ParseDecl.cpp revision f53597fb16142bdb4a66901f8c0b768db4f2a548
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228//  [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
232  switch (Tok.getKind()) {
233  case tok::kw_export:
234  case tok::kw_template:
235    return ParseTemplateDeclarationOrSpecialization(Context);
236  case tok::kw_namespace:
237    return ParseNamespace(Context);
238  case tok::kw_using:
239    return ParseUsingDirectiveOrDeclaration(Context);
240  case tok::kw_static_assert:
241    return ParseStaticAssertDeclaration();
242  default:
243    return ParseSimpleDeclaration(Context);
244  }
245}
246
247///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
248///         declaration-specifiers init-declarator-list[opt] ';'
249///[C90/C++]init-declarator-list ';'                             [TODO]
250/// [OMP]   threadprivate-directive                              [TODO]
251Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
252  // Parse the common declaration-specifiers piece.
253  DeclSpec DS;
254  ParseDeclarationSpecifiers(DS);
255
256  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
257  // declaration-specifiers init-declarator-list[opt] ';'
258  if (Tok.is(tok::semi)) {
259    ConsumeToken();
260    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
261  }
262
263  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
264  ParseDeclarator(DeclaratorInfo);
265
266  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
267}
268
269
270/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
271/// parsing 'declaration-specifiers declarator'.  This method is split out this
272/// way to handle the ambiguity between top-level function-definitions and
273/// declarations.
274///
275///       init-declarator-list: [C99 6.7]
276///         init-declarator
277///         init-declarator-list ',' init-declarator
278///       init-declarator: [C99 6.7]
279///         declarator
280///         declarator '=' initializer
281/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
282/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
283/// [C++]   declarator initializer[opt]
284///
285/// [C++] initializer:
286/// [C++]   '=' initializer-clause
287/// [C++]   '(' expression-list ')'
288///
289Parser::DeclTy *Parser::
290ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
291
292  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
293  // that they can be chained properly if the actions want this.
294  Parser::DeclTy *LastDeclInGroup = 0;
295
296  // At this point, we know that it is not a function definition.  Parse the
297  // rest of the init-declarator-list.
298  while (1) {
299    // If a simple-asm-expr is present, parse it.
300    if (Tok.is(tok::kw_asm)) {
301      SourceLocation Loc;
302      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
303      if (AsmLabel.isInvalid()) {
304        SkipUntil(tok::semi);
305        return 0;
306      }
307
308      D.setAsmLabel(AsmLabel.release());
309      D.SetRangeEnd(Loc);
310    }
311
312    // If attributes are present, parse them.
313    if (Tok.is(tok::kw___attribute)) {
314      SourceLocation Loc;
315      AttributeList *AttrList = ParseAttributes(&Loc);
316      D.AddAttributes(AttrList, Loc);
317    }
318
319    // Inform the current actions module that we just parsed this declarator.
320    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
321
322    // Parse declarator '=' initializer.
323    if (Tok.is(tok::equal)) {
324      ConsumeToken();
325      OwningExprResult Init(ParseInitializer());
326      if (Init.isInvalid()) {
327        SkipUntil(tok::semi);
328        return 0;
329      }
330      Actions.AddInitializerToDecl(LastDeclInGroup, move(Init));
331    } else if (Tok.is(tok::l_paren)) {
332      // Parse C++ direct initializer: '(' expression-list ')'
333      SourceLocation LParenLoc = ConsumeParen();
334      ExprVector Exprs(Actions);
335      CommaLocsTy CommaLocs;
336
337      bool InvalidExpr = false;
338      if (ParseExpressionList(Exprs, CommaLocs)) {
339        SkipUntil(tok::r_paren);
340        InvalidExpr = true;
341      }
342      // Match the ')'.
343      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
344
345      if (!InvalidExpr) {
346        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
347               "Unexpected number of commas!");
348        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
349                                              move_arg(Exprs),
350                                              &CommaLocs[0], RParenLoc);
351      }
352    } else {
353      Actions.ActOnUninitializedDecl(LastDeclInGroup);
354    }
355
356    // If we don't have a comma, it is either the end of the list (a ';') or an
357    // error, bail out.
358    if (Tok.isNot(tok::comma))
359      break;
360
361    // Consume the comma.
362    ConsumeToken();
363
364    // Parse the next declarator.
365    D.clear();
366
367    // Accept attributes in an init-declarator.  In the first declarator in a
368    // declaration, these would be part of the declspec.  In subsequent
369    // declarators, they become part of the declarator itself, so that they
370    // don't apply to declarators after *this* one.  Examples:
371    //    short __attribute__((common)) var;    -> declspec
372    //    short var __attribute__((common));    -> declarator
373    //    short x, __attribute__((common)) var;    -> declarator
374    if (Tok.is(tok::kw___attribute)) {
375      SourceLocation Loc;
376      AttributeList *AttrList = ParseAttributes(&Loc);
377      D.AddAttributes(AttrList, Loc);
378    }
379
380    ParseDeclarator(D);
381  }
382
383  if (Tok.is(tok::semi)) {
384    ConsumeToken();
385    // for(is key; in keys) is error.
386    if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
387      Diag(Tok, diag::err_parse_error);
388      return 0;
389    }
390    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
391  }
392  // If this is an ObjC2 for-each loop, this is a successful declarator
393  // parse.  The syntax for these looks like:
394  // 'for' '(' declaration 'in' expr ')' statement
395  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
396    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
397  }
398  Diag(Tok, diag::err_parse_error);
399  // Skip to end of block or statement
400  SkipUntil(tok::r_brace, true, true);
401  if (Tok.is(tok::semi))
402    ConsumeToken();
403  return 0;
404}
405
406/// ParseSpecifierQualifierList
407///        specifier-qualifier-list:
408///          type-specifier specifier-qualifier-list[opt]
409///          type-qualifier specifier-qualifier-list[opt]
410/// [GNU]    attributes     specifier-qualifier-list[opt]
411///
412void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
413  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
414  /// parse declaration-specifiers and complain about extra stuff.
415  ParseDeclarationSpecifiers(DS);
416
417  // Validate declspec for type-name.
418  unsigned Specs = DS.getParsedSpecifiers();
419  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
420    Diag(Tok, diag::err_typename_requires_specqual);
421
422  // Issue diagnostic and remove storage class if present.
423  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
424    if (DS.getStorageClassSpecLoc().isValid())
425      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
426    else
427      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
428    DS.ClearStorageClassSpecs();
429  }
430
431  // Issue diagnostic and remove function specfier if present.
432  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
433    if (DS.isInlineSpecified())
434      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
435    if (DS.isVirtualSpecified())
436      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
437    if (DS.isExplicitSpecified())
438      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
439    DS.ClearFunctionSpecs();
440  }
441}
442
443/// ParseDeclarationSpecifiers
444///       declaration-specifiers: [C99 6.7]
445///         storage-class-specifier declaration-specifiers[opt]
446///         type-specifier declaration-specifiers[opt]
447/// [C99]   function-specifier declaration-specifiers[opt]
448/// [GNU]   attributes declaration-specifiers[opt]
449///
450///       storage-class-specifier: [C99 6.7.1]
451///         'typedef'
452///         'extern'
453///         'static'
454///         'auto'
455///         'register'
456/// [C++]   'mutable'
457/// [GNU]   '__thread'
458///       function-specifier: [C99 6.7.4]
459/// [C99]   'inline'
460/// [C++]   'virtual'
461/// [C++]   'explicit'
462///
463void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
464                                        TemplateParameterLists *TemplateParams){
465  DS.SetRangeStart(Tok.getLocation());
466  while (1) {
467    int isInvalid = false;
468    const char *PrevSpec = 0;
469    SourceLocation Loc = Tok.getLocation();
470
471    switch (Tok.getKind()) {
472    default:
473    DoneWithDeclSpec:
474      // If this is not a declaration specifier token, we're done reading decl
475      // specifiers.  First verify that DeclSpec's are consistent.
476      DS.Finish(Diags, PP.getSourceManager(), getLang());
477      return;
478
479    case tok::coloncolon: // ::foo::bar
480      // Annotate C++ scope specifiers.  If we get one, loop.
481      if (TryAnnotateCXXScopeToken())
482        continue;
483      goto DoneWithDeclSpec;
484
485    case tok::annot_cxxscope: {
486      if (DS.hasTypeSpecifier())
487        goto DoneWithDeclSpec;
488
489      // We are looking for a qualified typename.
490      if (NextToken().isNot(tok::identifier))
491        goto DoneWithDeclSpec;
492
493      CXXScopeSpec SS;
494      SS.setScopeRep(Tok.getAnnotationValue());
495      SS.setRange(Tok.getAnnotationRange());
496
497      // If the next token is the name of the class type that the C++ scope
498      // denotes, followed by a '(', then this is a constructor declaration.
499      // We're done with the decl-specifiers.
500      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
501                                     CurScope, &SS) &&
502          GetLookAheadToken(2).is(tok::l_paren))
503        goto DoneWithDeclSpec;
504
505      Token Next = NextToken();
506      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
507                                            Next.getLocation(), CurScope, &SS);
508
509      if (TypeRep == 0)
510        goto DoneWithDeclSpec;
511
512      ConsumeToken(); // The C++ scope.
513
514      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
515                                     TypeRep);
516      if (isInvalid)
517        break;
518
519      DS.SetRangeEnd(Tok.getLocation());
520      ConsumeToken(); // The typename.
521
522      continue;
523    }
524
525    case tok::annot_typename: {
526      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
527                                     Tok.getAnnotationValue());
528      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
529      ConsumeToken(); // The typename
530
531      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
532      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
533      // Objective-C interface.  If we don't have Objective-C or a '<', this is
534      // just a normal reference to a typedef name.
535      if (!Tok.is(tok::less) || !getLang().ObjC1)
536        continue;
537
538      SourceLocation EndProtoLoc;
539      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
540      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
541      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
542
543      DS.SetRangeEnd(EndProtoLoc);
544      continue;
545    }
546
547      // typedef-name
548    case tok::identifier: {
549      // In C++, check to see if this is a scope specifier like foo::bar::, if
550      // so handle it as such.  This is important for ctor parsing.
551      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
552        continue;
553
554      // This identifier can only be a typedef name if we haven't already seen
555      // a type-specifier.  Without this check we misparse:
556      //  typedef int X; struct Y { short X; };  as 'short int'.
557      if (DS.hasTypeSpecifier())
558        goto DoneWithDeclSpec;
559
560      // It has to be available as a typedef too!
561      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
562                                            Tok.getLocation(), CurScope);
563
564      if (TypeRep == 0)
565        goto DoneWithDeclSpec;
566
567      // C++: If the identifier is actually the name of the class type
568      // being defined and the next token is a '(', then this is a
569      // constructor declaration. We're done with the decl-specifiers
570      // and will treat this token as an identifier.
571      if (getLang().CPlusPlus &&
572          CurScope->isClassScope() &&
573          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
574          NextToken().getKind() == tok::l_paren)
575        goto DoneWithDeclSpec;
576
577      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
578                                     TypeRep);
579      if (isInvalid)
580        break;
581
582      DS.SetRangeEnd(Tok.getLocation());
583      ConsumeToken(); // The identifier
584
585      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
586      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
587      // Objective-C interface.  If we don't have Objective-C or a '<', this is
588      // just a normal reference to a typedef name.
589      if (!Tok.is(tok::less) || !getLang().ObjC1)
590        continue;
591
592      SourceLocation EndProtoLoc;
593      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
594      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
595      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
596
597      DS.SetRangeEnd(EndProtoLoc);
598
599      // Need to support trailing type qualifiers (e.g. "id<p> const").
600      // If a type specifier follows, it will be diagnosed elsewhere.
601      continue;
602    }
603
604      // type-name
605    case tok::annot_template_id: {
606      TemplateIdAnnotation *TemplateId
607        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
608      if (TemplateId->Kind != TNK_Class_template) {
609        // This template-id does not refer to a type name, so we're
610        // done with the type-specifiers.
611        goto DoneWithDeclSpec;
612      }
613
614      // Turn the template-id annotation token into a type annotation
615      // token, then try again to parse it as a type-specifier.
616      if (AnnotateTemplateIdTokenAsType())
617        DS.SetTypeSpecError();
618
619      continue;
620    }
621
622    // GNU attributes support.
623    case tok::kw___attribute:
624      DS.AddAttributes(ParseAttributes());
625      continue;
626
627    // Microsoft declspec support.
628    case tok::kw___declspec:
629      if (!PP.getLangOptions().Microsoft)
630        goto DoneWithDeclSpec;
631      FuzzyParseMicrosoftDeclSpec();
632      continue;
633
634    // Microsoft single token adornments.
635    case tok::kw___forceinline:
636    case tok::kw___w64:
637    case tok::kw___cdecl:
638    case tok::kw___stdcall:
639    case tok::kw___fastcall:
640      if (!PP.getLangOptions().Microsoft)
641        goto DoneWithDeclSpec;
642      // Just ignore it.
643      break;
644
645    // storage-class-specifier
646    case tok::kw_typedef:
647      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
648      break;
649    case tok::kw_extern:
650      if (DS.isThreadSpecified())
651        Diag(Tok, diag::ext_thread_before) << "extern";
652      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
653      break;
654    case tok::kw___private_extern__:
655      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
656                                         PrevSpec);
657      break;
658    case tok::kw_static:
659      if (DS.isThreadSpecified())
660        Diag(Tok, diag::ext_thread_before) << "static";
661      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
662      break;
663    case tok::kw_auto:
664      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
665      break;
666    case tok::kw_register:
667      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
668      break;
669    case tok::kw_mutable:
670      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
671      break;
672    case tok::kw___thread:
673      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
674      break;
675
676      continue;
677
678    // function-specifier
679    case tok::kw_inline:
680      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
681      break;
682    case tok::kw_virtual:
683      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
684      break;
685    case tok::kw_explicit:
686      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
687      break;
688
689    // type-specifier
690    case tok::kw_short:
691      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
692      break;
693    case tok::kw_long:
694      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
695        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
696      else
697        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
698      break;
699    case tok::kw_signed:
700      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
701      break;
702    case tok::kw_unsigned:
703      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
704      break;
705    case tok::kw__Complex:
706      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
707      break;
708    case tok::kw__Imaginary:
709      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
710      break;
711    case tok::kw_void:
712      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
713      break;
714    case tok::kw_char:
715      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
716      break;
717    case tok::kw_int:
718      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
719      break;
720    case tok::kw_float:
721      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
722      break;
723    case tok::kw_double:
724      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
725      break;
726    case tok::kw_wchar_t:
727      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
728      break;
729    case tok::kw_bool:
730    case tok::kw__Bool:
731      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
732      break;
733    case tok::kw__Decimal32:
734      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
735      break;
736    case tok::kw__Decimal64:
737      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
738      break;
739    case tok::kw__Decimal128:
740      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
741      break;
742
743    // class-specifier:
744    case tok::kw_class:
745    case tok::kw_struct:
746    case tok::kw_union:
747      ParseClassSpecifier(DS, TemplateParams);
748      continue;
749
750    // enum-specifier:
751    case tok::kw_enum:
752      ParseEnumSpecifier(DS);
753      continue;
754
755    // cv-qualifier:
756    case tok::kw_const:
757      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
758      break;
759    case tok::kw_volatile:
760      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
761                                 getLang())*2;
762      break;
763    case tok::kw_restrict:
764      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
765                                 getLang())*2;
766      break;
767
768    // GNU typeof support.
769    case tok::kw_typeof:
770      ParseTypeofSpecifier(DS);
771      continue;
772
773    case tok::less:
774      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
775      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
776      // but we support it.
777      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
778        goto DoneWithDeclSpec;
779
780      {
781        SourceLocation EndProtoLoc;
782        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
783        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
784        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
785        DS.SetRangeEnd(EndProtoLoc);
786
787        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
788          << SourceRange(Loc, EndProtoLoc);
789        // Need to support trailing type qualifiers (e.g. "id<p> const").
790        // If a type specifier follows, it will be diagnosed elsewhere.
791        continue;
792      }
793    }
794    // If the specifier combination wasn't legal, issue a diagnostic.
795    if (isInvalid) {
796      assert(PrevSpec && "Method did not return previous specifier!");
797      // Pick between error or extwarn.
798      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
799                                       : diag::ext_duplicate_declspec;
800      Diag(Tok, DiagID) << PrevSpec;
801    }
802    DS.SetRangeEnd(Tok.getLocation());
803    ConsumeToken();
804  }
805}
806
807/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
808/// primarily follow the C++ grammar with additions for C99 and GNU,
809/// which together subsume the C grammar. Note that the C++
810/// type-specifier also includes the C type-qualifier (for const,
811/// volatile, and C99 restrict). Returns true if a type-specifier was
812/// found (and parsed), false otherwise.
813///
814///       type-specifier: [C++ 7.1.5]
815///         simple-type-specifier
816///         class-specifier
817///         enum-specifier
818///         elaborated-type-specifier  [TODO]
819///         cv-qualifier
820///
821///       cv-qualifier: [C++ 7.1.5.1]
822///         'const'
823///         'volatile'
824/// [C99]   'restrict'
825///
826///       simple-type-specifier: [ C++ 7.1.5.2]
827///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
828///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
829///         'char'
830///         'wchar_t'
831///         'bool'
832///         'short'
833///         'int'
834///         'long'
835///         'signed'
836///         'unsigned'
837///         'float'
838///         'double'
839///         'void'
840/// [C99]   '_Bool'
841/// [C99]   '_Complex'
842/// [C99]   '_Imaginary'  // Removed in TC2?
843/// [GNU]   '_Decimal32'
844/// [GNU]   '_Decimal64'
845/// [GNU]   '_Decimal128'
846/// [GNU]   typeof-specifier
847/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
848/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
849bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
850                                        const char *&PrevSpec,
851                                        TemplateParameterLists *TemplateParams){
852  SourceLocation Loc = Tok.getLocation();
853
854  switch (Tok.getKind()) {
855  case tok::identifier:   // foo::bar
856    // Annotate typenames and C++ scope specifiers.  If we get one, just
857    // recurse to handle whatever we get.
858    if (TryAnnotateTypeOrScopeToken())
859      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
860    // Otherwise, not a type specifier.
861    return false;
862  case tok::coloncolon:   // ::foo::bar
863    if (NextToken().is(tok::kw_new) ||    // ::new
864        NextToken().is(tok::kw_delete))   // ::delete
865      return false;
866
867    // Annotate typenames and C++ scope specifiers.  If we get one, just
868    // recurse to handle whatever we get.
869    if (TryAnnotateTypeOrScopeToken())
870      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
871    // Otherwise, not a type specifier.
872    return false;
873
874  // simple-type-specifier:
875  case tok::annot_typename: {
876    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
877                                   Tok.getAnnotationValue());
878    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
879    ConsumeToken(); // The typename
880
881    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
882    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
883    // Objective-C interface.  If we don't have Objective-C or a '<', this is
884    // just a normal reference to a typedef name.
885    if (!Tok.is(tok::less) || !getLang().ObjC1)
886      return true;
887
888    SourceLocation EndProtoLoc;
889    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
890    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
891    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
892
893    DS.SetRangeEnd(EndProtoLoc);
894    return true;
895  }
896
897  case tok::kw_short:
898    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
899    break;
900  case tok::kw_long:
901    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
902      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
903    else
904      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
905    break;
906  case tok::kw_signed:
907    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
908    break;
909  case tok::kw_unsigned:
910    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
911    break;
912  case tok::kw__Complex:
913    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
914    break;
915  case tok::kw__Imaginary:
916    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
917    break;
918  case tok::kw_void:
919    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
920    break;
921  case tok::kw_char:
922    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
923    break;
924  case tok::kw_int:
925    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
926    break;
927  case tok::kw_float:
928    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
929    break;
930  case tok::kw_double:
931    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
932    break;
933  case tok::kw_wchar_t:
934    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
935    break;
936  case tok::kw_bool:
937  case tok::kw__Bool:
938    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
939    break;
940  case tok::kw__Decimal32:
941    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
942    break;
943  case tok::kw__Decimal64:
944    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
945    break;
946  case tok::kw__Decimal128:
947    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
948    break;
949
950  // class-specifier:
951  case tok::kw_class:
952  case tok::kw_struct:
953  case tok::kw_union:
954    ParseClassSpecifier(DS, TemplateParams);
955    return true;
956
957  // enum-specifier:
958  case tok::kw_enum:
959    ParseEnumSpecifier(DS);
960    return true;
961
962  // cv-qualifier:
963  case tok::kw_const:
964    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
965                               getLang())*2;
966    break;
967  case tok::kw_volatile:
968    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
969                               getLang())*2;
970    break;
971  case tok::kw_restrict:
972    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
973                               getLang())*2;
974    break;
975
976  // GNU typeof support.
977  case tok::kw_typeof:
978    ParseTypeofSpecifier(DS);
979    return true;
980
981  case tok::kw___cdecl:
982  case tok::kw___stdcall:
983  case tok::kw___fastcall:
984    if (!PP.getLangOptions().Microsoft) return false;
985    ConsumeToken();
986    return true;
987
988  default:
989    // Not a type-specifier; do nothing.
990    return false;
991  }
992
993  // If the specifier combination wasn't legal, issue a diagnostic.
994  if (isInvalid) {
995    assert(PrevSpec && "Method did not return previous specifier!");
996    // Pick between error or extwarn.
997    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
998                                     : diag::ext_duplicate_declspec;
999    Diag(Tok, DiagID) << PrevSpec;
1000  }
1001  DS.SetRangeEnd(Tok.getLocation());
1002  ConsumeToken(); // whatever we parsed above.
1003  return true;
1004}
1005
1006/// ParseStructDeclaration - Parse a struct declaration without the terminating
1007/// semicolon.
1008///
1009///       struct-declaration:
1010///         specifier-qualifier-list struct-declarator-list
1011/// [GNU]   __extension__ struct-declaration
1012/// [GNU]   specifier-qualifier-list
1013///       struct-declarator-list:
1014///         struct-declarator
1015///         struct-declarator-list ',' struct-declarator
1016/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1017///       struct-declarator:
1018///         declarator
1019/// [GNU]   declarator attributes[opt]
1020///         declarator[opt] ':' constant-expression
1021/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1022///
1023void Parser::
1024ParseStructDeclaration(DeclSpec &DS,
1025                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1026  if (Tok.is(tok::kw___extension__)) {
1027    // __extension__ silences extension warnings in the subexpression.
1028    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1029    ConsumeToken();
1030    return ParseStructDeclaration(DS, Fields);
1031  }
1032
1033  // Parse the common specifier-qualifiers-list piece.
1034  SourceLocation DSStart = Tok.getLocation();
1035  ParseSpecifierQualifierList(DS);
1036
1037  // If there are no declarators, this is a free-standing declaration
1038  // specifier. Let the actions module cope with it.
1039  if (Tok.is(tok::semi)) {
1040    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1041    return;
1042  }
1043
1044  // Read struct-declarators until we find the semicolon.
1045  Fields.push_back(FieldDeclarator(DS));
1046  while (1) {
1047    FieldDeclarator &DeclaratorInfo = Fields.back();
1048
1049    /// struct-declarator: declarator
1050    /// struct-declarator: declarator[opt] ':' constant-expression
1051    if (Tok.isNot(tok::colon))
1052      ParseDeclarator(DeclaratorInfo.D);
1053
1054    if (Tok.is(tok::colon)) {
1055      ConsumeToken();
1056      OwningExprResult Res(ParseConstantExpression());
1057      if (Res.isInvalid())
1058        SkipUntil(tok::semi, true, true);
1059      else
1060        DeclaratorInfo.BitfieldSize = Res.release();
1061    }
1062
1063    // If attributes exist after the declarator, parse them.
1064    if (Tok.is(tok::kw___attribute)) {
1065      SourceLocation Loc;
1066      AttributeList *AttrList = ParseAttributes(&Loc);
1067      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1068    }
1069
1070    // If we don't have a comma, it is either the end of the list (a ';')
1071    // or an error, bail out.
1072    if (Tok.isNot(tok::comma))
1073      return;
1074
1075    // Consume the comma.
1076    ConsumeToken();
1077
1078    // Parse the next declarator.
1079    Fields.push_back(FieldDeclarator(DS));
1080
1081    // Attributes are only allowed on the second declarator.
1082    if (Tok.is(tok::kw___attribute)) {
1083      SourceLocation Loc;
1084      AttributeList *AttrList = ParseAttributes(&Loc);
1085      Fields.back().D.AddAttributes(AttrList, Loc);
1086    }
1087  }
1088}
1089
1090/// ParseStructUnionBody
1091///       struct-contents:
1092///         struct-declaration-list
1093/// [EXT]   empty
1094/// [GNU]   "struct-declaration-list" without terminatoring ';'
1095///       struct-declaration-list:
1096///         struct-declaration
1097///         struct-declaration-list struct-declaration
1098/// [OBC]   '@' 'defs' '(' class-name ')'
1099///
1100void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1101                                  unsigned TagType, DeclTy *TagDecl) {
1102  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1103                                        PP.getSourceManager(),
1104                                        "parsing struct/union body");
1105
1106  SourceLocation LBraceLoc = ConsumeBrace();
1107
1108  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1109  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1110
1111  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1112  // C++.
1113  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1114    Diag(Tok, diag::ext_empty_struct_union_enum)
1115      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1116
1117  llvm::SmallVector<DeclTy*, 32> FieldDecls;
1118  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1119
1120  // While we still have something to read, read the declarations in the struct.
1121  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1122    // Each iteration of this loop reads one struct-declaration.
1123
1124    // Check for extraneous top-level semicolon.
1125    if (Tok.is(tok::semi)) {
1126      Diag(Tok, diag::ext_extra_struct_semi);
1127      ConsumeToken();
1128      continue;
1129    }
1130
1131    // Parse all the comma separated declarators.
1132    DeclSpec DS;
1133    FieldDeclarators.clear();
1134    if (!Tok.is(tok::at)) {
1135      ParseStructDeclaration(DS, FieldDeclarators);
1136
1137      // Convert them all to fields.
1138      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1139        FieldDeclarator &FD = FieldDeclarators[i];
1140        // Install the declarator into the current TagDecl.
1141        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
1142                                           DS.getSourceRange().getBegin(),
1143                                           FD.D, FD.BitfieldSize);
1144        FieldDecls.push_back(Field);
1145      }
1146    } else { // Handle @defs
1147      ConsumeToken();
1148      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1149        Diag(Tok, diag::err_unexpected_at);
1150        SkipUntil(tok::semi, true, true);
1151        continue;
1152      }
1153      ConsumeToken();
1154      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1155      if (!Tok.is(tok::identifier)) {
1156        Diag(Tok, diag::err_expected_ident);
1157        SkipUntil(tok::semi, true, true);
1158        continue;
1159      }
1160      llvm::SmallVector<DeclTy*, 16> Fields;
1161      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1162                        Tok.getIdentifierInfo(), Fields);
1163      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1164      ConsumeToken();
1165      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1166    }
1167
1168    if (Tok.is(tok::semi)) {
1169      ConsumeToken();
1170    } else if (Tok.is(tok::r_brace)) {
1171      Diag(Tok, diag::ext_expected_semi_decl_list);
1172      break;
1173    } else {
1174      Diag(Tok, diag::err_expected_semi_decl_list);
1175      // Skip to end of block or statement
1176      SkipUntil(tok::r_brace, true, true);
1177    }
1178  }
1179
1180  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1181
1182  AttributeList *AttrList = 0;
1183  // If attributes exist after struct contents, parse them.
1184  if (Tok.is(tok::kw___attribute))
1185    AttrList = ParseAttributes();
1186
1187  Actions.ActOnFields(CurScope,
1188                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1189                      LBraceLoc, RBraceLoc,
1190                      AttrList);
1191  StructScope.Exit();
1192  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1193}
1194
1195
1196/// ParseEnumSpecifier
1197///       enum-specifier: [C99 6.7.2.2]
1198///         'enum' identifier[opt] '{' enumerator-list '}'
1199///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1200/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1201///                                                 '}' attributes[opt]
1202///         'enum' identifier
1203/// [GNU]   'enum' attributes[opt] identifier
1204///
1205/// [C++] elaborated-type-specifier:
1206/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1207///
1208void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1209  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1210  SourceLocation StartLoc = ConsumeToken();
1211
1212  // Parse the tag portion of this.
1213
1214  AttributeList *Attr = 0;
1215  // If attributes exist after tag, parse them.
1216  if (Tok.is(tok::kw___attribute))
1217    Attr = ParseAttributes();
1218
1219  CXXScopeSpec SS;
1220  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1221    if (Tok.isNot(tok::identifier)) {
1222      Diag(Tok, diag::err_expected_ident);
1223      if (Tok.isNot(tok::l_brace)) {
1224        // Has no name and is not a definition.
1225        // Skip the rest of this declarator, up until the comma or semicolon.
1226        SkipUntil(tok::comma, true);
1227        return;
1228      }
1229    }
1230  }
1231
1232  // Must have either 'enum name' or 'enum {...}'.
1233  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1234    Diag(Tok, diag::err_expected_ident_lbrace);
1235
1236    // Skip the rest of this declarator, up until the comma or semicolon.
1237    SkipUntil(tok::comma, true);
1238    return;
1239  }
1240
1241  // If an identifier is present, consume and remember it.
1242  IdentifierInfo *Name = 0;
1243  SourceLocation NameLoc;
1244  if (Tok.is(tok::identifier)) {
1245    Name = Tok.getIdentifierInfo();
1246    NameLoc = ConsumeToken();
1247  }
1248
1249  // There are three options here.  If we have 'enum foo;', then this is a
1250  // forward declaration.  If we have 'enum foo {...' then this is a
1251  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1252  //
1253  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1254  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1255  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1256  //
1257  Action::TagKind TK;
1258  if (Tok.is(tok::l_brace))
1259    TK = Action::TK_Definition;
1260  else if (Tok.is(tok::semi))
1261    TK = Action::TK_Declaration;
1262  else
1263    TK = Action::TK_Reference;
1264  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1265                                     SS, Name, NameLoc, Attr);
1266
1267  if (Tok.is(tok::l_brace))
1268    ParseEnumBody(StartLoc, TagDecl);
1269
1270  // TODO: semantic analysis on the declspec for enums.
1271  const char *PrevSpec = 0;
1272  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1273    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1274}
1275
1276/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1277///       enumerator-list:
1278///         enumerator
1279///         enumerator-list ',' enumerator
1280///       enumerator:
1281///         enumeration-constant
1282///         enumeration-constant '=' constant-expression
1283///       enumeration-constant:
1284///         identifier
1285///
1286void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1287  // Enter the scope of the enum body and start the definition.
1288  ParseScope EnumScope(this, Scope::DeclScope);
1289  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1290
1291  SourceLocation LBraceLoc = ConsumeBrace();
1292
1293  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1294  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1295    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1296
1297  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1298
1299  DeclTy *LastEnumConstDecl = 0;
1300
1301  // Parse the enumerator-list.
1302  while (Tok.is(tok::identifier)) {
1303    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1304    SourceLocation IdentLoc = ConsumeToken();
1305
1306    SourceLocation EqualLoc;
1307    OwningExprResult AssignedVal(Actions);
1308    if (Tok.is(tok::equal)) {
1309      EqualLoc = ConsumeToken();
1310      AssignedVal = ParseConstantExpression();
1311      if (AssignedVal.isInvalid())
1312        SkipUntil(tok::comma, tok::r_brace, true, true);
1313    }
1314
1315    // Install the enumerator constant into EnumDecl.
1316    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1317                                                      LastEnumConstDecl,
1318                                                      IdentLoc, Ident,
1319                                                      EqualLoc,
1320                                                      AssignedVal.release());
1321    EnumConstantDecls.push_back(EnumConstDecl);
1322    LastEnumConstDecl = EnumConstDecl;
1323
1324    if (Tok.isNot(tok::comma))
1325      break;
1326    SourceLocation CommaLoc = ConsumeToken();
1327
1328    if (Tok.isNot(tok::identifier) && !getLang().C99)
1329      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1330  }
1331
1332  // Eat the }.
1333  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1334
1335  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1336                        EnumConstantDecls.size());
1337
1338  DeclTy *AttrList = 0;
1339  // If attributes exist after the identifier list, parse them.
1340  if (Tok.is(tok::kw___attribute))
1341    AttrList = ParseAttributes(); // FIXME: where do they do?
1342
1343  EnumScope.Exit();
1344  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1345}
1346
1347/// isTypeSpecifierQualifier - Return true if the current token could be the
1348/// start of a type-qualifier-list.
1349bool Parser::isTypeQualifier() const {
1350  switch (Tok.getKind()) {
1351  default: return false;
1352    // type-qualifier
1353  case tok::kw_const:
1354  case tok::kw_volatile:
1355  case tok::kw_restrict:
1356    return true;
1357  }
1358}
1359
1360/// isTypeSpecifierQualifier - Return true if the current token could be the
1361/// start of a specifier-qualifier-list.
1362bool Parser::isTypeSpecifierQualifier() {
1363  switch (Tok.getKind()) {
1364  default: return false;
1365
1366  case tok::identifier:   // foo::bar
1367    // Annotate typenames and C++ scope specifiers.  If we get one, just
1368    // recurse to handle whatever we get.
1369    if (TryAnnotateTypeOrScopeToken())
1370      return isTypeSpecifierQualifier();
1371    // Otherwise, not a type specifier.
1372    return false;
1373  case tok::coloncolon:   // ::foo::bar
1374    if (NextToken().is(tok::kw_new) ||    // ::new
1375        NextToken().is(tok::kw_delete))   // ::delete
1376      return false;
1377
1378    // Annotate typenames and C++ scope specifiers.  If we get one, just
1379    // recurse to handle whatever we get.
1380    if (TryAnnotateTypeOrScopeToken())
1381      return isTypeSpecifierQualifier();
1382    // Otherwise, not a type specifier.
1383    return false;
1384
1385    // GNU attributes support.
1386  case tok::kw___attribute:
1387    // GNU typeof support.
1388  case tok::kw_typeof:
1389
1390    // type-specifiers
1391  case tok::kw_short:
1392  case tok::kw_long:
1393  case tok::kw_signed:
1394  case tok::kw_unsigned:
1395  case tok::kw__Complex:
1396  case tok::kw__Imaginary:
1397  case tok::kw_void:
1398  case tok::kw_char:
1399  case tok::kw_wchar_t:
1400  case tok::kw_int:
1401  case tok::kw_float:
1402  case tok::kw_double:
1403  case tok::kw_bool:
1404  case tok::kw__Bool:
1405  case tok::kw__Decimal32:
1406  case tok::kw__Decimal64:
1407  case tok::kw__Decimal128:
1408
1409    // struct-or-union-specifier (C99) or class-specifier (C++)
1410  case tok::kw_class:
1411  case tok::kw_struct:
1412  case tok::kw_union:
1413    // enum-specifier
1414  case tok::kw_enum:
1415
1416    // type-qualifier
1417  case tok::kw_const:
1418  case tok::kw_volatile:
1419  case tok::kw_restrict:
1420
1421    // typedef-name
1422  case tok::annot_typename:
1423    return true;
1424
1425    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1426  case tok::less:
1427    return getLang().ObjC1;
1428
1429  case tok::kw___cdecl:
1430  case tok::kw___stdcall:
1431  case tok::kw___fastcall:
1432    return PP.getLangOptions().Microsoft;
1433  }
1434}
1435
1436/// isDeclarationSpecifier() - Return true if the current token is part of a
1437/// declaration specifier.
1438bool Parser::isDeclarationSpecifier() {
1439  switch (Tok.getKind()) {
1440  default: return false;
1441
1442  case tok::identifier:   // foo::bar
1443    // Unfortunate hack to support "Class.factoryMethod" notation.
1444    if (getLang().ObjC1 && NextToken().is(tok::period))
1445      return false;
1446
1447    // Annotate typenames and C++ scope specifiers.  If we get one, just
1448    // recurse to handle whatever we get.
1449    if (TryAnnotateTypeOrScopeToken())
1450      return isDeclarationSpecifier();
1451    // Otherwise, not a declaration specifier.
1452    return false;
1453  case tok::coloncolon:   // ::foo::bar
1454    if (NextToken().is(tok::kw_new) ||    // ::new
1455        NextToken().is(tok::kw_delete))   // ::delete
1456      return false;
1457
1458    // Annotate typenames and C++ scope specifiers.  If we get one, just
1459    // recurse to handle whatever we get.
1460    if (TryAnnotateTypeOrScopeToken())
1461      return isDeclarationSpecifier();
1462    // Otherwise, not a declaration specifier.
1463    return false;
1464
1465    // storage-class-specifier
1466  case tok::kw_typedef:
1467  case tok::kw_extern:
1468  case tok::kw___private_extern__:
1469  case tok::kw_static:
1470  case tok::kw_auto:
1471  case tok::kw_register:
1472  case tok::kw___thread:
1473
1474    // type-specifiers
1475  case tok::kw_short:
1476  case tok::kw_long:
1477  case tok::kw_signed:
1478  case tok::kw_unsigned:
1479  case tok::kw__Complex:
1480  case tok::kw__Imaginary:
1481  case tok::kw_void:
1482  case tok::kw_char:
1483  case tok::kw_wchar_t:
1484  case tok::kw_int:
1485  case tok::kw_float:
1486  case tok::kw_double:
1487  case tok::kw_bool:
1488  case tok::kw__Bool:
1489  case tok::kw__Decimal32:
1490  case tok::kw__Decimal64:
1491  case tok::kw__Decimal128:
1492
1493    // struct-or-union-specifier (C99) or class-specifier (C++)
1494  case tok::kw_class:
1495  case tok::kw_struct:
1496  case tok::kw_union:
1497    // enum-specifier
1498  case tok::kw_enum:
1499
1500    // type-qualifier
1501  case tok::kw_const:
1502  case tok::kw_volatile:
1503  case tok::kw_restrict:
1504
1505    // function-specifier
1506  case tok::kw_inline:
1507  case tok::kw_virtual:
1508  case tok::kw_explicit:
1509
1510    // typedef-name
1511  case tok::annot_typename:
1512
1513    // GNU typeof support.
1514  case tok::kw_typeof:
1515
1516    // GNU attributes.
1517  case tok::kw___attribute:
1518    return true;
1519
1520    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1521  case tok::less:
1522    return getLang().ObjC1;
1523
1524  case tok::kw___declspec:
1525  case tok::kw___cdecl:
1526  case tok::kw___stdcall:
1527  case tok::kw___fastcall:
1528    return PP.getLangOptions().Microsoft;
1529  }
1530}
1531
1532
1533/// ParseTypeQualifierListOpt
1534///       type-qualifier-list: [C99 6.7.5]
1535///         type-qualifier
1536/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1537///         type-qualifier-list type-qualifier
1538/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1539///
1540void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1541  while (1) {
1542    int isInvalid = false;
1543    const char *PrevSpec = 0;
1544    SourceLocation Loc = Tok.getLocation();
1545
1546    switch (Tok.getKind()) {
1547    case tok::kw_const:
1548      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1549                                 getLang())*2;
1550      break;
1551    case tok::kw_volatile:
1552      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1553                                 getLang())*2;
1554      break;
1555    case tok::kw_restrict:
1556      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1557                                 getLang())*2;
1558      break;
1559    case tok::kw___ptr64:
1560    case tok::kw___cdecl:
1561    case tok::kw___stdcall:
1562    case tok::kw___fastcall:
1563      if (!PP.getLangOptions().Microsoft)
1564        goto DoneWithTypeQuals;
1565      // Just ignore it.
1566      break;
1567    case tok::kw___attribute:
1568      if (AttributesAllowed) {
1569        DS.AddAttributes(ParseAttributes());
1570        continue; // do *not* consume the next token!
1571      }
1572      // otherwise, FALL THROUGH!
1573    default:
1574      DoneWithTypeQuals:
1575      // If this is not a type-qualifier token, we're done reading type
1576      // qualifiers.  First verify that DeclSpec's are consistent.
1577      DS.Finish(Diags, PP.getSourceManager(), getLang());
1578      return;
1579    }
1580
1581    // If the specifier combination wasn't legal, issue a diagnostic.
1582    if (isInvalid) {
1583      assert(PrevSpec && "Method did not return previous specifier!");
1584      // Pick between error or extwarn.
1585      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1586                                      : diag::ext_duplicate_declspec;
1587      Diag(Tok, DiagID) << PrevSpec;
1588    }
1589    ConsumeToken();
1590  }
1591}
1592
1593
1594/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1595///
1596void Parser::ParseDeclarator(Declarator &D) {
1597  /// This implements the 'declarator' production in the C grammar, then checks
1598  /// for well-formedness and issues diagnostics.
1599  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1600}
1601
1602/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1603/// is parsed by the function passed to it. Pass null, and the direct-declarator
1604/// isn't parsed at all, making this function effectively parse the C++
1605/// ptr-operator production.
1606///
1607///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1608/// [C]     pointer[opt] direct-declarator
1609/// [C++]   direct-declarator
1610/// [C++]   ptr-operator declarator
1611///
1612///       pointer: [C99 6.7.5]
1613///         '*' type-qualifier-list[opt]
1614///         '*' type-qualifier-list[opt] pointer
1615///
1616///       ptr-operator:
1617///         '*' cv-qualifier-seq[opt]
1618///         '&'
1619/// [GNU]   '&' restrict[opt] attributes[opt]
1620///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1621void Parser::ParseDeclaratorInternal(Declarator &D,
1622                                     DirectDeclParseFunction DirectDeclParser) {
1623
1624  // C++ member pointers start with a '::' or a nested-name.
1625  // Member pointers get special handling, since there's no place for the
1626  // scope spec in the generic path below.
1627  if ((Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1628       Tok.is(tok::annot_cxxscope)) && getLang().CPlusPlus) {
1629    CXXScopeSpec SS;
1630    if (ParseOptionalCXXScopeSpecifier(SS)) {
1631      if(Tok.isNot(tok::star)) {
1632        // The scope spec really belongs to the direct-declarator.
1633        D.getCXXScopeSpec() = SS;
1634        if (DirectDeclParser)
1635          (this->*DirectDeclParser)(D);
1636        return;
1637      }
1638
1639      SourceLocation Loc = ConsumeToken();
1640      D.SetRangeEnd(Loc);
1641      DeclSpec DS;
1642      ParseTypeQualifierListOpt(DS);
1643      D.ExtendWithDeclSpec(DS);
1644
1645      // Recurse to parse whatever is left.
1646      ParseDeclaratorInternal(D, DirectDeclParser);
1647
1648      // Sema will have to catch (syntactically invalid) pointers into global
1649      // scope. It has to catch pointers into namespace scope anyway.
1650      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1651                                                      Loc, DS.TakeAttributes()),
1652                    /* Don't replace range end. */SourceLocation());
1653      return;
1654    }
1655  }
1656
1657  tok::TokenKind Kind = Tok.getKind();
1658  // Not a pointer, C++ reference, or block.
1659  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1660      (Kind != tok::caret || !getLang().Blocks)) {
1661    if (DirectDeclParser)
1662      (this->*DirectDeclParser)(D);
1663    return;
1664  }
1665
1666  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1667  SourceLocation Loc = ConsumeToken();  // Eat the *, ^ or &.
1668  D.SetRangeEnd(Loc);
1669
1670  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1671    // Is a pointer.
1672    DeclSpec DS;
1673
1674    ParseTypeQualifierListOpt(DS);
1675    D.ExtendWithDeclSpec(DS);
1676
1677    // Recursively parse the declarator.
1678    ParseDeclaratorInternal(D, DirectDeclParser);
1679    if (Kind == tok::star)
1680      // Remember that we parsed a pointer type, and remember the type-quals.
1681      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1682                                                DS.TakeAttributes()),
1683                    SourceLocation());
1684    else
1685      // Remember that we parsed a Block type, and remember the type-quals.
1686      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1687                                                     Loc),
1688                    SourceLocation());
1689  } else {
1690    // Is a reference
1691    DeclSpec DS;
1692
1693    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1694    // cv-qualifiers are introduced through the use of a typedef or of a
1695    // template type argument, in which case the cv-qualifiers are ignored.
1696    //
1697    // [GNU] Retricted references are allowed.
1698    // [GNU] Attributes on references are allowed.
1699    ParseTypeQualifierListOpt(DS);
1700    D.ExtendWithDeclSpec(DS);
1701
1702    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1703      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1704        Diag(DS.getConstSpecLoc(),
1705             diag::err_invalid_reference_qualifier_application) << "const";
1706      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1707        Diag(DS.getVolatileSpecLoc(),
1708             diag::err_invalid_reference_qualifier_application) << "volatile";
1709    }
1710
1711    // Recursively parse the declarator.
1712    ParseDeclaratorInternal(D, DirectDeclParser);
1713
1714    if (D.getNumTypeObjects() > 0) {
1715      // C++ [dcl.ref]p4: There shall be no references to references.
1716      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1717      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1718        if (const IdentifierInfo *II = D.getIdentifier())
1719          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1720           << II;
1721        else
1722          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1723            << "type name";
1724
1725        // Once we've complained about the reference-to-reference, we
1726        // can go ahead and build the (technically ill-formed)
1727        // declarator: reference collapsing will take care of it.
1728      }
1729    }
1730
1731    // Remember that we parsed a reference type. It doesn't have type-quals.
1732    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1733                                                DS.TakeAttributes()),
1734                  SourceLocation());
1735  }
1736}
1737
1738/// ParseDirectDeclarator
1739///       direct-declarator: [C99 6.7.5]
1740/// [C99]   identifier
1741///         '(' declarator ')'
1742/// [GNU]   '(' attributes declarator ')'
1743/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1744/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1745/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1746/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1747/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1748///         direct-declarator '(' parameter-type-list ')'
1749///         direct-declarator '(' identifier-list[opt] ')'
1750/// [GNU]   direct-declarator '(' parameter-forward-declarations
1751///                    parameter-type-list[opt] ')'
1752/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1753///                    cv-qualifier-seq[opt] exception-specification[opt]
1754/// [C++]   declarator-id
1755///
1756///       declarator-id: [C++ 8]
1757///         id-expression
1758///         '::'[opt] nested-name-specifier[opt] type-name
1759///
1760///       id-expression: [C++ 5.1]
1761///         unqualified-id
1762///         qualified-id            [TODO]
1763///
1764///       unqualified-id: [C++ 5.1]
1765///         identifier
1766///         operator-function-id
1767///         conversion-function-id  [TODO]
1768///          '~' class-name
1769///         template-id
1770///
1771void Parser::ParseDirectDeclarator(Declarator &D) {
1772  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1773
1774  if (getLang().CPlusPlus) {
1775    if (D.mayHaveIdentifier()) {
1776      // ParseDeclaratorInternal might already have parsed the scope.
1777      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1778        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1779      if (afterCXXScope) {
1780        // Change the declaration context for name lookup, until this function
1781        // is exited (and the declarator has been parsed).
1782        DeclScopeObj.EnterDeclaratorScope();
1783      }
1784
1785      if (Tok.is(tok::identifier)) {
1786        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1787
1788        // If this identifier is the name of the current class, it's a
1789        // constructor name.
1790        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1791          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1792                                               Tok.getLocation(), CurScope),
1793                           Tok.getLocation());
1794        // This is a normal identifier.
1795        } else
1796          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1797        ConsumeToken();
1798        goto PastIdentifier;
1799      } else if (Tok.is(tok::annot_template_id)) {
1800        TemplateIdAnnotation *TemplateId
1801          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1802
1803        // FIXME: Could this template-id name a constructor?
1804
1805        // FIXME: This is an egregious hack, where we silently ignore
1806        // the specialization (which should be a function template
1807        // specialization name) and use the name instead. This hack
1808        // will go away when we have support for function
1809        // specializations.
1810        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1811        TemplateId->Destroy();
1812        ConsumeToken();
1813        goto PastIdentifier;
1814      } else if (Tok.is(tok::kw_operator)) {
1815        SourceLocation OperatorLoc = Tok.getLocation();
1816        SourceLocation EndLoc;
1817
1818        // First try the name of an overloaded operator
1819        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1820          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1821        } else {
1822          // This must be a conversion function (C++ [class.conv.fct]).
1823          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1824            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1825          else {
1826            D.SetIdentifier(0, Tok.getLocation());
1827          }
1828        }
1829        goto PastIdentifier;
1830      } else if (Tok.is(tok::tilde)) {
1831        // This should be a C++ destructor.
1832        SourceLocation TildeLoc = ConsumeToken();
1833        if (Tok.is(tok::identifier)) {
1834          // FIXME: Inaccurate.
1835          SourceLocation NameLoc = Tok.getLocation();
1836          SourceLocation EndLoc;
1837          if (TypeTy *Type = ParseClassName(EndLoc)) {
1838            D.setDestructor(Type, TildeLoc, NameLoc);
1839          } else {
1840            D.SetIdentifier(0, TildeLoc);
1841          }
1842        } else {
1843          Diag(Tok, diag::err_expected_class_name);
1844          D.SetIdentifier(0, TildeLoc);
1845        }
1846        goto PastIdentifier;
1847      }
1848
1849      // If we reached this point, token is not identifier and not '~'.
1850
1851      if (afterCXXScope) {
1852        Diag(Tok, diag::err_expected_unqualified_id);
1853        D.SetIdentifier(0, Tok.getLocation());
1854        D.setInvalidType(true);
1855        goto PastIdentifier;
1856      }
1857    }
1858  }
1859
1860  // If we reached this point, we are either in C/ObjC or the token didn't
1861  // satisfy any of the C++-specific checks.
1862  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1863    assert(!getLang().CPlusPlus &&
1864           "There's a C++-specific check for tok::identifier above");
1865    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1866    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1867    ConsumeToken();
1868  } else if (Tok.is(tok::l_paren)) {
1869    // direct-declarator: '(' declarator ')'
1870    // direct-declarator: '(' attributes declarator ')'
1871    // Example: 'char (*X)'   or 'int (*XX)(void)'
1872    ParseParenDeclarator(D);
1873  } else if (D.mayOmitIdentifier()) {
1874    // This could be something simple like "int" (in which case the declarator
1875    // portion is empty), if an abstract-declarator is allowed.
1876    D.SetIdentifier(0, Tok.getLocation());
1877  } else {
1878    if (D.getContext() == Declarator::MemberContext)
1879      Diag(Tok, diag::err_expected_member_name_or_semi)
1880        << D.getDeclSpec().getSourceRange();
1881    else if (getLang().CPlusPlus)
1882      Diag(Tok, diag::err_expected_unqualified_id);
1883    else
1884      Diag(Tok, diag::err_expected_ident_lparen);
1885    D.SetIdentifier(0, Tok.getLocation());
1886    D.setInvalidType(true);
1887  }
1888
1889 PastIdentifier:
1890  assert(D.isPastIdentifier() &&
1891         "Haven't past the location of the identifier yet?");
1892
1893  while (1) {
1894    if (Tok.is(tok::l_paren)) {
1895      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1896      // In such a case, check if we actually have a function declarator; if it
1897      // is not, the declarator has been fully parsed.
1898      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1899        // When not in file scope, warn for ambiguous function declarators, just
1900        // in case the author intended it as a variable definition.
1901        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1902        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1903          break;
1904      }
1905      ParseFunctionDeclarator(ConsumeParen(), D);
1906    } else if (Tok.is(tok::l_square)) {
1907      ParseBracketDeclarator(D);
1908    } else {
1909      break;
1910    }
1911  }
1912}
1913
1914/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1915/// only called before the identifier, so these are most likely just grouping
1916/// parens for precedence.  If we find that these are actually function
1917/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1918///
1919///       direct-declarator:
1920///         '(' declarator ')'
1921/// [GNU]   '(' attributes declarator ')'
1922///         direct-declarator '(' parameter-type-list ')'
1923///         direct-declarator '(' identifier-list[opt] ')'
1924/// [GNU]   direct-declarator '(' parameter-forward-declarations
1925///                    parameter-type-list[opt] ')'
1926///
1927void Parser::ParseParenDeclarator(Declarator &D) {
1928  SourceLocation StartLoc = ConsumeParen();
1929  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1930
1931  // Eat any attributes before we look at whether this is a grouping or function
1932  // declarator paren.  If this is a grouping paren, the attribute applies to
1933  // the type being built up, for example:
1934  //     int (__attribute__(()) *x)(long y)
1935  // If this ends up not being a grouping paren, the attribute applies to the
1936  // first argument, for example:
1937  //     int (__attribute__(()) int x)
1938  // In either case, we need to eat any attributes to be able to determine what
1939  // sort of paren this is.
1940  //
1941  AttributeList *AttrList = 0;
1942  bool RequiresArg = false;
1943  if (Tok.is(tok::kw___attribute)) {
1944    AttrList = ParseAttributes();
1945
1946    // We require that the argument list (if this is a non-grouping paren) be
1947    // present even if the attribute list was empty.
1948    RequiresArg = true;
1949  }
1950  // Eat any Microsoft extensions.
1951  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1952          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1953    ConsumeToken();
1954
1955  // If we haven't past the identifier yet (or where the identifier would be
1956  // stored, if this is an abstract declarator), then this is probably just
1957  // grouping parens. However, if this could be an abstract-declarator, then
1958  // this could also be the start of function arguments (consider 'void()').
1959  bool isGrouping;
1960
1961  if (!D.mayOmitIdentifier()) {
1962    // If this can't be an abstract-declarator, this *must* be a grouping
1963    // paren, because we haven't seen the identifier yet.
1964    isGrouping = true;
1965  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1966             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1967             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1968    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1969    // considered to be a type, not a K&R identifier-list.
1970    isGrouping = false;
1971  } else {
1972    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1973    isGrouping = true;
1974  }
1975
1976  // If this is a grouping paren, handle:
1977  // direct-declarator: '(' declarator ')'
1978  // direct-declarator: '(' attributes declarator ')'
1979  if (isGrouping) {
1980    bool hadGroupingParens = D.hasGroupingParens();
1981    D.setGroupingParens(true);
1982    if (AttrList)
1983      D.AddAttributes(AttrList, SourceLocation());
1984
1985    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1986    // Match the ')'.
1987    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
1988
1989    D.setGroupingParens(hadGroupingParens);
1990    D.SetRangeEnd(Loc);
1991    return;
1992  }
1993
1994  // Okay, if this wasn't a grouping paren, it must be the start of a function
1995  // argument list.  Recognize that this declarator will never have an
1996  // identifier (and remember where it would have been), then call into
1997  // ParseFunctionDeclarator to handle of argument list.
1998  D.SetIdentifier(0, Tok.getLocation());
1999
2000  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2001}
2002
2003/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2004/// declarator D up to a paren, which indicates that we are parsing function
2005/// arguments.
2006///
2007/// If AttrList is non-null, then the caller parsed those arguments immediately
2008/// after the open paren - they should be considered to be the first argument of
2009/// a parameter.  If RequiresArg is true, then the first argument of the
2010/// function is required to be present and required to not be an identifier
2011/// list.
2012///
2013/// This method also handles this portion of the grammar:
2014///       parameter-type-list: [C99 6.7.5]
2015///         parameter-list
2016///         parameter-list ',' '...'
2017///
2018///       parameter-list: [C99 6.7.5]
2019///         parameter-declaration
2020///         parameter-list ',' parameter-declaration
2021///
2022///       parameter-declaration: [C99 6.7.5]
2023///         declaration-specifiers declarator
2024/// [C++]   declaration-specifiers declarator '=' assignment-expression
2025/// [GNU]   declaration-specifiers declarator attributes
2026///         declaration-specifiers abstract-declarator[opt]
2027/// [C++]   declaration-specifiers abstract-declarator[opt]
2028///           '=' assignment-expression
2029/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2030///
2031/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2032/// and "exception-specification[opt]"(TODO).
2033///
2034void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2035                                     AttributeList *AttrList,
2036                                     bool RequiresArg) {
2037  // lparen is already consumed!
2038  assert(D.isPastIdentifier() && "Should not call before identifier!");
2039
2040  // This parameter list may be empty.
2041  if (Tok.is(tok::r_paren)) {
2042    if (RequiresArg) {
2043      Diag(Tok, diag::err_argument_required_after_attribute);
2044      delete AttrList;
2045    }
2046
2047    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2048
2049    // cv-qualifier-seq[opt].
2050    DeclSpec DS;
2051    if (getLang().CPlusPlus) {
2052      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2053      if (!DS.getSourceRange().getEnd().isInvalid())
2054        Loc = DS.getSourceRange().getEnd();
2055
2056      // Parse exception-specification[opt].
2057      if (Tok.is(tok::kw_throw))
2058        ParseExceptionSpecification(Loc);
2059    }
2060
2061    // Remember that we parsed a function type, and remember the attributes.
2062    // int() -> no prototype, no '...'.
2063    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2064                                               /*variadic*/ false,
2065                                               SourceLocation(),
2066                                               /*arglist*/ 0, 0,
2067                                               DS.getTypeQualifiers(),
2068                                               LParenLoc, D),
2069                  Loc);
2070    return;
2071  }
2072
2073  // Alternatively, this parameter list may be an identifier list form for a
2074  // K&R-style function:  void foo(a,b,c)
2075  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2076    if (!TryAnnotateTypeOrScopeToken()) {
2077      // K&R identifier lists can't have typedefs as identifiers, per
2078      // C99 6.7.5.3p11.
2079      if (RequiresArg) {
2080        Diag(Tok, diag::err_argument_required_after_attribute);
2081        delete AttrList;
2082      }
2083      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2084      // normal declarators, not for abstract-declarators.
2085      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2086    }
2087  }
2088
2089  // Finally, a normal, non-empty parameter type list.
2090
2091  // Build up an array of information about the parsed arguments.
2092  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2093
2094  // Enter function-declaration scope, limiting any declarators to the
2095  // function prototype scope, including parameter declarators.
2096  ParseScope PrototypeScope(this,
2097                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2098
2099  bool IsVariadic = false;
2100  SourceLocation EllipsisLoc;
2101  while (1) {
2102    if (Tok.is(tok::ellipsis)) {
2103      IsVariadic = true;
2104      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2105      break;
2106    }
2107
2108    SourceLocation DSStart = Tok.getLocation();
2109
2110    // Parse the declaration-specifiers.
2111    DeclSpec DS;
2112
2113    // If the caller parsed attributes for the first argument, add them now.
2114    if (AttrList) {
2115      DS.AddAttributes(AttrList);
2116      AttrList = 0;  // Only apply the attributes to the first parameter.
2117    }
2118    ParseDeclarationSpecifiers(DS);
2119
2120    // Parse the declarator.  This is "PrototypeContext", because we must
2121    // accept either 'declarator' or 'abstract-declarator' here.
2122    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2123    ParseDeclarator(ParmDecl);
2124
2125    // Parse GNU attributes, if present.
2126    if (Tok.is(tok::kw___attribute)) {
2127      SourceLocation Loc;
2128      AttributeList *AttrList = ParseAttributes(&Loc);
2129      ParmDecl.AddAttributes(AttrList, Loc);
2130    }
2131
2132    // Remember this parsed parameter in ParamInfo.
2133    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2134
2135    // DefArgToks is used when the parsing of default arguments needs
2136    // to be delayed.
2137    CachedTokens *DefArgToks = 0;
2138
2139    // If no parameter was specified, verify that *something* was specified,
2140    // otherwise we have a missing type and identifier.
2141    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2142        ParmDecl.getNumTypeObjects() == 0) {
2143      // Completely missing, emit error.
2144      Diag(DSStart, diag::err_missing_param);
2145    } else {
2146      // Otherwise, we have something.  Add it and let semantic analysis try
2147      // to grok it and add the result to the ParamInfo we are building.
2148
2149      // Inform the actions module about the parameter declarator, so it gets
2150      // added to the current scope.
2151      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2152
2153      // Parse the default argument, if any. We parse the default
2154      // arguments in all dialects; the semantic analysis in
2155      // ActOnParamDefaultArgument will reject the default argument in
2156      // C.
2157      if (Tok.is(tok::equal)) {
2158        SourceLocation EqualLoc = Tok.getLocation();
2159
2160        // Parse the default argument
2161        if (D.getContext() == Declarator::MemberContext) {
2162          // If we're inside a class definition, cache the tokens
2163          // corresponding to the default argument. We'll actually parse
2164          // them when we see the end of the class definition.
2165          // FIXME: Templates will require something similar.
2166          // FIXME: Can we use a smart pointer for Toks?
2167          DefArgToks = new CachedTokens;
2168
2169          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2170                                    tok::semi, false)) {
2171            delete DefArgToks;
2172            DefArgToks = 0;
2173            Actions.ActOnParamDefaultArgumentError(Param);
2174          } else
2175            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2176        } else {
2177          // Consume the '='.
2178          ConsumeToken();
2179
2180          OwningExprResult DefArgResult(ParseAssignmentExpression());
2181          if (DefArgResult.isInvalid()) {
2182            Actions.ActOnParamDefaultArgumentError(Param);
2183            SkipUntil(tok::comma, tok::r_paren, true, true);
2184          } else {
2185            // Inform the actions module about the default argument
2186            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2187                                              move(DefArgResult));
2188          }
2189        }
2190      }
2191
2192      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2193                                          ParmDecl.getIdentifierLoc(), Param,
2194                                          DefArgToks));
2195    }
2196
2197    // If the next token is a comma, consume it and keep reading arguments.
2198    if (Tok.isNot(tok::comma)) break;
2199
2200    // Consume the comma.
2201    ConsumeToken();
2202  }
2203
2204  // Leave prototype scope.
2205  PrototypeScope.Exit();
2206
2207  // If we have the closing ')', eat it.
2208  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2209
2210  DeclSpec DS;
2211  if (getLang().CPlusPlus) {
2212    // Parse cv-qualifier-seq[opt].
2213    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2214      if (!DS.getSourceRange().getEnd().isInvalid())
2215        Loc = DS.getSourceRange().getEnd();
2216
2217    // Parse exception-specification[opt].
2218    if (Tok.is(tok::kw_throw))
2219      ParseExceptionSpecification(Loc);
2220  }
2221
2222  // Remember that we parsed a function type, and remember the attributes.
2223  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2224                                             EllipsisLoc,
2225                                             &ParamInfo[0], ParamInfo.size(),
2226                                             DS.getTypeQualifiers(),
2227                                             LParenLoc, D),
2228                Loc);
2229}
2230
2231/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2232/// we found a K&R-style identifier list instead of a type argument list.  The
2233/// current token is known to be the first identifier in the list.
2234///
2235///       identifier-list: [C99 6.7.5]
2236///         identifier
2237///         identifier-list ',' identifier
2238///
2239void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2240                                                   Declarator &D) {
2241  // Build up an array of information about the parsed arguments.
2242  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2243  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2244
2245  // If there was no identifier specified for the declarator, either we are in
2246  // an abstract-declarator, or we are in a parameter declarator which was found
2247  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2248  // diagnose this.
2249  if (!D.getIdentifier())
2250    Diag(Tok, diag::ext_ident_list_in_param);
2251
2252  // Tok is known to be the first identifier in the list.  Remember this
2253  // identifier in ParamInfo.
2254  ParamsSoFar.insert(Tok.getIdentifierInfo());
2255  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2256                                                 Tok.getLocation(), 0));
2257
2258  ConsumeToken();  // eat the first identifier.
2259
2260  while (Tok.is(tok::comma)) {
2261    // Eat the comma.
2262    ConsumeToken();
2263
2264    // If this isn't an identifier, report the error and skip until ')'.
2265    if (Tok.isNot(tok::identifier)) {
2266      Diag(Tok, diag::err_expected_ident);
2267      SkipUntil(tok::r_paren);
2268      return;
2269    }
2270
2271    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2272
2273    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2274    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2275      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2276
2277    // Verify that the argument identifier has not already been mentioned.
2278    if (!ParamsSoFar.insert(ParmII)) {
2279      Diag(Tok, diag::err_param_redefinition) << ParmII;
2280    } else {
2281      // Remember this identifier in ParamInfo.
2282      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2283                                                     Tok.getLocation(), 0));
2284    }
2285
2286    // Eat the identifier.
2287    ConsumeToken();
2288  }
2289
2290  // If we have the closing ')', eat it and we're done.
2291  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2292
2293  // Remember that we parsed a function type, and remember the attributes.  This
2294  // function type is always a K&R style function type, which is not varargs and
2295  // has no prototype.
2296  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2297                                             SourceLocation(),
2298                                             &ParamInfo[0], ParamInfo.size(),
2299                                             /*TypeQuals*/0, LParenLoc, D),
2300                RLoc);
2301}
2302
2303/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2304/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2305/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2306/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2307/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2308void Parser::ParseBracketDeclarator(Declarator &D) {
2309  SourceLocation StartLoc = ConsumeBracket();
2310
2311  // C array syntax has many features, but by-far the most common is [] and [4].
2312  // This code does a fast path to handle some of the most obvious cases.
2313  if (Tok.getKind() == tok::r_square) {
2314    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2315    // Remember that we parsed the empty array type.
2316    OwningExprResult NumElements(Actions);
2317    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2318                  EndLoc);
2319    return;
2320  } else if (Tok.getKind() == tok::numeric_constant &&
2321             GetLookAheadToken(1).is(tok::r_square)) {
2322    // [4] is very common.  Parse the numeric constant expression.
2323    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2324    ConsumeToken();
2325
2326    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2327
2328    // If there was an error parsing the assignment-expression, recover.
2329    if (ExprRes.isInvalid())
2330      ExprRes.release();  // Deallocate expr, just use [].
2331
2332    // Remember that we parsed a array type, and remember its features.
2333    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2334                                            ExprRes.release(), StartLoc),
2335                  EndLoc);
2336    return;
2337  }
2338
2339  // If valid, this location is the position where we read the 'static' keyword.
2340  SourceLocation StaticLoc;
2341  if (Tok.is(tok::kw_static))
2342    StaticLoc = ConsumeToken();
2343
2344  // If there is a type-qualifier-list, read it now.
2345  // Type qualifiers in an array subscript are a C99 feature.
2346  DeclSpec DS;
2347  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2348
2349  // If we haven't already read 'static', check to see if there is one after the
2350  // type-qualifier-list.
2351  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2352    StaticLoc = ConsumeToken();
2353
2354  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2355  bool isStar = false;
2356  OwningExprResult NumElements(Actions);
2357
2358  // Handle the case where we have '[*]' as the array size.  However, a leading
2359  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2360  // the the token after the star is a ']'.  Since stars in arrays are
2361  // infrequent, use of lookahead is not costly here.
2362  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2363    ConsumeToken();  // Eat the '*'.
2364
2365    if (StaticLoc.isValid()) {
2366      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2367      StaticLoc = SourceLocation();  // Drop the static.
2368    }
2369    isStar = true;
2370  } else if (Tok.isNot(tok::r_square)) {
2371    // Note, in C89, this production uses the constant-expr production instead
2372    // of assignment-expr.  The only difference is that assignment-expr allows
2373    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2374    // are not i-c-e's, so we don't need to distinguish between the two here.
2375
2376    // Parse the assignment-expression now.
2377    NumElements = ParseAssignmentExpression();
2378  }
2379
2380  // If there was an error parsing the assignment-expression, recover.
2381  if (NumElements.isInvalid()) {
2382    // If the expression was invalid, skip it.
2383    SkipUntil(tok::r_square);
2384    return;
2385  }
2386
2387  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2388
2389  // Remember that we parsed a array type, and remember its features.
2390  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2391                                          StaticLoc.isValid(), isStar,
2392                                          NumElements.release(), StartLoc),
2393                EndLoc);
2394}
2395
2396/// [GNU]   typeof-specifier:
2397///           typeof ( expressions )
2398///           typeof ( type-name )
2399/// [GNU/C++] typeof unary-expression
2400///
2401void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2402  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2403  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2404  SourceLocation StartLoc = ConsumeToken();
2405
2406  if (Tok.isNot(tok::l_paren)) {
2407    if (!getLang().CPlusPlus) {
2408      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2409      return;
2410    }
2411
2412    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2413    if (Result.isInvalid()) {
2414      DS.SetTypeSpecError();
2415      return;
2416    }
2417
2418    const char *PrevSpec = 0;
2419    // Check for duplicate type specifiers.
2420    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2421                           Result.release()))
2422      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2423
2424    // FIXME: Not accurate, the range gets one token more than it should.
2425    DS.SetRangeEnd(Tok.getLocation());
2426    return;
2427  }
2428
2429  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2430
2431  if (isTypeIdInParens()) {
2432    Action::TypeResult Ty = ParseTypeName();
2433
2434    assert((Ty.isInvalid() || Ty.get()) &&
2435           "Parser::ParseTypeofSpecifier(): missing type");
2436
2437    if (Tok.isNot(tok::r_paren)) {
2438      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2439      return;
2440    }
2441    RParenLoc = ConsumeParen();
2442
2443    if (Ty.isInvalid())
2444      DS.SetTypeSpecError();
2445    else {
2446      const char *PrevSpec = 0;
2447      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2448      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2449                             Ty.get()))
2450        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2451    }
2452  } else { // we have an expression.
2453    OwningExprResult Result(ParseExpression());
2454
2455    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2456      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2457      DS.SetTypeSpecError();
2458      return;
2459    }
2460    RParenLoc = ConsumeParen();
2461    const char *PrevSpec = 0;
2462    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2463    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2464                           Result.release()))
2465      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2466  }
2467  DS.SetRangeEnd(RParenLoc);
2468}
2469
2470
2471