ParseExprCXX.cpp revision 3fe198bf0d6118c7b080c17c3bb28d7c84e458b9
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ParsedTemplate.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27  switch (Kind) {
28    case tok::kw_template:         return 0;
29    case tok::kw_const_cast:       return 1;
30    case tok::kw_dynamic_cast:     return 2;
31    case tok::kw_reinterpret_cast: return 3;
32    case tok::kw_static_cast:      return 4;
33    default:
34      llvm_unreachable("Unknown type for digraph error message.");
35  }
36}
37
38// Are the two tokens adjacent in the same source file?
39bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
40  SourceManager &SM = PP.getSourceManager();
41  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44}
45
46// Suggest fixit for "<::" after a cast.
47static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49  // Pull '<:' and ':' off token stream.
50  if (!AtDigraph)
51    PP.Lex(DigraphToken);
52  PP.Lex(ColonToken);
53
54  SourceRange Range;
55  Range.setBegin(DigraphToken.getLocation());
56  Range.setEnd(ColonToken.getLocation());
57  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58      << SelectDigraphErrorMessage(Kind)
59      << FixItHint::CreateReplacement(Range, "< ::");
60
61  // Update token information to reflect their change in token type.
62  ColonToken.setKind(tok::coloncolon);
63  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64  ColonToken.setLength(2);
65  DigraphToken.setKind(tok::less);
66  DigraphToken.setLength(1);
67
68  // Push new tokens back to token stream.
69  PP.EnterToken(ColonToken);
70  if (!AtDigraph)
71    PP.EnterToken(DigraphToken);
72}
73
74// Check for '<::' which should be '< ::' instead of '[:' when following
75// a template name.
76void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                        bool EnteringContext,
78                                        IdentifierInfo &II, CXXScopeSpec &SS) {
79  if (!Next.is(tok::l_square) || Next.getLength() != 2)
80    return;
81
82  Token SecondToken = GetLookAheadToken(2);
83  if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
84    return;
85
86  TemplateTy Template;
87  UnqualifiedId TemplateName;
88  TemplateName.setIdentifier(&II, Tok.getLocation());
89  bool MemberOfUnknownSpecialization;
90  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                              TemplateName, ObjectType, EnteringContext,
92                              Template, MemberOfUnknownSpecialization))
93    return;
94
95  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96             /*AtDigraph*/false);
97}
98
99/// \brief Parse global scope or nested-name-specifier if present.
100///
101/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102/// may be preceded by '::'). Note that this routine will not parse ::new or
103/// ::delete; it will just leave them in the token stream.
104///
105///       '::'[opt] nested-name-specifier
106///       '::'
107///
108///       nested-name-specifier:
109///         type-name '::'
110///         namespace-name '::'
111///         nested-name-specifier identifier '::'
112///         nested-name-specifier 'template'[opt] simple-template-id '::'
113///
114///
115/// \param SS the scope specifier that will be set to the parsed
116/// nested-name-specifier (or empty)
117///
118/// \param ObjectType if this nested-name-specifier is being parsed following
119/// the "." or "->" of a member access expression, this parameter provides the
120/// type of the object whose members are being accessed.
121///
122/// \param EnteringContext whether we will be entering into the context of
123/// the nested-name-specifier after parsing it.
124///
125/// \param MayBePseudoDestructor When non-NULL, points to a flag that
126/// indicates whether this nested-name-specifier may be part of a
127/// pseudo-destructor name. In this case, the flag will be set false
128/// if we don't actually end up parsing a destructor name. Moreorover,
129/// if we do end up determining that we are parsing a destructor name,
130/// the last component of the nested-name-specifier is not parsed as
131/// part of the scope specifier.
132
133/// member access expression, e.g., the \p T:: in \p p->T::m.
134///
135/// \returns true if there was an error parsing a scope specifier
136bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                            ParsedType ObjectType,
138                                            bool EnteringContext,
139                                            bool *MayBePseudoDestructor,
140                                            bool IsTypename) {
141  assert(getLangOpts().CPlusPlus &&
142         "Call sites of this function should be guarded by checking for C++");
143
144  if (Tok.is(tok::annot_cxxscope)) {
145    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                 Tok.getAnnotationRange(),
147                                                 SS);
148    ConsumeToken();
149    return false;
150  }
151
152  bool HasScopeSpecifier = false;
153
154  if (Tok.is(tok::coloncolon)) {
155    // ::new and ::delete aren't nested-name-specifiers.
156    tok::TokenKind NextKind = NextToken().getKind();
157    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158      return false;
159
160    // '::' - Global scope qualifier.
161    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162      return true;
163
164    HasScopeSpecifier = true;
165  }
166
167  bool CheckForDestructor = false;
168  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169    CheckForDestructor = true;
170    *MayBePseudoDestructor = false;
171  }
172
173  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174    DeclSpec DS(AttrFactory);
175    SourceLocation DeclLoc = Tok.getLocation();
176    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177    if (Tok.isNot(tok::coloncolon)) {
178      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179      return false;
180    }
181
182    SourceLocation CCLoc = ConsumeToken();
183    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186    HasScopeSpecifier = true;
187  }
188
189  while (true) {
190    if (HasScopeSpecifier) {
191      // C++ [basic.lookup.classref]p5:
192      //   If the qualified-id has the form
193      //
194      //       ::class-name-or-namespace-name::...
195      //
196      //   the class-name-or-namespace-name is looked up in global scope as a
197      //   class-name or namespace-name.
198      //
199      // To implement this, we clear out the object type as soon as we've
200      // seen a leading '::' or part of a nested-name-specifier.
201      ObjectType = ParsedType();
202
203      if (Tok.is(tok::code_completion)) {
204        // Code completion for a nested-name-specifier, where the code
205        // code completion token follows the '::'.
206        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207        // Include code completion token into the range of the scope otherwise
208        // when we try to annotate the scope tokens the dangling code completion
209        // token will cause assertion in
210        // Preprocessor::AnnotatePreviousCachedTokens.
211        SS.setEndLoc(Tok.getLocation());
212        cutOffParsing();
213        return true;
214      }
215    }
216
217    // nested-name-specifier:
218    //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220    // Parse the optional 'template' keyword, then make sure we have
221    // 'identifier <' after it.
222    if (Tok.is(tok::kw_template)) {
223      // If we don't have a scope specifier or an object type, this isn't a
224      // nested-name-specifier, since they aren't allowed to start with
225      // 'template'.
226      if (!HasScopeSpecifier && !ObjectType)
227        break;
228
229      TentativeParsingAction TPA(*this);
230      SourceLocation TemplateKWLoc = ConsumeToken();
231
232      UnqualifiedId TemplateName;
233      if (Tok.is(tok::identifier)) {
234        // Consume the identifier.
235        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236        ConsumeToken();
237      } else if (Tok.is(tok::kw_operator)) {
238        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
239                                       TemplateName)) {
240          TPA.Commit();
241          break;
242        }
243
244        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246          Diag(TemplateName.getSourceRange().getBegin(),
247               diag::err_id_after_template_in_nested_name_spec)
248            << TemplateName.getSourceRange();
249          TPA.Commit();
250          break;
251        }
252      } else {
253        TPA.Revert();
254        break;
255      }
256
257      // If the next token is not '<', we have a qualified-id that refers
258      // to a template name, such as T::template apply, but is not a
259      // template-id.
260      if (Tok.isNot(tok::less)) {
261        TPA.Revert();
262        break;
263      }
264
265      // Commit to parsing the template-id.
266      TPA.Commit();
267      TemplateTy Template;
268      if (TemplateNameKind TNK
269          = Actions.ActOnDependentTemplateName(getCurScope(),
270                                               SS, TemplateKWLoc, TemplateName,
271                                               ObjectType, EnteringContext,
272                                               Template)) {
273        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                    TemplateName, false))
275          return true;
276      } else
277        return true;
278
279      continue;
280    }
281
282    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283      // We have
284      //
285      //   simple-template-id '::'
286      //
287      // So we need to check whether the simple-template-id is of the
288      // right kind (it should name a type or be dependent), and then
289      // convert it into a type within the nested-name-specifier.
290      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292        *MayBePseudoDestructor = true;
293        return false;
294      }
295
296      // Consume the template-id token.
297      ConsumeToken();
298
299      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300      SourceLocation CCLoc = ConsumeToken();
301
302      HasScopeSpecifier = true;
303
304      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                         TemplateId->getTemplateArgs(),
306                                         TemplateId->NumArgs);
307
308      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                              SS,
310                                              TemplateId->TemplateKWLoc,
311                                              TemplateId->Template,
312                                              TemplateId->TemplateNameLoc,
313                                              TemplateId->LAngleLoc,
314                                              TemplateArgsPtr,
315                                              TemplateId->RAngleLoc,
316                                              CCLoc,
317                                              EnteringContext)) {
318        SourceLocation StartLoc
319          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                      : TemplateId->TemplateNameLoc;
321        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322      }
323
324      continue;
325    }
326
327
328    // The rest of the nested-name-specifier possibilities start with
329    // tok::identifier.
330    if (Tok.isNot(tok::identifier))
331      break;
332
333    IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335    // nested-name-specifier:
336    //   type-name '::'
337    //   namespace-name '::'
338    //   nested-name-specifier identifier '::'
339    Token Next = NextToken();
340
341    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342    // and emit a fixit hint for it.
343    if (Next.is(tok::colon) && !ColonIsSacred) {
344      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
345                                            Tok.getLocation(),
346                                            Next.getLocation(), ObjectType,
347                                            EnteringContext) &&
348          // If the token after the colon isn't an identifier, it's still an
349          // error, but they probably meant something else strange so don't
350          // recover like this.
351          PP.LookAhead(1).is(tok::identifier)) {
352        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353          << FixItHint::CreateReplacement(Next.getLocation(), "::");
354
355        // Recover as if the user wrote '::'.
356        Next.setKind(tok::coloncolon);
357      }
358    }
359
360    if (Next.is(tok::coloncolon)) {
361      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                II, ObjectType)) {
364        *MayBePseudoDestructor = true;
365        return false;
366      }
367
368      // We have an identifier followed by a '::'. Lookup this name
369      // as the name in a nested-name-specifier.
370      SourceLocation IdLoc = ConsumeToken();
371      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372             "NextToken() not working properly!");
373      SourceLocation CCLoc = ConsumeToken();
374
375      HasScopeSpecifier = true;
376      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                              ObjectType, EnteringContext, SS))
378        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379
380      continue;
381    }
382
383    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385    // nested-name-specifier:
386    //   type-name '<'
387    if (Next.is(tok::less)) {
388      TemplateTy Template;
389      UnqualifiedId TemplateName;
390      TemplateName.setIdentifier(&II, Tok.getLocation());
391      bool MemberOfUnknownSpecialization;
392      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
393                                              /*hasTemplateKeyword=*/false,
394                                                        TemplateName,
395                                                        ObjectType,
396                                                        EnteringContext,
397                                                        Template,
398                                              MemberOfUnknownSpecialization)) {
399        // We have found a template name, so annotate this token
400        // with a template-id annotation. We do not permit the
401        // template-id to be translated into a type annotation,
402        // because some clients (e.g., the parsing of class template
403        // specializations) still want to see the original template-id
404        // token.
405        ConsumeToken();
406        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                    TemplateName, false))
408          return true;
409        continue;
410      }
411
412      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
413          (IsTypename || IsTemplateArgumentList(1))) {
414        // We have something like t::getAs<T>, where getAs is a
415        // member of an unknown specialization. However, this will only
416        // parse correctly as a template, so suggest the keyword 'template'
417        // before 'getAs' and treat this as a dependent template name.
418        unsigned DiagID = diag::err_missing_dependent_template_keyword;
419        if (getLangOpts().MicrosoftExt)
420          DiagID = diag::warn_missing_dependent_template_keyword;
421
422        Diag(Tok.getLocation(), DiagID)
423          << II.getName()
424          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425
426        if (TemplateNameKind TNK
427              = Actions.ActOnDependentTemplateName(getCurScope(),
428                                                   SS, SourceLocation(),
429                                                   TemplateName, ObjectType,
430                                                   EnteringContext, Template)) {
431          // Consume the identifier.
432          ConsumeToken();
433          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                      TemplateName, false))
435            return true;
436        }
437        else
438          return true;
439
440        continue;
441      }
442    }
443
444    // We don't have any tokens that form the beginning of a
445    // nested-name-specifier, so we're done.
446    break;
447  }
448
449  // Even if we didn't see any pieces of a nested-name-specifier, we
450  // still check whether there is a tilde in this position, which
451  // indicates a potential pseudo-destructor.
452  if (CheckForDestructor && Tok.is(tok::tilde))
453    *MayBePseudoDestructor = true;
454
455  return false;
456}
457
458/// ParseCXXIdExpression - Handle id-expression.
459///
460///       id-expression:
461///         unqualified-id
462///         qualified-id
463///
464///       qualified-id:
465///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466///         '::' identifier
467///         '::' operator-function-id
468///         '::' template-id
469///
470/// NOTE: The standard specifies that, for qualified-id, the parser does not
471/// expect:
472///
473///   '::' conversion-function-id
474///   '::' '~' class-name
475///
476/// This may cause a slight inconsistency on diagnostics:
477///
478/// class C {};
479/// namespace A {}
480/// void f() {
481///   :: A :: ~ C(); // Some Sema error about using destructor with a
482///                  // namespace.
483///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484/// }
485///
486/// We simplify the parser a bit and make it work like:
487///
488///       qualified-id:
489///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490///         '::' unqualified-id
491///
492/// That way Sema can handle and report similar errors for namespaces and the
493/// global scope.
494///
495/// The isAddressOfOperand parameter indicates that this id-expression is a
496/// direct operand of the address-of operator. This is, besides member contexts,
497/// the only place where a qualified-id naming a non-static class member may
498/// appear.
499///
500ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501  // qualified-id:
502  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503  //   '::' unqualified-id
504  //
505  CXXScopeSpec SS;
506  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508  SourceLocation TemplateKWLoc;
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         TemplateKWLoc,
516                         Name))
517    return ExprError();
518
519  // This is only the direct operand of an & operator if it is not
520  // followed by a postfix-expression suffix.
521  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522    isAddressOfOperand = false;
523
524  return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                   Tok.is(tok::l_paren), isAddressOfOperand);
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLangOpts().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    Intro.DefaultLoc = ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    Intro.DefaultLoc = ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma)) {
645        // Provide a completion for a lambda introducer here. Except
646        // in Objective-C, where this is Almost Surely meant to be a message
647        // send. In that case, fail here and let the ObjC message
648        // expression parser perform the completion.
649        if (Tok.is(tok::code_completion) &&
650            !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
651              !Intro.Captures.empty())) {
652          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
653                                               /*AfterAmpersand=*/false);
654          ConsumeCodeCompletionToken();
655          break;
656        }
657
658        return DiagResult(diag::err_expected_comma_or_rsquare);
659      }
660      ConsumeToken();
661    }
662
663    if (Tok.is(tok::code_completion)) {
664      // If we're in Objective-C++ and we have a bare '[', then this is more
665      // likely to be a message receiver.
666      if (getLangOpts().ObjC1 && first)
667        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
668      else
669        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
670                                             /*AfterAmpersand=*/false);
671      ConsumeCodeCompletionToken();
672      break;
673    }
674
675    first = false;
676
677    // Parse capture.
678    LambdaCaptureKind Kind = LCK_ByCopy;
679    SourceLocation Loc;
680    IdentifierInfo* Id = 0;
681    SourceLocation EllipsisLoc;
682
683    if (Tok.is(tok::kw_this)) {
684      Kind = LCK_This;
685      Loc = ConsumeToken();
686    } else {
687      if (Tok.is(tok::amp)) {
688        Kind = LCK_ByRef;
689        ConsumeToken();
690
691        if (Tok.is(tok::code_completion)) {
692          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
693                                               /*AfterAmpersand=*/true);
694          ConsumeCodeCompletionToken();
695          break;
696        }
697      }
698
699      if (Tok.is(tok::identifier)) {
700        Id = Tok.getIdentifierInfo();
701        Loc = ConsumeToken();
702
703        if (Tok.is(tok::ellipsis))
704          EllipsisLoc = ConsumeToken();
705      } else if (Tok.is(tok::kw_this)) {
706        // FIXME: If we want to suggest a fixit here, will need to return more
707        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
708        // Clear()ed to prevent emission in case of tentative parsing?
709        return DiagResult(diag::err_this_captured_by_reference);
710      } else {
711        return DiagResult(diag::err_expected_capture);
712      }
713    }
714
715    Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
716  }
717
718  T.consumeClose();
719  Intro.Range.setEnd(T.getCloseLocation());
720
721  return DiagResult();
722}
723
724/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
725///
726/// Returns true if it hit something unexpected.
727bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
728  TentativeParsingAction PA(*this);
729
730  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
731
732  if (DiagID) {
733    PA.Revert();
734    return true;
735  }
736
737  PA.Commit();
738  return false;
739}
740
741/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
742/// expression.
743ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
744                     LambdaIntroducer &Intro) {
745  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
746  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
747
748  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
749                                "lambda expression parsing");
750
751  // Parse lambda-declarator[opt].
752  DeclSpec DS(AttrFactory);
753  Declarator D(DS, Declarator::LambdaExprContext);
754
755  if (Tok.is(tok::l_paren)) {
756    ParseScope PrototypeScope(this,
757                              Scope::FunctionPrototypeScope |
758                              Scope::DeclScope);
759
760    SourceLocation DeclLoc, DeclEndLoc;
761    BalancedDelimiterTracker T(*this, tok::l_paren);
762    T.consumeOpen();
763    DeclLoc = T.getOpenLocation();
764
765    // Parse parameter-declaration-clause.
766    ParsedAttributes Attr(AttrFactory);
767    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
768    SourceLocation EllipsisLoc;
769
770    if (Tok.isNot(tok::r_paren))
771      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
772
773    T.consumeClose();
774    DeclEndLoc = T.getCloseLocation();
775
776    // Parse 'mutable'[opt].
777    SourceLocation MutableLoc;
778    if (Tok.is(tok::kw_mutable)) {
779      MutableLoc = ConsumeToken();
780      DeclEndLoc = MutableLoc;
781    }
782
783    // Parse exception-specification[opt].
784    ExceptionSpecificationType ESpecType = EST_None;
785    SourceRange ESpecRange;
786    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
787    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
788    ExprResult NoexceptExpr;
789    ESpecType = tryParseExceptionSpecification(ESpecRange,
790                                               DynamicExceptions,
791                                               DynamicExceptionRanges,
792                                               NoexceptExpr);
793
794    if (ESpecType != EST_None)
795      DeclEndLoc = ESpecRange.getEnd();
796
797    // Parse attribute-specifier[opt].
798    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
799
800    // Parse trailing-return-type[opt].
801    TypeResult TrailingReturnType;
802    if (Tok.is(tok::arrow)) {
803      SourceRange Range;
804      TrailingReturnType = ParseTrailingReturnType(Range);
805      if (Range.getEnd().isValid())
806        DeclEndLoc = Range.getEnd();
807    }
808
809    PrototypeScope.Exit();
810
811    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
812                                           /*isVariadic=*/EllipsisLoc.isValid(),
813                                           /*isAmbiguous=*/false, EllipsisLoc,
814                                           ParamInfo.data(), ParamInfo.size(),
815                                           DS.getTypeQualifiers(),
816                                           /*RefQualifierIsLValueRef=*/true,
817                                           /*RefQualifierLoc=*/SourceLocation(),
818                                         /*ConstQualifierLoc=*/SourceLocation(),
819                                      /*VolatileQualifierLoc=*/SourceLocation(),
820                                           MutableLoc,
821                                           ESpecType, ESpecRange.getBegin(),
822                                           DynamicExceptions.data(),
823                                           DynamicExceptionRanges.data(),
824                                           DynamicExceptions.size(),
825                                           NoexceptExpr.isUsable() ?
826                                             NoexceptExpr.get() : 0,
827                                           DeclLoc, DeclEndLoc, D,
828                                           TrailingReturnType),
829                  Attr, DeclEndLoc);
830  } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
831    // It's common to forget that one needs '()' before 'mutable' or the
832    // result type. Deal with this.
833    Diag(Tok, diag::err_lambda_missing_parens)
834      << Tok.is(tok::arrow)
835      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
836    SourceLocation DeclLoc = Tok.getLocation();
837    SourceLocation DeclEndLoc = DeclLoc;
838
839    // Parse 'mutable', if it's there.
840    SourceLocation MutableLoc;
841    if (Tok.is(tok::kw_mutable)) {
842      MutableLoc = ConsumeToken();
843      DeclEndLoc = MutableLoc;
844    }
845
846    // Parse the return type, if there is one.
847    TypeResult TrailingReturnType;
848    if (Tok.is(tok::arrow)) {
849      SourceRange Range;
850      TrailingReturnType = ParseTrailingReturnType(Range);
851      if (Range.getEnd().isValid())
852        DeclEndLoc = Range.getEnd();
853    }
854
855    ParsedAttributes Attr(AttrFactory);
856    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
857                     /*isVariadic=*/false,
858                     /*isAmbiguous=*/false,
859                     /*EllipsisLoc=*/SourceLocation(),
860                     /*Params=*/0, /*NumParams=*/0,
861                     /*TypeQuals=*/0,
862                     /*RefQualifierIsLValueRef=*/true,
863                     /*RefQualifierLoc=*/SourceLocation(),
864                     /*ConstQualifierLoc=*/SourceLocation(),
865                     /*VolatileQualifierLoc=*/SourceLocation(),
866                     MutableLoc,
867                     EST_None,
868                     /*ESpecLoc=*/SourceLocation(),
869                     /*Exceptions=*/0,
870                     /*ExceptionRanges=*/0,
871                     /*NumExceptions=*/0,
872                     /*NoexceptExpr=*/0,
873                     DeclLoc, DeclEndLoc, D,
874                     TrailingReturnType),
875                  Attr, DeclEndLoc);
876  }
877
878
879  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
880  // it.
881  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
882  ParseScope BodyScope(this, ScopeFlags);
883
884  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
885
886  // Parse compound-statement.
887  if (!Tok.is(tok::l_brace)) {
888    Diag(Tok, diag::err_expected_lambda_body);
889    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
890    return ExprError();
891  }
892
893  StmtResult Stmt(ParseCompoundStatementBody());
894  BodyScope.Exit();
895
896  if (!Stmt.isInvalid())
897    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
898
899  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
900  return ExprError();
901}
902
903/// ParseCXXCasts - This handles the various ways to cast expressions to another
904/// type.
905///
906///       postfix-expression: [C++ 5.2p1]
907///         'dynamic_cast' '<' type-name '>' '(' expression ')'
908///         'static_cast' '<' type-name '>' '(' expression ')'
909///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
910///         'const_cast' '<' type-name '>' '(' expression ')'
911///
912ExprResult Parser::ParseCXXCasts() {
913  tok::TokenKind Kind = Tok.getKind();
914  const char *CastName = 0;     // For error messages
915
916  switch (Kind) {
917  default: llvm_unreachable("Unknown C++ cast!");
918  case tok::kw_const_cast:       CastName = "const_cast";       break;
919  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
920  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
921  case tok::kw_static_cast:      CastName = "static_cast";      break;
922  }
923
924  SourceLocation OpLoc = ConsumeToken();
925  SourceLocation LAngleBracketLoc = Tok.getLocation();
926
927  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
928  // diagnose error, suggest fix, and recover parsing.
929  if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
930    Token Next = NextToken();
931    if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
932      FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
933  }
934
935  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
936    return ExprError();
937
938  // Parse the common declaration-specifiers piece.
939  DeclSpec DS(AttrFactory);
940  ParseSpecifierQualifierList(DS);
941
942  // Parse the abstract-declarator, if present.
943  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
944  ParseDeclarator(DeclaratorInfo);
945
946  SourceLocation RAngleBracketLoc = Tok.getLocation();
947
948  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
949    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
950
951  SourceLocation LParenLoc, RParenLoc;
952  BalancedDelimiterTracker T(*this, tok::l_paren);
953
954  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
955    return ExprError();
956
957  ExprResult Result = ParseExpression();
958
959  // Match the ')'.
960  T.consumeClose();
961
962  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
963    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
964                                       LAngleBracketLoc, DeclaratorInfo,
965                                       RAngleBracketLoc,
966                                       T.getOpenLocation(), Result.take(),
967                                       T.getCloseLocation());
968
969  return Result;
970}
971
972/// ParseCXXTypeid - This handles the C++ typeid expression.
973///
974///       postfix-expression: [C++ 5.2p1]
975///         'typeid' '(' expression ')'
976///         'typeid' '(' type-id ')'
977///
978ExprResult Parser::ParseCXXTypeid() {
979  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
980
981  SourceLocation OpLoc = ConsumeToken();
982  SourceLocation LParenLoc, RParenLoc;
983  BalancedDelimiterTracker T(*this, tok::l_paren);
984
985  // typeid expressions are always parenthesized.
986  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
987    return ExprError();
988  LParenLoc = T.getOpenLocation();
989
990  ExprResult Result;
991
992  // C++0x [expr.typeid]p3:
993  //   When typeid is applied to an expression other than an lvalue of a
994  //   polymorphic class type [...] The expression is an unevaluated
995  //   operand (Clause 5).
996  //
997  // Note that we can't tell whether the expression is an lvalue of a
998  // polymorphic class type until after we've parsed the expression; we
999  // speculatively assume the subexpression is unevaluated, and fix it up
1000  // later.
1001  //
1002  // We enter the unevaluated context before trying to determine whether we
1003  // have a type-id, because the tentative parse logic will try to resolve
1004  // names, and must treat them as unevaluated.
1005  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1006
1007  if (isTypeIdInParens()) {
1008    TypeResult Ty = ParseTypeName();
1009
1010    // Match the ')'.
1011    T.consumeClose();
1012    RParenLoc = T.getCloseLocation();
1013    if (Ty.isInvalid() || RParenLoc.isInvalid())
1014      return ExprError();
1015
1016    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1017                                    Ty.get().getAsOpaquePtr(), RParenLoc);
1018  } else {
1019    Result = ParseExpression();
1020
1021    // Match the ')'.
1022    if (Result.isInvalid())
1023      SkipUntil(tok::r_paren);
1024    else {
1025      T.consumeClose();
1026      RParenLoc = T.getCloseLocation();
1027      if (RParenLoc.isInvalid())
1028        return ExprError();
1029
1030      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1031                                      Result.release(), RParenLoc);
1032    }
1033  }
1034
1035  return Result;
1036}
1037
1038/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1039///
1040///         '__uuidof' '(' expression ')'
1041///         '__uuidof' '(' type-id ')'
1042///
1043ExprResult Parser::ParseCXXUuidof() {
1044  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1045
1046  SourceLocation OpLoc = ConsumeToken();
1047  BalancedDelimiterTracker T(*this, tok::l_paren);
1048
1049  // __uuidof expressions are always parenthesized.
1050  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1051    return ExprError();
1052
1053  ExprResult Result;
1054
1055  if (isTypeIdInParens()) {
1056    TypeResult Ty = ParseTypeName();
1057
1058    // Match the ')'.
1059    T.consumeClose();
1060
1061    if (Ty.isInvalid())
1062      return ExprError();
1063
1064    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1065                                    Ty.get().getAsOpaquePtr(),
1066                                    T.getCloseLocation());
1067  } else {
1068    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1069    Result = ParseExpression();
1070
1071    // Match the ')'.
1072    if (Result.isInvalid())
1073      SkipUntil(tok::r_paren);
1074    else {
1075      T.consumeClose();
1076
1077      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1078                                      /*isType=*/false,
1079                                      Result.release(), T.getCloseLocation());
1080    }
1081  }
1082
1083  return Result;
1084}
1085
1086/// \brief Parse a C++ pseudo-destructor expression after the base,
1087/// . or -> operator, and nested-name-specifier have already been
1088/// parsed.
1089///
1090///       postfix-expression: [C++ 5.2]
1091///         postfix-expression . pseudo-destructor-name
1092///         postfix-expression -> pseudo-destructor-name
1093///
1094///       pseudo-destructor-name:
1095///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1096///         ::[opt] nested-name-specifier template simple-template-id ::
1097///                 ~type-name
1098///         ::[opt] nested-name-specifier[opt] ~type-name
1099///
1100ExprResult
1101Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1102                                 tok::TokenKind OpKind,
1103                                 CXXScopeSpec &SS,
1104                                 ParsedType ObjectType) {
1105  // We're parsing either a pseudo-destructor-name or a dependent
1106  // member access that has the same form as a
1107  // pseudo-destructor-name. We parse both in the same way and let
1108  // the action model sort them out.
1109  //
1110  // Note that the ::[opt] nested-name-specifier[opt] has already
1111  // been parsed, and if there was a simple-template-id, it has
1112  // been coalesced into a template-id annotation token.
1113  UnqualifiedId FirstTypeName;
1114  SourceLocation CCLoc;
1115  if (Tok.is(tok::identifier)) {
1116    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1117    ConsumeToken();
1118    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1119    CCLoc = ConsumeToken();
1120  } else if (Tok.is(tok::annot_template_id)) {
1121    // FIXME: retrieve TemplateKWLoc from template-id annotation and
1122    // store it in the pseudo-dtor node (to be used when instantiating it).
1123    FirstTypeName.setTemplateId(
1124                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1125    ConsumeToken();
1126    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1127    CCLoc = ConsumeToken();
1128  } else {
1129    FirstTypeName.setIdentifier(0, SourceLocation());
1130  }
1131
1132  // Parse the tilde.
1133  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1134  SourceLocation TildeLoc = ConsumeToken();
1135
1136  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1137    DeclSpec DS(AttrFactory);
1138    ParseDecltypeSpecifier(DS);
1139    if (DS.getTypeSpecType() == TST_error)
1140      return ExprError();
1141    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1142                                             OpKind, TildeLoc, DS,
1143                                             Tok.is(tok::l_paren));
1144  }
1145
1146  if (!Tok.is(tok::identifier)) {
1147    Diag(Tok, diag::err_destructor_tilde_identifier);
1148    return ExprError();
1149  }
1150
1151  // Parse the second type.
1152  UnqualifiedId SecondTypeName;
1153  IdentifierInfo *Name = Tok.getIdentifierInfo();
1154  SourceLocation NameLoc = ConsumeToken();
1155  SecondTypeName.setIdentifier(Name, NameLoc);
1156
1157  // If there is a '<', the second type name is a template-id. Parse
1158  // it as such.
1159  if (Tok.is(tok::less) &&
1160      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1161                                   Name, NameLoc,
1162                                   false, ObjectType, SecondTypeName,
1163                                   /*AssumeTemplateName=*/true))
1164    return ExprError();
1165
1166  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1167                                           OpLoc, OpKind,
1168                                           SS, FirstTypeName, CCLoc,
1169                                           TildeLoc, SecondTypeName,
1170                                           Tok.is(tok::l_paren));
1171}
1172
1173/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1174///
1175///       boolean-literal: [C++ 2.13.5]
1176///         'true'
1177///         'false'
1178ExprResult Parser::ParseCXXBoolLiteral() {
1179  tok::TokenKind Kind = Tok.getKind();
1180  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1181}
1182
1183/// ParseThrowExpression - This handles the C++ throw expression.
1184///
1185///       throw-expression: [C++ 15]
1186///         'throw' assignment-expression[opt]
1187ExprResult Parser::ParseThrowExpression() {
1188  assert(Tok.is(tok::kw_throw) && "Not throw!");
1189  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1190
1191  // If the current token isn't the start of an assignment-expression,
1192  // then the expression is not present.  This handles things like:
1193  //   "C ? throw : (void)42", which is crazy but legal.
1194  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1195  case tok::semi:
1196  case tok::r_paren:
1197  case tok::r_square:
1198  case tok::r_brace:
1199  case tok::colon:
1200  case tok::comma:
1201    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1202
1203  default:
1204    ExprResult Expr(ParseAssignmentExpression());
1205    if (Expr.isInvalid()) return Expr;
1206    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1207  }
1208}
1209
1210/// ParseCXXThis - This handles the C++ 'this' pointer.
1211///
1212/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1213/// a non-lvalue expression whose value is the address of the object for which
1214/// the function is called.
1215ExprResult Parser::ParseCXXThis() {
1216  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1217  SourceLocation ThisLoc = ConsumeToken();
1218  return Actions.ActOnCXXThis(ThisLoc);
1219}
1220
1221/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1222/// Can be interpreted either as function-style casting ("int(x)")
1223/// or class type construction ("ClassType(x,y,z)")
1224/// or creation of a value-initialized type ("int()").
1225/// See [C++ 5.2.3].
1226///
1227///       postfix-expression: [C++ 5.2p1]
1228///         simple-type-specifier '(' expression-list[opt] ')'
1229/// [C++0x] simple-type-specifier braced-init-list
1230///         typename-specifier '(' expression-list[opt] ')'
1231/// [C++0x] typename-specifier braced-init-list
1232///
1233ExprResult
1234Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1235  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1236  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1237
1238  assert((Tok.is(tok::l_paren) ||
1239          (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1240         && "Expected '(' or '{'!");
1241
1242  if (Tok.is(tok::l_brace)) {
1243    ExprResult Init = ParseBraceInitializer();
1244    if (Init.isInvalid())
1245      return Init;
1246    Expr *InitList = Init.take();
1247    return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1248                                             MultiExprArg(&InitList, 1),
1249                                             SourceLocation());
1250  } else {
1251    BalancedDelimiterTracker T(*this, tok::l_paren);
1252    T.consumeOpen();
1253
1254    ExprVector Exprs(Actions);
1255    CommaLocsTy CommaLocs;
1256
1257    if (Tok.isNot(tok::r_paren)) {
1258      if (ParseExpressionList(Exprs, CommaLocs)) {
1259        SkipUntil(tok::r_paren);
1260        return ExprError();
1261      }
1262    }
1263
1264    // Match the ')'.
1265    T.consumeClose();
1266
1267    // TypeRep could be null, if it references an invalid typedef.
1268    if (!TypeRep)
1269      return ExprError();
1270
1271    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1272           "Unexpected number of commas!");
1273    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1274                                             Exprs,
1275                                             T.getCloseLocation());
1276  }
1277}
1278
1279/// ParseCXXCondition - if/switch/while condition expression.
1280///
1281///       condition:
1282///         expression
1283///         type-specifier-seq declarator '=' assignment-expression
1284/// [C++11] type-specifier-seq declarator '=' initializer-clause
1285/// [C++11] type-specifier-seq declarator braced-init-list
1286/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1287///             '=' assignment-expression
1288///
1289/// \param ExprResult if the condition was parsed as an expression, the
1290/// parsed expression.
1291///
1292/// \param DeclResult if the condition was parsed as a declaration, the
1293/// parsed declaration.
1294///
1295/// \param Loc The location of the start of the statement that requires this
1296/// condition, e.g., the "for" in a for loop.
1297///
1298/// \param ConvertToBoolean Whether the condition expression should be
1299/// converted to a boolean value.
1300///
1301/// \returns true if there was a parsing, false otherwise.
1302bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1303                               Decl *&DeclOut,
1304                               SourceLocation Loc,
1305                               bool ConvertToBoolean) {
1306  if (Tok.is(tok::code_completion)) {
1307    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1308    cutOffParsing();
1309    return true;
1310  }
1311
1312  ParsedAttributesWithRange attrs(AttrFactory);
1313  MaybeParseCXX0XAttributes(attrs);
1314
1315  if (!isCXXConditionDeclaration()) {
1316    ProhibitAttributes(attrs);
1317
1318    // Parse the expression.
1319    ExprOut = ParseExpression(); // expression
1320    DeclOut = 0;
1321    if (ExprOut.isInvalid())
1322      return true;
1323
1324    // If required, convert to a boolean value.
1325    if (ConvertToBoolean)
1326      ExprOut
1327        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1328    return ExprOut.isInvalid();
1329  }
1330
1331  // type-specifier-seq
1332  DeclSpec DS(AttrFactory);
1333  ParseSpecifierQualifierList(DS);
1334
1335  // declarator
1336  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1337  ParseDeclarator(DeclaratorInfo);
1338
1339  // simple-asm-expr[opt]
1340  if (Tok.is(tok::kw_asm)) {
1341    SourceLocation Loc;
1342    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1343    if (AsmLabel.isInvalid()) {
1344      SkipUntil(tok::semi);
1345      return true;
1346    }
1347    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1348    DeclaratorInfo.SetRangeEnd(Loc);
1349  }
1350
1351  // If attributes are present, parse them.
1352  MaybeParseGNUAttributes(DeclaratorInfo);
1353
1354  // Type-check the declaration itself.
1355  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1356                                                        DeclaratorInfo);
1357  DeclOut = Dcl.get();
1358  ExprOut = ExprError();
1359
1360  // '=' assignment-expression
1361  // If a '==' or '+=' is found, suggest a fixit to '='.
1362  bool CopyInitialization = isTokenEqualOrEqualTypo();
1363  if (CopyInitialization)
1364    ConsumeToken();
1365
1366  ExprResult InitExpr = ExprError();
1367  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1368    Diag(Tok.getLocation(),
1369         diag::warn_cxx98_compat_generalized_initializer_lists);
1370    InitExpr = ParseBraceInitializer();
1371  } else if (CopyInitialization) {
1372    InitExpr = ParseAssignmentExpression();
1373  } else if (Tok.is(tok::l_paren)) {
1374    // This was probably an attempt to initialize the variable.
1375    SourceLocation LParen = ConsumeParen(), RParen = LParen;
1376    if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1377      RParen = ConsumeParen();
1378    Diag(DeclOut ? DeclOut->getLocation() : LParen,
1379         diag::err_expected_init_in_condition_lparen)
1380      << SourceRange(LParen, RParen);
1381  } else {
1382    Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1383         diag::err_expected_init_in_condition);
1384  }
1385
1386  if (!InitExpr.isInvalid())
1387    Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1388                                 DS.getTypeSpecType() == DeclSpec::TST_auto);
1389
1390  // FIXME: Build a reference to this declaration? Convert it to bool?
1391  // (This is currently handled by Sema).
1392
1393  Actions.FinalizeDeclaration(DeclOut);
1394
1395  return false;
1396}
1397
1398/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1399/// This should only be called when the current token is known to be part of
1400/// simple-type-specifier.
1401///
1402///       simple-type-specifier:
1403///         '::'[opt] nested-name-specifier[opt] type-name
1404///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1405///         char
1406///         wchar_t
1407///         bool
1408///         short
1409///         int
1410///         long
1411///         signed
1412///         unsigned
1413///         float
1414///         double
1415///         void
1416/// [GNU]   typeof-specifier
1417/// [C++0x] auto               [TODO]
1418///
1419///       type-name:
1420///         class-name
1421///         enum-name
1422///         typedef-name
1423///
1424void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1425  DS.SetRangeStart(Tok.getLocation());
1426  const char *PrevSpec;
1427  unsigned DiagID;
1428  SourceLocation Loc = Tok.getLocation();
1429
1430  switch (Tok.getKind()) {
1431  case tok::identifier:   // foo::bar
1432  case tok::coloncolon:   // ::foo::bar
1433    llvm_unreachable("Annotation token should already be formed!");
1434  default:
1435    llvm_unreachable("Not a simple-type-specifier token!");
1436
1437  // type-name
1438  case tok::annot_typename: {
1439    if (getTypeAnnotation(Tok))
1440      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1441                         getTypeAnnotation(Tok));
1442    else
1443      DS.SetTypeSpecError();
1444
1445    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1446    ConsumeToken();
1447
1448    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1449    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1450    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1451    // just a normal reference to a typedef name.
1452    if (Tok.is(tok::less) && getLangOpts().ObjC1)
1453      ParseObjCProtocolQualifiers(DS);
1454
1455    DS.Finish(Diags, PP);
1456    return;
1457  }
1458
1459  // builtin types
1460  case tok::kw_short:
1461    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1462    break;
1463  case tok::kw_long:
1464    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1465    break;
1466  case tok::kw___int64:
1467    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1468    break;
1469  case tok::kw_signed:
1470    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1471    break;
1472  case tok::kw_unsigned:
1473    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1474    break;
1475  case tok::kw_void:
1476    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1477    break;
1478  case tok::kw_char:
1479    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1480    break;
1481  case tok::kw_int:
1482    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1483    break;
1484  case tok::kw___int128:
1485    DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1486    break;
1487  case tok::kw_half:
1488    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1489    break;
1490  case tok::kw_float:
1491    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1492    break;
1493  case tok::kw_double:
1494    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1495    break;
1496  case tok::kw_wchar_t:
1497    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1498    break;
1499  case tok::kw_char16_t:
1500    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1501    break;
1502  case tok::kw_char32_t:
1503    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1504    break;
1505  case tok::kw_bool:
1506    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1507    break;
1508  case tok::annot_decltype:
1509  case tok::kw_decltype:
1510    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1511    return DS.Finish(Diags, PP);
1512
1513  // GNU typeof support.
1514  case tok::kw_typeof:
1515    ParseTypeofSpecifier(DS);
1516    DS.Finish(Diags, PP);
1517    return;
1518  }
1519  if (Tok.is(tok::annot_typename))
1520    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1521  else
1522    DS.SetRangeEnd(Tok.getLocation());
1523  ConsumeToken();
1524  DS.Finish(Diags, PP);
1525}
1526
1527/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1528/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1529/// e.g., "const short int". Note that the DeclSpec is *not* finished
1530/// by parsing the type-specifier-seq, because these sequences are
1531/// typically followed by some form of declarator. Returns true and
1532/// emits diagnostics if this is not a type-specifier-seq, false
1533/// otherwise.
1534///
1535///   type-specifier-seq: [C++ 8.1]
1536///     type-specifier type-specifier-seq[opt]
1537///
1538bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1539  ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1540  DS.Finish(Diags, PP);
1541  return false;
1542}
1543
1544/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1545/// some form.
1546///
1547/// This routine is invoked when a '<' is encountered after an identifier or
1548/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1549/// whether the unqualified-id is actually a template-id. This routine will
1550/// then parse the template arguments and form the appropriate template-id to
1551/// return to the caller.
1552///
1553/// \param SS the nested-name-specifier that precedes this template-id, if
1554/// we're actually parsing a qualified-id.
1555///
1556/// \param Name for constructor and destructor names, this is the actual
1557/// identifier that may be a template-name.
1558///
1559/// \param NameLoc the location of the class-name in a constructor or
1560/// destructor.
1561///
1562/// \param EnteringContext whether we're entering the scope of the
1563/// nested-name-specifier.
1564///
1565/// \param ObjectType if this unqualified-id occurs within a member access
1566/// expression, the type of the base object whose member is being accessed.
1567///
1568/// \param Id as input, describes the template-name or operator-function-id
1569/// that precedes the '<'. If template arguments were parsed successfully,
1570/// will be updated with the template-id.
1571///
1572/// \param AssumeTemplateId When true, this routine will assume that the name
1573/// refers to a template without performing name lookup to verify.
1574///
1575/// \returns true if a parse error occurred, false otherwise.
1576bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1577                                          SourceLocation TemplateKWLoc,
1578                                          IdentifierInfo *Name,
1579                                          SourceLocation NameLoc,
1580                                          bool EnteringContext,
1581                                          ParsedType ObjectType,
1582                                          UnqualifiedId &Id,
1583                                          bool AssumeTemplateId) {
1584  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1585         "Expected '<' to finish parsing a template-id");
1586
1587  TemplateTy Template;
1588  TemplateNameKind TNK = TNK_Non_template;
1589  switch (Id.getKind()) {
1590  case UnqualifiedId::IK_Identifier:
1591  case UnqualifiedId::IK_OperatorFunctionId:
1592  case UnqualifiedId::IK_LiteralOperatorId:
1593    if (AssumeTemplateId) {
1594      TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1595                                               Id, ObjectType, EnteringContext,
1596                                               Template);
1597      if (TNK == TNK_Non_template)
1598        return true;
1599    } else {
1600      bool MemberOfUnknownSpecialization;
1601      TNK = Actions.isTemplateName(getCurScope(), SS,
1602                                   TemplateKWLoc.isValid(), Id,
1603                                   ObjectType, EnteringContext, Template,
1604                                   MemberOfUnknownSpecialization);
1605
1606      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1607          ObjectType && IsTemplateArgumentList()) {
1608        // We have something like t->getAs<T>(), where getAs is a
1609        // member of an unknown specialization. However, this will only
1610        // parse correctly as a template, so suggest the keyword 'template'
1611        // before 'getAs' and treat this as a dependent template name.
1612        std::string Name;
1613        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1614          Name = Id.Identifier->getName();
1615        else {
1616          Name = "operator ";
1617          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1618            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1619          else
1620            Name += Id.Identifier->getName();
1621        }
1622        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1623          << Name
1624          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1625        TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1626                                                 SS, TemplateKWLoc, Id,
1627                                                 ObjectType, EnteringContext,
1628                                                 Template);
1629        if (TNK == TNK_Non_template)
1630          return true;
1631      }
1632    }
1633    break;
1634
1635  case UnqualifiedId::IK_ConstructorName: {
1636    UnqualifiedId TemplateName;
1637    bool MemberOfUnknownSpecialization;
1638    TemplateName.setIdentifier(Name, NameLoc);
1639    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1640                                 TemplateName, ObjectType,
1641                                 EnteringContext, Template,
1642                                 MemberOfUnknownSpecialization);
1643    break;
1644  }
1645
1646  case UnqualifiedId::IK_DestructorName: {
1647    UnqualifiedId TemplateName;
1648    bool MemberOfUnknownSpecialization;
1649    TemplateName.setIdentifier(Name, NameLoc);
1650    if (ObjectType) {
1651      TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1652                                               SS, TemplateKWLoc, TemplateName,
1653                                               ObjectType, EnteringContext,
1654                                               Template);
1655      if (TNK == TNK_Non_template)
1656        return true;
1657    } else {
1658      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1659                                   TemplateName, ObjectType,
1660                                   EnteringContext, Template,
1661                                   MemberOfUnknownSpecialization);
1662
1663      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1664        Diag(NameLoc, diag::err_destructor_template_id)
1665          << Name << SS.getRange();
1666        return true;
1667      }
1668    }
1669    break;
1670  }
1671
1672  default:
1673    return false;
1674  }
1675
1676  if (TNK == TNK_Non_template)
1677    return false;
1678
1679  // Parse the enclosed template argument list.
1680  SourceLocation LAngleLoc, RAngleLoc;
1681  TemplateArgList TemplateArgs;
1682  if (Tok.is(tok::less) &&
1683      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1684                                       SS, true, LAngleLoc,
1685                                       TemplateArgs,
1686                                       RAngleLoc))
1687    return true;
1688
1689  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1690      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1691      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1692    // Form a parsed representation of the template-id to be stored in the
1693    // UnqualifiedId.
1694    TemplateIdAnnotation *TemplateId
1695      = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1696
1697    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1698      TemplateId->Name = Id.Identifier;
1699      TemplateId->Operator = OO_None;
1700      TemplateId->TemplateNameLoc = Id.StartLocation;
1701    } else {
1702      TemplateId->Name = 0;
1703      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1704      TemplateId->TemplateNameLoc = Id.StartLocation;
1705    }
1706
1707    TemplateId->SS = SS;
1708    TemplateId->TemplateKWLoc = TemplateKWLoc;
1709    TemplateId->Template = Template;
1710    TemplateId->Kind = TNK;
1711    TemplateId->LAngleLoc = LAngleLoc;
1712    TemplateId->RAngleLoc = RAngleLoc;
1713    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1714    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1715         Arg != ArgEnd; ++Arg)
1716      Args[Arg] = TemplateArgs[Arg];
1717
1718    Id.setTemplateId(TemplateId);
1719    return false;
1720  }
1721
1722  // Bundle the template arguments together.
1723  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1724                                     TemplateArgs.size());
1725
1726  // Constructor and destructor names.
1727  TypeResult Type
1728    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1729                                  Template, NameLoc,
1730                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
1731                                  /*IsCtorOrDtorName=*/true);
1732  if (Type.isInvalid())
1733    return true;
1734
1735  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1736    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1737  else
1738    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1739
1740  return false;
1741}
1742
1743/// \brief Parse an operator-function-id or conversion-function-id as part
1744/// of a C++ unqualified-id.
1745///
1746/// This routine is responsible only for parsing the operator-function-id or
1747/// conversion-function-id; it does not handle template arguments in any way.
1748///
1749/// \code
1750///       operator-function-id: [C++ 13.5]
1751///         'operator' operator
1752///
1753///       operator: one of
1754///            new   delete  new[]   delete[]
1755///            +     -    *  /    %  ^    &   |   ~
1756///            !     =    <  >    += -=   *=  /=  %=
1757///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1758///            <=    >=   && ||   ++ --   ,   ->* ->
1759///            ()    []
1760///
1761///       conversion-function-id: [C++ 12.3.2]
1762///         operator conversion-type-id
1763///
1764///       conversion-type-id:
1765///         type-specifier-seq conversion-declarator[opt]
1766///
1767///       conversion-declarator:
1768///         ptr-operator conversion-declarator[opt]
1769/// \endcode
1770///
1771/// \param The nested-name-specifier that preceded this unqualified-id. If
1772/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1773///
1774/// \param EnteringContext whether we are entering the scope of the
1775/// nested-name-specifier.
1776///
1777/// \param ObjectType if this unqualified-id occurs within a member access
1778/// expression, the type of the base object whose member is being accessed.
1779///
1780/// \param Result on a successful parse, contains the parsed unqualified-id.
1781///
1782/// \returns true if parsing fails, false otherwise.
1783bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1784                                        ParsedType ObjectType,
1785                                        UnqualifiedId &Result) {
1786  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1787
1788  // Consume the 'operator' keyword.
1789  SourceLocation KeywordLoc = ConsumeToken();
1790
1791  // Determine what kind of operator name we have.
1792  unsigned SymbolIdx = 0;
1793  SourceLocation SymbolLocations[3];
1794  OverloadedOperatorKind Op = OO_None;
1795  switch (Tok.getKind()) {
1796    case tok::kw_new:
1797    case tok::kw_delete: {
1798      bool isNew = Tok.getKind() == tok::kw_new;
1799      // Consume the 'new' or 'delete'.
1800      SymbolLocations[SymbolIdx++] = ConsumeToken();
1801      // Check for array new/delete.
1802      if (Tok.is(tok::l_square) &&
1803          (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square))) {
1804        // Consume the '[' and ']'.
1805        BalancedDelimiterTracker T(*this, tok::l_square);
1806        T.consumeOpen();
1807        T.consumeClose();
1808        if (T.getCloseLocation().isInvalid())
1809          return true;
1810
1811        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1812        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1813        Op = isNew? OO_Array_New : OO_Array_Delete;
1814      } else {
1815        Op = isNew? OO_New : OO_Delete;
1816      }
1817      break;
1818    }
1819
1820#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1821    case tok::Token:                                                     \
1822      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1823      Op = OO_##Name;                                                    \
1824      break;
1825#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1826#include "clang/Basic/OperatorKinds.def"
1827
1828    case tok::l_paren: {
1829      // Consume the '(' and ')'.
1830      BalancedDelimiterTracker T(*this, tok::l_paren);
1831      T.consumeOpen();
1832      T.consumeClose();
1833      if (T.getCloseLocation().isInvalid())
1834        return true;
1835
1836      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1837      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1838      Op = OO_Call;
1839      break;
1840    }
1841
1842    case tok::l_square: {
1843      // Consume the '[' and ']'.
1844      BalancedDelimiterTracker T(*this, tok::l_square);
1845      T.consumeOpen();
1846      T.consumeClose();
1847      if (T.getCloseLocation().isInvalid())
1848        return true;
1849
1850      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1851      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1852      Op = OO_Subscript;
1853      break;
1854    }
1855
1856    case tok::code_completion: {
1857      // Code completion for the operator name.
1858      Actions.CodeCompleteOperatorName(getCurScope());
1859      cutOffParsing();
1860      // Don't try to parse any further.
1861      return true;
1862    }
1863
1864    default:
1865      break;
1866  }
1867
1868  if (Op != OO_None) {
1869    // We have parsed an operator-function-id.
1870    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1871    return false;
1872  }
1873
1874  // Parse a literal-operator-id.
1875  //
1876  //   literal-operator-id: [C++0x 13.5.8]
1877  //     operator "" identifier
1878
1879  if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1880    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1881
1882    SourceLocation DiagLoc;
1883    unsigned DiagId = 0;
1884
1885    // We're past translation phase 6, so perform string literal concatenation
1886    // before checking for "".
1887    llvm::SmallVector<Token, 4> Toks;
1888    llvm::SmallVector<SourceLocation, 4> TokLocs;
1889    while (isTokenStringLiteral()) {
1890      if (!Tok.is(tok::string_literal) && !DiagId) {
1891        DiagLoc = Tok.getLocation();
1892        DiagId = diag::err_literal_operator_string_prefix;
1893      }
1894      Toks.push_back(Tok);
1895      TokLocs.push_back(ConsumeStringToken());
1896    }
1897
1898    StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1899    if (Literal.hadError)
1900      return true;
1901
1902    // Grab the literal operator's suffix, which will be either the next token
1903    // or a ud-suffix from the string literal.
1904    IdentifierInfo *II = 0;
1905    SourceLocation SuffixLoc;
1906    if (!Literal.getUDSuffix().empty()) {
1907      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1908      SuffixLoc =
1909        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1910                                       Literal.getUDSuffixOffset(),
1911                                       PP.getSourceManager(), getLangOpts());
1912      // This form is not permitted by the standard (yet).
1913      DiagLoc = SuffixLoc;
1914      DiagId = diag::err_literal_operator_missing_space;
1915    } else if (Tok.is(tok::identifier)) {
1916      II = Tok.getIdentifierInfo();
1917      SuffixLoc = ConsumeToken();
1918      TokLocs.push_back(SuffixLoc);
1919    } else {
1920      Diag(Tok.getLocation(), diag::err_expected_ident);
1921      return true;
1922    }
1923
1924    // The string literal must be empty.
1925    if (!Literal.GetString().empty() || Literal.Pascal) {
1926      DiagLoc = TokLocs.front();
1927      DiagId = diag::err_literal_operator_string_not_empty;
1928    }
1929
1930    if (DiagId) {
1931      // This isn't a valid literal-operator-id, but we think we know
1932      // what the user meant. Tell them what they should have written.
1933      llvm::SmallString<32> Str;
1934      Str += "\"\" ";
1935      Str += II->getName();
1936      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1937          SourceRange(TokLocs.front(), TokLocs.back()), Str);
1938    }
1939
1940    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1941    return false;
1942  }
1943
1944  // Parse a conversion-function-id.
1945  //
1946  //   conversion-function-id: [C++ 12.3.2]
1947  //     operator conversion-type-id
1948  //
1949  //   conversion-type-id:
1950  //     type-specifier-seq conversion-declarator[opt]
1951  //
1952  //   conversion-declarator:
1953  //     ptr-operator conversion-declarator[opt]
1954
1955  // Parse the type-specifier-seq.
1956  DeclSpec DS(AttrFactory);
1957  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1958    return true;
1959
1960  // Parse the conversion-declarator, which is merely a sequence of
1961  // ptr-operators.
1962  Declarator D(DS, Declarator::TypeNameContext);
1963  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1964
1965  // Finish up the type.
1966  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1967  if (Ty.isInvalid())
1968    return true;
1969
1970  // Note that this is a conversion-function-id.
1971  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1972                                 D.getSourceRange().getEnd());
1973  return false;
1974}
1975
1976/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1977/// name of an entity.
1978///
1979/// \code
1980///       unqualified-id: [C++ expr.prim.general]
1981///         identifier
1982///         operator-function-id
1983///         conversion-function-id
1984/// [C++0x] literal-operator-id [TODO]
1985///         ~ class-name
1986///         template-id
1987///
1988/// \endcode
1989///
1990/// \param The nested-name-specifier that preceded this unqualified-id. If
1991/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1992///
1993/// \param EnteringContext whether we are entering the scope of the
1994/// nested-name-specifier.
1995///
1996/// \param AllowDestructorName whether we allow parsing of a destructor name.
1997///
1998/// \param AllowConstructorName whether we allow parsing a constructor name.
1999///
2000/// \param ObjectType if this unqualified-id occurs within a member access
2001/// expression, the type of the base object whose member is being accessed.
2002///
2003/// \param Result on a successful parse, contains the parsed unqualified-id.
2004///
2005/// \returns true if parsing fails, false otherwise.
2006bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2007                                bool AllowDestructorName,
2008                                bool AllowConstructorName,
2009                                ParsedType ObjectType,
2010                                SourceLocation& TemplateKWLoc,
2011                                UnqualifiedId &Result) {
2012
2013  // Handle 'A::template B'. This is for template-ids which have not
2014  // already been annotated by ParseOptionalCXXScopeSpecifier().
2015  bool TemplateSpecified = false;
2016  if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2017      (ObjectType || SS.isSet())) {
2018    TemplateSpecified = true;
2019    TemplateKWLoc = ConsumeToken();
2020  }
2021
2022  // unqualified-id:
2023  //   identifier
2024  //   template-id (when it hasn't already been annotated)
2025  if (Tok.is(tok::identifier)) {
2026    // Consume the identifier.
2027    IdentifierInfo *Id = Tok.getIdentifierInfo();
2028    SourceLocation IdLoc = ConsumeToken();
2029
2030    if (!getLangOpts().CPlusPlus) {
2031      // If we're not in C++, only identifiers matter. Record the
2032      // identifier and return.
2033      Result.setIdentifier(Id, IdLoc);
2034      return false;
2035    }
2036
2037    if (AllowConstructorName &&
2038        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2039      // We have parsed a constructor name.
2040      ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2041                                          &SS, false, false,
2042                                          ParsedType(),
2043                                          /*IsCtorOrDtorName=*/true,
2044                                          /*NonTrivialTypeSourceInfo=*/true);
2045      Result.setConstructorName(Ty, IdLoc, IdLoc);
2046    } else {
2047      // We have parsed an identifier.
2048      Result.setIdentifier(Id, IdLoc);
2049    }
2050
2051    // If the next token is a '<', we may have a template.
2052    if (TemplateSpecified || Tok.is(tok::less))
2053      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2054                                          EnteringContext, ObjectType,
2055                                          Result, TemplateSpecified);
2056
2057    return false;
2058  }
2059
2060  // unqualified-id:
2061  //   template-id (already parsed and annotated)
2062  if (Tok.is(tok::annot_template_id)) {
2063    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2064
2065    // If the template-name names the current class, then this is a constructor
2066    if (AllowConstructorName && TemplateId->Name &&
2067        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2068      if (SS.isSet()) {
2069        // C++ [class.qual]p2 specifies that a qualified template-name
2070        // is taken as the constructor name where a constructor can be
2071        // declared. Thus, the template arguments are extraneous, so
2072        // complain about them and remove them entirely.
2073        Diag(TemplateId->TemplateNameLoc,
2074             diag::err_out_of_line_constructor_template_id)
2075          << TemplateId->Name
2076          << FixItHint::CreateRemoval(
2077                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2078        ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2079                                            TemplateId->TemplateNameLoc,
2080                                            getCurScope(),
2081                                            &SS, false, false,
2082                                            ParsedType(),
2083                                            /*IsCtorOrDtorName=*/true,
2084                                            /*NontrivialTypeSourceInfo=*/true);
2085        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2086                                  TemplateId->RAngleLoc);
2087        ConsumeToken();
2088        return false;
2089      }
2090
2091      Result.setConstructorTemplateId(TemplateId);
2092      ConsumeToken();
2093      return false;
2094    }
2095
2096    // We have already parsed a template-id; consume the annotation token as
2097    // our unqualified-id.
2098    Result.setTemplateId(TemplateId);
2099    TemplateKWLoc = TemplateId->TemplateKWLoc;
2100    ConsumeToken();
2101    return false;
2102  }
2103
2104  // unqualified-id:
2105  //   operator-function-id
2106  //   conversion-function-id
2107  if (Tok.is(tok::kw_operator)) {
2108    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2109      return true;
2110
2111    // If we have an operator-function-id or a literal-operator-id and the next
2112    // token is a '<', we may have a
2113    //
2114    //   template-id:
2115    //     operator-function-id < template-argument-list[opt] >
2116    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2117         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2118        (TemplateSpecified || Tok.is(tok::less)))
2119      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2120                                          0, SourceLocation(),
2121                                          EnteringContext, ObjectType,
2122                                          Result, TemplateSpecified);
2123
2124    return false;
2125  }
2126
2127  if (getLangOpts().CPlusPlus &&
2128      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2129    // C++ [expr.unary.op]p10:
2130    //   There is an ambiguity in the unary-expression ~X(), where X is a
2131    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2132    //    unary complement rather than treating ~X as referring to a destructor.
2133
2134    // Parse the '~'.
2135    SourceLocation TildeLoc = ConsumeToken();
2136
2137    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2138      DeclSpec DS(AttrFactory);
2139      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2140      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2141        Result.setDestructorName(TildeLoc, Type, EndLoc);
2142        return false;
2143      }
2144      return true;
2145    }
2146
2147    // Parse the class-name.
2148    if (Tok.isNot(tok::identifier)) {
2149      Diag(Tok, diag::err_destructor_tilde_identifier);
2150      return true;
2151    }
2152
2153    // Parse the class-name (or template-name in a simple-template-id).
2154    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2155    SourceLocation ClassNameLoc = ConsumeToken();
2156
2157    if (TemplateSpecified || Tok.is(tok::less)) {
2158      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2159      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2160                                          ClassName, ClassNameLoc,
2161                                          EnteringContext, ObjectType,
2162                                          Result, TemplateSpecified);
2163    }
2164
2165    // Note that this is a destructor name.
2166    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2167                                              ClassNameLoc, getCurScope(),
2168                                              SS, ObjectType,
2169                                              EnteringContext);
2170    if (!Ty)
2171      return true;
2172
2173    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2174    return false;
2175  }
2176
2177  Diag(Tok, diag::err_expected_unqualified_id)
2178    << getLangOpts().CPlusPlus;
2179  return true;
2180}
2181
2182/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2183/// memory in a typesafe manner and call constructors.
2184///
2185/// This method is called to parse the new expression after the optional :: has
2186/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2187/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2188///
2189///        new-expression:
2190///                   '::'[opt] 'new' new-placement[opt] new-type-id
2191///                                     new-initializer[opt]
2192///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2193///                                     new-initializer[opt]
2194///
2195///        new-placement:
2196///                   '(' expression-list ')'
2197///
2198///        new-type-id:
2199///                   type-specifier-seq new-declarator[opt]
2200/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2201///
2202///        new-declarator:
2203///                   ptr-operator new-declarator[opt]
2204///                   direct-new-declarator
2205///
2206///        new-initializer:
2207///                   '(' expression-list[opt] ')'
2208/// [C++0x]           braced-init-list
2209///
2210ExprResult
2211Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2212  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2213  ConsumeToken();   // Consume 'new'
2214
2215  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2216  // second form of new-expression. It can't be a new-type-id.
2217
2218  ExprVector PlacementArgs(Actions);
2219  SourceLocation PlacementLParen, PlacementRParen;
2220
2221  SourceRange TypeIdParens;
2222  DeclSpec DS(AttrFactory);
2223  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2224  if (Tok.is(tok::l_paren)) {
2225    // If it turns out to be a placement, we change the type location.
2226    BalancedDelimiterTracker T(*this, tok::l_paren);
2227    T.consumeOpen();
2228    PlacementLParen = T.getOpenLocation();
2229    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2230      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2231      return ExprError();
2232    }
2233
2234    T.consumeClose();
2235    PlacementRParen = T.getCloseLocation();
2236    if (PlacementRParen.isInvalid()) {
2237      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2238      return ExprError();
2239    }
2240
2241    if (PlacementArgs.empty()) {
2242      // Reset the placement locations. There was no placement.
2243      TypeIdParens = T.getRange();
2244      PlacementLParen = PlacementRParen = SourceLocation();
2245    } else {
2246      // We still need the type.
2247      if (Tok.is(tok::l_paren)) {
2248        BalancedDelimiterTracker T(*this, tok::l_paren);
2249        T.consumeOpen();
2250        MaybeParseGNUAttributes(DeclaratorInfo);
2251        ParseSpecifierQualifierList(DS);
2252        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2253        ParseDeclarator(DeclaratorInfo);
2254        T.consumeClose();
2255        TypeIdParens = T.getRange();
2256      } else {
2257        MaybeParseGNUAttributes(DeclaratorInfo);
2258        if (ParseCXXTypeSpecifierSeq(DS))
2259          DeclaratorInfo.setInvalidType(true);
2260        else {
2261          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2262          ParseDeclaratorInternal(DeclaratorInfo,
2263                                  &Parser::ParseDirectNewDeclarator);
2264        }
2265      }
2266    }
2267  } else {
2268    // A new-type-id is a simplified type-id, where essentially the
2269    // direct-declarator is replaced by a direct-new-declarator.
2270    MaybeParseGNUAttributes(DeclaratorInfo);
2271    if (ParseCXXTypeSpecifierSeq(DS))
2272      DeclaratorInfo.setInvalidType(true);
2273    else {
2274      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2275      ParseDeclaratorInternal(DeclaratorInfo,
2276                              &Parser::ParseDirectNewDeclarator);
2277    }
2278  }
2279  if (DeclaratorInfo.isInvalidType()) {
2280    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2281    return ExprError();
2282  }
2283
2284  ExprResult Initializer;
2285
2286  if (Tok.is(tok::l_paren)) {
2287    SourceLocation ConstructorLParen, ConstructorRParen;
2288    ExprVector ConstructorArgs(Actions);
2289    BalancedDelimiterTracker T(*this, tok::l_paren);
2290    T.consumeOpen();
2291    ConstructorLParen = T.getOpenLocation();
2292    if (Tok.isNot(tok::r_paren)) {
2293      CommaLocsTy CommaLocs;
2294      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2295        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2296        return ExprError();
2297      }
2298    }
2299    T.consumeClose();
2300    ConstructorRParen = T.getCloseLocation();
2301    if (ConstructorRParen.isInvalid()) {
2302      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2303      return ExprError();
2304    }
2305    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2306                                             ConstructorRParen,
2307                                             ConstructorArgs);
2308  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2309    Diag(Tok.getLocation(),
2310         diag::warn_cxx98_compat_generalized_initializer_lists);
2311    Initializer = ParseBraceInitializer();
2312  }
2313  if (Initializer.isInvalid())
2314    return Initializer;
2315
2316  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2317                             PlacementArgs, PlacementRParen,
2318                             TypeIdParens, DeclaratorInfo, Initializer.take());
2319}
2320
2321/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2322/// passed to ParseDeclaratorInternal.
2323///
2324///        direct-new-declarator:
2325///                   '[' expression ']'
2326///                   direct-new-declarator '[' constant-expression ']'
2327///
2328void Parser::ParseDirectNewDeclarator(Declarator &D) {
2329  // Parse the array dimensions.
2330  bool first = true;
2331  while (Tok.is(tok::l_square)) {
2332    // An array-size expression can't start with a lambda.
2333    if (CheckProhibitedCXX11Attribute())
2334      continue;
2335
2336    BalancedDelimiterTracker T(*this, tok::l_square);
2337    T.consumeOpen();
2338
2339    ExprResult Size(first ? ParseExpression()
2340                                : ParseConstantExpression());
2341    if (Size.isInvalid()) {
2342      // Recover
2343      SkipUntil(tok::r_square);
2344      return;
2345    }
2346    first = false;
2347
2348    T.consumeClose();
2349
2350    // Attributes here appertain to the array type. C++11 [expr.new]p5.
2351    ParsedAttributes Attrs(AttrFactory);
2352    MaybeParseCXX0XAttributes(Attrs);
2353
2354    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2355                                            /*static=*/false, /*star=*/false,
2356                                            Size.release(),
2357                                            T.getOpenLocation(),
2358                                            T.getCloseLocation()),
2359                  Attrs, T.getCloseLocation());
2360
2361    if (T.getCloseLocation().isInvalid())
2362      return;
2363  }
2364}
2365
2366/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2367/// This ambiguity appears in the syntax of the C++ new operator.
2368///
2369///        new-expression:
2370///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2371///                                     new-initializer[opt]
2372///
2373///        new-placement:
2374///                   '(' expression-list ')'
2375///
2376bool Parser::ParseExpressionListOrTypeId(
2377                                   SmallVectorImpl<Expr*> &PlacementArgs,
2378                                         Declarator &D) {
2379  // The '(' was already consumed.
2380  if (isTypeIdInParens()) {
2381    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2382    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2383    ParseDeclarator(D);
2384    return D.isInvalidType();
2385  }
2386
2387  // It's not a type, it has to be an expression list.
2388  // Discard the comma locations - ActOnCXXNew has enough parameters.
2389  CommaLocsTy CommaLocs;
2390  return ParseExpressionList(PlacementArgs, CommaLocs);
2391}
2392
2393/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2394/// to free memory allocated by new.
2395///
2396/// This method is called to parse the 'delete' expression after the optional
2397/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2398/// and "Start" is its location.  Otherwise, "Start" is the location of the
2399/// 'delete' token.
2400///
2401///        delete-expression:
2402///                   '::'[opt] 'delete' cast-expression
2403///                   '::'[opt] 'delete' '[' ']' cast-expression
2404ExprResult
2405Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2406  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2407  ConsumeToken(); // Consume 'delete'
2408
2409  // Array delete?
2410  bool ArrayDelete = false;
2411  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2412    // C++11 [expr.delete]p1:
2413    //   Whenever the delete keyword is followed by empty square brackets, it
2414    //   shall be interpreted as [array delete].
2415    //   [Footnote: A lambda expression with a lambda-introducer that consists
2416    //              of empty square brackets can follow the delete keyword if
2417    //              the lambda expression is enclosed in parentheses.]
2418    // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2419    //        lambda-introducer.
2420    ArrayDelete = true;
2421    BalancedDelimiterTracker T(*this, tok::l_square);
2422
2423    T.consumeOpen();
2424    T.consumeClose();
2425    if (T.getCloseLocation().isInvalid())
2426      return ExprError();
2427  }
2428
2429  ExprResult Operand(ParseCastExpression(false));
2430  if (Operand.isInvalid())
2431    return Operand;
2432
2433  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2434}
2435
2436static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2437  switch(kind) {
2438  default: llvm_unreachable("Not a known unary type trait.");
2439  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2440  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2441  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2442  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2443  case tok::kw___has_trivial_constructor:
2444                                    return UTT_HasTrivialDefaultConstructor;
2445  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2446  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2447  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2448  case tok::kw___is_abstract:             return UTT_IsAbstract;
2449  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2450  case tok::kw___is_array:                   return UTT_IsArray;
2451  case tok::kw___is_class:                return UTT_IsClass;
2452  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2453  case tok::kw___is_compound:                return UTT_IsCompound;
2454  case tok::kw___is_const:                   return UTT_IsConst;
2455  case tok::kw___is_empty:                return UTT_IsEmpty;
2456  case tok::kw___is_enum:                 return UTT_IsEnum;
2457  case tok::kw___is_final:                 return UTT_IsFinal;
2458  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2459  case tok::kw___is_function:                return UTT_IsFunction;
2460  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2461  case tok::kw___is_integral:                return UTT_IsIntegral;
2462  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2463  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2464  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2465  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2466  case tok::kw___is_object:                  return UTT_IsObject;
2467  case tok::kw___is_literal:              return UTT_IsLiteral;
2468  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2469  case tok::kw___is_pod:                  return UTT_IsPOD;
2470  case tok::kw___is_pointer:                 return UTT_IsPointer;
2471  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2472  case tok::kw___is_reference:               return UTT_IsReference;
2473  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2474  case tok::kw___is_scalar:                  return UTT_IsScalar;
2475  case tok::kw___is_signed:                  return UTT_IsSigned;
2476  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2477  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2478  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2479  case tok::kw___is_union:                return UTT_IsUnion;
2480  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2481  case tok::kw___is_void:                    return UTT_IsVoid;
2482  case tok::kw___is_volatile:                return UTT_IsVolatile;
2483  }
2484}
2485
2486static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2487  switch(kind) {
2488  default: llvm_unreachable("Not a known binary type trait");
2489  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2490  case tok::kw___is_convertible:             return BTT_IsConvertible;
2491  case tok::kw___is_same:                    return BTT_IsSame;
2492  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2493  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2494  case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2495  }
2496}
2497
2498static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2499  switch (kind) {
2500  default: llvm_unreachable("Not a known type trait");
2501  case tok::kw___is_trivially_constructible:
2502    return TT_IsTriviallyConstructible;
2503  }
2504}
2505
2506static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2507  switch(kind) {
2508  default: llvm_unreachable("Not a known binary type trait");
2509  case tok::kw___array_rank:                 return ATT_ArrayRank;
2510  case tok::kw___array_extent:               return ATT_ArrayExtent;
2511  }
2512}
2513
2514static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2515  switch(kind) {
2516  default: llvm_unreachable("Not a known unary expression trait.");
2517  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2518  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2519  }
2520}
2521
2522/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2523/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2524/// templates.
2525///
2526///       primary-expression:
2527/// [GNU]             unary-type-trait '(' type-id ')'
2528///
2529ExprResult Parser::ParseUnaryTypeTrait() {
2530  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2531  SourceLocation Loc = ConsumeToken();
2532
2533  BalancedDelimiterTracker T(*this, tok::l_paren);
2534  if (T.expectAndConsume(diag::err_expected_lparen))
2535    return ExprError();
2536
2537  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2538  // there will be cryptic errors about mismatched parentheses and missing
2539  // specifiers.
2540  TypeResult Ty = ParseTypeName();
2541
2542  T.consumeClose();
2543
2544  if (Ty.isInvalid())
2545    return ExprError();
2546
2547  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2548}
2549
2550/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2551/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2552/// templates.
2553///
2554///       primary-expression:
2555/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2556///
2557ExprResult Parser::ParseBinaryTypeTrait() {
2558  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2559  SourceLocation Loc = ConsumeToken();
2560
2561  BalancedDelimiterTracker T(*this, tok::l_paren);
2562  if (T.expectAndConsume(diag::err_expected_lparen))
2563    return ExprError();
2564
2565  TypeResult LhsTy = ParseTypeName();
2566  if (LhsTy.isInvalid()) {
2567    SkipUntil(tok::r_paren);
2568    return ExprError();
2569  }
2570
2571  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2572    SkipUntil(tok::r_paren);
2573    return ExprError();
2574  }
2575
2576  TypeResult RhsTy = ParseTypeName();
2577  if (RhsTy.isInvalid()) {
2578    SkipUntil(tok::r_paren);
2579    return ExprError();
2580  }
2581
2582  T.consumeClose();
2583
2584  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2585                                      T.getCloseLocation());
2586}
2587
2588/// \brief Parse the built-in type-trait pseudo-functions that allow
2589/// implementation of the TR1/C++11 type traits templates.
2590///
2591///       primary-expression:
2592///          type-trait '(' type-id-seq ')'
2593///
2594///       type-id-seq:
2595///          type-id ...[opt] type-id-seq[opt]
2596///
2597ExprResult Parser::ParseTypeTrait() {
2598  TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2599  SourceLocation Loc = ConsumeToken();
2600
2601  BalancedDelimiterTracker Parens(*this, tok::l_paren);
2602  if (Parens.expectAndConsume(diag::err_expected_lparen))
2603    return ExprError();
2604
2605  llvm::SmallVector<ParsedType, 2> Args;
2606  do {
2607    // Parse the next type.
2608    TypeResult Ty = ParseTypeName();
2609    if (Ty.isInvalid()) {
2610      Parens.skipToEnd();
2611      return ExprError();
2612    }
2613
2614    // Parse the ellipsis, if present.
2615    if (Tok.is(tok::ellipsis)) {
2616      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2617      if (Ty.isInvalid()) {
2618        Parens.skipToEnd();
2619        return ExprError();
2620      }
2621    }
2622
2623    // Add this type to the list of arguments.
2624    Args.push_back(Ty.get());
2625
2626    if (Tok.is(tok::comma)) {
2627      ConsumeToken();
2628      continue;
2629    }
2630
2631    break;
2632  } while (true);
2633
2634  if (Parens.consumeClose())
2635    return ExprError();
2636
2637  return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2638}
2639
2640/// ParseArrayTypeTrait - Parse the built-in array type-trait
2641/// pseudo-functions.
2642///
2643///       primary-expression:
2644/// [Embarcadero]     '__array_rank' '(' type-id ')'
2645/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2646///
2647ExprResult Parser::ParseArrayTypeTrait() {
2648  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2649  SourceLocation Loc = ConsumeToken();
2650
2651  BalancedDelimiterTracker T(*this, tok::l_paren);
2652  if (T.expectAndConsume(diag::err_expected_lparen))
2653    return ExprError();
2654
2655  TypeResult Ty = ParseTypeName();
2656  if (Ty.isInvalid()) {
2657    SkipUntil(tok::comma);
2658    SkipUntil(tok::r_paren);
2659    return ExprError();
2660  }
2661
2662  switch (ATT) {
2663  case ATT_ArrayRank: {
2664    T.consumeClose();
2665    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2666                                       T.getCloseLocation());
2667  }
2668  case ATT_ArrayExtent: {
2669    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2670      SkipUntil(tok::r_paren);
2671      return ExprError();
2672    }
2673
2674    ExprResult DimExpr = ParseExpression();
2675    T.consumeClose();
2676
2677    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2678                                       T.getCloseLocation());
2679  }
2680  }
2681  llvm_unreachable("Invalid ArrayTypeTrait!");
2682}
2683
2684/// ParseExpressionTrait - Parse built-in expression-trait
2685/// pseudo-functions like __is_lvalue_expr( xxx ).
2686///
2687///       primary-expression:
2688/// [Embarcadero]     expression-trait '(' expression ')'
2689///
2690ExprResult Parser::ParseExpressionTrait() {
2691  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2692  SourceLocation Loc = ConsumeToken();
2693
2694  BalancedDelimiterTracker T(*this, tok::l_paren);
2695  if (T.expectAndConsume(diag::err_expected_lparen))
2696    return ExprError();
2697
2698  ExprResult Expr = ParseExpression();
2699
2700  T.consumeClose();
2701
2702  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2703                                      T.getCloseLocation());
2704}
2705
2706
2707/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2708/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2709/// based on the context past the parens.
2710ExprResult
2711Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2712                                         ParsedType &CastTy,
2713                                         BalancedDelimiterTracker &Tracker) {
2714  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2715  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2716  assert(isTypeIdInParens() && "Not a type-id!");
2717
2718  ExprResult Result(true);
2719  CastTy = ParsedType();
2720
2721  // We need to disambiguate a very ugly part of the C++ syntax:
2722  //
2723  // (T())x;  - type-id
2724  // (T())*x; - type-id
2725  // (T())/x; - expression
2726  // (T());   - expression
2727  //
2728  // The bad news is that we cannot use the specialized tentative parser, since
2729  // it can only verify that the thing inside the parens can be parsed as
2730  // type-id, it is not useful for determining the context past the parens.
2731  //
2732  // The good news is that the parser can disambiguate this part without
2733  // making any unnecessary Action calls.
2734  //
2735  // It uses a scheme similar to parsing inline methods. The parenthesized
2736  // tokens are cached, the context that follows is determined (possibly by
2737  // parsing a cast-expression), and then we re-introduce the cached tokens
2738  // into the token stream and parse them appropriately.
2739
2740  ParenParseOption ParseAs;
2741  CachedTokens Toks;
2742
2743  // Store the tokens of the parentheses. We will parse them after we determine
2744  // the context that follows them.
2745  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2746    // We didn't find the ')' we expected.
2747    Tracker.consumeClose();
2748    return ExprError();
2749  }
2750
2751  if (Tok.is(tok::l_brace)) {
2752    ParseAs = CompoundLiteral;
2753  } else {
2754    bool NotCastExpr;
2755    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2756    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2757      NotCastExpr = true;
2758    } else {
2759      // Try parsing the cast-expression that may follow.
2760      // If it is not a cast-expression, NotCastExpr will be true and no token
2761      // will be consumed.
2762      Result = ParseCastExpression(false/*isUnaryExpression*/,
2763                                   false/*isAddressofOperand*/,
2764                                   NotCastExpr,
2765                                   // type-id has priority.
2766                                   IsTypeCast);
2767    }
2768
2769    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2770    // an expression.
2771    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2772  }
2773
2774  // The current token should go after the cached tokens.
2775  Toks.push_back(Tok);
2776  // Re-enter the stored parenthesized tokens into the token stream, so we may
2777  // parse them now.
2778  PP.EnterTokenStream(Toks.data(), Toks.size(),
2779                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2780  // Drop the current token and bring the first cached one. It's the same token
2781  // as when we entered this function.
2782  ConsumeAnyToken();
2783
2784  if (ParseAs >= CompoundLiteral) {
2785    // Parse the type declarator.
2786    DeclSpec DS(AttrFactory);
2787    ParseSpecifierQualifierList(DS);
2788    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2789    ParseDeclarator(DeclaratorInfo);
2790
2791    // Match the ')'.
2792    Tracker.consumeClose();
2793
2794    if (ParseAs == CompoundLiteral) {
2795      ExprType = CompoundLiteral;
2796      TypeResult Ty = ParseTypeName();
2797       return ParseCompoundLiteralExpression(Ty.get(),
2798                                            Tracker.getOpenLocation(),
2799                                            Tracker.getCloseLocation());
2800    }
2801
2802    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2803    assert(ParseAs == CastExpr);
2804
2805    if (DeclaratorInfo.isInvalidType())
2806      return ExprError();
2807
2808    // Result is what ParseCastExpression returned earlier.
2809    if (!Result.isInvalid())
2810      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2811                                    DeclaratorInfo, CastTy,
2812                                    Tracker.getCloseLocation(), Result.take());
2813    return Result;
2814  }
2815
2816  // Not a compound literal, and not followed by a cast-expression.
2817  assert(ParseAs == SimpleExpr);
2818
2819  ExprType = SimpleExpr;
2820  Result = ParseExpression();
2821  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2822    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2823                                    Tok.getLocation(), Result.take());
2824
2825  // Match the ')'.
2826  if (Result.isInvalid()) {
2827    SkipUntil(tok::r_paren);
2828    return ExprError();
2829  }
2830
2831  Tracker.consumeClose();
2832  return Result;
2833}
2834