallyEvaluatedIfUsed);
4470
4471          ExprResult DefArgResult(ParseAssignmentExpression());
4472          if (DefArgResult.isInvalid()) {
4473            Actions.ActOnParamDefaultArgumentError(Param);
4474            SkipUntil(tok::comma, tok::r_paren, true, true);
4475          } else {
4476            // Inform the actions module about the default argument
4477            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4478                                              DefArgResult.take());
4479          }
4480        }
4481      }
4482
4483      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4484                                          ParmDecl.getIdentifierLoc(), Param,
4485                                          DefArgToks));
4486    }
4487
4488    // If the next token is a comma, consume it and keep reading arguments.
4489    if (Tok.isNot(tok::comma)) {
4490      if (Tok.is(tok::ellipsis)) {
4491        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4492
4493        if (!getLang().CPlusPlus) {
4494          // We have ellipsis without a preceding ',', which is ill-formed
4495          // in C. Complain and provide the fix.
4496          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4497            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4498        }
4499      }
4500
4501      break;
4502    }
4503
4504    // Consume the comma.
4505    ConsumeToken();
4506  }
4507
4508}
4509
4510/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4511/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4512/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4513/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4514/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4515void Parser::ParseBracketDeclarator(Declarator &D) {
4516  BalancedDelimiterTracker T(*this, tok::l_square);
4517  T.consumeOpen();
4518
4519  // C array syntax has many features, but by-far the most common is [] and [4].
4520  // This code does a fast path to handle some of the most obvious cases.
4521  if (Tok.getKind() == tok::r_square) {
4522    T.consumeClose();
4523    ParsedAttributes attrs(AttrFactory);
4524    MaybeParseCXX0XAttributes(attrs);
4525
4526    // Remember that we parsed the empty array type.
4527    ExprResult NumElements;
4528    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4529                                            T.getOpenLocation(),
4530                                            T.getCloseLocation()),
4531                  attrs, T.getCloseLocation());
4532    return;
4533  } else if (Tok.getKind() == tok::numeric_constant &&
4534             GetLookAheadToken(1).is(tok::r_square)) {
4535    // [4] is very common.  Parse the numeric constant expression.
4536    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4537    ConsumeToken();
4538
4539    T.consumeClose();
4540    ParsedAttributes attrs(AttrFactory);
4541    MaybeParseCXX0XAttributes(attrs);
4542
4543    // Remember that we parsed a array type, and remember its features.
4544    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4545                                            ExprRes.release(),
4546                                            T.getOpenLocation(),
4547                                            T.getCloseLocation()),
4548                  attrs, T.getCloseLocation());
4549    return;
4550  }
4551
4552  // If valid, this location is the position where we read the 'static' keyword.
4553  SourceLocation StaticLoc;
4554  if (Tok.is(tok::kw_static))
4555    StaticLoc = ConsumeToken();
4556
4557  // If there is a type-qualifier-list, read it now.
4558  // Type qualifiers in an array subscript are a C99 feature.
4559  DeclSpec DS(AttrFactory);
4560  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4561
4562  // If we haven't already read 'static', check to see if there is one after the
4563  // type-qualifier-list.
4564  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4565    StaticLoc = ConsumeToken();
4566
4567  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4568  bool isStar = false;
4569  ExprResult NumElements;
4570
4571  // Handle the case where we have '[*]' as the array size.  However, a leading
4572  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4573  // the the token after the star is a ']'.  Since stars in arrays are
4574  // infrequent, use of lookahead is not costly here.
4575  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4576    ConsumeToken();  // Eat the '*'.
4577
4578    if (StaticLoc.isValid()) {
4579      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4580      StaticLoc = SourceLocation();  // Drop the static.
4581    }
4582    isStar = true;
4583  } else if (Tok.isNot(tok::r_square)) {
4584    // Note, in C89, this production uses the constant-expr production instead
4585    // of assignment-expr.  The only difference is that assignment-expr allows
4586    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4587    // are not i-c-e's, so we don't need to distinguish between the two here.
4588
4589    // Parse the constant-expression or assignment-expression now (depending
4590    // on dialect).
4591    if (getLang().CPlusPlus)
4592      NumElements = ParseConstantExpression();
4593    else
4594      NumElements = ParseAssignmentExpression();
4595  }
4596
4597  // If there was an error parsing the assignment-expression, recover.
4598  if (NumElements.isInvalid()) {
4599    D.setInvalidType(true);
4600    // If the expression was invalid, skip it.
4601    SkipUntil(tok::r_square);
4602    return;
4603  }
4604
4605  T.consumeClose();
4606
4607  ParsedAttributes attrs(AttrFactory);
4608  MaybeParseCXX0XAttributes(attrs);
4609
4610  // Remember that we parsed a array type, and remember its features.
4611  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4612                                          StaticLoc.isValid(), isStar,
4613                                          NumElements.release(),
4614                                          T.getOpenLocation(),
4615                                          T.getCloseLocation()),
4616                attrs, T.getCloseLocation());
4617}
4618
4619/// [GNU]   typeof-specifier:
4620///           typeof ( expressions )
4621///           typeof ( type-name )
4622/// [GNU/C++] typeof unary-expression
4623///
4624void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4625  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4626  Token OpTok = Tok;
4627  SourceLocation StartLoc = ConsumeToken();
4628
4629  const bool hasParens = Tok.is(tok::l_paren);
4630
4631  bool isCastExpr;
4632  ParsedType CastTy;
4633  SourceRange CastRange;
4634  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4635                                                          CastTy, CastRange);
4636  if (hasParens)
4637    DS.setTypeofParensRange(CastRange);
4638
4639  if (CastRange.getEnd().isInvalid())
4640    // FIXME: Not accurate, the range gets one token more than it should.
4641    DS.SetRangeEnd(Tok.getLocation());
4642  else
4643    DS.SetRangeEnd(CastRange.getEnd());
4644
4645  if (isCastExpr) {
4646    if (!CastTy) {
4647      DS.SetTypeSpecError();
4648      return;
4649    }
4650
4651    const char *PrevSpec = 0;
4652    unsigned DiagID;
4653    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4654    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4655                           DiagID, CastTy))
4656      Diag(StartLoc, DiagID) << PrevSpec;
4657    return;
4658  }
4659
4660  // If we get here, the operand to the typeof was an expresion.
4661  if (Operand.isInvalid()) {
4662    DS.SetTypeSpecError();
4663    return;
4664  }
4665
4666  const char *PrevSpec = 0;
4667  unsigned DiagID;
4668  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4669  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4670                         DiagID, Operand.get()))
4671    Diag(StartLoc, DiagID) << PrevSpec;
4672}
4673
4674/// [C11]   atomic-specifier:
4675///           _Atomic ( type-name )
4676///
4677void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4678  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4679
4680  SourceLocation StartLoc = ConsumeToken();
4681  BalancedDelimiterTracker T(*this, tok::l_paren);
4682  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4683    SkipUntil(tok::r_paren);
4684    return;
4685  }
4686
4687  TypeResult Result = ParseTypeName();
4688  if (Result.isInvalid()) {
4689    SkipUntil(tok::r_paren);
4690    return;
4691  }
4692
4693  // Match the ')'
4694  T.consumeClose();
4695
4696  if (T.getCloseLocation().isInvalid())
4697    return;
4698
4699  DS.setTypeofParensRange(T.getRange());
4700  DS.SetRangeEnd(T.getCloseLocation());
4701
4702  const char *PrevSpec = 0;
4703  unsigned DiagID;
4704  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4705                         DiagID, Result.release()))
4706    Diag(StartLoc, DiagID) << PrevSpec;
4707}
4708
4709
4710/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4711/// from TryAltiVecVectorToken.
4712bool Parser::TryAltiVecVectorTokenOutOfLine() {
4713  Token Next = NextToken();
4714  switch (Next.getKind()) {
4715  default: return false;
4716  case tok::kw_short:
4717  case tok::kw_long:
4718  case tok::kw_signed:
4719  case tok::kw_unsigned:
4720  case tok::kw_void:
4721  case tok::kw_char:
4722  case tok::kw_int:
4723  case tok::kw_float:
4724  case tok::kw_double:
4725  case tok::kw_bool:
4726  case tok::kw___pixel:
4727    Tok.setKind(tok::kw___vector);
4728    return true;
4729  case tok::identifier:
4730    if (Next.getIdentifierInfo() == Ident_pixel) {
4731      Tok.setKind(tok::kw___vector);
4732      return true;
4733    }
4734    return false;
4735  }
4736}
4737
4738bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4739                                      const char *&PrevSpec, unsigned &DiagID,
4740                                      bool &isInvalid) {
4741  if (Tok.getIdentifierInfo() == Ident_vector) {
4742    Token Next = NextToken();
4743    switch (Next.getKind()) {
4744    case tok::kw_short:
4745    case tok::kw_long:
4746    case tok::kw_signed:
4747    case tok::kw_unsigned:
4748    case tok::kw_void:
4749    case tok::kw_char:
4750    case tok::kw_int:
4751    case tok::kw_float:
4752    case tok::kw_double:
4753    case tok::kw_bool:
4754    case tok::kw___pixel:
4755      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4756      return true;
4757    case tok::identifier:
4758      if (Next.getIdentifierInfo() == Ident_pixel) {
4759        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4760        return true;
4761      }
4762      break;
4763    default:
4764      break;
4765    }
4766  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4767             DS.isTypeAltiVecVector()) {
4768    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4769    return true;
4770  }
4771  return false;
4772}
4773