ParseDecl.cpp revision f780abc21c39cd4731b9e38f2d2d9f7d1510bd7b
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Parser::TypeTy *Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
41}
42
43/// ParseAttributes - Parse a non-empty attributes list.
44///
45/// [GNU] attributes:
46///         attribute
47///         attributes attribute
48///
49/// [GNU]  attribute:
50///          '__attribute__' '(' '(' attribute-list ')' ')'
51///
52/// [GNU]  attribute-list:
53///          attrib
54///          attribute_list ',' attrib
55///
56/// [GNU]  attrib:
57///          empty
58///          attrib-name
59///          attrib-name '(' identifier ')'
60///          attrib-name '(' identifier ',' nonempty-expr-list ')'
61///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
62///
63/// [GNU]  attrib-name:
64///          identifier
65///          typespec
66///          typequal
67///          storageclass
68///
69/// FIXME: The GCC grammar/code for this construct implies we need two
70/// token lookahead. Comment from gcc: "If they start with an identifier
71/// which is followed by a comma or close parenthesis, then the arguments
72/// start with that identifier; otherwise they are an expression list."
73///
74/// At the moment, I am not doing 2 token lookahead. I am also unaware of
75/// any attributes that don't work (based on my limited testing). Most
76/// attributes are very simple in practice. Until we find a bug, I don't see
77/// a pressing need to implement the 2 token lookahead.
78
79AttributeList *Parser::ParseAttributes() {
80  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
81
82  AttributeList *CurrAttr = 0;
83
84  while (Tok.is(tok::kw___attribute)) {
85    ConsumeToken();
86    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
87                         "attribute")) {
88      SkipUntil(tok::r_paren, true); // skip until ) or ;
89      return CurrAttr;
90    }
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
96    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
97           Tok.is(tok::comma)) {
98
99      if (Tok.is(tok::comma)) {
100        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
101        ConsumeToken();
102        continue;
103      }
104      // we have an identifier or declaration specifier (const, int, etc.)
105      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
106      SourceLocation AttrNameLoc = ConsumeToken();
107
108      // check if we have a "paramterized" attribute
109      if (Tok.is(tok::l_paren)) {
110        ConsumeParen(); // ignore the left paren loc for now
111
112        if (Tok.is(tok::identifier)) {
113          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
114          SourceLocation ParmLoc = ConsumeToken();
115
116          if (Tok.is(tok::r_paren)) {
117            // __attribute__(( mode(byte) ))
118            ConsumeParen(); // ignore the right paren loc for now
119            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
120                                         ParmName, ParmLoc, 0, 0, CurrAttr);
121          } else if (Tok.is(tok::comma)) {
122            ConsumeToken();
123            // __attribute__(( format(printf, 1, 2) ))
124            ExprVector ArgExprs(Actions);
125            bool ArgExprsOk = true;
126
127            // now parse the non-empty comma separated list of expressions
128            while (1) {
129              OwningExprResult ArgExpr(ParseAssignmentExpression());
130              if (ArgExpr.isInvalid()) {
131                ArgExprsOk = false;
132                SkipUntil(tok::r_paren);
133                break;
134              } else {
135                ArgExprs.push_back(ArgExpr.release());
136              }
137              if (Tok.isNot(tok::comma))
138                break;
139              ConsumeToken(); // Eat the comma, move to the next argument
140            }
141            if (ArgExprsOk && Tok.is(tok::r_paren)) {
142              ConsumeParen(); // ignore the right paren loc for now
143              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
144                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
145            }
146          }
147        } else { // not an identifier
148          // parse a possibly empty comma separated list of expressions
149          if (Tok.is(tok::r_paren)) {
150            // __attribute__(( nonnull() ))
151            ConsumeParen(); // ignore the right paren loc for now
152            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
153                                         0, SourceLocation(), 0, 0, CurrAttr);
154          } else {
155            // __attribute__(( aligned(16) ))
156            ExprVector ArgExprs(Actions);
157            bool ArgExprsOk = true;
158
159            // now parse the list of expressions
160            while (1) {
161              OwningExprResult ArgExpr(ParseAssignmentExpression());
162              if (ArgExpr.isInvalid()) {
163                ArgExprsOk = false;
164                SkipUntil(tok::r_paren);
165                break;
166              } else {
167                ArgExprs.push_back(ArgExpr.release());
168              }
169              if (Tok.isNot(tok::comma))
170                break;
171              ConsumeToken(); // Eat the comma, move to the next argument
172            }
173            // Match the ')'.
174            if (ArgExprsOk && Tok.is(tok::r_paren)) {
175              ConsumeParen(); // ignore the right paren loc for now
176              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
177                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
178                           CurrAttr);
179            }
180          }
181        }
182      } else {
183        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
184                                     0, SourceLocation(), 0, 0, CurrAttr);
185      }
186    }
187    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
188      SkipUntil(tok::r_paren, false);
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191  }
192  return CurrAttr;
193}
194
195/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
196/// routine is called to skip/ignore tokens that comprise the MS declspec.
197void Parser::FuzzyParseMicrosoftDeclSpec() {
198  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
199  ConsumeToken();
200  if (Tok.is(tok::l_paren)) {
201    unsigned short savedParenCount = ParenCount;
202    do {
203      ConsumeAnyToken();
204    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
205  }
206  return;
207}
208
209/// ParseDeclaration - Parse a full 'declaration', which consists of
210/// declaration-specifiers, some number of declarators, and a semicolon.
211/// 'Context' should be a Declarator::TheContext value.
212///
213///       declaration: [C99 6.7]
214///         block-declaration ->
215///           simple-declaration
216///           others                   [FIXME]
217/// [C++]   template-declaration
218/// [C++]   namespace-definition
219/// [C++]   using-directive
220/// [C++]   using-declaration [TODO]
221///         others... [FIXME]
222///
223Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
224  switch (Tok.getKind()) {
225  case tok::kw_export:
226  case tok::kw_template:
227    return ParseTemplateDeclaration(Context);
228  case tok::kw_namespace:
229    return ParseNamespace(Context);
230  case tok::kw_using:
231    return ParseUsingDirectiveOrDeclaration(Context);
232  default:
233    return ParseSimpleDeclaration(Context);
234  }
235}
236
237///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
238///         declaration-specifiers init-declarator-list[opt] ';'
239///[C90/C++]init-declarator-list ';'                             [TODO]
240/// [OMP]   threadprivate-directive                              [TODO]
241Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
242  // Parse the common declaration-specifiers piece.
243  DeclSpec DS;
244  ParseDeclarationSpecifiers(DS);
245
246  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
247  // declaration-specifiers init-declarator-list[opt] ';'
248  if (Tok.is(tok::semi)) {
249    ConsumeToken();
250    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
251  }
252
253  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
254  ParseDeclarator(DeclaratorInfo);
255
256  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
257}
258
259
260/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
261/// parsing 'declaration-specifiers declarator'.  This method is split out this
262/// way to handle the ambiguity between top-level function-definitions and
263/// declarations.
264///
265///       init-declarator-list: [C99 6.7]
266///         init-declarator
267///         init-declarator-list ',' init-declarator
268///       init-declarator: [C99 6.7]
269///         declarator
270///         declarator '=' initializer
271/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
272/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
273/// [C++]   declarator initializer[opt]
274///
275/// [C++] initializer:
276/// [C++]   '=' initializer-clause
277/// [C++]   '(' expression-list ')'
278///
279Parser::DeclTy *Parser::
280ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
281
282  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
283  // that they can be chained properly if the actions want this.
284  Parser::DeclTy *LastDeclInGroup = 0;
285
286  // At this point, we know that it is not a function definition.  Parse the
287  // rest of the init-declarator-list.
288  while (1) {
289    // If a simple-asm-expr is present, parse it.
290    if (Tok.is(tok::kw_asm)) {
291      OwningExprResult AsmLabel(ParseSimpleAsm());
292      if (AsmLabel.isInvalid()) {
293        SkipUntil(tok::semi);
294        return 0;
295      }
296
297      D.setAsmLabel(AsmLabel.release());
298    }
299
300    // If attributes are present, parse them.
301    if (Tok.is(tok::kw___attribute))
302      D.AddAttributes(ParseAttributes());
303
304    // Inform the current actions module that we just parsed this declarator.
305    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
306
307    // Parse declarator '=' initializer.
308    if (Tok.is(tok::equal)) {
309      ConsumeToken();
310      OwningExprResult Init(ParseInitializer());
311      if (Init.isInvalid()) {
312        SkipUntil(tok::semi);
313        return 0;
314      }
315      Actions.AddInitializerToDecl(LastDeclInGroup, move_convert(Init));
316    } else if (Tok.is(tok::l_paren)) {
317      // Parse C++ direct initializer: '(' expression-list ')'
318      SourceLocation LParenLoc = ConsumeParen();
319      ExprVector Exprs(Actions);
320      CommaLocsTy CommaLocs;
321
322      bool InvalidExpr = false;
323      if (ParseExpressionList(Exprs, CommaLocs)) {
324        SkipUntil(tok::r_paren);
325        InvalidExpr = true;
326      }
327      // Match the ')'.
328      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
329
330      if (!InvalidExpr) {
331        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
332               "Unexpected number of commas!");
333        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
334                                              Exprs.take(), Exprs.size(),
335                                              &CommaLocs[0], RParenLoc);
336      }
337    } else {
338      Actions.ActOnUninitializedDecl(LastDeclInGroup);
339    }
340
341    // If we don't have a comma, it is either the end of the list (a ';') or an
342    // error, bail out.
343    if (Tok.isNot(tok::comma))
344      break;
345
346    // Consume the comma.
347    ConsumeToken();
348
349    // Parse the next declarator.
350    D.clear();
351
352    // Accept attributes in an init-declarator.  In the first declarator in a
353    // declaration, these would be part of the declspec.  In subsequent
354    // declarators, they become part of the declarator itself, so that they
355    // don't apply to declarators after *this* one.  Examples:
356    //    short __attribute__((common)) var;    -> declspec
357    //    short var __attribute__((common));    -> declarator
358    //    short x, __attribute__((common)) var;    -> declarator
359    if (Tok.is(tok::kw___attribute))
360      D.AddAttributes(ParseAttributes());
361
362    ParseDeclarator(D);
363  }
364
365  if (Tok.is(tok::semi)) {
366    ConsumeToken();
367    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
368  }
369  // If this is an ObjC2 for-each loop, this is a successful declarator
370  // parse.  The syntax for these looks like:
371  // 'for' '(' declaration 'in' expr ')' statement
372  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
373    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
374  }
375  Diag(Tok, diag::err_parse_error);
376  // Skip to end of block or statement
377  SkipUntil(tok::r_brace, true, true);
378  if (Tok.is(tok::semi))
379    ConsumeToken();
380  return 0;
381}
382
383/// ParseSpecifierQualifierList
384///        specifier-qualifier-list:
385///          type-specifier specifier-qualifier-list[opt]
386///          type-qualifier specifier-qualifier-list[opt]
387/// [GNU]    attributes     specifier-qualifier-list[opt]
388///
389void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
390  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
391  /// parse declaration-specifiers and complain about extra stuff.
392  ParseDeclarationSpecifiers(DS);
393
394  // Validate declspec for type-name.
395  unsigned Specs = DS.getParsedSpecifiers();
396  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
397    Diag(Tok, diag::err_typename_requires_specqual);
398
399  // Issue diagnostic and remove storage class if present.
400  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
401    if (DS.getStorageClassSpecLoc().isValid())
402      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
403    else
404      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
405    DS.ClearStorageClassSpecs();
406  }
407
408  // Issue diagnostic and remove function specfier if present.
409  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
410    if (DS.isInlineSpecified())
411      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
412    if (DS.isVirtualSpecified())
413      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
414    if (DS.isExplicitSpecified())
415      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
416    DS.ClearFunctionSpecs();
417  }
418}
419
420/// ParseDeclarationSpecifiers
421///       declaration-specifiers: [C99 6.7]
422///         storage-class-specifier declaration-specifiers[opt]
423///         type-specifier declaration-specifiers[opt]
424/// [C99]   function-specifier declaration-specifiers[opt]
425/// [GNU]   attributes declaration-specifiers[opt]
426///
427///       storage-class-specifier: [C99 6.7.1]
428///         'typedef'
429///         'extern'
430///         'static'
431///         'auto'
432///         'register'
433/// [C++]   'mutable'
434/// [GNU]   '__thread'
435///       function-specifier: [C99 6.7.4]
436/// [C99]   'inline'
437/// [C++]   'virtual'
438/// [C++]   'explicit'
439///
440void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
441                                        TemplateParameterLists *TemplateParams)
442{
443  DS.SetRangeStart(Tok.getLocation());
444  while (1) {
445    int isInvalid = false;
446    const char *PrevSpec = 0;
447    SourceLocation Loc = Tok.getLocation();
448
449    // Only annotate C++ scope. Allow class-name as an identifier in case
450    // it's a constructor.
451    if (getLang().CPlusPlus)
452      TryAnnotateCXXScopeToken();
453
454    switch (Tok.getKind()) {
455    default:
456      // Try to parse a type-specifier; if we found one, continue. If it's not
457      // a type, this falls through.
458      if (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec, TemplateParams)) {
459        continue;
460      }
461
462    DoneWithDeclSpec:
463      // If this is not a declaration specifier token, we're done reading decl
464      // specifiers.  First verify that DeclSpec's are consistent.
465      DS.Finish(Diags, PP.getSourceManager(), getLang());
466      return;
467
468    case tok::annot_cxxscope: {
469      if (DS.hasTypeSpecifier())
470        goto DoneWithDeclSpec;
471
472      // We are looking for a qualified typename.
473      if (NextToken().isNot(tok::identifier))
474        goto DoneWithDeclSpec;
475
476      CXXScopeSpec SS;
477      SS.setScopeRep(Tok.getAnnotationValue());
478      SS.setRange(Tok.getAnnotationRange());
479
480      // If the next token is the name of the class type that the C++ scope
481      // denotes, followed by a '(', then this is a constructor declaration.
482      // We're done with the decl-specifiers.
483      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
484                                     CurScope, &SS) &&
485          GetLookAheadToken(2).is(tok::l_paren))
486        goto DoneWithDeclSpec;
487
488      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
489                                           CurScope, &SS);
490      if (TypeRep == 0)
491        goto DoneWithDeclSpec;
492
493      ConsumeToken(); // The C++ scope.
494
495      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
496                                     TypeRep);
497      if (isInvalid)
498        break;
499
500      DS.SetRangeEnd(Tok.getLocation());
501      ConsumeToken(); // The typename.
502
503      continue;
504    }
505
506      // typedef-name
507    case tok::identifier: {
508      // This identifier can only be a typedef name if we haven't already seen
509      // a type-specifier.  Without this check we misparse:
510      //  typedef int X; struct Y { short X; };  as 'short int'.
511      if (DS.hasTypeSpecifier())
512        goto DoneWithDeclSpec;
513
514      // It has to be available as a typedef too!
515      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
516      if (TypeRep == 0)
517        goto DoneWithDeclSpec;
518
519      // C++: If the identifier is actually the name of the class type
520      // being defined and the next token is a '(', then this is a
521      // constructor declaration. We're done with the decl-specifiers
522      // and will treat this token as an identifier.
523      if (getLang().CPlusPlus &&
524          CurScope->isCXXClassScope() &&
525          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
526          NextToken().getKind() == tok::l_paren)
527        goto DoneWithDeclSpec;
528
529      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
530                                     TypeRep);
531      if (isInvalid)
532        break;
533
534      DS.SetRangeEnd(Tok.getLocation());
535      ConsumeToken(); // The identifier
536
537      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
538      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
539      // Objective-C interface.  If we don't have Objective-C or a '<', this is
540      // just a normal reference to a typedef name.
541      if (!Tok.is(tok::less) || !getLang().ObjC1)
542        continue;
543
544      SourceLocation EndProtoLoc;
545      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
546      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
547      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
548
549      DS.SetRangeEnd(EndProtoLoc);
550
551      // Need to support trailing type qualifiers (e.g. "id<p> const").
552      // If a type specifier follows, it will be diagnosed elsewhere.
553      continue;
554    }
555    // GNU attributes support.
556    case tok::kw___attribute:
557      DS.AddAttributes(ParseAttributes());
558      continue;
559
560    // Microsoft declspec support.
561    case tok::kw___declspec:
562      if (!PP.getLangOptions().Microsoft)
563        goto DoneWithDeclSpec;
564      FuzzyParseMicrosoftDeclSpec();
565      continue;
566
567    // Microsoft single token adornments.
568    case tok::kw___forceinline:
569    case tok::kw___w64:
570    case tok::kw___cdecl:
571    case tok::kw___stdcall:
572    case tok::kw___fastcall:
573      if (!PP.getLangOptions().Microsoft)
574        goto DoneWithDeclSpec;
575      // Just ignore it.
576      break;
577
578    // storage-class-specifier
579    case tok::kw_typedef:
580      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
581      break;
582    case tok::kw_extern:
583      if (DS.isThreadSpecified())
584        Diag(Tok, diag::ext_thread_before) << "extern";
585      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
586      break;
587    case tok::kw___private_extern__:
588      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
589                                         PrevSpec);
590      break;
591    case tok::kw_static:
592      if (DS.isThreadSpecified())
593        Diag(Tok, diag::ext_thread_before) << "static";
594      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
595      break;
596    case tok::kw_auto:
597      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
598      break;
599    case tok::kw_register:
600      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
601      break;
602    case tok::kw_mutable:
603      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
604      break;
605    case tok::kw___thread:
606      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
607      break;
608
609      continue;
610
611    // function-specifier
612    case tok::kw_inline:
613      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
614      break;
615
616    case tok::kw_virtual:
617      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
618      break;
619
620    case tok::kw_explicit:
621      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
622      break;
623
624    case tok::less:
625      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
626      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
627      // but we support it.
628      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
629        goto DoneWithDeclSpec;
630
631      {
632        SourceLocation EndProtoLoc;
633        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
634        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
635        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
636        DS.SetRangeEnd(EndProtoLoc);
637
638        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
639          << SourceRange(Loc, EndProtoLoc);
640        // Need to support trailing type qualifiers (e.g. "id<p> const").
641        // If a type specifier follows, it will be diagnosed elsewhere.
642        continue;
643      }
644    }
645    // If the specifier combination wasn't legal, issue a diagnostic.
646    if (isInvalid) {
647      assert(PrevSpec && "Method did not return previous specifier!");
648      // Pick between error or extwarn.
649      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
650                                       : diag::ext_duplicate_declspec;
651      Diag(Tok, DiagID) << PrevSpec;
652    }
653    DS.SetRangeEnd(Tok.getLocation());
654    ConsumeToken();
655  }
656}
657
658/// MaybeParseTypeSpecifier - Try to parse a single type-specifier. We
659/// primarily follow the C++ grammar with additions for C99 and GNU,
660/// which together subsume the C grammar. Note that the C++
661/// type-specifier also includes the C type-qualifier (for const,
662/// volatile, and C99 restrict). Returns true if a type-specifier was
663/// found (and parsed), false otherwise.
664///
665///       type-specifier: [C++ 7.1.5]
666///         simple-type-specifier
667///         class-specifier
668///         enum-specifier
669///         elaborated-type-specifier  [TODO]
670///         cv-qualifier
671///
672///       cv-qualifier: [C++ 7.1.5.1]
673///         'const'
674///         'volatile'
675/// [C99]   'restrict'
676///
677///       simple-type-specifier: [ C++ 7.1.5.2]
678///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
679///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
680///         'char'
681///         'wchar_t'
682///         'bool'
683///         'short'
684///         'int'
685///         'long'
686///         'signed'
687///         'unsigned'
688///         'float'
689///         'double'
690///         'void'
691/// [C99]   '_Bool'
692/// [C99]   '_Complex'
693/// [C99]   '_Imaginary'  // Removed in TC2?
694/// [GNU]   '_Decimal32'
695/// [GNU]   '_Decimal64'
696/// [GNU]   '_Decimal128'
697/// [GNU]   typeof-specifier
698/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
699/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
700bool Parser::MaybeParseTypeSpecifier(DeclSpec &DS, int& isInvalid,
701                                     const char *&PrevSpec,
702                                     TemplateParameterLists *TemplateParams) {
703  // Annotate typenames and C++ scope specifiers.
704  TryAnnotateTypeOrScopeToken();
705
706  SourceLocation Loc = Tok.getLocation();
707
708  switch (Tok.getKind()) {
709  // simple-type-specifier:
710  case tok::annot_qualtypename: {
711    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
712                                   Tok.getAnnotationValue());
713    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
714    ConsumeToken(); // The typename
715
716    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
717    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
718    // Objective-C interface.  If we don't have Objective-C or a '<', this is
719    // just a normal reference to a typedef name.
720    if (!Tok.is(tok::less) || !getLang().ObjC1)
721      return true;
722
723    SourceLocation EndProtoLoc;
724    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
725    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
726    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
727
728    DS.SetRangeEnd(EndProtoLoc);
729    return true;
730  }
731
732  case tok::kw_short:
733    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
734    break;
735  case tok::kw_long:
736    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
737      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
738    else
739      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
740    break;
741  case tok::kw_signed:
742    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
743    break;
744  case tok::kw_unsigned:
745    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
746    break;
747  case tok::kw__Complex:
748    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
749    break;
750  case tok::kw__Imaginary:
751    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
752    break;
753  case tok::kw_void:
754    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
755    break;
756  case tok::kw_char:
757    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
758    break;
759  case tok::kw_int:
760    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
761    break;
762  case tok::kw_float:
763    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
764    break;
765  case tok::kw_double:
766    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
767    break;
768  case tok::kw_wchar_t:
769    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
770    break;
771  case tok::kw_bool:
772  case tok::kw__Bool:
773    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
774    break;
775  case tok::kw__Decimal32:
776    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
777    break;
778  case tok::kw__Decimal64:
779    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
780    break;
781  case tok::kw__Decimal128:
782    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
783    break;
784
785  // class-specifier:
786  case tok::kw_class:
787  case tok::kw_struct:
788  case tok::kw_union:
789    ParseClassSpecifier(DS, TemplateParams);
790    return true;
791
792  // enum-specifier:
793  case tok::kw_enum:
794    ParseEnumSpecifier(DS);
795    return true;
796
797  // cv-qualifier:
798  case tok::kw_const:
799    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
800                               getLang())*2;
801    break;
802  case tok::kw_volatile:
803    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
804                               getLang())*2;
805    break;
806  case tok::kw_restrict:
807    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
808                               getLang())*2;
809    break;
810
811  // GNU typeof support.
812  case tok::kw_typeof:
813    ParseTypeofSpecifier(DS);
814    return true;
815
816  case tok::kw___cdecl:
817  case tok::kw___stdcall:
818  case tok::kw___fastcall:
819    return PP.getLangOptions().Microsoft;
820
821  default:
822    // Not a type-specifier; do nothing.
823    return false;
824  }
825
826  // If the specifier combination wasn't legal, issue a diagnostic.
827  if (isInvalid) {
828    assert(PrevSpec && "Method did not return previous specifier!");
829    // Pick between error or extwarn.
830    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
831                                     : diag::ext_duplicate_declspec;
832    Diag(Tok, DiagID) << PrevSpec;
833  }
834  DS.SetRangeEnd(Tok.getLocation());
835  ConsumeToken(); // whatever we parsed above.
836  return true;
837}
838
839/// ParseStructDeclaration - Parse a struct declaration without the terminating
840/// semicolon.
841///
842///       struct-declaration:
843///         specifier-qualifier-list struct-declarator-list
844/// [GNU]   __extension__ struct-declaration
845/// [GNU]   specifier-qualifier-list
846///       struct-declarator-list:
847///         struct-declarator
848///         struct-declarator-list ',' struct-declarator
849/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
850///       struct-declarator:
851///         declarator
852/// [GNU]   declarator attributes[opt]
853///         declarator[opt] ':' constant-expression
854/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
855///
856void Parser::
857ParseStructDeclaration(DeclSpec &DS,
858                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
859  if (Tok.is(tok::kw___extension__)) {
860    // __extension__ silences extension warnings in the subexpression.
861    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
862    ConsumeToken();
863    return ParseStructDeclaration(DS, Fields);
864  }
865
866  // Parse the common specifier-qualifiers-list piece.
867  SourceLocation DSStart = Tok.getLocation();
868  ParseSpecifierQualifierList(DS);
869
870  // If there are no declarators, issue a warning.
871  if (Tok.is(tok::semi)) {
872    Diag(DSStart, diag::w_no_declarators);
873    return;
874  }
875
876  // Read struct-declarators until we find the semicolon.
877  Fields.push_back(FieldDeclarator(DS));
878  while (1) {
879    FieldDeclarator &DeclaratorInfo = Fields.back();
880
881    /// struct-declarator: declarator
882    /// struct-declarator: declarator[opt] ':' constant-expression
883    if (Tok.isNot(tok::colon))
884      ParseDeclarator(DeclaratorInfo.D);
885
886    if (Tok.is(tok::colon)) {
887      ConsumeToken();
888      OwningExprResult Res(ParseConstantExpression());
889      if (Res.isInvalid())
890        SkipUntil(tok::semi, true, true);
891      else
892        DeclaratorInfo.BitfieldSize = Res.release();
893    }
894
895    // If attributes exist after the declarator, parse them.
896    if (Tok.is(tok::kw___attribute))
897      DeclaratorInfo.D.AddAttributes(ParseAttributes());
898
899    // If we don't have a comma, it is either the end of the list (a ';')
900    // or an error, bail out.
901    if (Tok.isNot(tok::comma))
902      return;
903
904    // Consume the comma.
905    ConsumeToken();
906
907    // Parse the next declarator.
908    Fields.push_back(FieldDeclarator(DS));
909
910    // Attributes are only allowed on the second declarator.
911    if (Tok.is(tok::kw___attribute))
912      Fields.back().D.AddAttributes(ParseAttributes());
913  }
914}
915
916/// ParseStructUnionBody
917///       struct-contents:
918///         struct-declaration-list
919/// [EXT]   empty
920/// [GNU]   "struct-declaration-list" without terminatoring ';'
921///       struct-declaration-list:
922///         struct-declaration
923///         struct-declaration-list struct-declaration
924/// [OBC]   '@' 'defs' '(' class-name ')'
925///
926void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
927                                  unsigned TagType, DeclTy *TagDecl) {
928  SourceLocation LBraceLoc = ConsumeBrace();
929
930  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
931  // C++.
932  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
933    Diag(Tok, diag::ext_empty_struct_union_enum)
934      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
935
936  llvm::SmallVector<DeclTy*, 32> FieldDecls;
937  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
938
939  // While we still have something to read, read the declarations in the struct.
940  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
941    // Each iteration of this loop reads one struct-declaration.
942
943    // Check for extraneous top-level semicolon.
944    if (Tok.is(tok::semi)) {
945      Diag(Tok, diag::ext_extra_struct_semi);
946      ConsumeToken();
947      continue;
948    }
949
950    // Parse all the comma separated declarators.
951    DeclSpec DS;
952    FieldDeclarators.clear();
953    if (!Tok.is(tok::at)) {
954      ParseStructDeclaration(DS, FieldDeclarators);
955
956      // Convert them all to fields.
957      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
958        FieldDeclarator &FD = FieldDeclarators[i];
959        // Install the declarator into the current TagDecl.
960        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
961                                           DS.getSourceRange().getBegin(),
962                                           FD.D, FD.BitfieldSize);
963        FieldDecls.push_back(Field);
964      }
965    } else { // Handle @defs
966      ConsumeToken();
967      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
968        Diag(Tok, diag::err_unexpected_at);
969        SkipUntil(tok::semi, true, true);
970        continue;
971      }
972      ConsumeToken();
973      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
974      if (!Tok.is(tok::identifier)) {
975        Diag(Tok, diag::err_expected_ident);
976        SkipUntil(tok::semi, true, true);
977        continue;
978      }
979      llvm::SmallVector<DeclTy*, 16> Fields;
980      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
981                        Tok.getIdentifierInfo(), Fields);
982      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
983      ConsumeToken();
984      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
985    }
986
987    if (Tok.is(tok::semi)) {
988      ConsumeToken();
989    } else if (Tok.is(tok::r_brace)) {
990      Diag(Tok, diag::ext_expected_semi_decl_list);
991      break;
992    } else {
993      Diag(Tok, diag::err_expected_semi_decl_list);
994      // Skip to end of block or statement
995      SkipUntil(tok::r_brace, true, true);
996    }
997  }
998
999  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1000
1001  AttributeList *AttrList = 0;
1002  // If attributes exist after struct contents, parse them.
1003  if (Tok.is(tok::kw___attribute))
1004    AttrList = ParseAttributes();
1005
1006  Actions.ActOnFields(CurScope,
1007                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1008                      LBraceLoc, RBraceLoc,
1009                      AttrList);
1010}
1011
1012
1013/// ParseEnumSpecifier
1014///       enum-specifier: [C99 6.7.2.2]
1015///         'enum' identifier[opt] '{' enumerator-list '}'
1016///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1017/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1018///                                                 '}' attributes[opt]
1019///         'enum' identifier
1020/// [GNU]   'enum' attributes[opt] identifier
1021///
1022/// [C++] elaborated-type-specifier:
1023/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1024///
1025void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1026  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1027  SourceLocation StartLoc = ConsumeToken();
1028
1029  // Parse the tag portion of this.
1030
1031  AttributeList *Attr = 0;
1032  // If attributes exist after tag, parse them.
1033  if (Tok.is(tok::kw___attribute))
1034    Attr = ParseAttributes();
1035
1036  CXXScopeSpec SS;
1037  if (getLang().CPlusPlus && MaybeParseCXXScopeSpecifier(SS)) {
1038    if (Tok.isNot(tok::identifier)) {
1039      Diag(Tok, diag::err_expected_ident);
1040      if (Tok.isNot(tok::l_brace)) {
1041        // Has no name and is not a definition.
1042        // Skip the rest of this declarator, up until the comma or semicolon.
1043        SkipUntil(tok::comma, true);
1044        return;
1045      }
1046    }
1047  }
1048
1049  // Must have either 'enum name' or 'enum {...}'.
1050  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1051    Diag(Tok, diag::err_expected_ident_lbrace);
1052
1053    // Skip the rest of this declarator, up until the comma or semicolon.
1054    SkipUntil(tok::comma, true);
1055    return;
1056  }
1057
1058  // If an identifier is present, consume and remember it.
1059  IdentifierInfo *Name = 0;
1060  SourceLocation NameLoc;
1061  if (Tok.is(tok::identifier)) {
1062    Name = Tok.getIdentifierInfo();
1063    NameLoc = ConsumeToken();
1064  }
1065
1066  // There are three options here.  If we have 'enum foo;', then this is a
1067  // forward declaration.  If we have 'enum foo {...' then this is a
1068  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1069  //
1070  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1071  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1072  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1073  //
1074  Action::TagKind TK;
1075  if (Tok.is(tok::l_brace))
1076    TK = Action::TK_Definition;
1077  else if (Tok.is(tok::semi))
1078    TK = Action::TK_Declaration;
1079  else
1080    TK = Action::TK_Reference;
1081  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1082                                     SS, Name, NameLoc, Attr,
1083                                     Action::MultiTemplateParamsArg(Actions));
1084
1085  if (Tok.is(tok::l_brace))
1086    ParseEnumBody(StartLoc, TagDecl);
1087
1088  // TODO: semantic analysis on the declspec for enums.
1089  const char *PrevSpec = 0;
1090  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1091    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1092}
1093
1094/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1095///       enumerator-list:
1096///         enumerator
1097///         enumerator-list ',' enumerator
1098///       enumerator:
1099///         enumeration-constant
1100///         enumeration-constant '=' constant-expression
1101///       enumeration-constant:
1102///         identifier
1103///
1104void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1105  SourceLocation LBraceLoc = ConsumeBrace();
1106
1107  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1108  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1109    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1110
1111  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1112
1113  DeclTy *LastEnumConstDecl = 0;
1114
1115  // Parse the enumerator-list.
1116  while (Tok.is(tok::identifier)) {
1117    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1118    SourceLocation IdentLoc = ConsumeToken();
1119
1120    SourceLocation EqualLoc;
1121    OwningExprResult AssignedVal(Actions);
1122    if (Tok.is(tok::equal)) {
1123      EqualLoc = ConsumeToken();
1124      AssignedVal = ParseConstantExpression();
1125      if (AssignedVal.isInvalid())
1126        SkipUntil(tok::comma, tok::r_brace, true, true);
1127    }
1128
1129    // Install the enumerator constant into EnumDecl.
1130    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1131                                                      LastEnumConstDecl,
1132                                                      IdentLoc, Ident,
1133                                                      EqualLoc,
1134                                                      AssignedVal.release());
1135    EnumConstantDecls.push_back(EnumConstDecl);
1136    LastEnumConstDecl = EnumConstDecl;
1137
1138    if (Tok.isNot(tok::comma))
1139      break;
1140    SourceLocation CommaLoc = ConsumeToken();
1141
1142    if (Tok.isNot(tok::identifier) && !getLang().C99)
1143      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1144  }
1145
1146  // Eat the }.
1147  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1148
1149  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1150                        EnumConstantDecls.size());
1151
1152  DeclTy *AttrList = 0;
1153  // If attributes exist after the identifier list, parse them.
1154  if (Tok.is(tok::kw___attribute))
1155    AttrList = ParseAttributes(); // FIXME: where do they do?
1156}
1157
1158/// isTypeSpecifierQualifier - Return true if the current token could be the
1159/// start of a type-qualifier-list.
1160bool Parser::isTypeQualifier() const {
1161  switch (Tok.getKind()) {
1162  default: return false;
1163    // type-qualifier
1164  case tok::kw_const:
1165  case tok::kw_volatile:
1166  case tok::kw_restrict:
1167    return true;
1168  }
1169}
1170
1171/// isTypeSpecifierQualifier - Return true if the current token could be the
1172/// start of a specifier-qualifier-list.
1173bool Parser::isTypeSpecifierQualifier() {
1174  // Annotate typenames and C++ scope specifiers.
1175  TryAnnotateTypeOrScopeToken();
1176
1177  switch (Tok.getKind()) {
1178  default: return false;
1179    // GNU attributes support.
1180  case tok::kw___attribute:
1181    // GNU typeof support.
1182  case tok::kw_typeof:
1183
1184    // type-specifiers
1185  case tok::kw_short:
1186  case tok::kw_long:
1187  case tok::kw_signed:
1188  case tok::kw_unsigned:
1189  case tok::kw__Complex:
1190  case tok::kw__Imaginary:
1191  case tok::kw_void:
1192  case tok::kw_char:
1193  case tok::kw_wchar_t:
1194  case tok::kw_int:
1195  case tok::kw_float:
1196  case tok::kw_double:
1197  case tok::kw_bool:
1198  case tok::kw__Bool:
1199  case tok::kw__Decimal32:
1200  case tok::kw__Decimal64:
1201  case tok::kw__Decimal128:
1202
1203    // struct-or-union-specifier (C99) or class-specifier (C++)
1204  case tok::kw_class:
1205  case tok::kw_struct:
1206  case tok::kw_union:
1207    // enum-specifier
1208  case tok::kw_enum:
1209
1210    // type-qualifier
1211  case tok::kw_const:
1212  case tok::kw_volatile:
1213  case tok::kw_restrict:
1214
1215    // typedef-name
1216  case tok::annot_qualtypename:
1217    return true;
1218
1219    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1220  case tok::less:
1221    return getLang().ObjC1;
1222
1223  case tok::kw___cdecl:
1224  case tok::kw___stdcall:
1225  case tok::kw___fastcall:
1226    return PP.getLangOptions().Microsoft;
1227  }
1228}
1229
1230/// isDeclarationSpecifier() - Return true if the current token is part of a
1231/// declaration specifier.
1232bool Parser::isDeclarationSpecifier() {
1233  // Annotate typenames and C++ scope specifiers.
1234  TryAnnotateTypeOrScopeToken();
1235
1236  switch (Tok.getKind()) {
1237  default: return false;
1238    // storage-class-specifier
1239  case tok::kw_typedef:
1240  case tok::kw_extern:
1241  case tok::kw___private_extern__:
1242  case tok::kw_static:
1243  case tok::kw_auto:
1244  case tok::kw_register:
1245  case tok::kw___thread:
1246
1247    // type-specifiers
1248  case tok::kw_short:
1249  case tok::kw_long:
1250  case tok::kw_signed:
1251  case tok::kw_unsigned:
1252  case tok::kw__Complex:
1253  case tok::kw__Imaginary:
1254  case tok::kw_void:
1255  case tok::kw_char:
1256  case tok::kw_wchar_t:
1257  case tok::kw_int:
1258  case tok::kw_float:
1259  case tok::kw_double:
1260  case tok::kw_bool:
1261  case tok::kw__Bool:
1262  case tok::kw__Decimal32:
1263  case tok::kw__Decimal64:
1264  case tok::kw__Decimal128:
1265
1266    // struct-or-union-specifier (C99) or class-specifier (C++)
1267  case tok::kw_class:
1268  case tok::kw_struct:
1269  case tok::kw_union:
1270    // enum-specifier
1271  case tok::kw_enum:
1272
1273    // type-qualifier
1274  case tok::kw_const:
1275  case tok::kw_volatile:
1276  case tok::kw_restrict:
1277
1278    // function-specifier
1279  case tok::kw_inline:
1280  case tok::kw_virtual:
1281  case tok::kw_explicit:
1282
1283    // typedef-name
1284  case tok::annot_qualtypename:
1285
1286    // GNU typeof support.
1287  case tok::kw_typeof:
1288
1289    // GNU attributes.
1290  case tok::kw___attribute:
1291    return true;
1292
1293    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1294  case tok::less:
1295    return getLang().ObjC1;
1296
1297  case tok::kw___cdecl:
1298  case tok::kw___stdcall:
1299  case tok::kw___fastcall:
1300    return PP.getLangOptions().Microsoft;
1301  }
1302}
1303
1304
1305/// ParseTypeQualifierListOpt
1306///       type-qualifier-list: [C99 6.7.5]
1307///         type-qualifier
1308/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1309///         type-qualifier-list type-qualifier
1310/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1311///
1312void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1313  while (1) {
1314    int isInvalid = false;
1315    const char *PrevSpec = 0;
1316    SourceLocation Loc = Tok.getLocation();
1317
1318    switch (Tok.getKind()) {
1319    case tok::kw_const:
1320      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1321                                 getLang())*2;
1322      break;
1323    case tok::kw_volatile:
1324      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1325                                 getLang())*2;
1326      break;
1327    case tok::kw_restrict:
1328      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1329                                 getLang())*2;
1330      break;
1331    case tok::kw___ptr64:
1332    case tok::kw___cdecl:
1333    case tok::kw___stdcall:
1334    case tok::kw___fastcall:
1335      if (!PP.getLangOptions().Microsoft)
1336        goto DoneWithTypeQuals;
1337      // Just ignore it.
1338      break;
1339    case tok::kw___attribute:
1340      if (AttributesAllowed) {
1341        DS.AddAttributes(ParseAttributes());
1342        continue; // do *not* consume the next token!
1343      }
1344      // otherwise, FALL THROUGH!
1345    default:
1346      DoneWithTypeQuals:
1347      // If this is not a type-qualifier token, we're done reading type
1348      // qualifiers.  First verify that DeclSpec's are consistent.
1349      DS.Finish(Diags, PP.getSourceManager(), getLang());
1350      return;
1351    }
1352
1353    // If the specifier combination wasn't legal, issue a diagnostic.
1354    if (isInvalid) {
1355      assert(PrevSpec && "Method did not return previous specifier!");
1356      // Pick between error or extwarn.
1357      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1358                                      : diag::ext_duplicate_declspec;
1359      Diag(Tok, DiagID) << PrevSpec;
1360    }
1361    ConsumeToken();
1362  }
1363}
1364
1365
1366/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1367///
1368void Parser::ParseDeclarator(Declarator &D) {
1369  /// This implements the 'declarator' production in the C grammar, then checks
1370  /// for well-formedness and issues diagnostics.
1371  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1372}
1373
1374/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1375/// is parsed by the function passed to it. Pass null, and the direct-declarator
1376/// isn't parsed at all, making this function effectively parse the C++
1377/// ptr-operator production.
1378///
1379///       declarator: [C99 6.7.5]
1380///         pointer[opt] direct-declarator
1381/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1382/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1383///
1384///       pointer: [C99 6.7.5]
1385///         '*' type-qualifier-list[opt]
1386///         '*' type-qualifier-list[opt] pointer
1387///
1388///       ptr-operator:
1389///         '*' cv-qualifier-seq[opt]
1390///         '&'
1391/// [GNU]   '&' restrict[opt] attributes[opt]
1392///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1393void Parser::ParseDeclaratorInternal(Declarator &D,
1394                                     DirectDeclParseFunction DirectDeclParser) {
1395  tok::TokenKind Kind = Tok.getKind();
1396
1397  // Not a pointer, C++ reference, or block.
1398  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1399      (Kind != tok::caret || !getLang().Blocks)) {
1400    if (DirectDeclParser)
1401      (this->*DirectDeclParser)(D);
1402    return;
1403  }
1404
1405  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1406  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1407
1408  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1409    // Is a pointer.
1410    DeclSpec DS;
1411
1412    ParseTypeQualifierListOpt(DS);
1413
1414    // Recursively parse the declarator.
1415    ParseDeclaratorInternal(D, DirectDeclParser);
1416    if (Kind == tok::star)
1417      // Remember that we parsed a pointer type, and remember the type-quals.
1418      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1419                                                DS.TakeAttributes()));
1420    else
1421      // Remember that we parsed a Block type, and remember the type-quals.
1422      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1423                                                     Loc));
1424  } else {
1425    // Is a reference
1426    DeclSpec DS;
1427
1428    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1429    // cv-qualifiers are introduced through the use of a typedef or of a
1430    // template type argument, in which case the cv-qualifiers are ignored.
1431    //
1432    // [GNU] Retricted references are allowed.
1433    // [GNU] Attributes on references are allowed.
1434    ParseTypeQualifierListOpt(DS);
1435
1436    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1437      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1438        Diag(DS.getConstSpecLoc(),
1439             diag::err_invalid_reference_qualifier_application) << "const";
1440      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1441        Diag(DS.getVolatileSpecLoc(),
1442             diag::err_invalid_reference_qualifier_application) << "volatile";
1443    }
1444
1445    // Recursively parse the declarator.
1446    ParseDeclaratorInternal(D, DirectDeclParser);
1447
1448    if (D.getNumTypeObjects() > 0) {
1449      // C++ [dcl.ref]p4: There shall be no references to references.
1450      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1451      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1452        if (const IdentifierInfo *II = D.getIdentifier())
1453          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1454           << II;
1455        else
1456          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1457            << "type name";
1458
1459        // Once we've complained about the reference-to-reference, we
1460        // can go ahead and build the (technically ill-formed)
1461        // declarator: reference collapsing will take care of it.
1462      }
1463    }
1464
1465    // Remember that we parsed a reference type. It doesn't have type-quals.
1466    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1467                                                DS.TakeAttributes()));
1468  }
1469}
1470
1471/// ParseDirectDeclarator
1472///       direct-declarator: [C99 6.7.5]
1473/// [C99]   identifier
1474///         '(' declarator ')'
1475/// [GNU]   '(' attributes declarator ')'
1476/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1477/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1478/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1479/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1480/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1481///         direct-declarator '(' parameter-type-list ')'
1482///         direct-declarator '(' identifier-list[opt] ')'
1483/// [GNU]   direct-declarator '(' parameter-forward-declarations
1484///                    parameter-type-list[opt] ')'
1485/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1486///                    cv-qualifier-seq[opt] exception-specification[opt]
1487/// [C++]   declarator-id
1488///
1489///       declarator-id: [C++ 8]
1490///         id-expression
1491///         '::'[opt] nested-name-specifier[opt] type-name
1492///
1493///       id-expression: [C++ 5.1]
1494///         unqualified-id
1495///         qualified-id            [TODO]
1496///
1497///       unqualified-id: [C++ 5.1]
1498///         identifier
1499///         operator-function-id
1500///         conversion-function-id  [TODO]
1501///          '~' class-name
1502///         template-id             [TODO]
1503///
1504void Parser::ParseDirectDeclarator(Declarator &D) {
1505  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1506
1507  if (getLang().CPlusPlus) {
1508    if (D.mayHaveIdentifier()) {
1509      bool afterCXXScope = MaybeParseCXXScopeSpecifier(D.getCXXScopeSpec());
1510      if (afterCXXScope) {
1511        // Change the declaration context for name lookup, until this function
1512        // is exited (and the declarator has been parsed).
1513        DeclScopeObj.EnterDeclaratorScope();
1514      }
1515
1516      if (Tok.is(tok::identifier)) {
1517        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1518
1519        // If this identifier is followed by a '<', we may have a template-id.
1520        DeclTy *Template;
1521        if (NextToken().is(tok::less) &&
1522            (Template = Actions.isTemplateName(*Tok.getIdentifierInfo(),
1523                                               CurScope))) {
1524          IdentifierInfo *II = Tok.getIdentifierInfo();
1525          AnnotateTemplateIdToken(Template, 0);
1526          // FIXME: Set the declarator to a template-id. How? I don't
1527          // know... for now, just use the identifier.
1528          D.SetIdentifier(II, Tok.getLocation());
1529        }
1530        // If this identifier is the name of the current class, it's a
1531        // constructor name.
1532        else if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1533          D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(),
1534                                              CurScope),
1535                           Tok.getLocation());
1536        // This is a normal identifier.
1537        else
1538          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1539        ConsumeToken();
1540        goto PastIdentifier;
1541      } else if (Tok.is(tok::kw_operator)) {
1542        SourceLocation OperatorLoc = Tok.getLocation();
1543
1544        // First try the name of an overloaded operator
1545        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1546          D.setOverloadedOperator(Op, OperatorLoc);
1547        } else {
1548          // This must be a conversion function (C++ [class.conv.fct]).
1549          if (TypeTy *ConvType = ParseConversionFunctionId())
1550            D.setConversionFunction(ConvType, OperatorLoc);
1551          else
1552            D.SetIdentifier(0, Tok.getLocation());
1553        }
1554        goto PastIdentifier;
1555      } else if (Tok.is(tok::tilde)) {
1556        // This should be a C++ destructor.
1557        SourceLocation TildeLoc = ConsumeToken();
1558        if (Tok.is(tok::identifier)) {
1559          if (TypeTy *Type = ParseClassName())
1560            D.setDestructor(Type, TildeLoc);
1561          else
1562            D.SetIdentifier(0, TildeLoc);
1563        } else {
1564          Diag(Tok, diag::err_expected_class_name);
1565          D.SetIdentifier(0, TildeLoc);
1566        }
1567        goto PastIdentifier;
1568      }
1569
1570      // If we reached this point, token is not identifier and not '~'.
1571
1572      if (afterCXXScope) {
1573        Diag(Tok, diag::err_expected_unqualified_id);
1574        D.SetIdentifier(0, Tok.getLocation());
1575        D.setInvalidType(true);
1576        goto PastIdentifier;
1577      }
1578    }
1579  }
1580
1581  // If we reached this point, we are either in C/ObjC or the token didn't
1582  // satisfy any of the C++-specific checks.
1583
1584  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1585    assert(!getLang().CPlusPlus &&
1586           "There's a C++-specific check for tok::identifier above");
1587    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1588    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1589    ConsumeToken();
1590  } else if (Tok.is(tok::l_paren)) {
1591    // direct-declarator: '(' declarator ')'
1592    // direct-declarator: '(' attributes declarator ')'
1593    // Example: 'char (*X)'   or 'int (*XX)(void)'
1594    ParseParenDeclarator(D);
1595  } else if (D.mayOmitIdentifier()) {
1596    // This could be something simple like "int" (in which case the declarator
1597    // portion is empty), if an abstract-declarator is allowed.
1598    D.SetIdentifier(0, Tok.getLocation());
1599  } else {
1600    if (getLang().CPlusPlus)
1601      Diag(Tok, diag::err_expected_unqualified_id);
1602    else
1603      Diag(Tok, diag::err_expected_ident_lparen);
1604    D.SetIdentifier(0, Tok.getLocation());
1605    D.setInvalidType(true);
1606  }
1607
1608 PastIdentifier:
1609  assert(D.isPastIdentifier() &&
1610         "Haven't past the location of the identifier yet?");
1611
1612  while (1) {
1613    if (Tok.is(tok::l_paren)) {
1614      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1615      // In such a case, check if we actually have a function declarator; if it
1616      // is not, the declarator has been fully parsed.
1617      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1618        // When not in file scope, warn for ambiguous function declarators, just
1619        // in case the author intended it as a variable definition.
1620        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1621        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1622          break;
1623      }
1624      ParseFunctionDeclarator(ConsumeParen(), D);
1625    } else if (Tok.is(tok::l_square)) {
1626      ParseBracketDeclarator(D);
1627    } else {
1628      break;
1629    }
1630  }
1631}
1632
1633/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1634/// only called before the identifier, so these are most likely just grouping
1635/// parens for precedence.  If we find that these are actually function
1636/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1637///
1638///       direct-declarator:
1639///         '(' declarator ')'
1640/// [GNU]   '(' attributes declarator ')'
1641///         direct-declarator '(' parameter-type-list ')'
1642///         direct-declarator '(' identifier-list[opt] ')'
1643/// [GNU]   direct-declarator '(' parameter-forward-declarations
1644///                    parameter-type-list[opt] ')'
1645///
1646void Parser::ParseParenDeclarator(Declarator &D) {
1647  SourceLocation StartLoc = ConsumeParen();
1648  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1649
1650  // Eat any attributes before we look at whether this is a grouping or function
1651  // declarator paren.  If this is a grouping paren, the attribute applies to
1652  // the type being built up, for example:
1653  //     int (__attribute__(()) *x)(long y)
1654  // If this ends up not being a grouping paren, the attribute applies to the
1655  // first argument, for example:
1656  //     int (__attribute__(()) int x)
1657  // In either case, we need to eat any attributes to be able to determine what
1658  // sort of paren this is.
1659  //
1660  AttributeList *AttrList = 0;
1661  bool RequiresArg = false;
1662  if (Tok.is(tok::kw___attribute)) {
1663    AttrList = ParseAttributes();
1664
1665    // We require that the argument list (if this is a non-grouping paren) be
1666    // present even if the attribute list was empty.
1667    RequiresArg = true;
1668  }
1669  // Eat any Microsoft extensions.
1670  if ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1671      (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1672    ConsumeToken();
1673
1674  // If we haven't past the identifier yet (or where the identifier would be
1675  // stored, if this is an abstract declarator), then this is probably just
1676  // grouping parens. However, if this could be an abstract-declarator, then
1677  // this could also be the start of function arguments (consider 'void()').
1678  bool isGrouping;
1679
1680  if (!D.mayOmitIdentifier()) {
1681    // If this can't be an abstract-declarator, this *must* be a grouping
1682    // paren, because we haven't seen the identifier yet.
1683    isGrouping = true;
1684  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1685             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1686             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1687    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1688    // considered to be a type, not a K&R identifier-list.
1689    isGrouping = false;
1690  } else {
1691    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1692    isGrouping = true;
1693  }
1694
1695  // If this is a grouping paren, handle:
1696  // direct-declarator: '(' declarator ')'
1697  // direct-declarator: '(' attributes declarator ')'
1698  if (isGrouping) {
1699    bool hadGroupingParens = D.hasGroupingParens();
1700    D.setGroupingParens(true);
1701    if (AttrList)
1702      D.AddAttributes(AttrList);
1703
1704    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1705    // Match the ')'.
1706    MatchRHSPunctuation(tok::r_paren, StartLoc);
1707
1708    D.setGroupingParens(hadGroupingParens);
1709    return;
1710  }
1711
1712  // Okay, if this wasn't a grouping paren, it must be the start of a function
1713  // argument list.  Recognize that this declarator will never have an
1714  // identifier (and remember where it would have been), then call into
1715  // ParseFunctionDeclarator to handle of argument list.
1716  D.SetIdentifier(0, Tok.getLocation());
1717
1718  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1719}
1720
1721/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1722/// declarator D up to a paren, which indicates that we are parsing function
1723/// arguments.
1724///
1725/// If AttrList is non-null, then the caller parsed those arguments immediately
1726/// after the open paren - they should be considered to be the first argument of
1727/// a parameter.  If RequiresArg is true, then the first argument of the
1728/// function is required to be present and required to not be an identifier
1729/// list.
1730///
1731/// This method also handles this portion of the grammar:
1732///       parameter-type-list: [C99 6.7.5]
1733///         parameter-list
1734///         parameter-list ',' '...'
1735///
1736///       parameter-list: [C99 6.7.5]
1737///         parameter-declaration
1738///         parameter-list ',' parameter-declaration
1739///
1740///       parameter-declaration: [C99 6.7.5]
1741///         declaration-specifiers declarator
1742/// [C++]   declaration-specifiers declarator '=' assignment-expression
1743/// [GNU]   declaration-specifiers declarator attributes
1744///         declaration-specifiers abstract-declarator[opt]
1745/// [C++]   declaration-specifiers abstract-declarator[opt]
1746///           '=' assignment-expression
1747/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1748///
1749/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1750/// and "exception-specification[opt]"(TODO).
1751///
1752void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1753                                     AttributeList *AttrList,
1754                                     bool RequiresArg) {
1755  // lparen is already consumed!
1756  assert(D.isPastIdentifier() && "Should not call before identifier!");
1757
1758  // This parameter list may be empty.
1759  if (Tok.is(tok::r_paren)) {
1760    if (RequiresArg) {
1761      Diag(Tok, diag::err_argument_required_after_attribute);
1762      delete AttrList;
1763    }
1764
1765    ConsumeParen();  // Eat the closing ')'.
1766
1767    // cv-qualifier-seq[opt].
1768    DeclSpec DS;
1769    if (getLang().CPlusPlus) {
1770      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1771
1772      // Parse exception-specification[opt].
1773      if (Tok.is(tok::kw_throw))
1774        ParseExceptionSpecification();
1775    }
1776
1777    // Remember that we parsed a function type, and remember the attributes.
1778    // int() -> no prototype, no '...'.
1779    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1780                                               /*variadic*/ false,
1781                                               /*arglist*/ 0, 0,
1782                                               DS.getTypeQualifiers(),
1783                                               LParenLoc));
1784    return;
1785  }
1786
1787  // Alternatively, this parameter list may be an identifier list form for a
1788  // K&R-style function:  void foo(a,b,c)
1789  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1790      // K&R identifier lists can't have typedefs as identifiers, per
1791      // C99 6.7.5.3p11.
1792      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1793    if (RequiresArg) {
1794      Diag(Tok, diag::err_argument_required_after_attribute);
1795      delete AttrList;
1796    }
1797
1798    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1799    // normal declarators, not for abstract-declarators.
1800    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1801  }
1802
1803  // Finally, a normal, non-empty parameter type list.
1804
1805  // Build up an array of information about the parsed arguments.
1806  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1807
1808  // Enter function-declaration scope, limiting any declarators to the
1809  // function prototype scope, including parameter declarators.
1810  ParseScope PrototypeScope(this, Scope::FnScope|Scope::DeclScope);
1811
1812  bool IsVariadic = false;
1813  while (1) {
1814    if (Tok.is(tok::ellipsis)) {
1815      IsVariadic = true;
1816
1817      // Check to see if this is "void(...)" which is not allowed.
1818      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1819        // Otherwise, parse parameter type list.  If it starts with an
1820        // ellipsis,  diagnose the malformed function.
1821        Diag(Tok, diag::err_ellipsis_first_arg);
1822        IsVariadic = false;       // Treat this like 'void()'.
1823      }
1824
1825      ConsumeToken();     // Consume the ellipsis.
1826      break;
1827    }
1828
1829    SourceLocation DSStart = Tok.getLocation();
1830
1831    // Parse the declaration-specifiers.
1832    DeclSpec DS;
1833
1834    // If the caller parsed attributes for the first argument, add them now.
1835    if (AttrList) {
1836      DS.AddAttributes(AttrList);
1837      AttrList = 0;  // Only apply the attributes to the first parameter.
1838    }
1839    ParseDeclarationSpecifiers(DS);
1840
1841    // Parse the declarator.  This is "PrototypeContext", because we must
1842    // accept either 'declarator' or 'abstract-declarator' here.
1843    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1844    ParseDeclarator(ParmDecl);
1845
1846    // Parse GNU attributes, if present.
1847    if (Tok.is(tok::kw___attribute))
1848      ParmDecl.AddAttributes(ParseAttributes());
1849
1850    // Remember this parsed parameter in ParamInfo.
1851    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1852
1853    // DefArgToks is used when the parsing of default arguments needs
1854    // to be delayed.
1855    CachedTokens *DefArgToks = 0;
1856
1857    // If no parameter was specified, verify that *something* was specified,
1858    // otherwise we have a missing type and identifier.
1859    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1860        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1861      // Completely missing, emit error.
1862      Diag(DSStart, diag::err_missing_param);
1863    } else {
1864      // Otherwise, we have something.  Add it and let semantic analysis try
1865      // to grok it and add the result to the ParamInfo we are building.
1866
1867      // Inform the actions module about the parameter declarator, so it gets
1868      // added to the current scope.
1869      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1870
1871      // Parse the default argument, if any. We parse the default
1872      // arguments in all dialects; the semantic analysis in
1873      // ActOnParamDefaultArgument will reject the default argument in
1874      // C.
1875      if (Tok.is(tok::equal)) {
1876        SourceLocation EqualLoc = Tok.getLocation();
1877
1878        // Parse the default argument
1879        if (D.getContext() == Declarator::MemberContext) {
1880          // If we're inside a class definition, cache the tokens
1881          // corresponding to the default argument. We'll actually parse
1882          // them when we see the end of the class definition.
1883          // FIXME: Templates will require something similar.
1884          // FIXME: Can we use a smart pointer for Toks?
1885          DefArgToks = new CachedTokens;
1886
1887          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
1888                                    tok::semi, false)) {
1889            delete DefArgToks;
1890            DefArgToks = 0;
1891            Actions.ActOnParamDefaultArgumentError(Param);
1892          } else
1893            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
1894        } else {
1895          // Consume the '='.
1896          ConsumeToken();
1897
1898          OwningExprResult DefArgResult(ParseAssignmentExpression());
1899          if (DefArgResult.isInvalid()) {
1900            Actions.ActOnParamDefaultArgumentError(Param);
1901            SkipUntil(tok::comma, tok::r_paren, true, true);
1902          } else {
1903            // Inform the actions module about the default argument
1904            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
1905                                              DefArgResult.release());
1906          }
1907        }
1908      }
1909
1910      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1911                                          ParmDecl.getIdentifierLoc(), Param,
1912                                          DefArgToks));
1913    }
1914
1915    // If the next token is a comma, consume it and keep reading arguments.
1916    if (Tok.isNot(tok::comma)) break;
1917
1918    // Consume the comma.
1919    ConsumeToken();
1920  }
1921
1922  // Leave prototype scope.
1923  PrototypeScope.Exit();
1924
1925  // If we have the closing ')', eat it.
1926  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1927
1928  DeclSpec DS;
1929  if (getLang().CPlusPlus) {
1930    // Parse cv-qualifier-seq[opt].
1931    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1932
1933    // Parse exception-specification[opt].
1934    if (Tok.is(tok::kw_throw))
1935      ParseExceptionSpecification();
1936  }
1937
1938  // Remember that we parsed a function type, and remember the attributes.
1939  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
1940                                             &ParamInfo[0], ParamInfo.size(),
1941                                             DS.getTypeQualifiers(),
1942                                             LParenLoc));
1943}
1944
1945/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
1946/// we found a K&R-style identifier list instead of a type argument list.  The
1947/// current token is known to be the first identifier in the list.
1948///
1949///       identifier-list: [C99 6.7.5]
1950///         identifier
1951///         identifier-list ',' identifier
1952///
1953void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
1954                                                   Declarator &D) {
1955  // Build up an array of information about the parsed arguments.
1956  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1957  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
1958
1959  // If there was no identifier specified for the declarator, either we are in
1960  // an abstract-declarator, or we are in a parameter declarator which was found
1961  // to be abstract.  In abstract-declarators, identifier lists are not valid:
1962  // diagnose this.
1963  if (!D.getIdentifier())
1964    Diag(Tok, diag::ext_ident_list_in_param);
1965
1966  // Tok is known to be the first identifier in the list.  Remember this
1967  // identifier in ParamInfo.
1968  ParamsSoFar.insert(Tok.getIdentifierInfo());
1969  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
1970                                                 Tok.getLocation(), 0));
1971
1972  ConsumeToken();  // eat the first identifier.
1973
1974  while (Tok.is(tok::comma)) {
1975    // Eat the comma.
1976    ConsumeToken();
1977
1978    // If this isn't an identifier, report the error and skip until ')'.
1979    if (Tok.isNot(tok::identifier)) {
1980      Diag(Tok, diag::err_expected_ident);
1981      SkipUntil(tok::r_paren);
1982      return;
1983    }
1984
1985    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
1986
1987    // Reject 'typedef int y; int test(x, y)', but continue parsing.
1988    if (Actions.isTypeName(*ParmII, CurScope))
1989      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
1990
1991    // Verify that the argument identifier has not already been mentioned.
1992    if (!ParamsSoFar.insert(ParmII)) {
1993      Diag(Tok, diag::err_param_redefinition) << ParmII;
1994    } else {
1995      // Remember this identifier in ParamInfo.
1996      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1997                                                     Tok.getLocation(), 0));
1998    }
1999
2000    // Eat the identifier.
2001    ConsumeToken();
2002  }
2003
2004  // Remember that we parsed a function type, and remember the attributes.  This
2005  // function type is always a K&R style function type, which is not varargs and
2006  // has no prototype.
2007  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2008                                             &ParamInfo[0], ParamInfo.size(),
2009                                             /*TypeQuals*/0, LParenLoc));
2010
2011  // If we have the closing ')', eat it and we're done.
2012  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2013}
2014
2015/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2016/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2017/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2018/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2019/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2020void Parser::ParseBracketDeclarator(Declarator &D) {
2021  SourceLocation StartLoc = ConsumeBracket();
2022
2023  // C array syntax has many features, but by-far the most common is [] and [4].
2024  // This code does a fast path to handle some of the most obvious cases.
2025  if (Tok.getKind() == tok::r_square) {
2026    MatchRHSPunctuation(tok::r_square, StartLoc);
2027    // Remember that we parsed the empty array type.
2028    OwningExprResult NumElements(Actions);
2029    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc));
2030    return;
2031  } else if (Tok.getKind() == tok::numeric_constant &&
2032             GetLookAheadToken(1).is(tok::r_square)) {
2033    // [4] is very common.  Parse the numeric constant expression.
2034    OwningExprResult ExprRes(Actions, Actions.ActOnNumericConstant(Tok));
2035    ConsumeToken();
2036
2037    MatchRHSPunctuation(tok::r_square, StartLoc);
2038
2039    // If there was an error parsing the assignment-expression, recover.
2040    if (ExprRes.isInvalid())
2041      ExprRes.release();  // Deallocate expr, just use [].
2042
2043    // Remember that we parsed a array type, and remember its features.
2044    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2045                                            ExprRes.release(), StartLoc));
2046    return;
2047  }
2048
2049  // If valid, this location is the position where we read the 'static' keyword.
2050  SourceLocation StaticLoc;
2051  if (Tok.is(tok::kw_static))
2052    StaticLoc = ConsumeToken();
2053
2054  // If there is a type-qualifier-list, read it now.
2055  // Type qualifiers in an array subscript are a C99 feature.
2056  DeclSpec DS;
2057  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2058
2059  // If we haven't already read 'static', check to see if there is one after the
2060  // type-qualifier-list.
2061  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2062    StaticLoc = ConsumeToken();
2063
2064  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2065  bool isStar = false;
2066  OwningExprResult NumElements(Actions);
2067
2068  // Handle the case where we have '[*]' as the array size.  However, a leading
2069  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2070  // the the token after the star is a ']'.  Since stars in arrays are
2071  // infrequent, use of lookahead is not costly here.
2072  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2073    ConsumeToken();  // Eat the '*'.
2074
2075    if (StaticLoc.isValid()) {
2076      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2077      StaticLoc = SourceLocation();  // Drop the static.
2078    }
2079    isStar = true;
2080  } else if (Tok.isNot(tok::r_square)) {
2081    // Note, in C89, this production uses the constant-expr production instead
2082    // of assignment-expr.  The only difference is that assignment-expr allows
2083    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2084    // are not i-c-e's, so we don't need to distinguish between the two here.
2085
2086    // Parse the assignment-expression now.
2087    NumElements = ParseAssignmentExpression();
2088  }
2089
2090  // If there was an error parsing the assignment-expression, recover.
2091  if (NumElements.isInvalid()) {
2092    // If the expression was invalid, skip it.
2093    SkipUntil(tok::r_square);
2094    return;
2095  }
2096
2097  MatchRHSPunctuation(tok::r_square, StartLoc);
2098
2099  // Remember that we parsed a array type, and remember its features.
2100  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2101                                          StaticLoc.isValid(), isStar,
2102                                          NumElements.release(), StartLoc));
2103}
2104
2105/// [GNU]   typeof-specifier:
2106///           typeof ( expressions )
2107///           typeof ( type-name )
2108/// [GNU/C++] typeof unary-expression
2109///
2110void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2111  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2112  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2113  SourceLocation StartLoc = ConsumeToken();
2114
2115  if (Tok.isNot(tok::l_paren)) {
2116    if (!getLang().CPlusPlus) {
2117      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2118      return;
2119    }
2120
2121    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2122    if (Result.isInvalid())
2123      return;
2124
2125    const char *PrevSpec = 0;
2126    // Check for duplicate type specifiers.
2127    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2128                           Result.release()))
2129      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2130
2131    // FIXME: Not accurate, the range gets one token more than it should.
2132    DS.SetRangeEnd(Tok.getLocation());
2133    return;
2134  }
2135
2136  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2137
2138  if (isTypeIdInParens()) {
2139    TypeTy *Ty = ParseTypeName();
2140
2141    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
2142
2143    if (Tok.isNot(tok::r_paren)) {
2144      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2145      return;
2146    }
2147    RParenLoc = ConsumeParen();
2148    const char *PrevSpec = 0;
2149    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2150    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
2151      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2152  } else { // we have an expression.
2153    OwningExprResult Result(ParseExpression());
2154
2155    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2156      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2157      return;
2158    }
2159    RParenLoc = ConsumeParen();
2160    const char *PrevSpec = 0;
2161    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2162    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2163                           Result.release()))
2164      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2165  }
2166  DS.SetRangeEnd(RParenLoc);
2167}
2168
2169
2170