ParseExprCXX.cpp revision 54655be65585ed6618fdd7a19fa6c70efc321d3a
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ParsedTemplate.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27  switch (Kind) {
28    case tok::kw_template:         return 0;
29    case tok::kw_const_cast:       return 1;
30    case tok::kw_dynamic_cast:     return 2;
31    case tok::kw_reinterpret_cast: return 3;
32    case tok::kw_static_cast:      return 4;
33    default:
34      llvm_unreachable("Unknown type for digraph error message.");
35  }
36}
37
38// Are the two tokens adjacent in the same source file?
39static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
40  SourceManager &SM = PP.getSourceManager();
41  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44}
45
46// Suggest fixit for "<::" after a cast.
47static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49  // Pull '<:' and ':' off token stream.
50  if (!AtDigraph)
51    PP.Lex(DigraphToken);
52  PP.Lex(ColonToken);
53
54  SourceRange Range;
55  Range.setBegin(DigraphToken.getLocation());
56  Range.setEnd(ColonToken.getLocation());
57  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58      << SelectDigraphErrorMessage(Kind)
59      << FixItHint::CreateReplacement(Range, "< ::");
60
61  // Update token information to reflect their change in token type.
62  ColonToken.setKind(tok::coloncolon);
63  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64  ColonToken.setLength(2);
65  DigraphToken.setKind(tok::less);
66  DigraphToken.setLength(1);
67
68  // Push new tokens back to token stream.
69  PP.EnterToken(ColonToken);
70  if (!AtDigraph)
71    PP.EnterToken(DigraphToken);
72}
73
74// Check for '<::' which should be '< ::' instead of '[:' when following
75// a template name.
76void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                        bool EnteringContext,
78                                        IdentifierInfo &II, CXXScopeSpec &SS) {
79  if (!Next.is(tok::l_square) || Next.getLength() != 2)
80    return;
81
82  Token SecondToken = GetLookAheadToken(2);
83  if (!SecondToken.is(tok::colon) || !AreTokensAdjacent(PP, Next, SecondToken))
84    return;
85
86  TemplateTy Template;
87  UnqualifiedId TemplateName;
88  TemplateName.setIdentifier(&II, Tok.getLocation());
89  bool MemberOfUnknownSpecialization;
90  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                              TemplateName, ObjectType, EnteringContext,
92                              Template, MemberOfUnknownSpecialization))
93    return;
94
95  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96             /*AtDigraph*/false);
97}
98
99/// \brief Parse global scope or nested-name-specifier if present.
100///
101/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102/// may be preceded by '::'). Note that this routine will not parse ::new or
103/// ::delete; it will just leave them in the token stream.
104///
105///       '::'[opt] nested-name-specifier
106///       '::'
107///
108///       nested-name-specifier:
109///         type-name '::'
110///         namespace-name '::'
111///         nested-name-specifier identifier '::'
112///         nested-name-specifier 'template'[opt] simple-template-id '::'
113///
114///
115/// \param SS the scope specifier that will be set to the parsed
116/// nested-name-specifier (or empty)
117///
118/// \param ObjectType if this nested-name-specifier is being parsed following
119/// the "." or "->" of a member access expression, this parameter provides the
120/// type of the object whose members are being accessed.
121///
122/// \param EnteringContext whether we will be entering into the context of
123/// the nested-name-specifier after parsing it.
124///
125/// \param MayBePseudoDestructor When non-NULL, points to a flag that
126/// indicates whether this nested-name-specifier may be part of a
127/// pseudo-destructor name. In this case, the flag will be set false
128/// if we don't actually end up parsing a destructor name. Moreorover,
129/// if we do end up determining that we are parsing a destructor name,
130/// the last component of the nested-name-specifier is not parsed as
131/// part of the scope specifier.
132
133/// member access expression, e.g., the \p T:: in \p p->T::m.
134///
135/// \returns true if there was an error parsing a scope specifier
136bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                            ParsedType ObjectType,
138                                            bool EnteringContext,
139                                            bool *MayBePseudoDestructor,
140                                            bool IsTypename) {
141  assert(getLangOpts().CPlusPlus &&
142         "Call sites of this function should be guarded by checking for C++");
143
144  if (Tok.is(tok::annot_cxxscope)) {
145    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                 Tok.getAnnotationRange(),
147                                                 SS);
148    ConsumeToken();
149    return false;
150  }
151
152  bool HasScopeSpecifier = false;
153
154  if (Tok.is(tok::coloncolon)) {
155    // ::new and ::delete aren't nested-name-specifiers.
156    tok::TokenKind NextKind = NextToken().getKind();
157    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158      return false;
159
160    // '::' - Global scope qualifier.
161    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162      return true;
163
164    HasScopeSpecifier = true;
165  }
166
167  bool CheckForDestructor = false;
168  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169    CheckForDestructor = true;
170    *MayBePseudoDestructor = false;
171  }
172
173  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174    DeclSpec DS(AttrFactory);
175    SourceLocation DeclLoc = Tok.getLocation();
176    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177    if (Tok.isNot(tok::coloncolon)) {
178      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179      return false;
180    }
181
182    SourceLocation CCLoc = ConsumeToken();
183    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186    HasScopeSpecifier = true;
187  }
188
189  while (true) {
190    if (HasScopeSpecifier) {
191      // C++ [basic.lookup.classref]p5:
192      //   If the qualified-id has the form
193      //
194      //       ::class-name-or-namespace-name::...
195      //
196      //   the class-name-or-namespace-name is looked up in global scope as a
197      //   class-name or namespace-name.
198      //
199      // To implement this, we clear out the object type as soon as we've
200      // seen a leading '::' or part of a nested-name-specifier.
201      ObjectType = ParsedType();
202
203      if (Tok.is(tok::code_completion)) {
204        // Code completion for a nested-name-specifier, where the code
205        // code completion token follows the '::'.
206        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207        // Include code completion token into the range of the scope otherwise
208        // when we try to annotate the scope tokens the dangling code completion
209        // token will cause assertion in
210        // Preprocessor::AnnotatePreviousCachedTokens.
211        SS.setEndLoc(Tok.getLocation());
212        cutOffParsing();
213        return true;
214      }
215    }
216
217    // nested-name-specifier:
218    //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220    // Parse the optional 'template' keyword, then make sure we have
221    // 'identifier <' after it.
222    if (Tok.is(tok::kw_template)) {
223      // If we don't have a scope specifier or an object type, this isn't a
224      // nested-name-specifier, since they aren't allowed to start with
225      // 'template'.
226      if (!HasScopeSpecifier && !ObjectType)
227        break;
228
229      TentativeParsingAction TPA(*this);
230      SourceLocation TemplateKWLoc = ConsumeToken();
231
232      UnqualifiedId TemplateName;
233      if (Tok.is(tok::identifier)) {
234        // Consume the identifier.
235        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236        ConsumeToken();
237      } else if (Tok.is(tok::kw_operator)) {
238        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
239                                       TemplateName)) {
240          TPA.Commit();
241          break;
242        }
243
244        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246          Diag(TemplateName.getSourceRange().getBegin(),
247               diag::err_id_after_template_in_nested_name_spec)
248            << TemplateName.getSourceRange();
249          TPA.Commit();
250          break;
251        }
252      } else {
253        TPA.Revert();
254        break;
255      }
256
257      // If the next token is not '<', we have a qualified-id that refers
258      // to a template name, such as T::template apply, but is not a
259      // template-id.
260      if (Tok.isNot(tok::less)) {
261        TPA.Revert();
262        break;
263      }
264
265      // Commit to parsing the template-id.
266      TPA.Commit();
267      TemplateTy Template;
268      if (TemplateNameKind TNK
269          = Actions.ActOnDependentTemplateName(getCurScope(),
270                                               SS, TemplateKWLoc, TemplateName,
271                                               ObjectType, EnteringContext,
272                                               Template)) {
273        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                    TemplateName, false))
275          return true;
276      } else
277        return true;
278
279      continue;
280    }
281
282    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283      // We have
284      //
285      //   simple-template-id '::'
286      //
287      // So we need to check whether the simple-template-id is of the
288      // right kind (it should name a type or be dependent), and then
289      // convert it into a type within the nested-name-specifier.
290      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292        *MayBePseudoDestructor = true;
293        return false;
294      }
295
296      // Consume the template-id token.
297      ConsumeToken();
298
299      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300      SourceLocation CCLoc = ConsumeToken();
301
302      HasScopeSpecifier = true;
303
304      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                         TemplateId->getTemplateArgs(),
306                                         TemplateId->NumArgs);
307
308      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                              SS,
310                                              TemplateId->TemplateKWLoc,
311                                              TemplateId->Template,
312                                              TemplateId->TemplateNameLoc,
313                                              TemplateId->LAngleLoc,
314                                              TemplateArgsPtr,
315                                              TemplateId->RAngleLoc,
316                                              CCLoc,
317                                              EnteringContext)) {
318        SourceLocation StartLoc
319          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                      : TemplateId->TemplateNameLoc;
321        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322      }
323
324      continue;
325    }
326
327
328    // The rest of the nested-name-specifier possibilities start with
329    // tok::identifier.
330    if (Tok.isNot(tok::identifier))
331      break;
332
333    IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335    // nested-name-specifier:
336    //   type-name '::'
337    //   namespace-name '::'
338    //   nested-name-specifier identifier '::'
339    Token Next = NextToken();
340
341    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342    // and emit a fixit hint for it.
343    if (Next.is(tok::colon) && !ColonIsSacred) {
344      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
345                                            Tok.getLocation(),
346                                            Next.getLocation(), ObjectType,
347                                            EnteringContext) &&
348          // If the token after the colon isn't an identifier, it's still an
349          // error, but they probably meant something else strange so don't
350          // recover like this.
351          PP.LookAhead(1).is(tok::identifier)) {
352        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353          << FixItHint::CreateReplacement(Next.getLocation(), "::");
354
355        // Recover as if the user wrote '::'.
356        Next.setKind(tok::coloncolon);
357      }
358    }
359
360    if (Next.is(tok::coloncolon)) {
361      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                II, ObjectType)) {
364        *MayBePseudoDestructor = true;
365        return false;
366      }
367
368      // We have an identifier followed by a '::'. Lookup this name
369      // as the name in a nested-name-specifier.
370      SourceLocation IdLoc = ConsumeToken();
371      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372             "NextToken() not working properly!");
373      SourceLocation CCLoc = ConsumeToken();
374
375      HasScopeSpecifier = true;
376      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                              ObjectType, EnteringContext, SS))
378        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379
380      continue;
381    }
382
383    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385    // nested-name-specifier:
386    //   type-name '<'
387    if (Next.is(tok::less)) {
388      TemplateTy Template;
389      UnqualifiedId TemplateName;
390      TemplateName.setIdentifier(&II, Tok.getLocation());
391      bool MemberOfUnknownSpecialization;
392      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
393                                              /*hasTemplateKeyword=*/false,
394                                                        TemplateName,
395                                                        ObjectType,
396                                                        EnteringContext,
397                                                        Template,
398                                              MemberOfUnknownSpecialization)) {
399        // We have found a template name, so annotate this token
400        // with a template-id annotation. We do not permit the
401        // template-id to be translated into a type annotation,
402        // because some clients (e.g., the parsing of class template
403        // specializations) still want to see the original template-id
404        // token.
405        ConsumeToken();
406        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                    TemplateName, false))
408          return true;
409        continue;
410      }
411
412      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
413          (IsTypename || IsTemplateArgumentList(1))) {
414        // We have something like t::getAs<T>, where getAs is a
415        // member of an unknown specialization. However, this will only
416        // parse correctly as a template, so suggest the keyword 'template'
417        // before 'getAs' and treat this as a dependent template name.
418        unsigned DiagID = diag::err_missing_dependent_template_keyword;
419        if (getLangOpts().MicrosoftExt)
420          DiagID = diag::warn_missing_dependent_template_keyword;
421
422        Diag(Tok.getLocation(), DiagID)
423          << II.getName()
424          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425
426        if (TemplateNameKind TNK
427              = Actions.ActOnDependentTemplateName(getCurScope(),
428                                                   SS, SourceLocation(),
429                                                   TemplateName, ObjectType,
430                                                   EnteringContext, Template)) {
431          // Consume the identifier.
432          ConsumeToken();
433          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                      TemplateName, false))
435            return true;
436        }
437        else
438          return true;
439
440        continue;
441      }
442    }
443
444    // We don't have any tokens that form the beginning of a
445    // nested-name-specifier, so we're done.
446    break;
447  }
448
449  // Even if we didn't see any pieces of a nested-name-specifier, we
450  // still check whether there is a tilde in this position, which
451  // indicates a potential pseudo-destructor.
452  if (CheckForDestructor && Tok.is(tok::tilde))
453    *MayBePseudoDestructor = true;
454
455  return false;
456}
457
458/// ParseCXXIdExpression - Handle id-expression.
459///
460///       id-expression:
461///         unqualified-id
462///         qualified-id
463///
464///       qualified-id:
465///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466///         '::' identifier
467///         '::' operator-function-id
468///         '::' template-id
469///
470/// NOTE: The standard specifies that, for qualified-id, the parser does not
471/// expect:
472///
473///   '::' conversion-function-id
474///   '::' '~' class-name
475///
476/// This may cause a slight inconsistency on diagnostics:
477///
478/// class C {};
479/// namespace A {}
480/// void f() {
481///   :: A :: ~ C(); // Some Sema error about using destructor with a
482///                  // namespace.
483///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484/// }
485///
486/// We simplify the parser a bit and make it work like:
487///
488///       qualified-id:
489///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490///         '::' unqualified-id
491///
492/// That way Sema can handle and report similar errors for namespaces and the
493/// global scope.
494///
495/// The isAddressOfOperand parameter indicates that this id-expression is a
496/// direct operand of the address-of operator. This is, besides member contexts,
497/// the only place where a qualified-id naming a non-static class member may
498/// appear.
499///
500ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501  // qualified-id:
502  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503  //   '::' unqualified-id
504  //
505  CXXScopeSpec SS;
506  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508  SourceLocation TemplateKWLoc;
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         TemplateKWLoc,
516                         Name))
517    return ExprError();
518
519  // This is only the direct operand of an & operator if it is not
520  // followed by a postfix-expression suffix.
521  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522    isAddressOfOperand = false;
523
524  return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                   Tok.is(tok::l_paren), isAddressOfOperand);
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLangOpts().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    Intro.DefaultLoc = ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    Intro.DefaultLoc = ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma)) {
645        if (Tok.is(tok::code_completion)) {
646          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
647                                               /*AfterAmpersand=*/false);
648          ConsumeCodeCompletionToken();
649          break;
650        }
651
652        return DiagResult(diag::err_expected_comma_or_rsquare);
653      }
654      ConsumeToken();
655    }
656
657    if (Tok.is(tok::code_completion)) {
658      // If we're in Objective-C++ and we have a bare '[', then this is more
659      // likely to be a message receiver.
660      if (getLangOpts().ObjC1 && first)
661        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
662      else
663        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
664                                             /*AfterAmpersand=*/false);
665      ConsumeCodeCompletionToken();
666      break;
667    }
668
669    first = false;
670
671    // Parse capture.
672    LambdaCaptureKind Kind = LCK_ByCopy;
673    SourceLocation Loc;
674    IdentifierInfo* Id = 0;
675    SourceLocation EllipsisLoc;
676
677    if (Tok.is(tok::kw_this)) {
678      Kind = LCK_This;
679      Loc = ConsumeToken();
680    } else {
681      if (Tok.is(tok::amp)) {
682        Kind = LCK_ByRef;
683        ConsumeToken();
684
685        if (Tok.is(tok::code_completion)) {
686          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
687                                               /*AfterAmpersand=*/true);
688          ConsumeCodeCompletionToken();
689          break;
690        }
691      }
692
693      if (Tok.is(tok::identifier)) {
694        Id = Tok.getIdentifierInfo();
695        Loc = ConsumeToken();
696
697        if (Tok.is(tok::ellipsis))
698          EllipsisLoc = ConsumeToken();
699      } else if (Tok.is(tok::kw_this)) {
700        // FIXME: If we want to suggest a fixit here, will need to return more
701        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
702        // Clear()ed to prevent emission in case of tentative parsing?
703        return DiagResult(diag::err_this_captured_by_reference);
704      } else {
705        return DiagResult(diag::err_expected_capture);
706      }
707    }
708
709    Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
710  }
711
712  T.consumeClose();
713  Intro.Range.setEnd(T.getCloseLocation());
714
715  return DiagResult();
716}
717
718/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
719///
720/// Returns true if it hit something unexpected.
721bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
722  TentativeParsingAction PA(*this);
723
724  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
725
726  if (DiagID) {
727    PA.Revert();
728    return true;
729  }
730
731  PA.Commit();
732  return false;
733}
734
735/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
736/// expression.
737ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
738                     LambdaIntroducer &Intro) {
739  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
740  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
741
742  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
743                                "lambda expression parsing");
744
745  // Parse lambda-declarator[opt].
746  DeclSpec DS(AttrFactory);
747  Declarator D(DS, Declarator::LambdaExprContext);
748
749  if (Tok.is(tok::l_paren)) {
750    ParseScope PrototypeScope(this,
751                              Scope::FunctionPrototypeScope |
752                              Scope::DeclScope);
753
754    SourceLocation DeclLoc, DeclEndLoc;
755    BalancedDelimiterTracker T(*this, tok::l_paren);
756    T.consumeOpen();
757    DeclLoc = T.getOpenLocation();
758
759    // Parse parameter-declaration-clause.
760    ParsedAttributes Attr(AttrFactory);
761    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
762    SourceLocation EllipsisLoc;
763
764    if (Tok.isNot(tok::r_paren))
765      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
766
767    T.consumeClose();
768    DeclEndLoc = T.getCloseLocation();
769
770    // Parse 'mutable'[opt].
771    SourceLocation MutableLoc;
772    if (Tok.is(tok::kw_mutable)) {
773      MutableLoc = ConsumeToken();
774      DeclEndLoc = MutableLoc;
775    }
776
777    // Parse exception-specification[opt].
778    ExceptionSpecificationType ESpecType = EST_None;
779    SourceRange ESpecRange;
780    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
781    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
782    ExprResult NoexceptExpr;
783    ESpecType = tryParseExceptionSpecification(ESpecRange,
784                                               DynamicExceptions,
785                                               DynamicExceptionRanges,
786                                               NoexceptExpr);
787
788    if (ESpecType != EST_None)
789      DeclEndLoc = ESpecRange.getEnd();
790
791    // Parse attribute-specifier[opt].
792    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
793
794    // Parse trailing-return-type[opt].
795    TypeResult TrailingReturnType;
796    if (Tok.is(tok::arrow)) {
797      SourceRange Range;
798      TrailingReturnType = ParseTrailingReturnType(Range);
799      if (Range.getEnd().isValid())
800        DeclEndLoc = Range.getEnd();
801    }
802
803    PrototypeScope.Exit();
804
805    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
806                                           /*isVariadic=*/EllipsisLoc.isValid(),
807                                           EllipsisLoc,
808                                           ParamInfo.data(), ParamInfo.size(),
809                                           DS.getTypeQualifiers(),
810                                           /*RefQualifierIsLValueRef=*/true,
811                                           /*RefQualifierLoc=*/SourceLocation(),
812                                         /*ConstQualifierLoc=*/SourceLocation(),
813                                      /*VolatileQualifierLoc=*/SourceLocation(),
814                                           MutableLoc,
815                                           ESpecType, ESpecRange.getBegin(),
816                                           DynamicExceptions.data(),
817                                           DynamicExceptionRanges.data(),
818                                           DynamicExceptions.size(),
819                                           NoexceptExpr.isUsable() ?
820                                             NoexceptExpr.get() : 0,
821                                           DeclLoc, DeclEndLoc, D,
822                                           TrailingReturnType),
823                  Attr, DeclEndLoc);
824  } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
825    // It's common to forget that one needs '()' before 'mutable' or the
826    // result type. Deal with this.
827    Diag(Tok, diag::err_lambda_missing_parens)
828      << Tok.is(tok::arrow)
829      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
830    SourceLocation DeclLoc = Tok.getLocation();
831    SourceLocation DeclEndLoc = DeclLoc;
832
833    // Parse 'mutable', if it's there.
834    SourceLocation MutableLoc;
835    if (Tok.is(tok::kw_mutable)) {
836      MutableLoc = ConsumeToken();
837      DeclEndLoc = MutableLoc;
838    }
839
840    // Parse the return type, if there is one.
841    TypeResult TrailingReturnType;
842    if (Tok.is(tok::arrow)) {
843      SourceRange Range;
844      TrailingReturnType = ParseTrailingReturnType(Range);
845      if (Range.getEnd().isValid())
846        DeclEndLoc = Range.getEnd();
847    }
848
849    ParsedAttributes Attr(AttrFactory);
850    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
851                     /*isVariadic=*/false,
852                     /*EllipsisLoc=*/SourceLocation(),
853                     /*Params=*/0, /*NumParams=*/0,
854                     /*TypeQuals=*/0,
855                     /*RefQualifierIsLValueRef=*/true,
856                     /*RefQualifierLoc=*/SourceLocation(),
857                     /*ConstQualifierLoc=*/SourceLocation(),
858                     /*VolatileQualifierLoc=*/SourceLocation(),
859                     MutableLoc,
860                     EST_None,
861                     /*ESpecLoc=*/SourceLocation(),
862                     /*Exceptions=*/0,
863                     /*ExceptionRanges=*/0,
864                     /*NumExceptions=*/0,
865                     /*NoexceptExpr=*/0,
866                     DeclLoc, DeclEndLoc, D,
867                     TrailingReturnType),
868                  Attr, DeclEndLoc);
869  }
870
871
872  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
873  // it.
874  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
875  ParseScope BodyScope(this, ScopeFlags);
876
877  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
878
879  // Parse compound-statement.
880  if (!Tok.is(tok::l_brace)) {
881    Diag(Tok, diag::err_expected_lambda_body);
882    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
883    return ExprError();
884  }
885
886  StmtResult Stmt(ParseCompoundStatementBody());
887  BodyScope.Exit();
888
889  if (!Stmt.isInvalid())
890    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
891
892  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
893  return ExprError();
894}
895
896/// ParseCXXCasts - This handles the various ways to cast expressions to another
897/// type.
898///
899///       postfix-expression: [C++ 5.2p1]
900///         'dynamic_cast' '<' type-name '>' '(' expression ')'
901///         'static_cast' '<' type-name '>' '(' expression ')'
902///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
903///         'const_cast' '<' type-name '>' '(' expression ')'
904///
905ExprResult Parser::ParseCXXCasts() {
906  tok::TokenKind Kind = Tok.getKind();
907  const char *CastName = 0;     // For error messages
908
909  switch (Kind) {
910  default: llvm_unreachable("Unknown C++ cast!");
911  case tok::kw_const_cast:       CastName = "const_cast";       break;
912  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
913  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
914  case tok::kw_static_cast:      CastName = "static_cast";      break;
915  }
916
917  SourceLocation OpLoc = ConsumeToken();
918  SourceLocation LAngleBracketLoc = Tok.getLocation();
919
920  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
921  // diagnose error, suggest fix, and recover parsing.
922  Token Next = NextToken();
923  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
924      AreTokensAdjacent(PP, Tok, Next))
925    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
926
927  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
928    return ExprError();
929
930  // Parse the common declaration-specifiers piece.
931  DeclSpec DS(AttrFactory);
932  ParseSpecifierQualifierList(DS);
933
934  // Parse the abstract-declarator, if present.
935  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
936  ParseDeclarator(DeclaratorInfo);
937
938  SourceLocation RAngleBracketLoc = Tok.getLocation();
939
940  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
941    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
942
943  SourceLocation LParenLoc, RParenLoc;
944  BalancedDelimiterTracker T(*this, tok::l_paren);
945
946  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
947    return ExprError();
948
949  ExprResult Result = ParseExpression();
950
951  // Match the ')'.
952  T.consumeClose();
953
954  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
955    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
956                                       LAngleBracketLoc, DeclaratorInfo,
957                                       RAngleBracketLoc,
958                                       T.getOpenLocation(), Result.take(),
959                                       T.getCloseLocation());
960
961  return move(Result);
962}
963
964/// ParseCXXTypeid - This handles the C++ typeid expression.
965///
966///       postfix-expression: [C++ 5.2p1]
967///         'typeid' '(' expression ')'
968///         'typeid' '(' type-id ')'
969///
970ExprResult Parser::ParseCXXTypeid() {
971  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
972
973  SourceLocation OpLoc = ConsumeToken();
974  SourceLocation LParenLoc, RParenLoc;
975  BalancedDelimiterTracker T(*this, tok::l_paren);
976
977  // typeid expressions are always parenthesized.
978  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
979    return ExprError();
980  LParenLoc = T.getOpenLocation();
981
982  ExprResult Result;
983
984  if (isTypeIdInParens()) {
985    TypeResult Ty = ParseTypeName();
986
987    // Match the ')'.
988    T.consumeClose();
989    RParenLoc = T.getCloseLocation();
990    if (Ty.isInvalid() || RParenLoc.isInvalid())
991      return ExprError();
992
993    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
994                                    Ty.get().getAsOpaquePtr(), RParenLoc);
995  } else {
996    // C++0x [expr.typeid]p3:
997    //   When typeid is applied to an expression other than an lvalue of a
998    //   polymorphic class type [...] The expression is an unevaluated
999    //   operand (Clause 5).
1000    //
1001    // Note that we can't tell whether the expression is an lvalue of a
1002    // polymorphic class type until after we've parsed the expression; we
1003    // speculatively assume the subexpression is unevaluated, and fix it up
1004    // later.
1005    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1006    Result = ParseExpression();
1007
1008    // Match the ')'.
1009    if (Result.isInvalid())
1010      SkipUntil(tok::r_paren);
1011    else {
1012      T.consumeClose();
1013      RParenLoc = T.getCloseLocation();
1014      if (RParenLoc.isInvalid())
1015        return ExprError();
1016
1017      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1018                                      Result.release(), RParenLoc);
1019    }
1020  }
1021
1022  return move(Result);
1023}
1024
1025/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1026///
1027///         '__uuidof' '(' expression ')'
1028///         '__uuidof' '(' type-id ')'
1029///
1030ExprResult Parser::ParseCXXUuidof() {
1031  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1032
1033  SourceLocation OpLoc = ConsumeToken();
1034  BalancedDelimiterTracker T(*this, tok::l_paren);
1035
1036  // __uuidof expressions are always parenthesized.
1037  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1038    return ExprError();
1039
1040  ExprResult Result;
1041
1042  if (isTypeIdInParens()) {
1043    TypeResult Ty = ParseTypeName();
1044
1045    // Match the ')'.
1046    T.consumeClose();
1047
1048    if (Ty.isInvalid())
1049      return ExprError();
1050
1051    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1052                                    Ty.get().getAsOpaquePtr(),
1053                                    T.getCloseLocation());
1054  } else {
1055    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1056    Result = ParseExpression();
1057
1058    // Match the ')'.
1059    if (Result.isInvalid())
1060      SkipUntil(tok::r_paren);
1061    else {
1062      T.consumeClose();
1063
1064      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1065                                      /*isType=*/false,
1066                                      Result.release(), T.getCloseLocation());
1067    }
1068  }
1069
1070  return move(Result);
1071}
1072
1073/// \brief Parse a C++ pseudo-destructor expression after the base,
1074/// . or -> operator, and nested-name-specifier have already been
1075/// parsed.
1076///
1077///       postfix-expression: [C++ 5.2]
1078///         postfix-expression . pseudo-destructor-name
1079///         postfix-expression -> pseudo-destructor-name
1080///
1081///       pseudo-destructor-name:
1082///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1083///         ::[opt] nested-name-specifier template simple-template-id ::
1084///                 ~type-name
1085///         ::[opt] nested-name-specifier[opt] ~type-name
1086///
1087ExprResult
1088Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1089                                 tok::TokenKind OpKind,
1090                                 CXXScopeSpec &SS,
1091                                 ParsedType ObjectType) {
1092  // We're parsing either a pseudo-destructor-name or a dependent
1093  // member access that has the same form as a
1094  // pseudo-destructor-name. We parse both in the same way and let
1095  // the action model sort them out.
1096  //
1097  // Note that the ::[opt] nested-name-specifier[opt] has already
1098  // been parsed, and if there was a simple-template-id, it has
1099  // been coalesced into a template-id annotation token.
1100  UnqualifiedId FirstTypeName;
1101  SourceLocation CCLoc;
1102  if (Tok.is(tok::identifier)) {
1103    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1104    ConsumeToken();
1105    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1106    CCLoc = ConsumeToken();
1107  } else if (Tok.is(tok::annot_template_id)) {
1108    // FIXME: retrieve TemplateKWLoc from template-id annotation and
1109    // store it in the pseudo-dtor node (to be used when instantiating it).
1110    FirstTypeName.setTemplateId(
1111                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1112    ConsumeToken();
1113    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1114    CCLoc = ConsumeToken();
1115  } else {
1116    FirstTypeName.setIdentifier(0, SourceLocation());
1117  }
1118
1119  // Parse the tilde.
1120  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1121  SourceLocation TildeLoc = ConsumeToken();
1122
1123  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1124    DeclSpec DS(AttrFactory);
1125    ParseDecltypeSpecifier(DS);
1126    if (DS.getTypeSpecType() == TST_error)
1127      return ExprError();
1128    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1129                                             OpKind, TildeLoc, DS,
1130                                             Tok.is(tok::l_paren));
1131  }
1132
1133  if (!Tok.is(tok::identifier)) {
1134    Diag(Tok, diag::err_destructor_tilde_identifier);
1135    return ExprError();
1136  }
1137
1138  // Parse the second type.
1139  UnqualifiedId SecondTypeName;
1140  IdentifierInfo *Name = Tok.getIdentifierInfo();
1141  SourceLocation NameLoc = ConsumeToken();
1142  SecondTypeName.setIdentifier(Name, NameLoc);
1143
1144  // If there is a '<', the second type name is a template-id. Parse
1145  // it as such.
1146  if (Tok.is(tok::less) &&
1147      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1148                                   Name, NameLoc,
1149                                   false, ObjectType, SecondTypeName,
1150                                   /*AssumeTemplateName=*/true))
1151    return ExprError();
1152
1153  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1154                                           OpLoc, OpKind,
1155                                           SS, FirstTypeName, CCLoc,
1156                                           TildeLoc, SecondTypeName,
1157                                           Tok.is(tok::l_paren));
1158}
1159
1160/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1161///
1162///       boolean-literal: [C++ 2.13.5]
1163///         'true'
1164///         'false'
1165ExprResult Parser::ParseCXXBoolLiteral() {
1166  tok::TokenKind Kind = Tok.getKind();
1167  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1168}
1169
1170/// ParseThrowExpression - This handles the C++ throw expression.
1171///
1172///       throw-expression: [C++ 15]
1173///         'throw' assignment-expression[opt]
1174ExprResult Parser::ParseThrowExpression() {
1175  assert(Tok.is(tok::kw_throw) && "Not throw!");
1176  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1177
1178  // If the current token isn't the start of an assignment-expression,
1179  // then the expression is not present.  This handles things like:
1180  //   "C ? throw : (void)42", which is crazy but legal.
1181  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1182  case tok::semi:
1183  case tok::r_paren:
1184  case tok::r_square:
1185  case tok::r_brace:
1186  case tok::colon:
1187  case tok::comma:
1188    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1189
1190  default:
1191    ExprResult Expr(ParseAssignmentExpression());
1192    if (Expr.isInvalid()) return move(Expr);
1193    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1194  }
1195}
1196
1197/// ParseCXXThis - This handles the C++ 'this' pointer.
1198///
1199/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1200/// a non-lvalue expression whose value is the address of the object for which
1201/// the function is called.
1202ExprResult Parser::ParseCXXThis() {
1203  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1204  SourceLocation ThisLoc = ConsumeToken();
1205  return Actions.ActOnCXXThis(ThisLoc);
1206}
1207
1208/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1209/// Can be interpreted either as function-style casting ("int(x)")
1210/// or class type construction ("ClassType(x,y,z)")
1211/// or creation of a value-initialized type ("int()").
1212/// See [C++ 5.2.3].
1213///
1214///       postfix-expression: [C++ 5.2p1]
1215///         simple-type-specifier '(' expression-list[opt] ')'
1216/// [C++0x] simple-type-specifier braced-init-list
1217///         typename-specifier '(' expression-list[opt] ')'
1218/// [C++0x] typename-specifier braced-init-list
1219///
1220ExprResult
1221Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1222  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1223  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1224
1225  assert((Tok.is(tok::l_paren) ||
1226          (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1227         && "Expected '(' or '{'!");
1228
1229  if (Tok.is(tok::l_brace)) {
1230    ExprResult Init = ParseBraceInitializer();
1231    if (Init.isInvalid())
1232      return Init;
1233    Expr *InitList = Init.take();
1234    return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1235                                             MultiExprArg(&InitList, 1),
1236                                             SourceLocation());
1237  } else {
1238    BalancedDelimiterTracker T(*this, tok::l_paren);
1239    T.consumeOpen();
1240
1241    ExprVector Exprs(Actions);
1242    CommaLocsTy CommaLocs;
1243
1244    if (Tok.isNot(tok::r_paren)) {
1245      if (ParseExpressionList(Exprs, CommaLocs)) {
1246        SkipUntil(tok::r_paren);
1247        return ExprError();
1248      }
1249    }
1250
1251    // Match the ')'.
1252    T.consumeClose();
1253
1254    // TypeRep could be null, if it references an invalid typedef.
1255    if (!TypeRep)
1256      return ExprError();
1257
1258    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1259           "Unexpected number of commas!");
1260    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1261                                             move_arg(Exprs),
1262                                             T.getCloseLocation());
1263  }
1264}
1265
1266/// ParseCXXCondition - if/switch/while condition expression.
1267///
1268///       condition:
1269///         expression
1270///         type-specifier-seq declarator '=' assignment-expression
1271/// [C++11] type-specifier-seq declarator '=' initializer-clause
1272/// [C++11] type-specifier-seq declarator braced-init-list
1273/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1274///             '=' assignment-expression
1275///
1276/// \param ExprResult if the condition was parsed as an expression, the
1277/// parsed expression.
1278///
1279/// \param DeclResult if the condition was parsed as a declaration, the
1280/// parsed declaration.
1281///
1282/// \param Loc The location of the start of the statement that requires this
1283/// condition, e.g., the "for" in a for loop.
1284///
1285/// \param ConvertToBoolean Whether the condition expression should be
1286/// converted to a boolean value.
1287///
1288/// \returns true if there was a parsing, false otherwise.
1289bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1290                               Decl *&DeclOut,
1291                               SourceLocation Loc,
1292                               bool ConvertToBoolean) {
1293  if (Tok.is(tok::code_completion)) {
1294    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1295    cutOffParsing();
1296    return true;
1297  }
1298
1299  if (!isCXXConditionDeclaration()) {
1300    // Parse the expression.
1301    ExprOut = ParseExpression(); // expression
1302    DeclOut = 0;
1303    if (ExprOut.isInvalid())
1304      return true;
1305
1306    // If required, convert to a boolean value.
1307    if (ConvertToBoolean)
1308      ExprOut
1309        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1310    return ExprOut.isInvalid();
1311  }
1312
1313  // type-specifier-seq
1314  DeclSpec DS(AttrFactory);
1315  ParseSpecifierQualifierList(DS);
1316
1317  // declarator
1318  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1319  ParseDeclarator(DeclaratorInfo);
1320
1321  // simple-asm-expr[opt]
1322  if (Tok.is(tok::kw_asm)) {
1323    SourceLocation Loc;
1324    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1325    if (AsmLabel.isInvalid()) {
1326      SkipUntil(tok::semi);
1327      return true;
1328    }
1329    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1330    DeclaratorInfo.SetRangeEnd(Loc);
1331  }
1332
1333  // If attributes are present, parse them.
1334  MaybeParseGNUAttributes(DeclaratorInfo);
1335
1336  // Type-check the declaration itself.
1337  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1338                                                        DeclaratorInfo);
1339  DeclOut = Dcl.get();
1340  ExprOut = ExprError();
1341
1342  // '=' assignment-expression
1343  // If a '==' or '+=' is found, suggest a fixit to '='.
1344  bool CopyInitialization = isTokenEqualOrEqualTypo();
1345  if (CopyInitialization)
1346    ConsumeToken();
1347
1348  ExprResult InitExpr = ExprError();
1349  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1350    Diag(Tok.getLocation(),
1351         diag::warn_cxx98_compat_generalized_initializer_lists);
1352    InitExpr = ParseBraceInitializer();
1353  } else if (CopyInitialization) {
1354    InitExpr = ParseAssignmentExpression();
1355  } else if (Tok.is(tok::l_paren)) {
1356    // This was probably an attempt to initialize the variable.
1357    SourceLocation LParen = ConsumeParen(), RParen = LParen;
1358    if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1359      RParen = ConsumeParen();
1360    Diag(DeclOut ? DeclOut->getLocation() : LParen,
1361         diag::err_expected_init_in_condition_lparen)
1362      << SourceRange(LParen, RParen);
1363  } else {
1364    Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1365         diag::err_expected_init_in_condition);
1366  }
1367
1368  if (!InitExpr.isInvalid())
1369    Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1370                                 DS.getTypeSpecType() == DeclSpec::TST_auto);
1371
1372  // FIXME: Build a reference to this declaration? Convert it to bool?
1373  // (This is currently handled by Sema).
1374
1375  Actions.FinalizeDeclaration(DeclOut);
1376
1377  return false;
1378}
1379
1380/// \brief Determine whether the current token starts a C++
1381/// simple-type-specifier.
1382bool Parser::isCXXSimpleTypeSpecifier() const {
1383  switch (Tok.getKind()) {
1384  case tok::annot_typename:
1385  case tok::kw_short:
1386  case tok::kw_long:
1387  case tok::kw___int64:
1388  case tok::kw___int128:
1389  case tok::kw_signed:
1390  case tok::kw_unsigned:
1391  case tok::kw_void:
1392  case tok::kw_char:
1393  case tok::kw_int:
1394  case tok::kw_half:
1395  case tok::kw_float:
1396  case tok::kw_double:
1397  case tok::kw_wchar_t:
1398  case tok::kw_char16_t:
1399  case tok::kw_char32_t:
1400  case tok::kw_bool:
1401  case tok::kw_decltype:
1402  case tok::kw_typeof:
1403  case tok::kw___underlying_type:
1404    return true;
1405
1406  default:
1407    break;
1408  }
1409
1410  return false;
1411}
1412
1413/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1414/// This should only be called when the current token is known to be part of
1415/// simple-type-specifier.
1416///
1417///       simple-type-specifier:
1418///         '::'[opt] nested-name-specifier[opt] type-name
1419///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1420///         char
1421///         wchar_t
1422///         bool
1423///         short
1424///         int
1425///         long
1426///         signed
1427///         unsigned
1428///         float
1429///         double
1430///         void
1431/// [GNU]   typeof-specifier
1432/// [C++0x] auto               [TODO]
1433///
1434///       type-name:
1435///         class-name
1436///         enum-name
1437///         typedef-name
1438///
1439void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1440  DS.SetRangeStart(Tok.getLocation());
1441  const char *PrevSpec;
1442  unsigned DiagID;
1443  SourceLocation Loc = Tok.getLocation();
1444
1445  switch (Tok.getKind()) {
1446  case tok::identifier:   // foo::bar
1447  case tok::coloncolon:   // ::foo::bar
1448    llvm_unreachable("Annotation token should already be formed!");
1449  default:
1450    llvm_unreachable("Not a simple-type-specifier token!");
1451
1452  // type-name
1453  case tok::annot_typename: {
1454    if (getTypeAnnotation(Tok))
1455      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1456                         getTypeAnnotation(Tok));
1457    else
1458      DS.SetTypeSpecError();
1459
1460    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1461    ConsumeToken();
1462
1463    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1464    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1465    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1466    // just a normal reference to a typedef name.
1467    if (Tok.is(tok::less) && getLangOpts().ObjC1)
1468      ParseObjCProtocolQualifiers(DS);
1469
1470    DS.Finish(Diags, PP);
1471    return;
1472  }
1473
1474  // builtin types
1475  case tok::kw_short:
1476    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1477    break;
1478  case tok::kw_long:
1479    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1480    break;
1481  case tok::kw___int64:
1482    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1483    break;
1484  case tok::kw_signed:
1485    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1486    break;
1487  case tok::kw_unsigned:
1488    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1489    break;
1490  case tok::kw_void:
1491    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1492    break;
1493  case tok::kw_char:
1494    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1495    break;
1496  case tok::kw_int:
1497    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1498    break;
1499  case tok::kw___int128:
1500    DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1501    break;
1502  case tok::kw_half:
1503    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1504    break;
1505  case tok::kw_float:
1506    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1507    break;
1508  case tok::kw_double:
1509    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1510    break;
1511  case tok::kw_wchar_t:
1512    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1513    break;
1514  case tok::kw_char16_t:
1515    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1516    break;
1517  case tok::kw_char32_t:
1518    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1519    break;
1520  case tok::kw_bool:
1521    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1522    break;
1523  case tok::annot_decltype:
1524  case tok::kw_decltype:
1525    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1526    return DS.Finish(Diags, PP);
1527
1528  // GNU typeof support.
1529  case tok::kw_typeof:
1530    ParseTypeofSpecifier(DS);
1531    DS.Finish(Diags, PP);
1532    return;
1533  }
1534  if (Tok.is(tok::annot_typename))
1535    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1536  else
1537    DS.SetRangeEnd(Tok.getLocation());
1538  ConsumeToken();
1539  DS.Finish(Diags, PP);
1540}
1541
1542/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1543/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1544/// e.g., "const short int". Note that the DeclSpec is *not* finished
1545/// by parsing the type-specifier-seq, because these sequences are
1546/// typically followed by some form of declarator. Returns true and
1547/// emits diagnostics if this is not a type-specifier-seq, false
1548/// otherwise.
1549///
1550///   type-specifier-seq: [C++ 8.1]
1551///     type-specifier type-specifier-seq[opt]
1552///
1553bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1554  ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1555  DS.Finish(Diags, PP);
1556  return false;
1557}
1558
1559/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1560/// some form.
1561///
1562/// This routine is invoked when a '<' is encountered after an identifier or
1563/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1564/// whether the unqualified-id is actually a template-id. This routine will
1565/// then parse the template arguments and form the appropriate template-id to
1566/// return to the caller.
1567///
1568/// \param SS the nested-name-specifier that precedes this template-id, if
1569/// we're actually parsing a qualified-id.
1570///
1571/// \param Name for constructor and destructor names, this is the actual
1572/// identifier that may be a template-name.
1573///
1574/// \param NameLoc the location of the class-name in a constructor or
1575/// destructor.
1576///
1577/// \param EnteringContext whether we're entering the scope of the
1578/// nested-name-specifier.
1579///
1580/// \param ObjectType if this unqualified-id occurs within a member access
1581/// expression, the type of the base object whose member is being accessed.
1582///
1583/// \param Id as input, describes the template-name or operator-function-id
1584/// that precedes the '<'. If template arguments were parsed successfully,
1585/// will be updated with the template-id.
1586///
1587/// \param AssumeTemplateId When true, this routine will assume that the name
1588/// refers to a template without performing name lookup to verify.
1589///
1590/// \returns true if a parse error occurred, false otherwise.
1591bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1592                                          SourceLocation TemplateKWLoc,
1593                                          IdentifierInfo *Name,
1594                                          SourceLocation NameLoc,
1595                                          bool EnteringContext,
1596                                          ParsedType ObjectType,
1597                                          UnqualifiedId &Id,
1598                                          bool AssumeTemplateId) {
1599  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1600         "Expected '<' to finish parsing a template-id");
1601
1602  TemplateTy Template;
1603  TemplateNameKind TNK = TNK_Non_template;
1604  switch (Id.getKind()) {
1605  case UnqualifiedId::IK_Identifier:
1606  case UnqualifiedId::IK_OperatorFunctionId:
1607  case UnqualifiedId::IK_LiteralOperatorId:
1608    if (AssumeTemplateId) {
1609      TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1610                                               Id, ObjectType, EnteringContext,
1611                                               Template);
1612      if (TNK == TNK_Non_template)
1613        return true;
1614    } else {
1615      bool MemberOfUnknownSpecialization;
1616      TNK = Actions.isTemplateName(getCurScope(), SS,
1617                                   TemplateKWLoc.isValid(), Id,
1618                                   ObjectType, EnteringContext, Template,
1619                                   MemberOfUnknownSpecialization);
1620
1621      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1622          ObjectType && IsTemplateArgumentList()) {
1623        // We have something like t->getAs<T>(), where getAs is a
1624        // member of an unknown specialization. However, this will only
1625        // parse correctly as a template, so suggest the keyword 'template'
1626        // before 'getAs' and treat this as a dependent template name.
1627        std::string Name;
1628        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1629          Name = Id.Identifier->getName();
1630        else {
1631          Name = "operator ";
1632          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1633            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1634          else
1635            Name += Id.Identifier->getName();
1636        }
1637        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1638          << Name
1639          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1640        TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1641                                                 SS, TemplateKWLoc, Id,
1642                                                 ObjectType, EnteringContext,
1643                                                 Template);
1644        if (TNK == TNK_Non_template)
1645          return true;
1646      }
1647    }
1648    break;
1649
1650  case UnqualifiedId::IK_ConstructorName: {
1651    UnqualifiedId TemplateName;
1652    bool MemberOfUnknownSpecialization;
1653    TemplateName.setIdentifier(Name, NameLoc);
1654    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1655                                 TemplateName, ObjectType,
1656                                 EnteringContext, Template,
1657                                 MemberOfUnknownSpecialization);
1658    break;
1659  }
1660
1661  case UnqualifiedId::IK_DestructorName: {
1662    UnqualifiedId TemplateName;
1663    bool MemberOfUnknownSpecialization;
1664    TemplateName.setIdentifier(Name, NameLoc);
1665    if (ObjectType) {
1666      TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1667                                               SS, TemplateKWLoc, TemplateName,
1668                                               ObjectType, EnteringContext,
1669                                               Template);
1670      if (TNK == TNK_Non_template)
1671        return true;
1672    } else {
1673      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1674                                   TemplateName, ObjectType,
1675                                   EnteringContext, Template,
1676                                   MemberOfUnknownSpecialization);
1677
1678      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1679        Diag(NameLoc, diag::err_destructor_template_id)
1680          << Name << SS.getRange();
1681        return true;
1682      }
1683    }
1684    break;
1685  }
1686
1687  default:
1688    return false;
1689  }
1690
1691  if (TNK == TNK_Non_template)
1692    return false;
1693
1694  // Parse the enclosed template argument list.
1695  SourceLocation LAngleLoc, RAngleLoc;
1696  TemplateArgList TemplateArgs;
1697  if (Tok.is(tok::less) &&
1698      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1699                                       SS, true, LAngleLoc,
1700                                       TemplateArgs,
1701                                       RAngleLoc))
1702    return true;
1703
1704  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1705      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1706      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1707    // Form a parsed representation of the template-id to be stored in the
1708    // UnqualifiedId.
1709    TemplateIdAnnotation *TemplateId
1710      = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1711
1712    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1713      TemplateId->Name = Id.Identifier;
1714      TemplateId->Operator = OO_None;
1715      TemplateId->TemplateNameLoc = Id.StartLocation;
1716    } else {
1717      TemplateId->Name = 0;
1718      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1719      TemplateId->TemplateNameLoc = Id.StartLocation;
1720    }
1721
1722    TemplateId->SS = SS;
1723    TemplateId->TemplateKWLoc = TemplateKWLoc;
1724    TemplateId->Template = Template;
1725    TemplateId->Kind = TNK;
1726    TemplateId->LAngleLoc = LAngleLoc;
1727    TemplateId->RAngleLoc = RAngleLoc;
1728    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1729    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1730         Arg != ArgEnd; ++Arg)
1731      Args[Arg] = TemplateArgs[Arg];
1732
1733    Id.setTemplateId(TemplateId);
1734    return false;
1735  }
1736
1737  // Bundle the template arguments together.
1738  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1739                                     TemplateArgs.size());
1740
1741  // Constructor and destructor names.
1742  TypeResult Type
1743    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1744                                  Template, NameLoc,
1745                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
1746                                  /*IsCtorOrDtorName=*/true);
1747  if (Type.isInvalid())
1748    return true;
1749
1750  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1751    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1752  else
1753    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1754
1755  return false;
1756}
1757
1758/// \brief Parse an operator-function-id or conversion-function-id as part
1759/// of a C++ unqualified-id.
1760///
1761/// This routine is responsible only for parsing the operator-function-id or
1762/// conversion-function-id; it does not handle template arguments in any way.
1763///
1764/// \code
1765///       operator-function-id: [C++ 13.5]
1766///         'operator' operator
1767///
1768///       operator: one of
1769///            new   delete  new[]   delete[]
1770///            +     -    *  /    %  ^    &   |   ~
1771///            !     =    <  >    += -=   *=  /=  %=
1772///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1773///            <=    >=   && ||   ++ --   ,   ->* ->
1774///            ()    []
1775///
1776///       conversion-function-id: [C++ 12.3.2]
1777///         operator conversion-type-id
1778///
1779///       conversion-type-id:
1780///         type-specifier-seq conversion-declarator[opt]
1781///
1782///       conversion-declarator:
1783///         ptr-operator conversion-declarator[opt]
1784/// \endcode
1785///
1786/// \param The nested-name-specifier that preceded this unqualified-id. If
1787/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1788///
1789/// \param EnteringContext whether we are entering the scope of the
1790/// nested-name-specifier.
1791///
1792/// \param ObjectType if this unqualified-id occurs within a member access
1793/// expression, the type of the base object whose member is being accessed.
1794///
1795/// \param Result on a successful parse, contains the parsed unqualified-id.
1796///
1797/// \returns true if parsing fails, false otherwise.
1798bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1799                                        ParsedType ObjectType,
1800                                        UnqualifiedId &Result) {
1801  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1802
1803  // Consume the 'operator' keyword.
1804  SourceLocation KeywordLoc = ConsumeToken();
1805
1806  // Determine what kind of operator name we have.
1807  unsigned SymbolIdx = 0;
1808  SourceLocation SymbolLocations[3];
1809  OverloadedOperatorKind Op = OO_None;
1810  switch (Tok.getKind()) {
1811    case tok::kw_new:
1812    case tok::kw_delete: {
1813      bool isNew = Tok.getKind() == tok::kw_new;
1814      // Consume the 'new' or 'delete'.
1815      SymbolLocations[SymbolIdx++] = ConsumeToken();
1816      // Check for array new/delete.
1817      if (Tok.is(tok::l_square) &&
1818          (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square))) {
1819        // Consume the '[' and ']'.
1820        BalancedDelimiterTracker T(*this, tok::l_square);
1821        T.consumeOpen();
1822        T.consumeClose();
1823        if (T.getCloseLocation().isInvalid())
1824          return true;
1825
1826        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1827        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1828        Op = isNew? OO_Array_New : OO_Array_Delete;
1829      } else {
1830        Op = isNew? OO_New : OO_Delete;
1831      }
1832      break;
1833    }
1834
1835#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1836    case tok::Token:                                                     \
1837      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1838      Op = OO_##Name;                                                    \
1839      break;
1840#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1841#include "clang/Basic/OperatorKinds.def"
1842
1843    case tok::l_paren: {
1844      // Consume the '(' and ')'.
1845      BalancedDelimiterTracker T(*this, tok::l_paren);
1846      T.consumeOpen();
1847      T.consumeClose();
1848      if (T.getCloseLocation().isInvalid())
1849        return true;
1850
1851      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1852      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1853      Op = OO_Call;
1854      break;
1855    }
1856
1857    case tok::l_square: {
1858      // Consume the '[' and ']'.
1859      BalancedDelimiterTracker T(*this, tok::l_square);
1860      T.consumeOpen();
1861      T.consumeClose();
1862      if (T.getCloseLocation().isInvalid())
1863        return true;
1864
1865      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1866      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1867      Op = OO_Subscript;
1868      break;
1869    }
1870
1871    case tok::code_completion: {
1872      // Code completion for the operator name.
1873      Actions.CodeCompleteOperatorName(getCurScope());
1874      cutOffParsing();
1875      // Don't try to parse any further.
1876      return true;
1877    }
1878
1879    default:
1880      break;
1881  }
1882
1883  if (Op != OO_None) {
1884    // We have parsed an operator-function-id.
1885    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1886    return false;
1887  }
1888
1889  // Parse a literal-operator-id.
1890  //
1891  //   literal-operator-id: [C++0x 13.5.8]
1892  //     operator "" identifier
1893
1894  if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1895    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1896
1897    SourceLocation DiagLoc;
1898    unsigned DiagId = 0;
1899
1900    // We're past translation phase 6, so perform string literal concatenation
1901    // before checking for "".
1902    llvm::SmallVector<Token, 4> Toks;
1903    llvm::SmallVector<SourceLocation, 4> TokLocs;
1904    while (isTokenStringLiteral()) {
1905      if (!Tok.is(tok::string_literal) && !DiagId) {
1906        DiagLoc = Tok.getLocation();
1907        DiagId = diag::err_literal_operator_string_prefix;
1908      }
1909      Toks.push_back(Tok);
1910      TokLocs.push_back(ConsumeStringToken());
1911    }
1912
1913    StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1914    if (Literal.hadError)
1915      return true;
1916
1917    // Grab the literal operator's suffix, which will be either the next token
1918    // or a ud-suffix from the string literal.
1919    IdentifierInfo *II = 0;
1920    SourceLocation SuffixLoc;
1921    if (!Literal.getUDSuffix().empty()) {
1922      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1923      SuffixLoc =
1924        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1925                                       Literal.getUDSuffixOffset(),
1926                                       PP.getSourceManager(), getLangOpts());
1927      // This form is not permitted by the standard (yet).
1928      DiagLoc = SuffixLoc;
1929      DiagId = diag::err_literal_operator_missing_space;
1930    } else if (Tok.is(tok::identifier)) {
1931      II = Tok.getIdentifierInfo();
1932      SuffixLoc = ConsumeToken();
1933      TokLocs.push_back(SuffixLoc);
1934    } else {
1935      Diag(Tok.getLocation(), diag::err_expected_ident);
1936      return true;
1937    }
1938
1939    // The string literal must be empty.
1940    if (!Literal.GetString().empty() || Literal.Pascal) {
1941      DiagLoc = TokLocs.front();
1942      DiagId = diag::err_literal_operator_string_not_empty;
1943    }
1944
1945    if (DiagId) {
1946      // This isn't a valid literal-operator-id, but we think we know
1947      // what the user meant. Tell them what they should have written.
1948      llvm::SmallString<32> Str;
1949      Str += "\"\" ";
1950      Str += II->getName();
1951      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1952          SourceRange(TokLocs.front(), TokLocs.back()), Str);
1953    }
1954
1955    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1956    return false;
1957  }
1958
1959  // Parse a conversion-function-id.
1960  //
1961  //   conversion-function-id: [C++ 12.3.2]
1962  //     operator conversion-type-id
1963  //
1964  //   conversion-type-id:
1965  //     type-specifier-seq conversion-declarator[opt]
1966  //
1967  //   conversion-declarator:
1968  //     ptr-operator conversion-declarator[opt]
1969
1970  // Parse the type-specifier-seq.
1971  DeclSpec DS(AttrFactory);
1972  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1973    return true;
1974
1975  // Parse the conversion-declarator, which is merely a sequence of
1976  // ptr-operators.
1977  Declarator D(DS, Declarator::TypeNameContext);
1978  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1979
1980  // Finish up the type.
1981  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1982  if (Ty.isInvalid())
1983    return true;
1984
1985  // Note that this is a conversion-function-id.
1986  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1987                                 D.getSourceRange().getEnd());
1988  return false;
1989}
1990
1991/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1992/// name of an entity.
1993///
1994/// \code
1995///       unqualified-id: [C++ expr.prim.general]
1996///         identifier
1997///         operator-function-id
1998///         conversion-function-id
1999/// [C++0x] literal-operator-id [TODO]
2000///         ~ class-name
2001///         template-id
2002///
2003/// \endcode
2004///
2005/// \param The nested-name-specifier that preceded this unqualified-id. If
2006/// non-empty, then we are parsing the unqualified-id of a qualified-id.
2007///
2008/// \param EnteringContext whether we are entering the scope of the
2009/// nested-name-specifier.
2010///
2011/// \param AllowDestructorName whether we allow parsing of a destructor name.
2012///
2013/// \param AllowConstructorName whether we allow parsing a constructor name.
2014///
2015/// \param ObjectType if this unqualified-id occurs within a member access
2016/// expression, the type of the base object whose member is being accessed.
2017///
2018/// \param Result on a successful parse, contains the parsed unqualified-id.
2019///
2020/// \returns true if parsing fails, false otherwise.
2021bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2022                                bool AllowDestructorName,
2023                                bool AllowConstructorName,
2024                                ParsedType ObjectType,
2025                                SourceLocation& TemplateKWLoc,
2026                                UnqualifiedId &Result) {
2027
2028  // Handle 'A::template B'. This is for template-ids which have not
2029  // already been annotated by ParseOptionalCXXScopeSpecifier().
2030  bool TemplateSpecified = false;
2031  if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2032      (ObjectType || SS.isSet())) {
2033    TemplateSpecified = true;
2034    TemplateKWLoc = ConsumeToken();
2035  }
2036
2037  // unqualified-id:
2038  //   identifier
2039  //   template-id (when it hasn't already been annotated)
2040  if (Tok.is(tok::identifier)) {
2041    // Consume the identifier.
2042    IdentifierInfo *Id = Tok.getIdentifierInfo();
2043    SourceLocation IdLoc = ConsumeToken();
2044
2045    if (!getLangOpts().CPlusPlus) {
2046      // If we're not in C++, only identifiers matter. Record the
2047      // identifier and return.
2048      Result.setIdentifier(Id, IdLoc);
2049      return false;
2050    }
2051
2052    if (AllowConstructorName &&
2053        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2054      // We have parsed a constructor name.
2055      ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2056                                          &SS, false, false,
2057                                          ParsedType(),
2058                                          /*IsCtorOrDtorName=*/true,
2059                                          /*NonTrivialTypeSourceInfo=*/true);
2060      Result.setConstructorName(Ty, IdLoc, IdLoc);
2061    } else {
2062      // We have parsed an identifier.
2063      Result.setIdentifier(Id, IdLoc);
2064    }
2065
2066    // If the next token is a '<', we may have a template.
2067    if (TemplateSpecified || Tok.is(tok::less))
2068      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2069                                          EnteringContext, ObjectType,
2070                                          Result, TemplateSpecified);
2071
2072    return false;
2073  }
2074
2075  // unqualified-id:
2076  //   template-id (already parsed and annotated)
2077  if (Tok.is(tok::annot_template_id)) {
2078    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2079
2080    // If the template-name names the current class, then this is a constructor
2081    if (AllowConstructorName && TemplateId->Name &&
2082        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2083      if (SS.isSet()) {
2084        // C++ [class.qual]p2 specifies that a qualified template-name
2085        // is taken as the constructor name where a constructor can be
2086        // declared. Thus, the template arguments are extraneous, so
2087        // complain about them and remove them entirely.
2088        Diag(TemplateId->TemplateNameLoc,
2089             diag::err_out_of_line_constructor_template_id)
2090          << TemplateId->Name
2091          << FixItHint::CreateRemoval(
2092                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2093        ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2094                                            TemplateId->TemplateNameLoc,
2095                                            getCurScope(),
2096                                            &SS, false, false,
2097                                            ParsedType(),
2098                                            /*IsCtorOrDtorName=*/true,
2099                                            /*NontrivialTypeSourceInfo=*/true);
2100        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2101                                  TemplateId->RAngleLoc);
2102        ConsumeToken();
2103        return false;
2104      }
2105
2106      Result.setConstructorTemplateId(TemplateId);
2107      ConsumeToken();
2108      return false;
2109    }
2110
2111    // We have already parsed a template-id; consume the annotation token as
2112    // our unqualified-id.
2113    Result.setTemplateId(TemplateId);
2114    TemplateKWLoc = TemplateId->TemplateKWLoc;
2115    ConsumeToken();
2116    return false;
2117  }
2118
2119  // unqualified-id:
2120  //   operator-function-id
2121  //   conversion-function-id
2122  if (Tok.is(tok::kw_operator)) {
2123    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2124      return true;
2125
2126    // If we have an operator-function-id or a literal-operator-id and the next
2127    // token is a '<', we may have a
2128    //
2129    //   template-id:
2130    //     operator-function-id < template-argument-list[opt] >
2131    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2132         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2133        (TemplateSpecified || Tok.is(tok::less)))
2134      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2135                                          0, SourceLocation(),
2136                                          EnteringContext, ObjectType,
2137                                          Result, TemplateSpecified);
2138
2139    return false;
2140  }
2141
2142  if (getLangOpts().CPlusPlus &&
2143      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2144    // C++ [expr.unary.op]p10:
2145    //   There is an ambiguity in the unary-expression ~X(), where X is a
2146    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2147    //    unary complement rather than treating ~X as referring to a destructor.
2148
2149    // Parse the '~'.
2150    SourceLocation TildeLoc = ConsumeToken();
2151
2152    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2153      DeclSpec DS(AttrFactory);
2154      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2155      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2156        Result.setDestructorName(TildeLoc, Type, EndLoc);
2157        return false;
2158      }
2159      return true;
2160    }
2161
2162    // Parse the class-name.
2163    if (Tok.isNot(tok::identifier)) {
2164      Diag(Tok, diag::err_destructor_tilde_identifier);
2165      return true;
2166    }
2167
2168    // Parse the class-name (or template-name in a simple-template-id).
2169    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2170    SourceLocation ClassNameLoc = ConsumeToken();
2171
2172    if (TemplateSpecified || Tok.is(tok::less)) {
2173      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2174      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2175                                          ClassName, ClassNameLoc,
2176                                          EnteringContext, ObjectType,
2177                                          Result, TemplateSpecified);
2178    }
2179
2180    // Note that this is a destructor name.
2181    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2182                                              ClassNameLoc, getCurScope(),
2183                                              SS, ObjectType,
2184                                              EnteringContext);
2185    if (!Ty)
2186      return true;
2187
2188    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2189    return false;
2190  }
2191
2192  Diag(Tok, diag::err_expected_unqualified_id)
2193    << getLangOpts().CPlusPlus;
2194  return true;
2195}
2196
2197/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2198/// memory in a typesafe manner and call constructors.
2199///
2200/// This method is called to parse the new expression after the optional :: has
2201/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2202/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2203///
2204///        new-expression:
2205///                   '::'[opt] 'new' new-placement[opt] new-type-id
2206///                                     new-initializer[opt]
2207///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2208///                                     new-initializer[opt]
2209///
2210///        new-placement:
2211///                   '(' expression-list ')'
2212///
2213///        new-type-id:
2214///                   type-specifier-seq new-declarator[opt]
2215/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2216///
2217///        new-declarator:
2218///                   ptr-operator new-declarator[opt]
2219///                   direct-new-declarator
2220///
2221///        new-initializer:
2222///                   '(' expression-list[opt] ')'
2223/// [C++0x]           braced-init-list
2224///
2225ExprResult
2226Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2227  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2228  ConsumeToken();   // Consume 'new'
2229
2230  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2231  // second form of new-expression. It can't be a new-type-id.
2232
2233  ExprVector PlacementArgs(Actions);
2234  SourceLocation PlacementLParen, PlacementRParen;
2235
2236  SourceRange TypeIdParens;
2237  DeclSpec DS(AttrFactory);
2238  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2239  if (Tok.is(tok::l_paren)) {
2240    // If it turns out to be a placement, we change the type location.
2241    BalancedDelimiterTracker T(*this, tok::l_paren);
2242    T.consumeOpen();
2243    PlacementLParen = T.getOpenLocation();
2244    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2245      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2246      return ExprError();
2247    }
2248
2249    T.consumeClose();
2250    PlacementRParen = T.getCloseLocation();
2251    if (PlacementRParen.isInvalid()) {
2252      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2253      return ExprError();
2254    }
2255
2256    if (PlacementArgs.empty()) {
2257      // Reset the placement locations. There was no placement.
2258      TypeIdParens = T.getRange();
2259      PlacementLParen = PlacementRParen = SourceLocation();
2260    } else {
2261      // We still need the type.
2262      if (Tok.is(tok::l_paren)) {
2263        BalancedDelimiterTracker T(*this, tok::l_paren);
2264        T.consumeOpen();
2265        MaybeParseGNUAttributes(DeclaratorInfo);
2266        ParseSpecifierQualifierList(DS);
2267        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2268        ParseDeclarator(DeclaratorInfo);
2269        T.consumeClose();
2270        TypeIdParens = T.getRange();
2271      } else {
2272        MaybeParseGNUAttributes(DeclaratorInfo);
2273        if (ParseCXXTypeSpecifierSeq(DS))
2274          DeclaratorInfo.setInvalidType(true);
2275        else {
2276          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2277          ParseDeclaratorInternal(DeclaratorInfo,
2278                                  &Parser::ParseDirectNewDeclarator);
2279        }
2280      }
2281    }
2282  } else {
2283    // A new-type-id is a simplified type-id, where essentially the
2284    // direct-declarator is replaced by a direct-new-declarator.
2285    MaybeParseGNUAttributes(DeclaratorInfo);
2286    if (ParseCXXTypeSpecifierSeq(DS))
2287      DeclaratorInfo.setInvalidType(true);
2288    else {
2289      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2290      ParseDeclaratorInternal(DeclaratorInfo,
2291                              &Parser::ParseDirectNewDeclarator);
2292    }
2293  }
2294  if (DeclaratorInfo.isInvalidType()) {
2295    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2296    return ExprError();
2297  }
2298
2299  ExprResult Initializer;
2300
2301  if (Tok.is(tok::l_paren)) {
2302    SourceLocation ConstructorLParen, ConstructorRParen;
2303    ExprVector ConstructorArgs(Actions);
2304    BalancedDelimiterTracker T(*this, tok::l_paren);
2305    T.consumeOpen();
2306    ConstructorLParen = T.getOpenLocation();
2307    if (Tok.isNot(tok::r_paren)) {
2308      CommaLocsTy CommaLocs;
2309      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2310        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2311        return ExprError();
2312      }
2313    }
2314    T.consumeClose();
2315    ConstructorRParen = T.getCloseLocation();
2316    if (ConstructorRParen.isInvalid()) {
2317      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2318      return ExprError();
2319    }
2320    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2321                                             ConstructorRParen,
2322                                             move_arg(ConstructorArgs));
2323  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2324    Diag(Tok.getLocation(),
2325         diag::warn_cxx98_compat_generalized_initializer_lists);
2326    Initializer = ParseBraceInitializer();
2327  }
2328  if (Initializer.isInvalid())
2329    return Initializer;
2330
2331  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2332                             move_arg(PlacementArgs), PlacementRParen,
2333                             TypeIdParens, DeclaratorInfo, Initializer.take());
2334}
2335
2336/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2337/// passed to ParseDeclaratorInternal.
2338///
2339///        direct-new-declarator:
2340///                   '[' expression ']'
2341///                   direct-new-declarator '[' constant-expression ']'
2342///
2343void Parser::ParseDirectNewDeclarator(Declarator &D) {
2344  // Parse the array dimensions.
2345  bool first = true;
2346  while (Tok.is(tok::l_square)) {
2347    // An array-size expression can't start with a lambda.
2348    if (CheckProhibitedCXX11Attribute())
2349      continue;
2350
2351    BalancedDelimiterTracker T(*this, tok::l_square);
2352    T.consumeOpen();
2353
2354    ExprResult Size(first ? ParseExpression()
2355                                : ParseConstantExpression());
2356    if (Size.isInvalid()) {
2357      // Recover
2358      SkipUntil(tok::r_square);
2359      return;
2360    }
2361    first = false;
2362
2363    T.consumeClose();
2364
2365    // Attributes here appertain to the array type. C++11 [expr.new]p5.
2366    ParsedAttributes Attrs(AttrFactory);
2367    MaybeParseCXX0XAttributes(Attrs);
2368
2369    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2370                                            /*static=*/false, /*star=*/false,
2371                                            Size.release(),
2372                                            T.getOpenLocation(),
2373                                            T.getCloseLocation()),
2374                  Attrs, T.getCloseLocation());
2375
2376    if (T.getCloseLocation().isInvalid())
2377      return;
2378  }
2379}
2380
2381/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2382/// This ambiguity appears in the syntax of the C++ new operator.
2383///
2384///        new-expression:
2385///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2386///                                     new-initializer[opt]
2387///
2388///        new-placement:
2389///                   '(' expression-list ')'
2390///
2391bool Parser::ParseExpressionListOrTypeId(
2392                                   SmallVectorImpl<Expr*> &PlacementArgs,
2393                                         Declarator &D) {
2394  // The '(' was already consumed.
2395  if (isTypeIdInParens()) {
2396    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2397    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2398    ParseDeclarator(D);
2399    return D.isInvalidType();
2400  }
2401
2402  // It's not a type, it has to be an expression list.
2403  // Discard the comma locations - ActOnCXXNew has enough parameters.
2404  CommaLocsTy CommaLocs;
2405  return ParseExpressionList(PlacementArgs, CommaLocs);
2406}
2407
2408/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2409/// to free memory allocated by new.
2410///
2411/// This method is called to parse the 'delete' expression after the optional
2412/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2413/// and "Start" is its location.  Otherwise, "Start" is the location of the
2414/// 'delete' token.
2415///
2416///        delete-expression:
2417///                   '::'[opt] 'delete' cast-expression
2418///                   '::'[opt] 'delete' '[' ']' cast-expression
2419ExprResult
2420Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2421  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2422  ConsumeToken(); // Consume 'delete'
2423
2424  // Array delete?
2425  bool ArrayDelete = false;
2426  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2427    // FIXME: This could be the start of a lambda-expression. We should
2428    // disambiguate this, but that will require arbitrary lookahead if
2429    // the next token is '(':
2430    //   delete [](int*){ /* ... */
2431    ArrayDelete = true;
2432    BalancedDelimiterTracker T(*this, tok::l_square);
2433
2434    T.consumeOpen();
2435    T.consumeClose();
2436    if (T.getCloseLocation().isInvalid())
2437      return ExprError();
2438  }
2439
2440  ExprResult Operand(ParseCastExpression(false));
2441  if (Operand.isInvalid())
2442    return move(Operand);
2443
2444  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2445}
2446
2447static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2448  switch(kind) {
2449  default: llvm_unreachable("Not a known unary type trait.");
2450  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2451  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2452  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2453  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2454  case tok::kw___has_trivial_constructor:
2455                                    return UTT_HasTrivialDefaultConstructor;
2456  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2457  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2458  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2459  case tok::kw___is_abstract:             return UTT_IsAbstract;
2460  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2461  case tok::kw___is_array:                   return UTT_IsArray;
2462  case tok::kw___is_class:                return UTT_IsClass;
2463  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2464  case tok::kw___is_compound:                return UTT_IsCompound;
2465  case tok::kw___is_const:                   return UTT_IsConst;
2466  case tok::kw___is_empty:                return UTT_IsEmpty;
2467  case tok::kw___is_enum:                 return UTT_IsEnum;
2468  case tok::kw___is_final:                 return UTT_IsFinal;
2469  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2470  case tok::kw___is_function:                return UTT_IsFunction;
2471  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2472  case tok::kw___is_integral:                return UTT_IsIntegral;
2473  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2474  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2475  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2476  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2477  case tok::kw___is_object:                  return UTT_IsObject;
2478  case tok::kw___is_literal:              return UTT_IsLiteral;
2479  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2480  case tok::kw___is_pod:                  return UTT_IsPOD;
2481  case tok::kw___is_pointer:                 return UTT_IsPointer;
2482  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2483  case tok::kw___is_reference:               return UTT_IsReference;
2484  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2485  case tok::kw___is_scalar:                  return UTT_IsScalar;
2486  case tok::kw___is_signed:                  return UTT_IsSigned;
2487  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2488  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2489  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2490  case tok::kw___is_union:                return UTT_IsUnion;
2491  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2492  case tok::kw___is_void:                    return UTT_IsVoid;
2493  case tok::kw___is_volatile:                return UTT_IsVolatile;
2494  }
2495}
2496
2497static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2498  switch(kind) {
2499  default: llvm_unreachable("Not a known binary type trait");
2500  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2501  case tok::kw___is_convertible:             return BTT_IsConvertible;
2502  case tok::kw___is_same:                    return BTT_IsSame;
2503  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2504  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2505  case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2506  }
2507}
2508
2509static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2510  switch (kind) {
2511  default: llvm_unreachable("Not a known type trait");
2512  case tok::kw___is_trivially_constructible:
2513    return TT_IsTriviallyConstructible;
2514  }
2515}
2516
2517static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2518  switch(kind) {
2519  default: llvm_unreachable("Not a known binary type trait");
2520  case tok::kw___array_rank:                 return ATT_ArrayRank;
2521  case tok::kw___array_extent:               return ATT_ArrayExtent;
2522  }
2523}
2524
2525static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2526  switch(kind) {
2527  default: llvm_unreachable("Not a known unary expression trait.");
2528  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2529  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2530  }
2531}
2532
2533/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2534/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2535/// templates.
2536///
2537///       primary-expression:
2538/// [GNU]             unary-type-trait '(' type-id ')'
2539///
2540ExprResult Parser::ParseUnaryTypeTrait() {
2541  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2542  SourceLocation Loc = ConsumeToken();
2543
2544  BalancedDelimiterTracker T(*this, tok::l_paren);
2545  if (T.expectAndConsume(diag::err_expected_lparen))
2546    return ExprError();
2547
2548  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2549  // there will be cryptic errors about mismatched parentheses and missing
2550  // specifiers.
2551  TypeResult Ty = ParseTypeName();
2552
2553  T.consumeClose();
2554
2555  if (Ty.isInvalid())
2556    return ExprError();
2557
2558  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2559}
2560
2561/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2562/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2563/// templates.
2564///
2565///       primary-expression:
2566/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2567///
2568ExprResult Parser::ParseBinaryTypeTrait() {
2569  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2570  SourceLocation Loc = ConsumeToken();
2571
2572  BalancedDelimiterTracker T(*this, tok::l_paren);
2573  if (T.expectAndConsume(diag::err_expected_lparen))
2574    return ExprError();
2575
2576  TypeResult LhsTy = ParseTypeName();
2577  if (LhsTy.isInvalid()) {
2578    SkipUntil(tok::r_paren);
2579    return ExprError();
2580  }
2581
2582  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2583    SkipUntil(tok::r_paren);
2584    return ExprError();
2585  }
2586
2587  TypeResult RhsTy = ParseTypeName();
2588  if (RhsTy.isInvalid()) {
2589    SkipUntil(tok::r_paren);
2590    return ExprError();
2591  }
2592
2593  T.consumeClose();
2594
2595  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2596                                      T.getCloseLocation());
2597}
2598
2599/// \brief Parse the built-in type-trait pseudo-functions that allow
2600/// implementation of the TR1/C++11 type traits templates.
2601///
2602///       primary-expression:
2603///          type-trait '(' type-id-seq ')'
2604///
2605///       type-id-seq:
2606///          type-id ...[opt] type-id-seq[opt]
2607///
2608ExprResult Parser::ParseTypeTrait() {
2609  TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2610  SourceLocation Loc = ConsumeToken();
2611
2612  BalancedDelimiterTracker Parens(*this, tok::l_paren);
2613  if (Parens.expectAndConsume(diag::err_expected_lparen))
2614    return ExprError();
2615
2616  llvm::SmallVector<ParsedType, 2> Args;
2617  do {
2618    // Parse the next type.
2619    TypeResult Ty = ParseTypeName();
2620    if (Ty.isInvalid()) {
2621      Parens.skipToEnd();
2622      return ExprError();
2623    }
2624
2625    // Parse the ellipsis, if present.
2626    if (Tok.is(tok::ellipsis)) {
2627      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2628      if (Ty.isInvalid()) {
2629        Parens.skipToEnd();
2630        return ExprError();
2631      }
2632    }
2633
2634    // Add this type to the list of arguments.
2635    Args.push_back(Ty.get());
2636
2637    if (Tok.is(tok::comma)) {
2638      ConsumeToken();
2639      continue;
2640    }
2641
2642    break;
2643  } while (true);
2644
2645  if (Parens.consumeClose())
2646    return ExprError();
2647
2648  return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2649}
2650
2651/// ParseArrayTypeTrait - Parse the built-in array type-trait
2652/// pseudo-functions.
2653///
2654///       primary-expression:
2655/// [Embarcadero]     '__array_rank' '(' type-id ')'
2656/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2657///
2658ExprResult Parser::ParseArrayTypeTrait() {
2659  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2660  SourceLocation Loc = ConsumeToken();
2661
2662  BalancedDelimiterTracker T(*this, tok::l_paren);
2663  if (T.expectAndConsume(diag::err_expected_lparen))
2664    return ExprError();
2665
2666  TypeResult Ty = ParseTypeName();
2667  if (Ty.isInvalid()) {
2668    SkipUntil(tok::comma);
2669    SkipUntil(tok::r_paren);
2670    return ExprError();
2671  }
2672
2673  switch (ATT) {
2674  case ATT_ArrayRank: {
2675    T.consumeClose();
2676    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2677                                       T.getCloseLocation());
2678  }
2679  case ATT_ArrayExtent: {
2680    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2681      SkipUntil(tok::r_paren);
2682      return ExprError();
2683    }
2684
2685    ExprResult DimExpr = ParseExpression();
2686    T.consumeClose();
2687
2688    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2689                                       T.getCloseLocation());
2690  }
2691  }
2692  llvm_unreachable("Invalid ArrayTypeTrait!");
2693}
2694
2695/// ParseExpressionTrait - Parse built-in expression-trait
2696/// pseudo-functions like __is_lvalue_expr( xxx ).
2697///
2698///       primary-expression:
2699/// [Embarcadero]     expression-trait '(' expression ')'
2700///
2701ExprResult Parser::ParseExpressionTrait() {
2702  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2703  SourceLocation Loc = ConsumeToken();
2704
2705  BalancedDelimiterTracker T(*this, tok::l_paren);
2706  if (T.expectAndConsume(diag::err_expected_lparen))
2707    return ExprError();
2708
2709  ExprResult Expr = ParseExpression();
2710
2711  T.consumeClose();
2712
2713  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2714                                      T.getCloseLocation());
2715}
2716
2717
2718/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2719/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2720/// based on the context past the parens.
2721ExprResult
2722Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2723                                         ParsedType &CastTy,
2724                                         BalancedDelimiterTracker &Tracker) {
2725  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2726  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2727  assert(isTypeIdInParens() && "Not a type-id!");
2728
2729  ExprResult Result(true);
2730  CastTy = ParsedType();
2731
2732  // We need to disambiguate a very ugly part of the C++ syntax:
2733  //
2734  // (T())x;  - type-id
2735  // (T())*x; - type-id
2736  // (T())/x; - expression
2737  // (T());   - expression
2738  //
2739  // The bad news is that we cannot use the specialized tentative parser, since
2740  // it can only verify that the thing inside the parens can be parsed as
2741  // type-id, it is not useful for determining the context past the parens.
2742  //
2743  // The good news is that the parser can disambiguate this part without
2744  // making any unnecessary Action calls.
2745  //
2746  // It uses a scheme similar to parsing inline methods. The parenthesized
2747  // tokens are cached, the context that follows is determined (possibly by
2748  // parsing a cast-expression), and then we re-introduce the cached tokens
2749  // into the token stream and parse them appropriately.
2750
2751  ParenParseOption ParseAs;
2752  CachedTokens Toks;
2753
2754  // Store the tokens of the parentheses. We will parse them after we determine
2755  // the context that follows them.
2756  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2757    // We didn't find the ')' we expected.
2758    Tracker.consumeClose();
2759    return ExprError();
2760  }
2761
2762  if (Tok.is(tok::l_brace)) {
2763    ParseAs = CompoundLiteral;
2764  } else {
2765    bool NotCastExpr;
2766    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2767    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2768      NotCastExpr = true;
2769    } else {
2770      // Try parsing the cast-expression that may follow.
2771      // If it is not a cast-expression, NotCastExpr will be true and no token
2772      // will be consumed.
2773      Result = ParseCastExpression(false/*isUnaryExpression*/,
2774                                   false/*isAddressofOperand*/,
2775                                   NotCastExpr,
2776                                   // type-id has priority.
2777                                   IsTypeCast);
2778    }
2779
2780    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2781    // an expression.
2782    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2783  }
2784
2785  // The current token should go after the cached tokens.
2786  Toks.push_back(Tok);
2787  // Re-enter the stored parenthesized tokens into the token stream, so we may
2788  // parse them now.
2789  PP.EnterTokenStream(Toks.data(), Toks.size(),
2790                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2791  // Drop the current token and bring the first cached one. It's the same token
2792  // as when we entered this function.
2793  ConsumeAnyToken();
2794
2795  if (ParseAs >= CompoundLiteral) {
2796    // Parse the type declarator.
2797    DeclSpec DS(AttrFactory);
2798    ParseSpecifierQualifierList(DS);
2799    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2800    ParseDeclarator(DeclaratorInfo);
2801
2802    // Match the ')'.
2803    Tracker.consumeClose();
2804
2805    if (ParseAs == CompoundLiteral) {
2806      ExprType = CompoundLiteral;
2807      TypeResult Ty = ParseTypeName();
2808       return ParseCompoundLiteralExpression(Ty.get(),
2809                                            Tracker.getOpenLocation(),
2810                                            Tracker.getCloseLocation());
2811    }
2812
2813    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2814    assert(ParseAs == CastExpr);
2815
2816    if (DeclaratorInfo.isInvalidType())
2817      return ExprError();
2818
2819    // Result is what ParseCastExpression returned earlier.
2820    if (!Result.isInvalid())
2821      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2822                                    DeclaratorInfo, CastTy,
2823                                    Tracker.getCloseLocation(), Result.take());
2824    return move(Result);
2825  }
2826
2827  // Not a compound literal, and not followed by a cast-expression.
2828  assert(ParseAs == SimpleExpr);
2829
2830  ExprType = SimpleExpr;
2831  Result = ParseExpression();
2832  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2833    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2834                                    Tok.getLocation(), Result.take());
2835
2836  // Match the ')'.
2837  if (Result.isInvalid()) {
2838    SkipUntil(tok::r_paren);
2839    return ExprError();
2840  }
2841
2842  Tracker.consumeClose();
2843  return move(Result);
2844}
2845