ParseExprCXX.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ParsedTemplate.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27  switch (Kind) {
28    case tok::kw_template:         return 0;
29    case tok::kw_const_cast:       return 1;
30    case tok::kw_dynamic_cast:     return 2;
31    case tok::kw_reinterpret_cast: return 3;
32    case tok::kw_static_cast:      return 4;
33    default:
34      llvm_unreachable("Unknown type for digraph error message.");
35  }
36}
37
38// Are the two tokens adjacent in the same source file?
39static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
40  SourceManager &SM = PP.getSourceManager();
41  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44}
45
46// Suggest fixit for "<::" after a cast.
47static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49  // Pull '<:' and ':' off token stream.
50  if (!AtDigraph)
51    PP.Lex(DigraphToken);
52  PP.Lex(ColonToken);
53
54  SourceRange Range;
55  Range.setBegin(DigraphToken.getLocation());
56  Range.setEnd(ColonToken.getLocation());
57  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58      << SelectDigraphErrorMessage(Kind)
59      << FixItHint::CreateReplacement(Range, "< ::");
60
61  // Update token information to reflect their change in token type.
62  ColonToken.setKind(tok::coloncolon);
63  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64  ColonToken.setLength(2);
65  DigraphToken.setKind(tok::less);
66  DigraphToken.setLength(1);
67
68  // Push new tokens back to token stream.
69  PP.EnterToken(ColonToken);
70  if (!AtDigraph)
71    PP.EnterToken(DigraphToken);
72}
73
74// Check for '<::' which should be '< ::' instead of '[:' when following
75// a template name.
76void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                        bool EnteringContext,
78                                        IdentifierInfo &II, CXXScopeSpec &SS) {
79  if (!Next.is(tok::l_square) || Next.getLength() != 2)
80    return;
81
82  Token SecondToken = GetLookAheadToken(2);
83  if (!SecondToken.is(tok::colon) || !AreTokensAdjacent(PP, Next, SecondToken))
84    return;
85
86  TemplateTy Template;
87  UnqualifiedId TemplateName;
88  TemplateName.setIdentifier(&II, Tok.getLocation());
89  bool MemberOfUnknownSpecialization;
90  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                              TemplateName, ObjectType, EnteringContext,
92                              Template, MemberOfUnknownSpecialization))
93    return;
94
95  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96             /*AtDigraph*/false);
97}
98
99/// \brief Parse global scope or nested-name-specifier if present.
100///
101/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102/// may be preceded by '::'). Note that this routine will not parse ::new or
103/// ::delete; it will just leave them in the token stream.
104///
105///       '::'[opt] nested-name-specifier
106///       '::'
107///
108///       nested-name-specifier:
109///         type-name '::'
110///         namespace-name '::'
111///         nested-name-specifier identifier '::'
112///         nested-name-specifier 'template'[opt] simple-template-id '::'
113///
114///
115/// \param SS the scope specifier that will be set to the parsed
116/// nested-name-specifier (or empty)
117///
118/// \param ObjectType if this nested-name-specifier is being parsed following
119/// the "." or "->" of a member access expression, this parameter provides the
120/// type of the object whose members are being accessed.
121///
122/// \param EnteringContext whether we will be entering into the context of
123/// the nested-name-specifier after parsing it.
124///
125/// \param MayBePseudoDestructor When non-NULL, points to a flag that
126/// indicates whether this nested-name-specifier may be part of a
127/// pseudo-destructor name. In this case, the flag will be set false
128/// if we don't actually end up parsing a destructor name. Moreorover,
129/// if we do end up determining that we are parsing a destructor name,
130/// the last component of the nested-name-specifier is not parsed as
131/// part of the scope specifier.
132
133/// member access expression, e.g., the \p T:: in \p p->T::m.
134///
135/// \returns true if there was an error parsing a scope specifier
136bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                            ParsedType ObjectType,
138                                            bool EnteringContext,
139                                            bool *MayBePseudoDestructor,
140                                            bool IsTypename) {
141  assert(getLangOpts().CPlusPlus &&
142         "Call sites of this function should be guarded by checking for C++");
143
144  if (Tok.is(tok::annot_cxxscope)) {
145    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                 Tok.getAnnotationRange(),
147                                                 SS);
148    ConsumeToken();
149    return false;
150  }
151
152  bool HasScopeSpecifier = false;
153
154  if (Tok.is(tok::coloncolon)) {
155    // ::new and ::delete aren't nested-name-specifiers.
156    tok::TokenKind NextKind = NextToken().getKind();
157    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158      return false;
159
160    // '::' - Global scope qualifier.
161    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162      return true;
163
164    HasScopeSpecifier = true;
165  }
166
167  bool CheckForDestructor = false;
168  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169    CheckForDestructor = true;
170    *MayBePseudoDestructor = false;
171  }
172
173  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174    DeclSpec DS(AttrFactory);
175    SourceLocation DeclLoc = Tok.getLocation();
176    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177    if (Tok.isNot(tok::coloncolon)) {
178      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179      return false;
180    }
181
182    SourceLocation CCLoc = ConsumeToken();
183    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186    HasScopeSpecifier = true;
187  }
188
189  while (true) {
190    if (HasScopeSpecifier) {
191      // C++ [basic.lookup.classref]p5:
192      //   If the qualified-id has the form
193      //
194      //       ::class-name-or-namespace-name::...
195      //
196      //   the class-name-or-namespace-name is looked up in global scope as a
197      //   class-name or namespace-name.
198      //
199      // To implement this, we clear out the object type as soon as we've
200      // seen a leading '::' or part of a nested-name-specifier.
201      ObjectType = ParsedType();
202
203      if (Tok.is(tok::code_completion)) {
204        // Code completion for a nested-name-specifier, where the code
205        // code completion token follows the '::'.
206        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207        // Include code completion token into the range of the scope otherwise
208        // when we try to annotate the scope tokens the dangling code completion
209        // token will cause assertion in
210        // Preprocessor::AnnotatePreviousCachedTokens.
211        SS.setEndLoc(Tok.getLocation());
212        cutOffParsing();
213        return true;
214      }
215    }
216
217    // nested-name-specifier:
218    //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220    // Parse the optional 'template' keyword, then make sure we have
221    // 'identifier <' after it.
222    if (Tok.is(tok::kw_template)) {
223      // If we don't have a scope specifier or an object type, this isn't a
224      // nested-name-specifier, since they aren't allowed to start with
225      // 'template'.
226      if (!HasScopeSpecifier && !ObjectType)
227        break;
228
229      TentativeParsingAction TPA(*this);
230      SourceLocation TemplateKWLoc = ConsumeToken();
231
232      UnqualifiedId TemplateName;
233      if (Tok.is(tok::identifier)) {
234        // Consume the identifier.
235        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236        ConsumeToken();
237      } else if (Tok.is(tok::kw_operator)) {
238        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
239                                       TemplateName)) {
240          TPA.Commit();
241          break;
242        }
243
244        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246          Diag(TemplateName.getSourceRange().getBegin(),
247               diag::err_id_after_template_in_nested_name_spec)
248            << TemplateName.getSourceRange();
249          TPA.Commit();
250          break;
251        }
252      } else {
253        TPA.Revert();
254        break;
255      }
256
257      // If the next token is not '<', we have a qualified-id that refers
258      // to a template name, such as T::template apply, but is not a
259      // template-id.
260      if (Tok.isNot(tok::less)) {
261        TPA.Revert();
262        break;
263      }
264
265      // Commit to parsing the template-id.
266      TPA.Commit();
267      TemplateTy Template;
268      if (TemplateNameKind TNK
269          = Actions.ActOnDependentTemplateName(getCurScope(),
270                                               SS, TemplateKWLoc, TemplateName,
271                                               ObjectType, EnteringContext,
272                                               Template)) {
273        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                    TemplateName, false))
275          return true;
276      } else
277        return true;
278
279      continue;
280    }
281
282    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283      // We have
284      //
285      //   simple-template-id '::'
286      //
287      // So we need to check whether the simple-template-id is of the
288      // right kind (it should name a type or be dependent), and then
289      // convert it into a type within the nested-name-specifier.
290      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292        *MayBePseudoDestructor = true;
293        return false;
294      }
295
296      // Consume the template-id token.
297      ConsumeToken();
298
299      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300      SourceLocation CCLoc = ConsumeToken();
301
302      HasScopeSpecifier = true;
303
304      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                         TemplateId->getTemplateArgs(),
306                                         TemplateId->NumArgs);
307
308      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                              SS,
310                                              TemplateId->TemplateKWLoc,
311                                              TemplateId->Template,
312                                              TemplateId->TemplateNameLoc,
313                                              TemplateId->LAngleLoc,
314                                              TemplateArgsPtr,
315                                              TemplateId->RAngleLoc,
316                                              CCLoc,
317                                              EnteringContext)) {
318        SourceLocation StartLoc
319          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                      : TemplateId->TemplateNameLoc;
321        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322      }
323
324      continue;
325    }
326
327
328    // The rest of the nested-name-specifier possibilities start with
329    // tok::identifier.
330    if (Tok.isNot(tok::identifier))
331      break;
332
333    IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335    // nested-name-specifier:
336    //   type-name '::'
337    //   namespace-name '::'
338    //   nested-name-specifier identifier '::'
339    Token Next = NextToken();
340
341    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342    // and emit a fixit hint for it.
343    if (Next.is(tok::colon) && !ColonIsSacred) {
344      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
345                                            Tok.getLocation(),
346                                            Next.getLocation(), ObjectType,
347                                            EnteringContext) &&
348          // If the token after the colon isn't an identifier, it's still an
349          // error, but they probably meant something else strange so don't
350          // recover like this.
351          PP.LookAhead(1).is(tok::identifier)) {
352        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353          << FixItHint::CreateReplacement(Next.getLocation(), "::");
354
355        // Recover as if the user wrote '::'.
356        Next.setKind(tok::coloncolon);
357      }
358    }
359
360    if (Next.is(tok::coloncolon)) {
361      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                II, ObjectType)) {
364        *MayBePseudoDestructor = true;
365        return false;
366      }
367
368      // We have an identifier followed by a '::'. Lookup this name
369      // as the name in a nested-name-specifier.
370      SourceLocation IdLoc = ConsumeToken();
371      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372             "NextToken() not working properly!");
373      SourceLocation CCLoc = ConsumeToken();
374
375      HasScopeSpecifier = true;
376      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                              ObjectType, EnteringContext, SS))
378        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379
380      continue;
381    }
382
383    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385    // nested-name-specifier:
386    //   type-name '<'
387    if (Next.is(tok::less)) {
388      TemplateTy Template;
389      UnqualifiedId TemplateName;
390      TemplateName.setIdentifier(&II, Tok.getLocation());
391      bool MemberOfUnknownSpecialization;
392      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
393                                              /*hasTemplateKeyword=*/false,
394                                                        TemplateName,
395                                                        ObjectType,
396                                                        EnteringContext,
397                                                        Template,
398                                              MemberOfUnknownSpecialization)) {
399        // We have found a template name, so annotate this token
400        // with a template-id annotation. We do not permit the
401        // template-id to be translated into a type annotation,
402        // because some clients (e.g., the parsing of class template
403        // specializations) still want to see the original template-id
404        // token.
405        ConsumeToken();
406        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                    TemplateName, false))
408          return true;
409        continue;
410      }
411
412      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
413          (IsTypename || IsTemplateArgumentList(1))) {
414        // We have something like t::getAs<T>, where getAs is a
415        // member of an unknown specialization. However, this will only
416        // parse correctly as a template, so suggest the keyword 'template'
417        // before 'getAs' and treat this as a dependent template name.
418        unsigned DiagID = diag::err_missing_dependent_template_keyword;
419        if (getLangOpts().MicrosoftExt)
420          DiagID = diag::warn_missing_dependent_template_keyword;
421
422        Diag(Tok.getLocation(), DiagID)
423          << II.getName()
424          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425
426        if (TemplateNameKind TNK
427              = Actions.ActOnDependentTemplateName(getCurScope(),
428                                                   SS, SourceLocation(),
429                                                   TemplateName, ObjectType,
430                                                   EnteringContext, Template)) {
431          // Consume the identifier.
432          ConsumeToken();
433          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                      TemplateName, false))
435            return true;
436        }
437        else
438          return true;
439
440        continue;
441      }
442    }
443
444    // We don't have any tokens that form the beginning of a
445    // nested-name-specifier, so we're done.
446    break;
447  }
448
449  // Even if we didn't see any pieces of a nested-name-specifier, we
450  // still check whether there is a tilde in this position, which
451  // indicates a potential pseudo-destructor.
452  if (CheckForDestructor && Tok.is(tok::tilde))
453    *MayBePseudoDestructor = true;
454
455  return false;
456}
457
458/// ParseCXXIdExpression - Handle id-expression.
459///
460///       id-expression:
461///         unqualified-id
462///         qualified-id
463///
464///       qualified-id:
465///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466///         '::' identifier
467///         '::' operator-function-id
468///         '::' template-id
469///
470/// NOTE: The standard specifies that, for qualified-id, the parser does not
471/// expect:
472///
473///   '::' conversion-function-id
474///   '::' '~' class-name
475///
476/// This may cause a slight inconsistency on diagnostics:
477///
478/// class C {};
479/// namespace A {}
480/// void f() {
481///   :: A :: ~ C(); // Some Sema error about using destructor with a
482///                  // namespace.
483///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484/// }
485///
486/// We simplify the parser a bit and make it work like:
487///
488///       qualified-id:
489///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490///         '::' unqualified-id
491///
492/// That way Sema can handle and report similar errors for namespaces and the
493/// global scope.
494///
495/// The isAddressOfOperand parameter indicates that this id-expression is a
496/// direct operand of the address-of operator. This is, besides member contexts,
497/// the only place where a qualified-id naming a non-static class member may
498/// appear.
499///
500ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501  // qualified-id:
502  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503  //   '::' unqualified-id
504  //
505  CXXScopeSpec SS;
506  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508  SourceLocation TemplateKWLoc;
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         TemplateKWLoc,
516                         Name))
517    return ExprError();
518
519  // This is only the direct operand of an & operator if it is not
520  // followed by a postfix-expression suffix.
521  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522    isAddressOfOperand = false;
523
524  return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                   Tok.is(tok::l_paren), isAddressOfOperand);
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLangOpts().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    Intro.DefaultLoc = ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    Intro.DefaultLoc = ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma)) {
645        if (Tok.is(tok::code_completion)) {
646          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
647                                               /*AfterAmpersand=*/false);
648          ConsumeCodeCompletionToken();
649          break;
650        }
651
652        return DiagResult(diag::err_expected_comma_or_rsquare);
653      }
654      ConsumeToken();
655    }
656
657    if (Tok.is(tok::code_completion)) {
658      // If we're in Objective-C++ and we have a bare '[', then this is more
659      // likely to be a message receiver.
660      if (getLangOpts().ObjC1 && first)
661        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
662      else
663        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
664                                             /*AfterAmpersand=*/false);
665      ConsumeCodeCompletionToken();
666      break;
667    }
668
669    first = false;
670
671    // Parse capture.
672    LambdaCaptureKind Kind = LCK_ByCopy;
673    SourceLocation Loc;
674    IdentifierInfo* Id = 0;
675    SourceLocation EllipsisLoc;
676
677    if (Tok.is(tok::kw_this)) {
678      Kind = LCK_This;
679      Loc = ConsumeToken();
680    } else {
681      if (Tok.is(tok::amp)) {
682        Kind = LCK_ByRef;
683        ConsumeToken();
684
685        if (Tok.is(tok::code_completion)) {
686          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
687                                               /*AfterAmpersand=*/true);
688          ConsumeCodeCompletionToken();
689          break;
690        }
691      }
692
693      if (Tok.is(tok::identifier)) {
694        Id = Tok.getIdentifierInfo();
695        Loc = ConsumeToken();
696
697        if (Tok.is(tok::ellipsis))
698          EllipsisLoc = ConsumeToken();
699      } else if (Tok.is(tok::kw_this)) {
700        // FIXME: If we want to suggest a fixit here, will need to return more
701        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
702        // Clear()ed to prevent emission in case of tentative parsing?
703        return DiagResult(diag::err_this_captured_by_reference);
704      } else {
705        return DiagResult(diag::err_expected_capture);
706      }
707    }
708
709    Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
710  }
711
712  T.consumeClose();
713  Intro.Range.setEnd(T.getCloseLocation());
714
715  return DiagResult();
716}
717
718/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
719///
720/// Returns true if it hit something unexpected.
721bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
722  TentativeParsingAction PA(*this);
723
724  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
725
726  if (DiagID) {
727    PA.Revert();
728    return true;
729  }
730
731  PA.Commit();
732  return false;
733}
734
735/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
736/// expression.
737ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
738                     LambdaIntroducer &Intro) {
739  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
740  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
741
742  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
743                                "lambda expression parsing");
744
745  // Parse lambda-declarator[opt].
746  DeclSpec DS(AttrFactory);
747  Declarator D(DS, Declarator::LambdaExprContext);
748
749  if (Tok.is(tok::l_paren)) {
750    ParseScope PrototypeScope(this,
751                              Scope::FunctionPrototypeScope |
752                              Scope::DeclScope);
753
754    SourceLocation DeclLoc, DeclEndLoc;
755    BalancedDelimiterTracker T(*this, tok::l_paren);
756    T.consumeOpen();
757    DeclLoc = T.getOpenLocation();
758
759    // Parse parameter-declaration-clause.
760    ParsedAttributes Attr(AttrFactory);
761    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
762    SourceLocation EllipsisLoc;
763
764    if (Tok.isNot(tok::r_paren))
765      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
766
767    T.consumeClose();
768    DeclEndLoc = T.getCloseLocation();
769
770    // Parse 'mutable'[opt].
771    SourceLocation MutableLoc;
772    if (Tok.is(tok::kw_mutable)) {
773      MutableLoc = ConsumeToken();
774      DeclEndLoc = MutableLoc;
775    }
776
777    // Parse exception-specification[opt].
778    ExceptionSpecificationType ESpecType = EST_None;
779    SourceRange ESpecRange;
780    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
781    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
782    ExprResult NoexceptExpr;
783    ESpecType = MaybeParseExceptionSpecification(ESpecRange,
784                                                 DynamicExceptions,
785                                                 DynamicExceptionRanges,
786                                                 NoexceptExpr);
787
788    if (ESpecType != EST_None)
789      DeclEndLoc = ESpecRange.getEnd();
790
791    // Parse attribute-specifier[opt].
792    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
793
794    // Parse trailing-return-type[opt].
795    ParsedType TrailingReturnType;
796    if (Tok.is(tok::arrow)) {
797      SourceRange Range;
798      TrailingReturnType = ParseTrailingReturnType(Range).get();
799      if (Range.getEnd().isValid())
800        DeclEndLoc = Range.getEnd();
801    }
802
803    PrototypeScope.Exit();
804
805    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
806                                           /*isVariadic=*/EllipsisLoc.isValid(),
807                                           EllipsisLoc,
808                                           ParamInfo.data(), ParamInfo.size(),
809                                           DS.getTypeQualifiers(),
810                                           /*RefQualifierIsLValueRef=*/true,
811                                           /*RefQualifierLoc=*/SourceLocation(),
812                                         /*ConstQualifierLoc=*/SourceLocation(),
813                                      /*VolatileQualifierLoc=*/SourceLocation(),
814                                           MutableLoc,
815                                           ESpecType, ESpecRange.getBegin(),
816                                           DynamicExceptions.data(),
817                                           DynamicExceptionRanges.data(),
818                                           DynamicExceptions.size(),
819                                           NoexceptExpr.isUsable() ?
820                                             NoexceptExpr.get() : 0,
821                                           DeclLoc, DeclEndLoc, D,
822                                           TrailingReturnType),
823                  Attr, DeclEndLoc);
824  } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
825    // It's common to forget that one needs '()' before 'mutable' or the
826    // result type. Deal with this.
827    Diag(Tok, diag::err_lambda_missing_parens)
828      << Tok.is(tok::arrow)
829      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
830    SourceLocation DeclLoc = Tok.getLocation();
831    SourceLocation DeclEndLoc = DeclLoc;
832
833    // Parse 'mutable', if it's there.
834    SourceLocation MutableLoc;
835    if (Tok.is(tok::kw_mutable)) {
836      MutableLoc = ConsumeToken();
837      DeclEndLoc = MutableLoc;
838    }
839
840    // Parse the return type, if there is one.
841    ParsedType TrailingReturnType;
842    if (Tok.is(tok::arrow)) {
843      SourceRange Range;
844      TrailingReturnType = ParseTrailingReturnType(Range).get();
845      if (Range.getEnd().isValid())
846        DeclEndLoc = Range.getEnd();
847    }
848
849    ParsedAttributes Attr(AttrFactory);
850    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
851                     /*isVariadic=*/false,
852                     /*EllipsisLoc=*/SourceLocation(),
853                     /*Params=*/0, /*NumParams=*/0,
854                     /*TypeQuals=*/0,
855                     /*RefQualifierIsLValueRef=*/true,
856                     /*RefQualifierLoc=*/SourceLocation(),
857                     /*ConstQualifierLoc=*/SourceLocation(),
858                     /*VolatileQualifierLoc=*/SourceLocation(),
859                     MutableLoc,
860                     EST_None,
861                     /*ESpecLoc=*/SourceLocation(),
862                     /*Exceptions=*/0,
863                     /*ExceptionRanges=*/0,
864                     /*NumExceptions=*/0,
865                     /*NoexceptExpr=*/0,
866                     DeclLoc, DeclEndLoc, D,
867                     TrailingReturnType),
868                  Attr, DeclEndLoc);
869  }
870
871
872  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
873  // it.
874  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
875  if (getCurScope()->getFlags() & Scope::ThisScope)
876    ScopeFlags |= Scope::ThisScope;
877  ParseScope BodyScope(this, ScopeFlags);
878
879  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
880
881  // Parse compound-statement.
882  if (!Tok.is(tok::l_brace)) {
883    Diag(Tok, diag::err_expected_lambda_body);
884    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
885    return ExprError();
886  }
887
888  StmtResult Stmt(ParseCompoundStatementBody());
889  BodyScope.Exit();
890
891  if (!Stmt.isInvalid())
892    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
893
894  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
895  return ExprError();
896}
897
898/// ParseCXXCasts - This handles the various ways to cast expressions to another
899/// type.
900///
901///       postfix-expression: [C++ 5.2p1]
902///         'dynamic_cast' '<' type-name '>' '(' expression ')'
903///         'static_cast' '<' type-name '>' '(' expression ')'
904///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
905///         'const_cast' '<' type-name '>' '(' expression ')'
906///
907ExprResult Parser::ParseCXXCasts() {
908  tok::TokenKind Kind = Tok.getKind();
909  const char *CastName = 0;     // For error messages
910
911  switch (Kind) {
912  default: llvm_unreachable("Unknown C++ cast!");
913  case tok::kw_const_cast:       CastName = "const_cast";       break;
914  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
915  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
916  case tok::kw_static_cast:      CastName = "static_cast";      break;
917  }
918
919  SourceLocation OpLoc = ConsumeToken();
920  SourceLocation LAngleBracketLoc = Tok.getLocation();
921
922  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
923  // diagnose error, suggest fix, and recover parsing.
924  Token Next = NextToken();
925  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
926      AreTokensAdjacent(PP, Tok, Next))
927    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
928
929  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
930    return ExprError();
931
932  // Parse the common declaration-specifiers piece.
933  DeclSpec DS(AttrFactory);
934  ParseSpecifierQualifierList(DS);
935
936  // Parse the abstract-declarator, if present.
937  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
938  ParseDeclarator(DeclaratorInfo);
939
940  SourceLocation RAngleBracketLoc = Tok.getLocation();
941
942  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
943    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
944
945  SourceLocation LParenLoc, RParenLoc;
946  BalancedDelimiterTracker T(*this, tok::l_paren);
947
948  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
949    return ExprError();
950
951  ExprResult Result = ParseExpression();
952
953  // Match the ')'.
954  T.consumeClose();
955
956  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
957    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
958                                       LAngleBracketLoc, DeclaratorInfo,
959                                       RAngleBracketLoc,
960                                       T.getOpenLocation(), Result.take(),
961                                       T.getCloseLocation());
962
963  return move(Result);
964}
965
966/// ParseCXXTypeid - This handles the C++ typeid expression.
967///
968///       postfix-expression: [C++ 5.2p1]
969///         'typeid' '(' expression ')'
970///         'typeid' '(' type-id ')'
971///
972ExprResult Parser::ParseCXXTypeid() {
973  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
974
975  SourceLocation OpLoc = ConsumeToken();
976  SourceLocation LParenLoc, RParenLoc;
977  BalancedDelimiterTracker T(*this, tok::l_paren);
978
979  // typeid expressions are always parenthesized.
980  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
981    return ExprError();
982  LParenLoc = T.getOpenLocation();
983
984  ExprResult Result;
985
986  if (isTypeIdInParens()) {
987    TypeResult Ty = ParseTypeName();
988
989    // Match the ')'.
990    T.consumeClose();
991    RParenLoc = T.getCloseLocation();
992    if (Ty.isInvalid() || RParenLoc.isInvalid())
993      return ExprError();
994
995    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
996                                    Ty.get().getAsOpaquePtr(), RParenLoc);
997  } else {
998    // C++0x [expr.typeid]p3:
999    //   When typeid is applied to an expression other than an lvalue of a
1000    //   polymorphic class type [...] The expression is an unevaluated
1001    //   operand (Clause 5).
1002    //
1003    // Note that we can't tell whether the expression is an lvalue of a
1004    // polymorphic class type until after we've parsed the expression; we
1005    // speculatively assume the subexpression is unevaluated, and fix it up
1006    // later.
1007    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1008    Result = ParseExpression();
1009
1010    // Match the ')'.
1011    if (Result.isInvalid())
1012      SkipUntil(tok::r_paren);
1013    else {
1014      T.consumeClose();
1015      RParenLoc = T.getCloseLocation();
1016      if (RParenLoc.isInvalid())
1017        return ExprError();
1018
1019      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1020                                      Result.release(), RParenLoc);
1021    }
1022  }
1023
1024  return move(Result);
1025}
1026
1027/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1028///
1029///         '__uuidof' '(' expression ')'
1030///         '__uuidof' '(' type-id ')'
1031///
1032ExprResult Parser::ParseCXXUuidof() {
1033  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1034
1035  SourceLocation OpLoc = ConsumeToken();
1036  BalancedDelimiterTracker T(*this, tok::l_paren);
1037
1038  // __uuidof expressions are always parenthesized.
1039  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1040    return ExprError();
1041
1042  ExprResult Result;
1043
1044  if (isTypeIdInParens()) {
1045    TypeResult Ty = ParseTypeName();
1046
1047    // Match the ')'.
1048    T.consumeClose();
1049
1050    if (Ty.isInvalid())
1051      return ExprError();
1052
1053    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1054                                    Ty.get().getAsOpaquePtr(),
1055                                    T.getCloseLocation());
1056  } else {
1057    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1058    Result = ParseExpression();
1059
1060    // Match the ')'.
1061    if (Result.isInvalid())
1062      SkipUntil(tok::r_paren);
1063    else {
1064      T.consumeClose();
1065
1066      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1067                                      /*isType=*/false,
1068                                      Result.release(), T.getCloseLocation());
1069    }
1070  }
1071
1072  return move(Result);
1073}
1074
1075/// \brief Parse a C++ pseudo-destructor expression after the base,
1076/// . or -> operator, and nested-name-specifier have already been
1077/// parsed.
1078///
1079///       postfix-expression: [C++ 5.2]
1080///         postfix-expression . pseudo-destructor-name
1081///         postfix-expression -> pseudo-destructor-name
1082///
1083///       pseudo-destructor-name:
1084///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1085///         ::[opt] nested-name-specifier template simple-template-id ::
1086///                 ~type-name
1087///         ::[opt] nested-name-specifier[opt] ~type-name
1088///
1089ExprResult
1090Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1091                                 tok::TokenKind OpKind,
1092                                 CXXScopeSpec &SS,
1093                                 ParsedType ObjectType) {
1094  // We're parsing either a pseudo-destructor-name or a dependent
1095  // member access that has the same form as a
1096  // pseudo-destructor-name. We parse both in the same way and let
1097  // the action model sort them out.
1098  //
1099  // Note that the ::[opt] nested-name-specifier[opt] has already
1100  // been parsed, and if there was a simple-template-id, it has
1101  // been coalesced into a template-id annotation token.
1102  UnqualifiedId FirstTypeName;
1103  SourceLocation CCLoc;
1104  if (Tok.is(tok::identifier)) {
1105    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1106    ConsumeToken();
1107    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1108    CCLoc = ConsumeToken();
1109  } else if (Tok.is(tok::annot_template_id)) {
1110    // FIXME: retrieve TemplateKWLoc from template-id annotation and
1111    // store it in the pseudo-dtor node (to be used when instantiating it).
1112    FirstTypeName.setTemplateId(
1113                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1114    ConsumeToken();
1115    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1116    CCLoc = ConsumeToken();
1117  } else {
1118    FirstTypeName.setIdentifier(0, SourceLocation());
1119  }
1120
1121  // Parse the tilde.
1122  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1123  SourceLocation TildeLoc = ConsumeToken();
1124
1125  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1126    DeclSpec DS(AttrFactory);
1127    ParseDecltypeSpecifier(DS);
1128    if (DS.getTypeSpecType() == TST_error)
1129      return ExprError();
1130    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1131                                             OpKind, TildeLoc, DS,
1132                                             Tok.is(tok::l_paren));
1133  }
1134
1135  if (!Tok.is(tok::identifier)) {
1136    Diag(Tok, diag::err_destructor_tilde_identifier);
1137    return ExprError();
1138  }
1139
1140  // Parse the second type.
1141  UnqualifiedId SecondTypeName;
1142  IdentifierInfo *Name = Tok.getIdentifierInfo();
1143  SourceLocation NameLoc = ConsumeToken();
1144  SecondTypeName.setIdentifier(Name, NameLoc);
1145
1146  // If there is a '<', the second type name is a template-id. Parse
1147  // it as such.
1148  if (Tok.is(tok::less) &&
1149      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1150                                   Name, NameLoc,
1151                                   false, ObjectType, SecondTypeName,
1152                                   /*AssumeTemplateName=*/true))
1153    return ExprError();
1154
1155  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1156                                           OpLoc, OpKind,
1157                                           SS, FirstTypeName, CCLoc,
1158                                           TildeLoc, SecondTypeName,
1159                                           Tok.is(tok::l_paren));
1160}
1161
1162/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1163///
1164///       boolean-literal: [C++ 2.13.5]
1165///         'true'
1166///         'false'
1167ExprResult Parser::ParseCXXBoolLiteral() {
1168  tok::TokenKind Kind = Tok.getKind();
1169  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1170}
1171
1172/// ParseThrowExpression - This handles the C++ throw expression.
1173///
1174///       throw-expression: [C++ 15]
1175///         'throw' assignment-expression[opt]
1176ExprResult Parser::ParseThrowExpression() {
1177  assert(Tok.is(tok::kw_throw) && "Not throw!");
1178  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1179
1180  // If the current token isn't the start of an assignment-expression,
1181  // then the expression is not present.  This handles things like:
1182  //   "C ? throw : (void)42", which is crazy but legal.
1183  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1184  case tok::semi:
1185  case tok::r_paren:
1186  case tok::r_square:
1187  case tok::r_brace:
1188  case tok::colon:
1189  case tok::comma:
1190    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1191
1192  default:
1193    ExprResult Expr(ParseAssignmentExpression());
1194    if (Expr.isInvalid()) return move(Expr);
1195    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1196  }
1197}
1198
1199/// ParseCXXThis - This handles the C++ 'this' pointer.
1200///
1201/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1202/// a non-lvalue expression whose value is the address of the object for which
1203/// the function is called.
1204ExprResult Parser::ParseCXXThis() {
1205  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1206  SourceLocation ThisLoc = ConsumeToken();
1207  return Actions.ActOnCXXThis(ThisLoc);
1208}
1209
1210/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1211/// Can be interpreted either as function-style casting ("int(x)")
1212/// or class type construction ("ClassType(x,y,z)")
1213/// or creation of a value-initialized type ("int()").
1214/// See [C++ 5.2.3].
1215///
1216///       postfix-expression: [C++ 5.2p1]
1217///         simple-type-specifier '(' expression-list[opt] ')'
1218/// [C++0x] simple-type-specifier braced-init-list
1219///         typename-specifier '(' expression-list[opt] ')'
1220/// [C++0x] typename-specifier braced-init-list
1221///
1222ExprResult
1223Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1224  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1225  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1226
1227  assert((Tok.is(tok::l_paren) ||
1228          (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1229         && "Expected '(' or '{'!");
1230
1231  if (Tok.is(tok::l_brace)) {
1232    ExprResult Init = ParseBraceInitializer();
1233    if (Init.isInvalid())
1234      return Init;
1235    Expr *InitList = Init.take();
1236    return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1237                                             MultiExprArg(&InitList, 1),
1238                                             SourceLocation());
1239  } else {
1240    GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
1241
1242    BalancedDelimiterTracker T(*this, tok::l_paren);
1243    T.consumeOpen();
1244
1245    ExprVector Exprs(Actions);
1246    CommaLocsTy CommaLocs;
1247
1248    if (Tok.isNot(tok::r_paren)) {
1249      if (ParseExpressionList(Exprs, CommaLocs)) {
1250        SkipUntil(tok::r_paren);
1251        return ExprError();
1252      }
1253    }
1254
1255    // Match the ')'.
1256    T.consumeClose();
1257
1258    // TypeRep could be null, if it references an invalid typedef.
1259    if (!TypeRep)
1260      return ExprError();
1261
1262    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1263           "Unexpected number of commas!");
1264    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1265                                             move_arg(Exprs),
1266                                             T.getCloseLocation());
1267  }
1268}
1269
1270/// ParseCXXCondition - if/switch/while condition expression.
1271///
1272///       condition:
1273///         expression
1274///         type-specifier-seq declarator '=' assignment-expression
1275/// [C++11] type-specifier-seq declarator '=' initializer-clause
1276/// [C++11] type-specifier-seq declarator braced-init-list
1277/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1278///             '=' assignment-expression
1279///
1280/// \param ExprResult if the condition was parsed as an expression, the
1281/// parsed expression.
1282///
1283/// \param DeclResult if the condition was parsed as a declaration, the
1284/// parsed declaration.
1285///
1286/// \param Loc The location of the start of the statement that requires this
1287/// condition, e.g., the "for" in a for loop.
1288///
1289/// \param ConvertToBoolean Whether the condition expression should be
1290/// converted to a boolean value.
1291///
1292/// \returns true if there was a parsing, false otherwise.
1293bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1294                               Decl *&DeclOut,
1295                               SourceLocation Loc,
1296                               bool ConvertToBoolean) {
1297  if (Tok.is(tok::code_completion)) {
1298    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1299    cutOffParsing();
1300    return true;
1301  }
1302
1303  if (!isCXXConditionDeclaration()) {
1304    // Parse the expression.
1305    ExprOut = ParseExpression(); // expression
1306    DeclOut = 0;
1307    if (ExprOut.isInvalid())
1308      return true;
1309
1310    // If required, convert to a boolean value.
1311    if (ConvertToBoolean)
1312      ExprOut
1313        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1314    return ExprOut.isInvalid();
1315  }
1316
1317  // type-specifier-seq
1318  DeclSpec DS(AttrFactory);
1319  ParseSpecifierQualifierList(DS);
1320
1321  // declarator
1322  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1323  ParseDeclarator(DeclaratorInfo);
1324
1325  // simple-asm-expr[opt]
1326  if (Tok.is(tok::kw_asm)) {
1327    SourceLocation Loc;
1328    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1329    if (AsmLabel.isInvalid()) {
1330      SkipUntil(tok::semi);
1331      return true;
1332    }
1333    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1334    DeclaratorInfo.SetRangeEnd(Loc);
1335  }
1336
1337  // If attributes are present, parse them.
1338  MaybeParseGNUAttributes(DeclaratorInfo);
1339
1340  // Type-check the declaration itself.
1341  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1342                                                        DeclaratorInfo);
1343  DeclOut = Dcl.get();
1344  ExprOut = ExprError();
1345
1346  // '=' assignment-expression
1347  // If a '==' or '+=' is found, suggest a fixit to '='.
1348  bool CopyInitialization = isTokenEqualOrEqualTypo();
1349  if (CopyInitialization)
1350    ConsumeToken();
1351
1352  ExprResult InitExpr = ExprError();
1353  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1354    Diag(Tok.getLocation(),
1355         diag::warn_cxx98_compat_generalized_initializer_lists);
1356    InitExpr = ParseBraceInitializer();
1357  } else if (CopyInitialization) {
1358    InitExpr = ParseAssignmentExpression();
1359  } else if (Tok.is(tok::l_paren)) {
1360    // This was probably an attempt to initialize the variable.
1361    SourceLocation LParen = ConsumeParen(), RParen = LParen;
1362    if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1363      RParen = ConsumeParen();
1364    Diag(DeclOut ? DeclOut->getLocation() : LParen,
1365         diag::err_expected_init_in_condition_lparen)
1366      << SourceRange(LParen, RParen);
1367  } else {
1368    Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1369         diag::err_expected_init_in_condition);
1370  }
1371
1372  if (!InitExpr.isInvalid())
1373    Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1374                                 DS.getTypeSpecType() == DeclSpec::TST_auto);
1375
1376  // FIXME: Build a reference to this declaration? Convert it to bool?
1377  // (This is currently handled by Sema).
1378
1379  Actions.FinalizeDeclaration(DeclOut);
1380
1381  return false;
1382}
1383
1384/// \brief Determine whether the current token starts a C++
1385/// simple-type-specifier.
1386bool Parser::isCXXSimpleTypeSpecifier() const {
1387  switch (Tok.getKind()) {
1388  case tok::annot_typename:
1389  case tok::kw_short:
1390  case tok::kw_long:
1391  case tok::kw___int64:
1392  case tok::kw_signed:
1393  case tok::kw_unsigned:
1394  case tok::kw_void:
1395  case tok::kw_char:
1396  case tok::kw_int:
1397  case tok::kw_half:
1398  case tok::kw_float:
1399  case tok::kw_double:
1400  case tok::kw_wchar_t:
1401  case tok::kw_char16_t:
1402  case tok::kw_char32_t:
1403  case tok::kw_bool:
1404  case tok::kw_decltype:
1405  case tok::kw_typeof:
1406  case tok::kw___underlying_type:
1407    return true;
1408
1409  default:
1410    break;
1411  }
1412
1413  return false;
1414}
1415
1416/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1417/// This should only be called when the current token is known to be part of
1418/// simple-type-specifier.
1419///
1420///       simple-type-specifier:
1421///         '::'[opt] nested-name-specifier[opt] type-name
1422///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1423///         char
1424///         wchar_t
1425///         bool
1426///         short
1427///         int
1428///         long
1429///         signed
1430///         unsigned
1431///         float
1432///         double
1433///         void
1434/// [GNU]   typeof-specifier
1435/// [C++0x] auto               [TODO]
1436///
1437///       type-name:
1438///         class-name
1439///         enum-name
1440///         typedef-name
1441///
1442void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1443  DS.SetRangeStart(Tok.getLocation());
1444  const char *PrevSpec;
1445  unsigned DiagID;
1446  SourceLocation Loc = Tok.getLocation();
1447
1448  switch (Tok.getKind()) {
1449  case tok::identifier:   // foo::bar
1450  case tok::coloncolon:   // ::foo::bar
1451    llvm_unreachable("Annotation token should already be formed!");
1452  default:
1453    llvm_unreachable("Not a simple-type-specifier token!");
1454
1455  // type-name
1456  case tok::annot_typename: {
1457    if (getTypeAnnotation(Tok))
1458      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1459                         getTypeAnnotation(Tok));
1460    else
1461      DS.SetTypeSpecError();
1462
1463    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1464    ConsumeToken();
1465
1466    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1467    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1468    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1469    // just a normal reference to a typedef name.
1470    if (Tok.is(tok::less) && getLangOpts().ObjC1)
1471      ParseObjCProtocolQualifiers(DS);
1472
1473    DS.Finish(Diags, PP);
1474    return;
1475  }
1476
1477  // builtin types
1478  case tok::kw_short:
1479    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1480    break;
1481  case tok::kw_long:
1482    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1483    break;
1484  case tok::kw___int64:
1485    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1486    break;
1487  case tok::kw_signed:
1488    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1489    break;
1490  case tok::kw_unsigned:
1491    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1492    break;
1493  case tok::kw_void:
1494    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1495    break;
1496  case tok::kw_char:
1497    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1498    break;
1499  case tok::kw_int:
1500    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1501    break;
1502  case tok::kw_half:
1503    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1504    break;
1505  case tok::kw_float:
1506    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1507    break;
1508  case tok::kw_double:
1509    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1510    break;
1511  case tok::kw_wchar_t:
1512    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1513    break;
1514  case tok::kw_char16_t:
1515    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1516    break;
1517  case tok::kw_char32_t:
1518    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1519    break;
1520  case tok::kw_bool:
1521    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1522    break;
1523  case tok::annot_decltype:
1524  case tok::kw_decltype:
1525    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1526    return DS.Finish(Diags, PP);
1527
1528  // GNU typeof support.
1529  case tok::kw_typeof:
1530    ParseTypeofSpecifier(DS);
1531    DS.Finish(Diags, PP);
1532    return;
1533  }
1534  if (Tok.is(tok::annot_typename))
1535    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1536  else
1537    DS.SetRangeEnd(Tok.getLocation());
1538  ConsumeToken();
1539  DS.Finish(Diags, PP);
1540}
1541
1542/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1543/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1544/// e.g., "const short int". Note that the DeclSpec is *not* finished
1545/// by parsing the type-specifier-seq, because these sequences are
1546/// typically followed by some form of declarator. Returns true and
1547/// emits diagnostics if this is not a type-specifier-seq, false
1548/// otherwise.
1549///
1550///   type-specifier-seq: [C++ 8.1]
1551///     type-specifier type-specifier-seq[opt]
1552///
1553bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1554  DS.SetRangeStart(Tok.getLocation());
1555  const char *PrevSpec = 0;
1556  unsigned DiagID;
1557  bool isInvalid = 0;
1558
1559  // Parse one or more of the type specifiers.
1560  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1561      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
1562    Diag(Tok, diag::err_expected_type);
1563    return true;
1564  }
1565
1566  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1567         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
1568  {}
1569
1570  DS.Finish(Diags, PP);
1571  return false;
1572}
1573
1574/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1575/// some form.
1576///
1577/// This routine is invoked when a '<' is encountered after an identifier or
1578/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1579/// whether the unqualified-id is actually a template-id. This routine will
1580/// then parse the template arguments and form the appropriate template-id to
1581/// return to the caller.
1582///
1583/// \param SS the nested-name-specifier that precedes this template-id, if
1584/// we're actually parsing a qualified-id.
1585///
1586/// \param Name for constructor and destructor names, this is the actual
1587/// identifier that may be a template-name.
1588///
1589/// \param NameLoc the location of the class-name in a constructor or
1590/// destructor.
1591///
1592/// \param EnteringContext whether we're entering the scope of the
1593/// nested-name-specifier.
1594///
1595/// \param ObjectType if this unqualified-id occurs within a member access
1596/// expression, the type of the base object whose member is being accessed.
1597///
1598/// \param Id as input, describes the template-name or operator-function-id
1599/// that precedes the '<'. If template arguments were parsed successfully,
1600/// will be updated with the template-id.
1601///
1602/// \param AssumeTemplateId When true, this routine will assume that the name
1603/// refers to a template without performing name lookup to verify.
1604///
1605/// \returns true if a parse error occurred, false otherwise.
1606bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1607                                          SourceLocation TemplateKWLoc,
1608                                          IdentifierInfo *Name,
1609                                          SourceLocation NameLoc,
1610                                          bool EnteringContext,
1611                                          ParsedType ObjectType,
1612                                          UnqualifiedId &Id,
1613                                          bool AssumeTemplateId) {
1614  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1615         "Expected '<' to finish parsing a template-id");
1616
1617  TemplateTy Template;
1618  TemplateNameKind TNK = TNK_Non_template;
1619  switch (Id.getKind()) {
1620  case UnqualifiedId::IK_Identifier:
1621  case UnqualifiedId::IK_OperatorFunctionId:
1622  case UnqualifiedId::IK_LiteralOperatorId:
1623    if (AssumeTemplateId) {
1624      TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1625                                               Id, ObjectType, EnteringContext,
1626                                               Template);
1627      if (TNK == TNK_Non_template)
1628        return true;
1629    } else {
1630      bool MemberOfUnknownSpecialization;
1631      TNK = Actions.isTemplateName(getCurScope(), SS,
1632                                   TemplateKWLoc.isValid(), Id,
1633                                   ObjectType, EnteringContext, Template,
1634                                   MemberOfUnknownSpecialization);
1635
1636      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1637          ObjectType && IsTemplateArgumentList()) {
1638        // We have something like t->getAs<T>(), where getAs is a
1639        // member of an unknown specialization. However, this will only
1640        // parse correctly as a template, so suggest the keyword 'template'
1641        // before 'getAs' and treat this as a dependent template name.
1642        std::string Name;
1643        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1644          Name = Id.Identifier->getName();
1645        else {
1646          Name = "operator ";
1647          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1648            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1649          else
1650            Name += Id.Identifier->getName();
1651        }
1652        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1653          << Name
1654          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1655        TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1656                                                 SS, TemplateKWLoc, Id,
1657                                                 ObjectType, EnteringContext,
1658                                                 Template);
1659        if (TNK == TNK_Non_template)
1660          return true;
1661      }
1662    }
1663    break;
1664
1665  case UnqualifiedId::IK_ConstructorName: {
1666    UnqualifiedId TemplateName;
1667    bool MemberOfUnknownSpecialization;
1668    TemplateName.setIdentifier(Name, NameLoc);
1669    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1670                                 TemplateName, ObjectType,
1671                                 EnteringContext, Template,
1672                                 MemberOfUnknownSpecialization);
1673    break;
1674  }
1675
1676  case UnqualifiedId::IK_DestructorName: {
1677    UnqualifiedId TemplateName;
1678    bool MemberOfUnknownSpecialization;
1679    TemplateName.setIdentifier(Name, NameLoc);
1680    if (ObjectType) {
1681      TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1682                                               SS, TemplateKWLoc, TemplateName,
1683                                               ObjectType, EnteringContext,
1684                                               Template);
1685      if (TNK == TNK_Non_template)
1686        return true;
1687    } else {
1688      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1689                                   TemplateName, ObjectType,
1690                                   EnteringContext, Template,
1691                                   MemberOfUnknownSpecialization);
1692
1693      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1694        Diag(NameLoc, diag::err_destructor_template_id)
1695          << Name << SS.getRange();
1696        return true;
1697      }
1698    }
1699    break;
1700  }
1701
1702  default:
1703    return false;
1704  }
1705
1706  if (TNK == TNK_Non_template)
1707    return false;
1708
1709  // Parse the enclosed template argument list.
1710  SourceLocation LAngleLoc, RAngleLoc;
1711  TemplateArgList TemplateArgs;
1712  if (Tok.is(tok::less) &&
1713      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1714                                       SS, true, LAngleLoc,
1715                                       TemplateArgs,
1716                                       RAngleLoc))
1717    return true;
1718
1719  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1720      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1721      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1722    // Form a parsed representation of the template-id to be stored in the
1723    // UnqualifiedId.
1724    TemplateIdAnnotation *TemplateId
1725      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1726
1727    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1728      TemplateId->Name = Id.Identifier;
1729      TemplateId->Operator = OO_None;
1730      TemplateId->TemplateNameLoc = Id.StartLocation;
1731    } else {
1732      TemplateId->Name = 0;
1733      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1734      TemplateId->TemplateNameLoc = Id.StartLocation;
1735    }
1736
1737    TemplateId->SS = SS;
1738    TemplateId->TemplateKWLoc = TemplateKWLoc;
1739    TemplateId->Template = Template;
1740    TemplateId->Kind = TNK;
1741    TemplateId->LAngleLoc = LAngleLoc;
1742    TemplateId->RAngleLoc = RAngleLoc;
1743    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1744    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1745         Arg != ArgEnd; ++Arg)
1746      Args[Arg] = TemplateArgs[Arg];
1747
1748    Id.setTemplateId(TemplateId);
1749    return false;
1750  }
1751
1752  // Bundle the template arguments together.
1753  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1754                                     TemplateArgs.size());
1755
1756  // Constructor and destructor names.
1757  TypeResult Type
1758    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1759                                  Template, NameLoc,
1760                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
1761                                  /*IsCtorOrDtorName=*/true);
1762  if (Type.isInvalid())
1763    return true;
1764
1765  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1766    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1767  else
1768    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1769
1770  return false;
1771}
1772
1773/// \brief Parse an operator-function-id or conversion-function-id as part
1774/// of a C++ unqualified-id.
1775///
1776/// This routine is responsible only for parsing the operator-function-id or
1777/// conversion-function-id; it does not handle template arguments in any way.
1778///
1779/// \code
1780///       operator-function-id: [C++ 13.5]
1781///         'operator' operator
1782///
1783///       operator: one of
1784///            new   delete  new[]   delete[]
1785///            +     -    *  /    %  ^    &   |   ~
1786///            !     =    <  >    += -=   *=  /=  %=
1787///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1788///            <=    >=   && ||   ++ --   ,   ->* ->
1789///            ()    []
1790///
1791///       conversion-function-id: [C++ 12.3.2]
1792///         operator conversion-type-id
1793///
1794///       conversion-type-id:
1795///         type-specifier-seq conversion-declarator[opt]
1796///
1797///       conversion-declarator:
1798///         ptr-operator conversion-declarator[opt]
1799/// \endcode
1800///
1801/// \param The nested-name-specifier that preceded this unqualified-id. If
1802/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1803///
1804/// \param EnteringContext whether we are entering the scope of the
1805/// nested-name-specifier.
1806///
1807/// \param ObjectType if this unqualified-id occurs within a member access
1808/// expression, the type of the base object whose member is being accessed.
1809///
1810/// \param Result on a successful parse, contains the parsed unqualified-id.
1811///
1812/// \returns true if parsing fails, false otherwise.
1813bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1814                                        ParsedType ObjectType,
1815                                        UnqualifiedId &Result) {
1816  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1817
1818  // Consume the 'operator' keyword.
1819  SourceLocation KeywordLoc = ConsumeToken();
1820
1821  // Determine what kind of operator name we have.
1822  unsigned SymbolIdx = 0;
1823  SourceLocation SymbolLocations[3];
1824  OverloadedOperatorKind Op = OO_None;
1825  switch (Tok.getKind()) {
1826    case tok::kw_new:
1827    case tok::kw_delete: {
1828      bool isNew = Tok.getKind() == tok::kw_new;
1829      // Consume the 'new' or 'delete'.
1830      SymbolLocations[SymbolIdx++] = ConsumeToken();
1831      if (Tok.is(tok::l_square)) {
1832        // Consume the '[' and ']'.
1833        BalancedDelimiterTracker T(*this, tok::l_square);
1834        T.consumeOpen();
1835        T.consumeClose();
1836        if (T.getCloseLocation().isInvalid())
1837          return true;
1838
1839        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1840        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1841        Op = isNew? OO_Array_New : OO_Array_Delete;
1842      } else {
1843        Op = isNew? OO_New : OO_Delete;
1844      }
1845      break;
1846    }
1847
1848#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1849    case tok::Token:                                                     \
1850      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1851      Op = OO_##Name;                                                    \
1852      break;
1853#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1854#include "clang/Basic/OperatorKinds.def"
1855
1856    case tok::l_paren: {
1857      // Consume the '(' and ')'.
1858      BalancedDelimiterTracker T(*this, tok::l_paren);
1859      T.consumeOpen();
1860      T.consumeClose();
1861      if (T.getCloseLocation().isInvalid())
1862        return true;
1863
1864      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1865      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1866      Op = OO_Call;
1867      break;
1868    }
1869
1870    case tok::l_square: {
1871      // Consume the '[' and ']'.
1872      BalancedDelimiterTracker T(*this, tok::l_square);
1873      T.consumeOpen();
1874      T.consumeClose();
1875      if (T.getCloseLocation().isInvalid())
1876        return true;
1877
1878      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1879      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1880      Op = OO_Subscript;
1881      break;
1882    }
1883
1884    case tok::code_completion: {
1885      // Code completion for the operator name.
1886      Actions.CodeCompleteOperatorName(getCurScope());
1887      cutOffParsing();
1888      // Don't try to parse any further.
1889      return true;
1890    }
1891
1892    default:
1893      break;
1894  }
1895
1896  if (Op != OO_None) {
1897    // We have parsed an operator-function-id.
1898    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1899    return false;
1900  }
1901
1902  // Parse a literal-operator-id.
1903  //
1904  //   literal-operator-id: [C++0x 13.5.8]
1905  //     operator "" identifier
1906
1907  if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1908    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1909
1910    SourceLocation DiagLoc;
1911    unsigned DiagId = 0;
1912
1913    // We're past translation phase 6, so perform string literal concatenation
1914    // before checking for "".
1915    llvm::SmallVector<Token, 4> Toks;
1916    llvm::SmallVector<SourceLocation, 4> TokLocs;
1917    while (isTokenStringLiteral()) {
1918      if (!Tok.is(tok::string_literal) && !DiagId) {
1919        DiagLoc = Tok.getLocation();
1920        DiagId = diag::err_literal_operator_string_prefix;
1921      }
1922      Toks.push_back(Tok);
1923      TokLocs.push_back(ConsumeStringToken());
1924    }
1925
1926    StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1927    if (Literal.hadError)
1928      return true;
1929
1930    // Grab the literal operator's suffix, which will be either the next token
1931    // or a ud-suffix from the string literal.
1932    IdentifierInfo *II = 0;
1933    SourceLocation SuffixLoc;
1934    if (!Literal.getUDSuffix().empty()) {
1935      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1936      SuffixLoc =
1937        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1938                                       Literal.getUDSuffixOffset(),
1939                                       PP.getSourceManager(), getLangOpts());
1940      // This form is not permitted by the standard (yet).
1941      DiagLoc = SuffixLoc;
1942      DiagId = diag::err_literal_operator_missing_space;
1943    } else if (Tok.is(tok::identifier)) {
1944      II = Tok.getIdentifierInfo();
1945      SuffixLoc = ConsumeToken();
1946      TokLocs.push_back(SuffixLoc);
1947    } else {
1948      Diag(Tok.getLocation(), diag::err_expected_ident);
1949      return true;
1950    }
1951
1952    // The string literal must be empty.
1953    if (!Literal.GetString().empty() || Literal.Pascal) {
1954      DiagLoc = TokLocs.front();
1955      DiagId = diag::err_literal_operator_string_not_empty;
1956    }
1957
1958    if (DiagId) {
1959      // This isn't a valid literal-operator-id, but we think we know
1960      // what the user meant. Tell them what they should have written.
1961      llvm::SmallString<32> Str;
1962      Str += "\"\" ";
1963      Str += II->getName();
1964      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1965          SourceRange(TokLocs.front(), TokLocs.back()), Str);
1966    }
1967
1968    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1969    return false;
1970  }
1971
1972  // Parse a conversion-function-id.
1973  //
1974  //   conversion-function-id: [C++ 12.3.2]
1975  //     operator conversion-type-id
1976  //
1977  //   conversion-type-id:
1978  //     type-specifier-seq conversion-declarator[opt]
1979  //
1980  //   conversion-declarator:
1981  //     ptr-operator conversion-declarator[opt]
1982
1983  // Parse the type-specifier-seq.
1984  DeclSpec DS(AttrFactory);
1985  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1986    return true;
1987
1988  // Parse the conversion-declarator, which is merely a sequence of
1989  // ptr-operators.
1990  Declarator D(DS, Declarator::TypeNameContext);
1991  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1992
1993  // Finish up the type.
1994  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1995  if (Ty.isInvalid())
1996    return true;
1997
1998  // Note that this is a conversion-function-id.
1999  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2000                                 D.getSourceRange().getEnd());
2001  return false;
2002}
2003
2004/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2005/// name of an entity.
2006///
2007/// \code
2008///       unqualified-id: [C++ expr.prim.general]
2009///         identifier
2010///         operator-function-id
2011///         conversion-function-id
2012/// [C++0x] literal-operator-id [TODO]
2013///         ~ class-name
2014///         template-id
2015///
2016/// \endcode
2017///
2018/// \param The nested-name-specifier that preceded this unqualified-id. If
2019/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2020///
2021/// \param EnteringContext whether we are entering the scope of the
2022/// nested-name-specifier.
2023///
2024/// \param AllowDestructorName whether we allow parsing of a destructor name.
2025///
2026/// \param AllowConstructorName whether we allow parsing a constructor name.
2027///
2028/// \param ObjectType if this unqualified-id occurs within a member access
2029/// expression, the type of the base object whose member is being accessed.
2030///
2031/// \param Result on a successful parse, contains the parsed unqualified-id.
2032///
2033/// \returns true if parsing fails, false otherwise.
2034bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2035                                bool AllowDestructorName,
2036                                bool AllowConstructorName,
2037                                ParsedType ObjectType,
2038                                SourceLocation& TemplateKWLoc,
2039                                UnqualifiedId &Result) {
2040
2041  // Handle 'A::template B'. This is for template-ids which have not
2042  // already been annotated by ParseOptionalCXXScopeSpecifier().
2043  bool TemplateSpecified = false;
2044  if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2045      (ObjectType || SS.isSet())) {
2046    TemplateSpecified = true;
2047    TemplateKWLoc = ConsumeToken();
2048  }
2049
2050  // unqualified-id:
2051  //   identifier
2052  //   template-id (when it hasn't already been annotated)
2053  if (Tok.is(tok::identifier)) {
2054    // Consume the identifier.
2055    IdentifierInfo *Id = Tok.getIdentifierInfo();
2056    SourceLocation IdLoc = ConsumeToken();
2057
2058    if (!getLangOpts().CPlusPlus) {
2059      // If we're not in C++, only identifiers matter. Record the
2060      // identifier and return.
2061      Result.setIdentifier(Id, IdLoc);
2062      return false;
2063    }
2064
2065    if (AllowConstructorName &&
2066        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2067      // We have parsed a constructor name.
2068      ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2069                                          &SS, false, false,
2070                                          ParsedType(),
2071                                          /*IsCtorOrDtorName=*/true,
2072                                          /*NonTrivialTypeSourceInfo=*/true);
2073      Result.setConstructorName(Ty, IdLoc, IdLoc);
2074    } else {
2075      // We have parsed an identifier.
2076      Result.setIdentifier(Id, IdLoc);
2077    }
2078
2079    // If the next token is a '<', we may have a template.
2080    if (TemplateSpecified || Tok.is(tok::less))
2081      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2082                                          EnteringContext, ObjectType,
2083                                          Result, TemplateSpecified);
2084
2085    return false;
2086  }
2087
2088  // unqualified-id:
2089  //   template-id (already parsed and annotated)
2090  if (Tok.is(tok::annot_template_id)) {
2091    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2092
2093    // If the template-name names the current class, then this is a constructor
2094    if (AllowConstructorName && TemplateId->Name &&
2095        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2096      if (SS.isSet()) {
2097        // C++ [class.qual]p2 specifies that a qualified template-name
2098        // is taken as the constructor name where a constructor can be
2099        // declared. Thus, the template arguments are extraneous, so
2100        // complain about them and remove them entirely.
2101        Diag(TemplateId->TemplateNameLoc,
2102             diag::err_out_of_line_constructor_template_id)
2103          << TemplateId->Name
2104          << FixItHint::CreateRemoval(
2105                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2106        ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2107                                            TemplateId->TemplateNameLoc,
2108                                            getCurScope(),
2109                                            &SS, false, false,
2110                                            ParsedType(),
2111                                            /*IsCtorOrDtorName=*/true,
2112                                            /*NontrivialTypeSourceInfo=*/true);
2113        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2114                                  TemplateId->RAngleLoc);
2115        ConsumeToken();
2116        return false;
2117      }
2118
2119      Result.setConstructorTemplateId(TemplateId);
2120      ConsumeToken();
2121      return false;
2122    }
2123
2124    // We have already parsed a template-id; consume the annotation token as
2125    // our unqualified-id.
2126    Result.setTemplateId(TemplateId);
2127    TemplateKWLoc = TemplateId->TemplateKWLoc;
2128    ConsumeToken();
2129    return false;
2130  }
2131
2132  // unqualified-id:
2133  //   operator-function-id
2134  //   conversion-function-id
2135  if (Tok.is(tok::kw_operator)) {
2136    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2137      return true;
2138
2139    // If we have an operator-function-id or a literal-operator-id and the next
2140    // token is a '<', we may have a
2141    //
2142    //   template-id:
2143    //     operator-function-id < template-argument-list[opt] >
2144    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2145         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2146        (TemplateSpecified || Tok.is(tok::less)))
2147      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2148                                          0, SourceLocation(),
2149                                          EnteringContext, ObjectType,
2150                                          Result, TemplateSpecified);
2151
2152    return false;
2153  }
2154
2155  if (getLangOpts().CPlusPlus &&
2156      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2157    // C++ [expr.unary.op]p10:
2158    //   There is an ambiguity in the unary-expression ~X(), where X is a
2159    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2160    //    unary complement rather than treating ~X as referring to a destructor.
2161
2162    // Parse the '~'.
2163    SourceLocation TildeLoc = ConsumeToken();
2164
2165    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2166      DeclSpec DS(AttrFactory);
2167      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2168      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2169        Result.setDestructorName(TildeLoc, Type, EndLoc);
2170        return false;
2171      }
2172      return true;
2173    }
2174
2175    // Parse the class-name.
2176    if (Tok.isNot(tok::identifier)) {
2177      Diag(Tok, diag::err_destructor_tilde_identifier);
2178      return true;
2179    }
2180
2181    // Parse the class-name (or template-name in a simple-template-id).
2182    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2183    SourceLocation ClassNameLoc = ConsumeToken();
2184
2185    if (TemplateSpecified || Tok.is(tok::less)) {
2186      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2187      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2188                                          ClassName, ClassNameLoc,
2189                                          EnteringContext, ObjectType,
2190                                          Result, TemplateSpecified);
2191    }
2192
2193    // Note that this is a destructor name.
2194    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2195                                              ClassNameLoc, getCurScope(),
2196                                              SS, ObjectType,
2197                                              EnteringContext);
2198    if (!Ty)
2199      return true;
2200
2201    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2202    return false;
2203  }
2204
2205  Diag(Tok, diag::err_expected_unqualified_id)
2206    << getLangOpts().CPlusPlus;
2207  return true;
2208}
2209
2210/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2211/// memory in a typesafe manner and call constructors.
2212///
2213/// This method is called to parse the new expression after the optional :: has
2214/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2215/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2216///
2217///        new-expression:
2218///                   '::'[opt] 'new' new-placement[opt] new-type-id
2219///                                     new-initializer[opt]
2220///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2221///                                     new-initializer[opt]
2222///
2223///        new-placement:
2224///                   '(' expression-list ')'
2225///
2226///        new-type-id:
2227///                   type-specifier-seq new-declarator[opt]
2228/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2229///
2230///        new-declarator:
2231///                   ptr-operator new-declarator[opt]
2232///                   direct-new-declarator
2233///
2234///        new-initializer:
2235///                   '(' expression-list[opt] ')'
2236/// [C++0x]           braced-init-list
2237///
2238ExprResult
2239Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2240  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2241  ConsumeToken();   // Consume 'new'
2242
2243  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2244  // second form of new-expression. It can't be a new-type-id.
2245
2246  ExprVector PlacementArgs(Actions);
2247  SourceLocation PlacementLParen, PlacementRParen;
2248
2249  SourceRange TypeIdParens;
2250  DeclSpec DS(AttrFactory);
2251  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2252  if (Tok.is(tok::l_paren)) {
2253    // If it turns out to be a placement, we change the type location.
2254    BalancedDelimiterTracker T(*this, tok::l_paren);
2255    T.consumeOpen();
2256    PlacementLParen = T.getOpenLocation();
2257    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2258      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2259      return ExprError();
2260    }
2261
2262    T.consumeClose();
2263    PlacementRParen = T.getCloseLocation();
2264    if (PlacementRParen.isInvalid()) {
2265      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2266      return ExprError();
2267    }
2268
2269    if (PlacementArgs.empty()) {
2270      // Reset the placement locations. There was no placement.
2271      TypeIdParens = T.getRange();
2272      PlacementLParen = PlacementRParen = SourceLocation();
2273    } else {
2274      // We still need the type.
2275      if (Tok.is(tok::l_paren)) {
2276        BalancedDelimiterTracker T(*this, tok::l_paren);
2277        T.consumeOpen();
2278        MaybeParseGNUAttributes(DeclaratorInfo);
2279        ParseSpecifierQualifierList(DS);
2280        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2281        ParseDeclarator(DeclaratorInfo);
2282        T.consumeClose();
2283        TypeIdParens = T.getRange();
2284      } else {
2285        MaybeParseGNUAttributes(DeclaratorInfo);
2286        if (ParseCXXTypeSpecifierSeq(DS))
2287          DeclaratorInfo.setInvalidType(true);
2288        else {
2289          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2290          ParseDeclaratorInternal(DeclaratorInfo,
2291                                  &Parser::ParseDirectNewDeclarator);
2292        }
2293      }
2294    }
2295  } else {
2296    // A new-type-id is a simplified type-id, where essentially the
2297    // direct-declarator is replaced by a direct-new-declarator.
2298    MaybeParseGNUAttributes(DeclaratorInfo);
2299    if (ParseCXXTypeSpecifierSeq(DS))
2300      DeclaratorInfo.setInvalidType(true);
2301    else {
2302      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2303      ParseDeclaratorInternal(DeclaratorInfo,
2304                              &Parser::ParseDirectNewDeclarator);
2305    }
2306  }
2307  if (DeclaratorInfo.isInvalidType()) {
2308    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2309    return ExprError();
2310  }
2311
2312  ExprResult Initializer;
2313
2314  if (Tok.is(tok::l_paren)) {
2315    SourceLocation ConstructorLParen, ConstructorRParen;
2316    ExprVector ConstructorArgs(Actions);
2317    BalancedDelimiterTracker T(*this, tok::l_paren);
2318    T.consumeOpen();
2319    ConstructorLParen = T.getOpenLocation();
2320    if (Tok.isNot(tok::r_paren)) {
2321      CommaLocsTy CommaLocs;
2322      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2323        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2324        return ExprError();
2325      }
2326    }
2327    T.consumeClose();
2328    ConstructorRParen = T.getCloseLocation();
2329    if (ConstructorRParen.isInvalid()) {
2330      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2331      return ExprError();
2332    }
2333    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2334                                             ConstructorRParen,
2335                                             move_arg(ConstructorArgs));
2336  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2337    Diag(Tok.getLocation(),
2338         diag::warn_cxx98_compat_generalized_initializer_lists);
2339    Initializer = ParseBraceInitializer();
2340  }
2341  if (Initializer.isInvalid())
2342    return Initializer;
2343
2344  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2345                             move_arg(PlacementArgs), PlacementRParen,
2346                             TypeIdParens, DeclaratorInfo, Initializer.take());
2347}
2348
2349/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2350/// passed to ParseDeclaratorInternal.
2351///
2352///        direct-new-declarator:
2353///                   '[' expression ']'
2354///                   direct-new-declarator '[' constant-expression ']'
2355///
2356void Parser::ParseDirectNewDeclarator(Declarator &D) {
2357  // Parse the array dimensions.
2358  bool first = true;
2359  while (Tok.is(tok::l_square)) {
2360    BalancedDelimiterTracker T(*this, tok::l_square);
2361    T.consumeOpen();
2362
2363    ExprResult Size(first ? ParseExpression()
2364                                : ParseConstantExpression());
2365    if (Size.isInvalid()) {
2366      // Recover
2367      SkipUntil(tok::r_square);
2368      return;
2369    }
2370    first = false;
2371
2372    T.consumeClose();
2373
2374    ParsedAttributes attrs(AttrFactory);
2375    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2376                                            /*static=*/false, /*star=*/false,
2377                                            Size.release(),
2378                                            T.getOpenLocation(),
2379                                            T.getCloseLocation()),
2380                  attrs, T.getCloseLocation());
2381
2382    if (T.getCloseLocation().isInvalid())
2383      return;
2384  }
2385}
2386
2387/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2388/// This ambiguity appears in the syntax of the C++ new operator.
2389///
2390///        new-expression:
2391///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2392///                                     new-initializer[opt]
2393///
2394///        new-placement:
2395///                   '(' expression-list ')'
2396///
2397bool Parser::ParseExpressionListOrTypeId(
2398                                   SmallVectorImpl<Expr*> &PlacementArgs,
2399                                         Declarator &D) {
2400  // The '(' was already consumed.
2401  if (isTypeIdInParens()) {
2402    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2403    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2404    ParseDeclarator(D);
2405    return D.isInvalidType();
2406  }
2407
2408  // It's not a type, it has to be an expression list.
2409  // Discard the comma locations - ActOnCXXNew has enough parameters.
2410  CommaLocsTy CommaLocs;
2411  return ParseExpressionList(PlacementArgs, CommaLocs);
2412}
2413
2414/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2415/// to free memory allocated by new.
2416///
2417/// This method is called to parse the 'delete' expression after the optional
2418/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2419/// and "Start" is its location.  Otherwise, "Start" is the location of the
2420/// 'delete' token.
2421///
2422///        delete-expression:
2423///                   '::'[opt] 'delete' cast-expression
2424///                   '::'[opt] 'delete' '[' ']' cast-expression
2425ExprResult
2426Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2427  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2428  ConsumeToken(); // Consume 'delete'
2429
2430  // Array delete?
2431  bool ArrayDelete = false;
2432  if (Tok.is(tok::l_square)) {
2433    ArrayDelete = true;
2434    BalancedDelimiterTracker T(*this, tok::l_square);
2435
2436    T.consumeOpen();
2437    T.consumeClose();
2438    if (T.getCloseLocation().isInvalid())
2439      return ExprError();
2440  }
2441
2442  ExprResult Operand(ParseCastExpression(false));
2443  if (Operand.isInvalid())
2444    return move(Operand);
2445
2446  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2447}
2448
2449static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2450  switch(kind) {
2451  default: llvm_unreachable("Not a known unary type trait.");
2452  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2453  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2454  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2455  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2456  case tok::kw___has_trivial_constructor:
2457                                    return UTT_HasTrivialDefaultConstructor;
2458  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2459  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2460  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2461  case tok::kw___is_abstract:             return UTT_IsAbstract;
2462  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2463  case tok::kw___is_array:                   return UTT_IsArray;
2464  case tok::kw___is_class:                return UTT_IsClass;
2465  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2466  case tok::kw___is_compound:                return UTT_IsCompound;
2467  case tok::kw___is_const:                   return UTT_IsConst;
2468  case tok::kw___is_empty:                return UTT_IsEmpty;
2469  case tok::kw___is_enum:                 return UTT_IsEnum;
2470  case tok::kw___is_final:                 return UTT_IsFinal;
2471  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2472  case tok::kw___is_function:                return UTT_IsFunction;
2473  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2474  case tok::kw___is_integral:                return UTT_IsIntegral;
2475  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2476  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2477  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2478  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2479  case tok::kw___is_object:                  return UTT_IsObject;
2480  case tok::kw___is_literal:              return UTT_IsLiteral;
2481  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2482  case tok::kw___is_pod:                  return UTT_IsPOD;
2483  case tok::kw___is_pointer:                 return UTT_IsPointer;
2484  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2485  case tok::kw___is_reference:               return UTT_IsReference;
2486  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2487  case tok::kw___is_scalar:                  return UTT_IsScalar;
2488  case tok::kw___is_signed:                  return UTT_IsSigned;
2489  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2490  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2491  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2492  case tok::kw___is_union:                return UTT_IsUnion;
2493  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2494  case tok::kw___is_void:                    return UTT_IsVoid;
2495  case tok::kw___is_volatile:                return UTT_IsVolatile;
2496  }
2497}
2498
2499static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2500  switch(kind) {
2501  default: llvm_unreachable("Not a known binary type trait");
2502  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2503  case tok::kw___is_convertible:             return BTT_IsConvertible;
2504  case tok::kw___is_same:                    return BTT_IsSame;
2505  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2506  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2507  case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2508  }
2509}
2510
2511static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2512  switch (kind) {
2513  default: llvm_unreachable("Not a known type trait");
2514  case tok::kw___is_trivially_constructible:
2515    return TT_IsTriviallyConstructible;
2516  }
2517}
2518
2519static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2520  switch(kind) {
2521  default: llvm_unreachable("Not a known binary type trait");
2522  case tok::kw___array_rank:                 return ATT_ArrayRank;
2523  case tok::kw___array_extent:               return ATT_ArrayExtent;
2524  }
2525}
2526
2527static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2528  switch(kind) {
2529  default: llvm_unreachable("Not a known unary expression trait.");
2530  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2531  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2532  }
2533}
2534
2535/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2536/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2537/// templates.
2538///
2539///       primary-expression:
2540/// [GNU]             unary-type-trait '(' type-id ')'
2541///
2542ExprResult Parser::ParseUnaryTypeTrait() {
2543  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2544  SourceLocation Loc = ConsumeToken();
2545
2546  BalancedDelimiterTracker T(*this, tok::l_paren);
2547  if (T.expectAndConsume(diag::err_expected_lparen))
2548    return ExprError();
2549
2550  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2551  // there will be cryptic errors about mismatched parentheses and missing
2552  // specifiers.
2553  TypeResult Ty = ParseTypeName();
2554
2555  T.consumeClose();
2556
2557  if (Ty.isInvalid())
2558    return ExprError();
2559
2560  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2561}
2562
2563/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2564/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2565/// templates.
2566///
2567///       primary-expression:
2568/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2569///
2570ExprResult Parser::ParseBinaryTypeTrait() {
2571  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2572  SourceLocation Loc = ConsumeToken();
2573
2574  BalancedDelimiterTracker T(*this, tok::l_paren);
2575  if (T.expectAndConsume(diag::err_expected_lparen))
2576    return ExprError();
2577
2578  TypeResult LhsTy = ParseTypeName();
2579  if (LhsTy.isInvalid()) {
2580    SkipUntil(tok::r_paren);
2581    return ExprError();
2582  }
2583
2584  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2585    SkipUntil(tok::r_paren);
2586    return ExprError();
2587  }
2588
2589  TypeResult RhsTy = ParseTypeName();
2590  if (RhsTy.isInvalid()) {
2591    SkipUntil(tok::r_paren);
2592    return ExprError();
2593  }
2594
2595  T.consumeClose();
2596
2597  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2598                                      T.getCloseLocation());
2599}
2600
2601/// \brief Parse the built-in type-trait pseudo-functions that allow
2602/// implementation of the TR1/C++11 type traits templates.
2603///
2604///       primary-expression:
2605///          type-trait '(' type-id-seq ')'
2606///
2607///       type-id-seq:
2608///          type-id ...[opt] type-id-seq[opt]
2609///
2610ExprResult Parser::ParseTypeTrait() {
2611  TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2612  SourceLocation Loc = ConsumeToken();
2613
2614  BalancedDelimiterTracker Parens(*this, tok::l_paren);
2615  if (Parens.expectAndConsume(diag::err_expected_lparen))
2616    return ExprError();
2617
2618  llvm::SmallVector<ParsedType, 2> Args;
2619  do {
2620    // Parse the next type.
2621    TypeResult Ty = ParseTypeName();
2622    if (Ty.isInvalid()) {
2623      Parens.skipToEnd();
2624      return ExprError();
2625    }
2626
2627    // Parse the ellipsis, if present.
2628    if (Tok.is(tok::ellipsis)) {
2629      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2630      if (Ty.isInvalid()) {
2631        Parens.skipToEnd();
2632        return ExprError();
2633      }
2634    }
2635
2636    // Add this type to the list of arguments.
2637    Args.push_back(Ty.get());
2638
2639    if (Tok.is(tok::comma)) {
2640      ConsumeToken();
2641      continue;
2642    }
2643
2644    break;
2645  } while (true);
2646
2647  if (Parens.consumeClose())
2648    return ExprError();
2649
2650  return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2651}
2652
2653/// ParseArrayTypeTrait - Parse the built-in array type-trait
2654/// pseudo-functions.
2655///
2656///       primary-expression:
2657/// [Embarcadero]     '__array_rank' '(' type-id ')'
2658/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2659///
2660ExprResult Parser::ParseArrayTypeTrait() {
2661  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2662  SourceLocation Loc = ConsumeToken();
2663
2664  BalancedDelimiterTracker T(*this, tok::l_paren);
2665  if (T.expectAndConsume(diag::err_expected_lparen))
2666    return ExprError();
2667
2668  TypeResult Ty = ParseTypeName();
2669  if (Ty.isInvalid()) {
2670    SkipUntil(tok::comma);
2671    SkipUntil(tok::r_paren);
2672    return ExprError();
2673  }
2674
2675  switch (ATT) {
2676  case ATT_ArrayRank: {
2677    T.consumeClose();
2678    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2679                                       T.getCloseLocation());
2680  }
2681  case ATT_ArrayExtent: {
2682    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2683      SkipUntil(tok::r_paren);
2684      return ExprError();
2685    }
2686
2687    ExprResult DimExpr = ParseExpression();
2688    T.consumeClose();
2689
2690    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2691                                       T.getCloseLocation());
2692  }
2693  }
2694  llvm_unreachable("Invalid ArrayTypeTrait!");
2695}
2696
2697/// ParseExpressionTrait - Parse built-in expression-trait
2698/// pseudo-functions like __is_lvalue_expr( xxx ).
2699///
2700///       primary-expression:
2701/// [Embarcadero]     expression-trait '(' expression ')'
2702///
2703ExprResult Parser::ParseExpressionTrait() {
2704  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2705  SourceLocation Loc = ConsumeToken();
2706
2707  BalancedDelimiterTracker T(*this, tok::l_paren);
2708  if (T.expectAndConsume(diag::err_expected_lparen))
2709    return ExprError();
2710
2711  ExprResult Expr = ParseExpression();
2712
2713  T.consumeClose();
2714
2715  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2716                                      T.getCloseLocation());
2717}
2718
2719
2720/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2721/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2722/// based on the context past the parens.
2723ExprResult
2724Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2725                                         ParsedType &CastTy,
2726                                         BalancedDelimiterTracker &Tracker) {
2727  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2728  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2729  assert(isTypeIdInParens() && "Not a type-id!");
2730
2731  ExprResult Result(true);
2732  CastTy = ParsedType();
2733
2734  // We need to disambiguate a very ugly part of the C++ syntax:
2735  //
2736  // (T())x;  - type-id
2737  // (T())*x; - type-id
2738  // (T())/x; - expression
2739  // (T());   - expression
2740  //
2741  // The bad news is that we cannot use the specialized tentative parser, since
2742  // it can only verify that the thing inside the parens can be parsed as
2743  // type-id, it is not useful for determining the context past the parens.
2744  //
2745  // The good news is that the parser can disambiguate this part without
2746  // making any unnecessary Action calls.
2747  //
2748  // It uses a scheme similar to parsing inline methods. The parenthesized
2749  // tokens are cached, the context that follows is determined (possibly by
2750  // parsing a cast-expression), and then we re-introduce the cached tokens
2751  // into the token stream and parse them appropriately.
2752
2753  ParenParseOption ParseAs;
2754  CachedTokens Toks;
2755
2756  // Store the tokens of the parentheses. We will parse them after we determine
2757  // the context that follows them.
2758  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2759    // We didn't find the ')' we expected.
2760    Tracker.consumeClose();
2761    return ExprError();
2762  }
2763
2764  if (Tok.is(tok::l_brace)) {
2765    ParseAs = CompoundLiteral;
2766  } else {
2767    bool NotCastExpr;
2768    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2769    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2770      NotCastExpr = true;
2771    } else {
2772      // Try parsing the cast-expression that may follow.
2773      // If it is not a cast-expression, NotCastExpr will be true and no token
2774      // will be consumed.
2775      Result = ParseCastExpression(false/*isUnaryExpression*/,
2776                                   false/*isAddressofOperand*/,
2777                                   NotCastExpr,
2778                                   // type-id has priority.
2779                                   IsTypeCast);
2780    }
2781
2782    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2783    // an expression.
2784    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2785  }
2786
2787  // The current token should go after the cached tokens.
2788  Toks.push_back(Tok);
2789  // Re-enter the stored parenthesized tokens into the token stream, so we may
2790  // parse them now.
2791  PP.EnterTokenStream(Toks.data(), Toks.size(),
2792                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2793  // Drop the current token and bring the first cached one. It's the same token
2794  // as when we entered this function.
2795  ConsumeAnyToken();
2796
2797  if (ParseAs >= CompoundLiteral) {
2798    // Parse the type declarator.
2799    DeclSpec DS(AttrFactory);
2800    ParseSpecifierQualifierList(DS);
2801    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2802    ParseDeclarator(DeclaratorInfo);
2803
2804    // Match the ')'.
2805    Tracker.consumeClose();
2806
2807    if (ParseAs == CompoundLiteral) {
2808      ExprType = CompoundLiteral;
2809      TypeResult Ty = ParseTypeName();
2810       return ParseCompoundLiteralExpression(Ty.get(),
2811                                            Tracker.getOpenLocation(),
2812                                            Tracker.getCloseLocation());
2813    }
2814
2815    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2816    assert(ParseAs == CastExpr);
2817
2818    if (DeclaratorInfo.isInvalidType())
2819      return ExprError();
2820
2821    // Result is what ParseCastExpression returned earlier.
2822    if (!Result.isInvalid())
2823      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2824                                    DeclaratorInfo, CastTy,
2825                                    Tracker.getCloseLocation(), Result.take());
2826    return move(Result);
2827  }
2828
2829  // Not a compound literal, and not followed by a cast-expression.
2830  assert(ParseAs == SimpleExpr);
2831
2832  ExprType = SimpleExpr;
2833  Result = ParseExpression();
2834  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2835    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2836                                    Tok.getLocation(), Result.take());
2837
2838  // Match the ')'.
2839  if (Result.isInvalid()) {
2840    SkipUntil(tok::r_paren);
2841    return ExprError();
2842  }
2843
2844  Tracker.consumeClose();
2845  return move(Result);
2846}
2847