ParseExprCXX.cpp revision 77549080fb7b9af31606b3c1b4830a94429fb1fd
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/DeclSpec.h"
17#include "clang/Parse/Template.h"
18#include "llvm/Support/ErrorHandling.h"
19
20using namespace clang;
21
22/// \brief Parse global scope or nested-name-specifier if present.
23///
24/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
25/// may be preceded by '::'). Note that this routine will not parse ::new or
26/// ::delete; it will just leave them in the token stream.
27///
28///       '::'[opt] nested-name-specifier
29///       '::'
30///
31///       nested-name-specifier:
32///         type-name '::'
33///         namespace-name '::'
34///         nested-name-specifier identifier '::'
35///         nested-name-specifier 'template'[opt] simple-template-id '::'
36///
37///
38/// \param SS the scope specifier that will be set to the parsed
39/// nested-name-specifier (or empty)
40///
41/// \param ObjectType if this nested-name-specifier is being parsed following
42/// the "." or "->" of a member access expression, this parameter provides the
43/// type of the object whose members are being accessed.
44///
45/// \param EnteringContext whether we will be entering into the context of
46/// the nested-name-specifier after parsing it.
47///
48/// \param MayBePseudoDestructor When non-NULL, points to a flag that
49/// indicates whether this nested-name-specifier may be part of a
50/// pseudo-destructor name. In this case, the flag will be set false
51/// if we don't actually end up parsing a destructor name. Moreorover,
52/// if we do end up determining that we are parsing a destructor name,
53/// the last component of the nested-name-specifier is not parsed as
54/// part of the scope specifier.
55
56/// member access expression, e.g., the \p T:: in \p p->T::m.
57///
58/// \returns true if a scope specifier was parsed.
59bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
60                                            Action::TypeTy *ObjectType,
61                                            bool EnteringContext,
62                                            bool *MayBePseudoDestructor) {
63  assert(getLang().CPlusPlus &&
64         "Call sites of this function should be guarded by checking for C++");
65
66  if (Tok.is(tok::annot_cxxscope)) {
67    SS.setScopeRep(Tok.getAnnotationValue());
68    SS.setRange(Tok.getAnnotationRange());
69    ConsumeToken();
70    return true;
71  }
72
73  bool HasScopeSpecifier = false;
74
75  if (Tok.is(tok::coloncolon)) {
76    // ::new and ::delete aren't nested-name-specifiers.
77    tok::TokenKind NextKind = NextToken().getKind();
78    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
79      return false;
80
81    // '::' - Global scope qualifier.
82    SourceLocation CCLoc = ConsumeToken();
83    SS.setBeginLoc(CCLoc);
84    SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
85    SS.setEndLoc(CCLoc);
86    HasScopeSpecifier = true;
87  }
88
89  bool CheckForDestructor = false;
90  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
91    CheckForDestructor = true;
92    *MayBePseudoDestructor = false;
93  }
94
95  while (true) {
96    if (HasScopeSpecifier) {
97      // C++ [basic.lookup.classref]p5:
98      //   If the qualified-id has the form
99      //
100      //       ::class-name-or-namespace-name::...
101      //
102      //   the class-name-or-namespace-name is looked up in global scope as a
103      //   class-name or namespace-name.
104      //
105      // To implement this, we clear out the object type as soon as we've
106      // seen a leading '::' or part of a nested-name-specifier.
107      ObjectType = 0;
108
109      if (Tok.is(tok::code_completion)) {
110        // Code completion for a nested-name-specifier, where the code
111        // code completion token follows the '::'.
112        Actions.CodeCompleteQualifiedId(CurScope, SS, EnteringContext);
113        ConsumeToken();
114      }
115    }
116
117    // nested-name-specifier:
118    //   nested-name-specifier 'template'[opt] simple-template-id '::'
119
120    // Parse the optional 'template' keyword, then make sure we have
121    // 'identifier <' after it.
122    if (Tok.is(tok::kw_template)) {
123      // If we don't have a scope specifier or an object type, this isn't a
124      // nested-name-specifier, since they aren't allowed to start with
125      // 'template'.
126      if (!HasScopeSpecifier && !ObjectType)
127        break;
128
129      TentativeParsingAction TPA(*this);
130      SourceLocation TemplateKWLoc = ConsumeToken();
131
132      UnqualifiedId TemplateName;
133      if (Tok.is(tok::identifier)) {
134        // Consume the identifier.
135        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
136        ConsumeToken();
137      } else if (Tok.is(tok::kw_operator)) {
138        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
139                                       TemplateName)) {
140          TPA.Commit();
141          break;
142        }
143
144        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
145            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
146          Diag(TemplateName.getSourceRange().getBegin(),
147               diag::err_id_after_template_in_nested_name_spec)
148            << TemplateName.getSourceRange();
149          TPA.Commit();
150          break;
151        }
152      } else {
153        TPA.Revert();
154        break;
155      }
156
157      // If the next token is not '<', we have a qualified-id that refers
158      // to a template name, such as T::template apply, but is not a
159      // template-id.
160      if (Tok.isNot(tok::less)) {
161        TPA.Revert();
162        break;
163      }
164
165      // Commit to parsing the template-id.
166      TPA.Commit();
167      TemplateTy Template
168        = Actions.ActOnDependentTemplateName(TemplateKWLoc, SS, TemplateName,
169                                             ObjectType, EnteringContext);
170      if (!Template)
171        break;
172      if (AnnotateTemplateIdToken(Template, TNK_Dependent_template_name,
173                                  &SS, TemplateName, TemplateKWLoc, false))
174        break;
175
176      continue;
177    }
178
179    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
180      // We have
181      //
182      //   simple-template-id '::'
183      //
184      // So we need to check whether the simple-template-id is of the
185      // right kind (it should name a type or be dependent), and then
186      // convert it into a type within the nested-name-specifier.
187      TemplateIdAnnotation *TemplateId
188        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
189      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
190        *MayBePseudoDestructor = true;
191        return HasScopeSpecifier;
192      }
193
194      if (TemplateId->Kind == TNK_Type_template ||
195          TemplateId->Kind == TNK_Dependent_template_name) {
196        AnnotateTemplateIdTokenAsType(&SS);
197
198        assert(Tok.is(tok::annot_typename) &&
199               "AnnotateTemplateIdTokenAsType isn't working");
200        Token TypeToken = Tok;
201        ConsumeToken();
202        assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
203        SourceLocation CCLoc = ConsumeToken();
204
205        if (!HasScopeSpecifier) {
206          SS.setBeginLoc(TypeToken.getLocation());
207          HasScopeSpecifier = true;
208        }
209
210        if (TypeToken.getAnnotationValue())
211          SS.setScopeRep(
212            Actions.ActOnCXXNestedNameSpecifier(CurScope, SS,
213                                                TypeToken.getAnnotationValue(),
214                                                TypeToken.getAnnotationRange(),
215                                                CCLoc,
216                                                false));
217        else
218          SS.setScopeRep(0);
219        SS.setEndLoc(CCLoc);
220        continue;
221      }
222
223      assert(false && "FIXME: Only type template names supported here");
224    }
225
226
227    // The rest of the nested-name-specifier possibilities start with
228    // tok::identifier.
229    if (Tok.isNot(tok::identifier))
230      break;
231
232    IdentifierInfo &II = *Tok.getIdentifierInfo();
233
234    // nested-name-specifier:
235    //   type-name '::'
236    //   namespace-name '::'
237    //   nested-name-specifier identifier '::'
238    Token Next = NextToken();
239
240    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
241    // and emit a fixit hint for it.
242    if (Next.is(tok::colon) && !ColonIsSacred) {
243      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
244          !Actions.isNonTypeNestedNameSpecifier(CurScope, SS, Tok.getLocation(),
245                                                II, ObjectType)) {
246        *MayBePseudoDestructor = true;
247        return HasScopeSpecifier;
248      }
249
250      if (Actions.IsInvalidUnlessNestedName(CurScope, SS, II,
251                                            false, ObjectType,
252                                            EnteringContext) &&
253          // If the token after the colon isn't an identifier, it's still an
254          // error, but they probably meant something else strange so don't
255          // recover like this.
256          PP.LookAhead(1).is(tok::identifier)) {
257        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
258          << CodeModificationHint::CreateReplacement(Next.getLocation(), "::");
259
260        // Recover as if the user wrote '::'.
261        Next.setKind(tok::coloncolon);
262      }
263    }
264
265    if (Next.is(tok::coloncolon)) {
266      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
267          !Actions.isNonTypeNestedNameSpecifier(CurScope, SS, Tok.getLocation(),
268                                                II, ObjectType)) {
269        *MayBePseudoDestructor = true;
270        return HasScopeSpecifier;
271      }
272
273      // We have an identifier followed by a '::'. Lookup this name
274      // as the name in a nested-name-specifier.
275      SourceLocation IdLoc = ConsumeToken();
276      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
277             "NextToken() not working properly!");
278      SourceLocation CCLoc = ConsumeToken();
279
280      if (!HasScopeSpecifier) {
281        SS.setBeginLoc(IdLoc);
282        HasScopeSpecifier = true;
283      }
284
285      if (SS.isInvalid())
286        continue;
287
288      SS.setScopeRep(
289        Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, II,
290                                            false, ObjectType,
291                                            EnteringContext));
292      SS.setEndLoc(CCLoc);
293      continue;
294    }
295
296    // nested-name-specifier:
297    //   type-name '<'
298    if (Next.is(tok::less)) {
299      TemplateTy Template;
300      UnqualifiedId TemplateName;
301      TemplateName.setIdentifier(&II, Tok.getLocation());
302      if (TemplateNameKind TNK = Actions.isTemplateName(CurScope, SS,
303                                                        TemplateName,
304                                                        ObjectType,
305                                                        EnteringContext,
306                                                        Template)) {
307        // We have found a template name, so annotate this this token
308        // with a template-id annotation. We do not permit the
309        // template-id to be translated into a type annotation,
310        // because some clients (e.g., the parsing of class template
311        // specializations) still want to see the original template-id
312        // token.
313        ConsumeToken();
314        if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
315                                    SourceLocation(), false))
316          break;
317        continue;
318      }
319    }
320
321    // We don't have any tokens that form the beginning of a
322    // nested-name-specifier, so we're done.
323    break;
324  }
325
326  // Even if we didn't see any pieces of a nested-name-specifier, we
327  // still check whether there is a tilde in this position, which
328  // indicates a potential pseudo-destructor.
329  if (CheckForDestructor && Tok.is(tok::tilde))
330    *MayBePseudoDestructor = true;
331
332  return HasScopeSpecifier;
333}
334
335/// ParseCXXIdExpression - Handle id-expression.
336///
337///       id-expression:
338///         unqualified-id
339///         qualified-id
340///
341///       qualified-id:
342///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
343///         '::' identifier
344///         '::' operator-function-id
345///         '::' template-id
346///
347/// NOTE: The standard specifies that, for qualified-id, the parser does not
348/// expect:
349///
350///   '::' conversion-function-id
351///   '::' '~' class-name
352///
353/// This may cause a slight inconsistency on diagnostics:
354///
355/// class C {};
356/// namespace A {}
357/// void f() {
358///   :: A :: ~ C(); // Some Sema error about using destructor with a
359///                  // namespace.
360///   :: ~ C(); // Some Parser error like 'unexpected ~'.
361/// }
362///
363/// We simplify the parser a bit and make it work like:
364///
365///       qualified-id:
366///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
367///         '::' unqualified-id
368///
369/// That way Sema can handle and report similar errors for namespaces and the
370/// global scope.
371///
372/// The isAddressOfOperand parameter indicates that this id-expression is a
373/// direct operand of the address-of operator. This is, besides member contexts,
374/// the only place where a qualified-id naming a non-static class member may
375/// appear.
376///
377Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
378  // qualified-id:
379  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
380  //   '::' unqualified-id
381  //
382  CXXScopeSpec SS;
383  ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false);
384
385  UnqualifiedId Name;
386  if (ParseUnqualifiedId(SS,
387                         /*EnteringContext=*/false,
388                         /*AllowDestructorName=*/false,
389                         /*AllowConstructorName=*/false,
390                         /*ObjectType=*/0,
391                         Name))
392    return ExprError();
393
394  // This is only the direct operand of an & operator if it is not
395  // followed by a postfix-expression suffix.
396  if (isAddressOfOperand) {
397    switch (Tok.getKind()) {
398    case tok::l_square:
399    case tok::l_paren:
400    case tok::arrow:
401    case tok::period:
402    case tok::plusplus:
403    case tok::minusminus:
404      isAddressOfOperand = false;
405      break;
406
407    default:
408      break;
409    }
410  }
411
412  return Actions.ActOnIdExpression(CurScope, SS, Name, Tok.is(tok::l_paren),
413                                   isAddressOfOperand);
414
415}
416
417/// ParseCXXCasts - This handles the various ways to cast expressions to another
418/// type.
419///
420///       postfix-expression: [C++ 5.2p1]
421///         'dynamic_cast' '<' type-name '>' '(' expression ')'
422///         'static_cast' '<' type-name '>' '(' expression ')'
423///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
424///         'const_cast' '<' type-name '>' '(' expression ')'
425///
426Parser::OwningExprResult Parser::ParseCXXCasts() {
427  tok::TokenKind Kind = Tok.getKind();
428  const char *CastName = 0;     // For error messages
429
430  switch (Kind) {
431  default: assert(0 && "Unknown C++ cast!"); abort();
432  case tok::kw_const_cast:       CastName = "const_cast";       break;
433  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
434  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
435  case tok::kw_static_cast:      CastName = "static_cast";      break;
436  }
437
438  SourceLocation OpLoc = ConsumeToken();
439  SourceLocation LAngleBracketLoc = Tok.getLocation();
440
441  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
442    return ExprError();
443
444  TypeResult CastTy = ParseTypeName();
445  SourceLocation RAngleBracketLoc = Tok.getLocation();
446
447  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
448    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
449
450  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
451
452  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
453    return ExprError();
454
455  OwningExprResult Result = ParseExpression();
456
457  // Match the ')'.
458  RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
459
460  if (!Result.isInvalid() && !CastTy.isInvalid())
461    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
462                                       LAngleBracketLoc, CastTy.get(),
463                                       RAngleBracketLoc,
464                                       LParenLoc, move(Result), RParenLoc);
465
466  return move(Result);
467}
468
469/// ParseCXXTypeid - This handles the C++ typeid expression.
470///
471///       postfix-expression: [C++ 5.2p1]
472///         'typeid' '(' expression ')'
473///         'typeid' '(' type-id ')'
474///
475Parser::OwningExprResult Parser::ParseCXXTypeid() {
476  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
477
478  SourceLocation OpLoc = ConsumeToken();
479  SourceLocation LParenLoc = Tok.getLocation();
480  SourceLocation RParenLoc;
481
482  // typeid expressions are always parenthesized.
483  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
484      "typeid"))
485    return ExprError();
486
487  OwningExprResult Result(Actions);
488
489  if (isTypeIdInParens()) {
490    TypeResult Ty = ParseTypeName();
491
492    // Match the ')'.
493    MatchRHSPunctuation(tok::r_paren, LParenLoc);
494
495    if (Ty.isInvalid())
496      return ExprError();
497
498    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
499                                    Ty.get(), RParenLoc);
500  } else {
501    // C++0x [expr.typeid]p3:
502    //   When typeid is applied to an expression other than an lvalue of a
503    //   polymorphic class type [...] The expression is an unevaluated
504    //   operand (Clause 5).
505    //
506    // Note that we can't tell whether the expression is an lvalue of a
507    // polymorphic class type until after we've parsed the expression, so
508    // we the expression is potentially potentially evaluated.
509    EnterExpressionEvaluationContext Unevaluated(Actions,
510                                       Action::PotentiallyPotentiallyEvaluated);
511    Result = ParseExpression();
512
513    // Match the ')'.
514    if (Result.isInvalid())
515      SkipUntil(tok::r_paren);
516    else {
517      MatchRHSPunctuation(tok::r_paren, LParenLoc);
518
519      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
520                                      Result.release(), RParenLoc);
521    }
522  }
523
524  return move(Result);
525}
526
527/// \brief Parse a C++ pseudo-destructor expression after the base,
528/// . or -> operator, and nested-name-specifier have already been
529/// parsed.
530///
531///       postfix-expression: [C++ 5.2]
532///         postfix-expression . pseudo-destructor-name
533///         postfix-expression -> pseudo-destructor-name
534///
535///       pseudo-destructor-name:
536///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
537///         ::[opt] nested-name-specifier template simple-template-id ::
538///                 ~type-name
539///         ::[opt] nested-name-specifier[opt] ~type-name
540///
541Parser::OwningExprResult
542Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
543                                 tok::TokenKind OpKind,
544                                 CXXScopeSpec &SS,
545                                 Action::TypeTy *ObjectType) {
546  // We're parsing either a pseudo-destructor-name or a dependent
547  // member access that has the same form as a
548  // pseudo-destructor-name. We parse both in the same way and let
549  // the action model sort them out.
550  //
551  // Note that the ::[opt] nested-name-specifier[opt] has already
552  // been parsed, and if there was a simple-template-id, it has
553  // been coalesced into a template-id annotation token.
554  UnqualifiedId FirstTypeName;
555  SourceLocation CCLoc;
556  if (Tok.is(tok::identifier)) {
557    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
558    ConsumeToken();
559    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
560    CCLoc = ConsumeToken();
561  } else if (Tok.is(tok::annot_template_id)) {
562    FirstTypeName.setTemplateId(
563                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
564    ConsumeToken();
565    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
566    CCLoc = ConsumeToken();
567  } else {
568    FirstTypeName.setIdentifier(0, SourceLocation());
569  }
570
571  // Parse the tilde.
572  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
573  SourceLocation TildeLoc = ConsumeToken();
574  if (!Tok.is(tok::identifier)) {
575    Diag(Tok, diag::err_destructor_tilde_identifier);
576    return ExprError();
577  }
578
579  // Parse the second type.
580  UnqualifiedId SecondTypeName;
581  IdentifierInfo *Name = Tok.getIdentifierInfo();
582  SourceLocation NameLoc = ConsumeToken();
583  SecondTypeName.setIdentifier(Name, NameLoc);
584
585  // If there is a '<', the second type name is a template-id. Parse
586  // it as such.
587  if (Tok.is(tok::less) &&
588      ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
589                                   SecondTypeName, /*AssumeTemplateName=*/true))
590    return ExprError();
591
592  return Actions.ActOnPseudoDestructorExpr(CurScope, move(Base), OpLoc, OpKind,
593                                           SS, FirstTypeName, CCLoc,
594                                           TildeLoc, SecondTypeName,
595                                           Tok.is(tok::l_paren));
596}
597
598/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
599///
600///       boolean-literal: [C++ 2.13.5]
601///         'true'
602///         'false'
603Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
604  tok::TokenKind Kind = Tok.getKind();
605  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
606}
607
608/// ParseThrowExpression - This handles the C++ throw expression.
609///
610///       throw-expression: [C++ 15]
611///         'throw' assignment-expression[opt]
612Parser::OwningExprResult Parser::ParseThrowExpression() {
613  assert(Tok.is(tok::kw_throw) && "Not throw!");
614  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
615
616  // If the current token isn't the start of an assignment-expression,
617  // then the expression is not present.  This handles things like:
618  //   "C ? throw : (void)42", which is crazy but legal.
619  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
620  case tok::semi:
621  case tok::r_paren:
622  case tok::r_square:
623  case tok::r_brace:
624  case tok::colon:
625  case tok::comma:
626    return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions));
627
628  default:
629    OwningExprResult Expr(ParseAssignmentExpression());
630    if (Expr.isInvalid()) return move(Expr);
631    return Actions.ActOnCXXThrow(ThrowLoc, move(Expr));
632  }
633}
634
635/// ParseCXXThis - This handles the C++ 'this' pointer.
636///
637/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
638/// a non-lvalue expression whose value is the address of the object for which
639/// the function is called.
640Parser::OwningExprResult Parser::ParseCXXThis() {
641  assert(Tok.is(tok::kw_this) && "Not 'this'!");
642  SourceLocation ThisLoc = ConsumeToken();
643  return Actions.ActOnCXXThis(ThisLoc);
644}
645
646/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
647/// Can be interpreted either as function-style casting ("int(x)")
648/// or class type construction ("ClassType(x,y,z)")
649/// or creation of a value-initialized type ("int()").
650///
651///       postfix-expression: [C++ 5.2p1]
652///         simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
653///         typename-specifier '(' expression-list[opt] ')'         [TODO]
654///
655Parser::OwningExprResult
656Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
657  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
658  TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get();
659
660  assert(Tok.is(tok::l_paren) && "Expected '('!");
661  SourceLocation LParenLoc = ConsumeParen();
662
663  ExprVector Exprs(Actions);
664  CommaLocsTy CommaLocs;
665
666  if (Tok.isNot(tok::r_paren)) {
667    if (ParseExpressionList(Exprs, CommaLocs)) {
668      SkipUntil(tok::r_paren);
669      return ExprError();
670    }
671  }
672
673  // Match the ')'.
674  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
675
676  // TypeRep could be null, if it references an invalid typedef.
677  if (!TypeRep)
678    return ExprError();
679
680  assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
681         "Unexpected number of commas!");
682  return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
683                                           LParenLoc, move_arg(Exprs),
684                                           CommaLocs.data(), RParenLoc);
685}
686
687/// ParseCXXCondition - if/switch/while condition expression.
688///
689///       condition:
690///         expression
691///         type-specifier-seq declarator '=' assignment-expression
692/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
693///             '=' assignment-expression
694///
695/// \param ExprResult if the condition was parsed as an expression, the
696/// parsed expression.
697///
698/// \param DeclResult if the condition was parsed as a declaration, the
699/// parsed declaration.
700///
701/// \returns true if there was a parsing, false otherwise.
702bool Parser::ParseCXXCondition(OwningExprResult &ExprResult,
703                               DeclPtrTy &DeclResult) {
704  if (Tok.is(tok::code_completion)) {
705    Actions.CodeCompleteOrdinaryName(CurScope, Action::CCC_Condition);
706    ConsumeToken();
707  }
708
709  if (!isCXXConditionDeclaration()) {
710    ExprResult = ParseExpression(); // expression
711    DeclResult = DeclPtrTy();
712    return ExprResult.isInvalid();
713  }
714
715  // type-specifier-seq
716  DeclSpec DS;
717  ParseSpecifierQualifierList(DS);
718
719  // declarator
720  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
721  ParseDeclarator(DeclaratorInfo);
722
723  // simple-asm-expr[opt]
724  if (Tok.is(tok::kw_asm)) {
725    SourceLocation Loc;
726    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
727    if (AsmLabel.isInvalid()) {
728      SkipUntil(tok::semi);
729      return true;
730    }
731    DeclaratorInfo.setAsmLabel(AsmLabel.release());
732    DeclaratorInfo.SetRangeEnd(Loc);
733  }
734
735  // If attributes are present, parse them.
736  if (Tok.is(tok::kw___attribute)) {
737    SourceLocation Loc;
738    AttributeList *AttrList = ParseGNUAttributes(&Loc);
739    DeclaratorInfo.AddAttributes(AttrList, Loc);
740  }
741
742  // Type-check the declaration itself.
743  Action::DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(CurScope,
744                                                                DeclaratorInfo);
745  DeclResult = Dcl.get();
746  ExprResult = ExprError();
747
748  // '=' assignment-expression
749  if (Tok.is(tok::equal)) {
750    SourceLocation EqualLoc = ConsumeToken();
751    OwningExprResult AssignExpr(ParseAssignmentExpression());
752    if (!AssignExpr.isInvalid())
753      Actions.AddInitializerToDecl(DeclResult, move(AssignExpr));
754  } else {
755    // FIXME: C++0x allows a braced-init-list
756    Diag(Tok, diag::err_expected_equal_after_declarator);
757  }
758
759  return false;
760}
761
762/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
763/// This should only be called when the current token is known to be part of
764/// simple-type-specifier.
765///
766///       simple-type-specifier:
767///         '::'[opt] nested-name-specifier[opt] type-name
768///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
769///         char
770///         wchar_t
771///         bool
772///         short
773///         int
774///         long
775///         signed
776///         unsigned
777///         float
778///         double
779///         void
780/// [GNU]   typeof-specifier
781/// [C++0x] auto               [TODO]
782///
783///       type-name:
784///         class-name
785///         enum-name
786///         typedef-name
787///
788void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
789  DS.SetRangeStart(Tok.getLocation());
790  const char *PrevSpec;
791  unsigned DiagID;
792  SourceLocation Loc = Tok.getLocation();
793
794  switch (Tok.getKind()) {
795  case tok::identifier:   // foo::bar
796  case tok::coloncolon:   // ::foo::bar
797    assert(0 && "Annotation token should already be formed!");
798  default:
799    assert(0 && "Not a simple-type-specifier token!");
800    abort();
801
802  // type-name
803  case tok::annot_typename: {
804    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
805                       Tok.getAnnotationValue());
806    break;
807  }
808
809  // builtin types
810  case tok::kw_short:
811    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
812    break;
813  case tok::kw_long:
814    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
815    break;
816  case tok::kw_signed:
817    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
818    break;
819  case tok::kw_unsigned:
820    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
821    break;
822  case tok::kw_void:
823    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
824    break;
825  case tok::kw_char:
826    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
827    break;
828  case tok::kw_int:
829    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
830    break;
831  case tok::kw_float:
832    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
833    break;
834  case tok::kw_double:
835    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
836    break;
837  case tok::kw_wchar_t:
838    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
839    break;
840  case tok::kw_char16_t:
841    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
842    break;
843  case tok::kw_char32_t:
844    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
845    break;
846  case tok::kw_bool:
847    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
848    break;
849
850  // GNU typeof support.
851  case tok::kw_typeof:
852    ParseTypeofSpecifier(DS);
853    DS.Finish(Diags, PP);
854    return;
855  }
856  if (Tok.is(tok::annot_typename))
857    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
858  else
859    DS.SetRangeEnd(Tok.getLocation());
860  ConsumeToken();
861  DS.Finish(Diags, PP);
862}
863
864/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
865/// [dcl.name]), which is a non-empty sequence of type-specifiers,
866/// e.g., "const short int". Note that the DeclSpec is *not* finished
867/// by parsing the type-specifier-seq, because these sequences are
868/// typically followed by some form of declarator. Returns true and
869/// emits diagnostics if this is not a type-specifier-seq, false
870/// otherwise.
871///
872///   type-specifier-seq: [C++ 8.1]
873///     type-specifier type-specifier-seq[opt]
874///
875bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
876  DS.SetRangeStart(Tok.getLocation());
877  const char *PrevSpec = 0;
878  unsigned DiagID;
879  bool isInvalid = 0;
880
881  // Parse one or more of the type specifiers.
882  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
883      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
884    Diag(Tok, diag::err_operator_missing_type_specifier);
885    return true;
886  }
887
888  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
889         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
890  {}
891
892  return false;
893}
894
895/// \brief Finish parsing a C++ unqualified-id that is a template-id of
896/// some form.
897///
898/// This routine is invoked when a '<' is encountered after an identifier or
899/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
900/// whether the unqualified-id is actually a template-id. This routine will
901/// then parse the template arguments and form the appropriate template-id to
902/// return to the caller.
903///
904/// \param SS the nested-name-specifier that precedes this template-id, if
905/// we're actually parsing a qualified-id.
906///
907/// \param Name for constructor and destructor names, this is the actual
908/// identifier that may be a template-name.
909///
910/// \param NameLoc the location of the class-name in a constructor or
911/// destructor.
912///
913/// \param EnteringContext whether we're entering the scope of the
914/// nested-name-specifier.
915///
916/// \param ObjectType if this unqualified-id occurs within a member access
917/// expression, the type of the base object whose member is being accessed.
918///
919/// \param Id as input, describes the template-name or operator-function-id
920/// that precedes the '<'. If template arguments were parsed successfully,
921/// will be updated with the template-id.
922///
923/// \param AssumeTemplateId When true, this routine will assume that the name
924/// refers to a template without performing name lookup to verify.
925///
926/// \returns true if a parse error occurred, false otherwise.
927bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
928                                          IdentifierInfo *Name,
929                                          SourceLocation NameLoc,
930                                          bool EnteringContext,
931                                          TypeTy *ObjectType,
932                                          UnqualifiedId &Id,
933                                          bool AssumeTemplateId) {
934  assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
935
936  TemplateTy Template;
937  TemplateNameKind TNK = TNK_Non_template;
938  switch (Id.getKind()) {
939  case UnqualifiedId::IK_Identifier:
940  case UnqualifiedId::IK_OperatorFunctionId:
941  case UnqualifiedId::IK_LiteralOperatorId:
942    if (AssumeTemplateId) {
943      Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
944                                                    Id, ObjectType,
945                                                    EnteringContext);
946      TNK = TNK_Dependent_template_name;
947      if (!Template.get())
948        return true;
949    } else
950      TNK = Actions.isTemplateName(CurScope, SS, Id, ObjectType,
951                                   EnteringContext, Template);
952    break;
953
954  case UnqualifiedId::IK_ConstructorName: {
955    UnqualifiedId TemplateName;
956    TemplateName.setIdentifier(Name, NameLoc);
957    TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
958                                 EnteringContext, Template);
959    break;
960  }
961
962  case UnqualifiedId::IK_DestructorName: {
963    UnqualifiedId TemplateName;
964    TemplateName.setIdentifier(Name, NameLoc);
965    if (ObjectType) {
966      Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
967                                                    TemplateName, ObjectType,
968                                                    EnteringContext);
969      TNK = TNK_Dependent_template_name;
970      if (!Template.get())
971        return true;
972    } else {
973      TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
974                                   EnteringContext, Template);
975
976      if (TNK == TNK_Non_template && Id.DestructorName == 0) {
977        Diag(NameLoc, diag::err_destructor_template_id)
978          << Name << SS.getRange();
979        return true;
980      }
981    }
982    break;
983  }
984
985  default:
986    return false;
987  }
988
989  if (TNK == TNK_Non_template)
990    return false;
991
992  // Parse the enclosed template argument list.
993  SourceLocation LAngleLoc, RAngleLoc;
994  TemplateArgList TemplateArgs;
995  if (ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
996                                       &SS, true, LAngleLoc,
997                                       TemplateArgs,
998                                       RAngleLoc))
999    return true;
1000
1001  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1002      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1003      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1004    // Form a parsed representation of the template-id to be stored in the
1005    // UnqualifiedId.
1006    TemplateIdAnnotation *TemplateId
1007      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1008
1009    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1010      TemplateId->Name = Id.Identifier;
1011      TemplateId->Operator = OO_None;
1012      TemplateId->TemplateNameLoc = Id.StartLocation;
1013    } else {
1014      TemplateId->Name = 0;
1015      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1016      TemplateId->TemplateNameLoc = Id.StartLocation;
1017    }
1018
1019    TemplateId->Template = Template.getAs<void*>();
1020    TemplateId->Kind = TNK;
1021    TemplateId->LAngleLoc = LAngleLoc;
1022    TemplateId->RAngleLoc = RAngleLoc;
1023    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1024    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1025         Arg != ArgEnd; ++Arg)
1026      Args[Arg] = TemplateArgs[Arg];
1027
1028    Id.setTemplateId(TemplateId);
1029    return false;
1030  }
1031
1032  // Bundle the template arguments together.
1033  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1034                                     TemplateArgs.size());
1035
1036  // Constructor and destructor names.
1037  Action::TypeResult Type
1038    = Actions.ActOnTemplateIdType(Template, NameLoc,
1039                                  LAngleLoc, TemplateArgsPtr,
1040                                  RAngleLoc);
1041  if (Type.isInvalid())
1042    return true;
1043
1044  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1045    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1046  else
1047    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1048
1049  return false;
1050}
1051
1052/// \brief Parse an operator-function-id or conversion-function-id as part
1053/// of a C++ unqualified-id.
1054///
1055/// This routine is responsible only for parsing the operator-function-id or
1056/// conversion-function-id; it does not handle template arguments in any way.
1057///
1058/// \code
1059///       operator-function-id: [C++ 13.5]
1060///         'operator' operator
1061///
1062///       operator: one of
1063///            new   delete  new[]   delete[]
1064///            +     -    *  /    %  ^    &   |   ~
1065///            !     =    <  >    += -=   *=  /=  %=
1066///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1067///            <=    >=   && ||   ++ --   ,   ->* ->
1068///            ()    []
1069///
1070///       conversion-function-id: [C++ 12.3.2]
1071///         operator conversion-type-id
1072///
1073///       conversion-type-id:
1074///         type-specifier-seq conversion-declarator[opt]
1075///
1076///       conversion-declarator:
1077///         ptr-operator conversion-declarator[opt]
1078/// \endcode
1079///
1080/// \param The nested-name-specifier that preceded this unqualified-id. If
1081/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1082///
1083/// \param EnteringContext whether we are entering the scope of the
1084/// nested-name-specifier.
1085///
1086/// \param ObjectType if this unqualified-id occurs within a member access
1087/// expression, the type of the base object whose member is being accessed.
1088///
1089/// \param Result on a successful parse, contains the parsed unqualified-id.
1090///
1091/// \returns true if parsing fails, false otherwise.
1092bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1093                                        TypeTy *ObjectType,
1094                                        UnqualifiedId &Result) {
1095  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1096
1097  // Consume the 'operator' keyword.
1098  SourceLocation KeywordLoc = ConsumeToken();
1099
1100  // Determine what kind of operator name we have.
1101  unsigned SymbolIdx = 0;
1102  SourceLocation SymbolLocations[3];
1103  OverloadedOperatorKind Op = OO_None;
1104  switch (Tok.getKind()) {
1105    case tok::kw_new:
1106    case tok::kw_delete: {
1107      bool isNew = Tok.getKind() == tok::kw_new;
1108      // Consume the 'new' or 'delete'.
1109      SymbolLocations[SymbolIdx++] = ConsumeToken();
1110      if (Tok.is(tok::l_square)) {
1111        // Consume the '['.
1112        SourceLocation LBracketLoc = ConsumeBracket();
1113        // Consume the ']'.
1114        SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1115                                                         LBracketLoc);
1116        if (RBracketLoc.isInvalid())
1117          return true;
1118
1119        SymbolLocations[SymbolIdx++] = LBracketLoc;
1120        SymbolLocations[SymbolIdx++] = RBracketLoc;
1121        Op = isNew? OO_Array_New : OO_Array_Delete;
1122      } else {
1123        Op = isNew? OO_New : OO_Delete;
1124      }
1125      break;
1126    }
1127
1128#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1129    case tok::Token:                                                     \
1130      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1131      Op = OO_##Name;                                                    \
1132      break;
1133#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1134#include "clang/Basic/OperatorKinds.def"
1135
1136    case tok::l_paren: {
1137      // Consume the '('.
1138      SourceLocation LParenLoc = ConsumeParen();
1139      // Consume the ')'.
1140      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1141                                                     LParenLoc);
1142      if (RParenLoc.isInvalid())
1143        return true;
1144
1145      SymbolLocations[SymbolIdx++] = LParenLoc;
1146      SymbolLocations[SymbolIdx++] = RParenLoc;
1147      Op = OO_Call;
1148      break;
1149    }
1150
1151    case tok::l_square: {
1152      // Consume the '['.
1153      SourceLocation LBracketLoc = ConsumeBracket();
1154      // Consume the ']'.
1155      SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1156                                                       LBracketLoc);
1157      if (RBracketLoc.isInvalid())
1158        return true;
1159
1160      SymbolLocations[SymbolIdx++] = LBracketLoc;
1161      SymbolLocations[SymbolIdx++] = RBracketLoc;
1162      Op = OO_Subscript;
1163      break;
1164    }
1165
1166    case tok::code_completion: {
1167      // Code completion for the operator name.
1168      Actions.CodeCompleteOperatorName(CurScope);
1169
1170      // Consume the operator token.
1171      ConsumeToken();
1172
1173      // Don't try to parse any further.
1174      return true;
1175    }
1176
1177    default:
1178      break;
1179  }
1180
1181  if (Op != OO_None) {
1182    // We have parsed an operator-function-id.
1183    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1184    return false;
1185  }
1186
1187  // Parse a literal-operator-id.
1188  //
1189  //   literal-operator-id: [C++0x 13.5.8]
1190  //     operator "" identifier
1191
1192  if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1193    if (Tok.getLength() != 2)
1194      Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1195    ConsumeStringToken();
1196
1197    if (Tok.isNot(tok::identifier)) {
1198      Diag(Tok.getLocation(), diag::err_expected_ident);
1199      return true;
1200    }
1201
1202    IdentifierInfo *II = Tok.getIdentifierInfo();
1203    Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1204    return false;
1205  }
1206
1207  // Parse a conversion-function-id.
1208  //
1209  //   conversion-function-id: [C++ 12.3.2]
1210  //     operator conversion-type-id
1211  //
1212  //   conversion-type-id:
1213  //     type-specifier-seq conversion-declarator[opt]
1214  //
1215  //   conversion-declarator:
1216  //     ptr-operator conversion-declarator[opt]
1217
1218  // Parse the type-specifier-seq.
1219  DeclSpec DS;
1220  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1221    return true;
1222
1223  // Parse the conversion-declarator, which is merely a sequence of
1224  // ptr-operators.
1225  Declarator D(DS, Declarator::TypeNameContext);
1226  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1227
1228  // Finish up the type.
1229  Action::TypeResult Ty = Actions.ActOnTypeName(CurScope, D);
1230  if (Ty.isInvalid())
1231    return true;
1232
1233  // Note that this is a conversion-function-id.
1234  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1235                                 D.getSourceRange().getEnd());
1236  return false;
1237}
1238
1239/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1240/// name of an entity.
1241///
1242/// \code
1243///       unqualified-id: [C++ expr.prim.general]
1244///         identifier
1245///         operator-function-id
1246///         conversion-function-id
1247/// [C++0x] literal-operator-id [TODO]
1248///         ~ class-name
1249///         template-id
1250///
1251/// \endcode
1252///
1253/// \param The nested-name-specifier that preceded this unqualified-id. If
1254/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1255///
1256/// \param EnteringContext whether we are entering the scope of the
1257/// nested-name-specifier.
1258///
1259/// \param AllowDestructorName whether we allow parsing of a destructor name.
1260///
1261/// \param AllowConstructorName whether we allow parsing a constructor name.
1262///
1263/// \param ObjectType if this unqualified-id occurs within a member access
1264/// expression, the type of the base object whose member is being accessed.
1265///
1266/// \param Result on a successful parse, contains the parsed unqualified-id.
1267///
1268/// \returns true if parsing fails, false otherwise.
1269bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1270                                bool AllowDestructorName,
1271                                bool AllowConstructorName,
1272                                TypeTy *ObjectType,
1273                                UnqualifiedId &Result) {
1274  // unqualified-id:
1275  //   identifier
1276  //   template-id (when it hasn't already been annotated)
1277  if (Tok.is(tok::identifier)) {
1278    // Consume the identifier.
1279    IdentifierInfo *Id = Tok.getIdentifierInfo();
1280    SourceLocation IdLoc = ConsumeToken();
1281
1282    if (!getLang().CPlusPlus) {
1283      // If we're not in C++, only identifiers matter. Record the
1284      // identifier and return.
1285      Result.setIdentifier(Id, IdLoc);
1286      return false;
1287    }
1288
1289    if (AllowConstructorName &&
1290        Actions.isCurrentClassName(*Id, CurScope, &SS)) {
1291      // We have parsed a constructor name.
1292      Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, CurScope,
1293                                                    &SS, false),
1294                                IdLoc, IdLoc);
1295    } else {
1296      // We have parsed an identifier.
1297      Result.setIdentifier(Id, IdLoc);
1298    }
1299
1300    // If the next token is a '<', we may have a template.
1301    if (Tok.is(tok::less))
1302      return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1303                                          ObjectType, Result);
1304
1305    return false;
1306  }
1307
1308  // unqualified-id:
1309  //   template-id (already parsed and annotated)
1310  if (Tok.is(tok::annot_template_id)) {
1311    TemplateIdAnnotation *TemplateId
1312      = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1313
1314    // If the template-name names the current class, then this is a constructor
1315    if (AllowConstructorName && TemplateId->Name &&
1316        Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) {
1317      if (SS.isSet()) {
1318        // C++ [class.qual]p2 specifies that a qualified template-name
1319        // is taken as the constructor name where a constructor can be
1320        // declared. Thus, the template arguments are extraneous, so
1321        // complain about them and remove them entirely.
1322        Diag(TemplateId->TemplateNameLoc,
1323             diag::err_out_of_line_constructor_template_id)
1324          << TemplateId->Name
1325          << CodeModificationHint::CreateRemoval(
1326                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1327        Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1328                                                  TemplateId->TemplateNameLoc,
1329                                                      CurScope,
1330                                                      &SS, false),
1331                                  TemplateId->TemplateNameLoc,
1332                                  TemplateId->RAngleLoc);
1333        TemplateId->Destroy();
1334        ConsumeToken();
1335        return false;
1336      }
1337
1338      Result.setConstructorTemplateId(TemplateId);
1339      ConsumeToken();
1340      return false;
1341    }
1342
1343    // We have already parsed a template-id; consume the annotation token as
1344    // our unqualified-id.
1345    Result.setTemplateId(TemplateId);
1346    ConsumeToken();
1347    return false;
1348  }
1349
1350  // unqualified-id:
1351  //   operator-function-id
1352  //   conversion-function-id
1353  if (Tok.is(tok::kw_operator)) {
1354    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1355      return true;
1356
1357    // If we have an operator-function-id or a literal-operator-id and the next
1358    // token is a '<', we may have a
1359    //
1360    //   template-id:
1361    //     operator-function-id < template-argument-list[opt] >
1362    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1363         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1364        Tok.is(tok::less))
1365      return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1366                                          EnteringContext, ObjectType,
1367                                          Result);
1368
1369    return false;
1370  }
1371
1372  if (getLang().CPlusPlus &&
1373      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1374    // C++ [expr.unary.op]p10:
1375    //   There is an ambiguity in the unary-expression ~X(), where X is a
1376    //   class-name. The ambiguity is resolved in favor of treating ~ as a
1377    //    unary complement rather than treating ~X as referring to a destructor.
1378
1379    // Parse the '~'.
1380    SourceLocation TildeLoc = ConsumeToken();
1381
1382    // Parse the class-name.
1383    if (Tok.isNot(tok::identifier)) {
1384      Diag(Tok, diag::err_destructor_tilde_identifier);
1385      return true;
1386    }
1387
1388    // Parse the class-name (or template-name in a simple-template-id).
1389    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1390    SourceLocation ClassNameLoc = ConsumeToken();
1391
1392    if (Tok.is(tok::less)) {
1393      Result.setDestructorName(TildeLoc, 0, ClassNameLoc);
1394      return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1395                                          EnteringContext, ObjectType, Result);
1396    }
1397
1398    // Note that this is a destructor name.
1399    Action::TypeTy *Ty = Actions.getDestructorName(TildeLoc, *ClassName,
1400                                                   ClassNameLoc, CurScope,
1401                                                   SS, ObjectType,
1402                                                   EnteringContext);
1403    if (!Ty)
1404      return true;
1405
1406    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1407    return false;
1408  }
1409
1410  Diag(Tok, diag::err_expected_unqualified_id)
1411    << getLang().CPlusPlus;
1412  return true;
1413}
1414
1415/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1416/// memory in a typesafe manner and call constructors.
1417///
1418/// This method is called to parse the new expression after the optional :: has
1419/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
1420/// is its location.  Otherwise, "Start" is the location of the 'new' token.
1421///
1422///        new-expression:
1423///                   '::'[opt] 'new' new-placement[opt] new-type-id
1424///                                     new-initializer[opt]
1425///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1426///                                     new-initializer[opt]
1427///
1428///        new-placement:
1429///                   '(' expression-list ')'
1430///
1431///        new-type-id:
1432///                   type-specifier-seq new-declarator[opt]
1433///
1434///        new-declarator:
1435///                   ptr-operator new-declarator[opt]
1436///                   direct-new-declarator
1437///
1438///        new-initializer:
1439///                   '(' expression-list[opt] ')'
1440/// [C++0x]           braced-init-list                                   [TODO]
1441///
1442Parser::OwningExprResult
1443Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1444  assert(Tok.is(tok::kw_new) && "expected 'new' token");
1445  ConsumeToken();   // Consume 'new'
1446
1447  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1448  // second form of new-expression. It can't be a new-type-id.
1449
1450  ExprVector PlacementArgs(Actions);
1451  SourceLocation PlacementLParen, PlacementRParen;
1452
1453  bool ParenTypeId;
1454  DeclSpec DS;
1455  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1456  if (Tok.is(tok::l_paren)) {
1457    // If it turns out to be a placement, we change the type location.
1458    PlacementLParen = ConsumeParen();
1459    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1460      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1461      return ExprError();
1462    }
1463
1464    PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1465    if (PlacementRParen.isInvalid()) {
1466      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1467      return ExprError();
1468    }
1469
1470    if (PlacementArgs.empty()) {
1471      // Reset the placement locations. There was no placement.
1472      PlacementLParen = PlacementRParen = SourceLocation();
1473      ParenTypeId = true;
1474    } else {
1475      // We still need the type.
1476      if (Tok.is(tok::l_paren)) {
1477        SourceLocation LParen = ConsumeParen();
1478        ParseSpecifierQualifierList(DS);
1479        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1480        ParseDeclarator(DeclaratorInfo);
1481        MatchRHSPunctuation(tok::r_paren, LParen);
1482        ParenTypeId = true;
1483      } else {
1484        if (ParseCXXTypeSpecifierSeq(DS))
1485          DeclaratorInfo.setInvalidType(true);
1486        else {
1487          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1488          ParseDeclaratorInternal(DeclaratorInfo,
1489                                  &Parser::ParseDirectNewDeclarator);
1490        }
1491        ParenTypeId = false;
1492      }
1493    }
1494  } else {
1495    // A new-type-id is a simplified type-id, where essentially the
1496    // direct-declarator is replaced by a direct-new-declarator.
1497    if (ParseCXXTypeSpecifierSeq(DS))
1498      DeclaratorInfo.setInvalidType(true);
1499    else {
1500      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1501      ParseDeclaratorInternal(DeclaratorInfo,
1502                              &Parser::ParseDirectNewDeclarator);
1503    }
1504    ParenTypeId = false;
1505  }
1506  if (DeclaratorInfo.isInvalidType()) {
1507    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1508    return ExprError();
1509  }
1510
1511  ExprVector ConstructorArgs(Actions);
1512  SourceLocation ConstructorLParen, ConstructorRParen;
1513
1514  if (Tok.is(tok::l_paren)) {
1515    ConstructorLParen = ConsumeParen();
1516    if (Tok.isNot(tok::r_paren)) {
1517      CommaLocsTy CommaLocs;
1518      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1519        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1520        return ExprError();
1521      }
1522    }
1523    ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1524    if (ConstructorRParen.isInvalid()) {
1525      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1526      return ExprError();
1527    }
1528  }
1529
1530  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1531                             move_arg(PlacementArgs), PlacementRParen,
1532                             ParenTypeId, DeclaratorInfo, ConstructorLParen,
1533                             move_arg(ConstructorArgs), ConstructorRParen);
1534}
1535
1536/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1537/// passed to ParseDeclaratorInternal.
1538///
1539///        direct-new-declarator:
1540///                   '[' expression ']'
1541///                   direct-new-declarator '[' constant-expression ']'
1542///
1543void Parser::ParseDirectNewDeclarator(Declarator &D) {
1544  // Parse the array dimensions.
1545  bool first = true;
1546  while (Tok.is(tok::l_square)) {
1547    SourceLocation LLoc = ConsumeBracket();
1548    OwningExprResult Size(first ? ParseExpression()
1549                                : ParseConstantExpression());
1550    if (Size.isInvalid()) {
1551      // Recover
1552      SkipUntil(tok::r_square);
1553      return;
1554    }
1555    first = false;
1556
1557    SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1558    D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
1559                                            Size.release(), LLoc, RLoc),
1560                  RLoc);
1561
1562    if (RLoc.isInvalid())
1563      return;
1564  }
1565}
1566
1567/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1568/// This ambiguity appears in the syntax of the C++ new operator.
1569///
1570///        new-expression:
1571///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1572///                                     new-initializer[opt]
1573///
1574///        new-placement:
1575///                   '(' expression-list ')'
1576///
1577bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
1578                                         Declarator &D) {
1579  // The '(' was already consumed.
1580  if (isTypeIdInParens()) {
1581    ParseSpecifierQualifierList(D.getMutableDeclSpec());
1582    D.SetSourceRange(D.getDeclSpec().getSourceRange());
1583    ParseDeclarator(D);
1584    return D.isInvalidType();
1585  }
1586
1587  // It's not a type, it has to be an expression list.
1588  // Discard the comma locations - ActOnCXXNew has enough parameters.
1589  CommaLocsTy CommaLocs;
1590  return ParseExpressionList(PlacementArgs, CommaLocs);
1591}
1592
1593/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1594/// to free memory allocated by new.
1595///
1596/// This method is called to parse the 'delete' expression after the optional
1597/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
1598/// and "Start" is its location.  Otherwise, "Start" is the location of the
1599/// 'delete' token.
1600///
1601///        delete-expression:
1602///                   '::'[opt] 'delete' cast-expression
1603///                   '::'[opt] 'delete' '[' ']' cast-expression
1604Parser::OwningExprResult
1605Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1606  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1607  ConsumeToken(); // Consume 'delete'
1608
1609  // Array delete?
1610  bool ArrayDelete = false;
1611  if (Tok.is(tok::l_square)) {
1612    ArrayDelete = true;
1613    SourceLocation LHS = ConsumeBracket();
1614    SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1615    if (RHS.isInvalid())
1616      return ExprError();
1617  }
1618
1619  OwningExprResult Operand(ParseCastExpression(false));
1620  if (Operand.isInvalid())
1621    return move(Operand);
1622
1623  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand));
1624}
1625
1626static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1627  switch(kind) {
1628  default: assert(false && "Not a known unary type trait.");
1629  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
1630  case tok::kw___has_nothrow_copy:        return UTT_HasNothrowCopy;
1631  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1632  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
1633  case tok::kw___has_trivial_copy:        return UTT_HasTrivialCopy;
1634  case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1635  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
1636  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
1637  case tok::kw___is_abstract:             return UTT_IsAbstract;
1638  case tok::kw___is_class:                return UTT_IsClass;
1639  case tok::kw___is_empty:                return UTT_IsEmpty;
1640  case tok::kw___is_enum:                 return UTT_IsEnum;
1641  case tok::kw___is_pod:                  return UTT_IsPOD;
1642  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
1643  case tok::kw___is_union:                return UTT_IsUnion;
1644  case tok::kw___is_literal:              return UTT_IsLiteral;
1645  }
1646}
1647
1648/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1649/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1650/// templates.
1651///
1652///       primary-expression:
1653/// [GNU]             unary-type-trait '(' type-id ')'
1654///
1655Parser::OwningExprResult Parser::ParseUnaryTypeTrait() {
1656  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1657  SourceLocation Loc = ConsumeToken();
1658
1659  SourceLocation LParen = Tok.getLocation();
1660  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1661    return ExprError();
1662
1663  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1664  // there will be cryptic errors about mismatched parentheses and missing
1665  // specifiers.
1666  TypeResult Ty = ParseTypeName();
1667
1668  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1669
1670  if (Ty.isInvalid())
1671    return ExprError();
1672
1673  return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen);
1674}
1675
1676/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
1677/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
1678/// based on the context past the parens.
1679Parser::OwningExprResult
1680Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
1681                                         TypeTy *&CastTy,
1682                                         SourceLocation LParenLoc,
1683                                         SourceLocation &RParenLoc) {
1684  assert(getLang().CPlusPlus && "Should only be called for C++!");
1685  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
1686  assert(isTypeIdInParens() && "Not a type-id!");
1687
1688  OwningExprResult Result(Actions, true);
1689  CastTy = 0;
1690
1691  // We need to disambiguate a very ugly part of the C++ syntax:
1692  //
1693  // (T())x;  - type-id
1694  // (T())*x; - type-id
1695  // (T())/x; - expression
1696  // (T());   - expression
1697  //
1698  // The bad news is that we cannot use the specialized tentative parser, since
1699  // it can only verify that the thing inside the parens can be parsed as
1700  // type-id, it is not useful for determining the context past the parens.
1701  //
1702  // The good news is that the parser can disambiguate this part without
1703  // making any unnecessary Action calls.
1704  //
1705  // It uses a scheme similar to parsing inline methods. The parenthesized
1706  // tokens are cached, the context that follows is determined (possibly by
1707  // parsing a cast-expression), and then we re-introduce the cached tokens
1708  // into the token stream and parse them appropriately.
1709
1710  ParenParseOption ParseAs;
1711  CachedTokens Toks;
1712
1713  // Store the tokens of the parentheses. We will parse them after we determine
1714  // the context that follows them.
1715  if (!ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks, tok::semi)) {
1716    // We didn't find the ')' we expected.
1717    MatchRHSPunctuation(tok::r_paren, LParenLoc);
1718    return ExprError();
1719  }
1720
1721  if (Tok.is(tok::l_brace)) {
1722    ParseAs = CompoundLiteral;
1723  } else {
1724    bool NotCastExpr;
1725    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
1726    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
1727      NotCastExpr = true;
1728    } else {
1729      // Try parsing the cast-expression that may follow.
1730      // If it is not a cast-expression, NotCastExpr will be true and no token
1731      // will be consumed.
1732      Result = ParseCastExpression(false/*isUnaryExpression*/,
1733                                   false/*isAddressofOperand*/,
1734                                   NotCastExpr, false);
1735    }
1736
1737    // If we parsed a cast-expression, it's really a type-id, otherwise it's
1738    // an expression.
1739    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
1740  }
1741
1742  // The current token should go after the cached tokens.
1743  Toks.push_back(Tok);
1744  // Re-enter the stored parenthesized tokens into the token stream, so we may
1745  // parse them now.
1746  PP.EnterTokenStream(Toks.data(), Toks.size(),
1747                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
1748  // Drop the current token and bring the first cached one. It's the same token
1749  // as when we entered this function.
1750  ConsumeAnyToken();
1751
1752  if (ParseAs >= CompoundLiteral) {
1753    TypeResult Ty = ParseTypeName();
1754
1755    // Match the ')'.
1756    if (Tok.is(tok::r_paren))
1757      RParenLoc = ConsumeParen();
1758    else
1759      MatchRHSPunctuation(tok::r_paren, LParenLoc);
1760
1761    if (ParseAs == CompoundLiteral) {
1762      ExprType = CompoundLiteral;
1763      return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
1764    }
1765
1766    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
1767    assert(ParseAs == CastExpr);
1768
1769    if (Ty.isInvalid())
1770      return ExprError();
1771
1772    CastTy = Ty.get();
1773
1774    // Result is what ParseCastExpression returned earlier.
1775    if (!Result.isInvalid())
1776      Result = Actions.ActOnCastExpr(CurScope, LParenLoc, CastTy, RParenLoc,
1777                                     move(Result));
1778    return move(Result);
1779  }
1780
1781  // Not a compound literal, and not followed by a cast-expression.
1782  assert(ParseAs == SimpleExpr);
1783
1784  ExprType = SimpleExpr;
1785  Result = ParseExpression();
1786  if (!Result.isInvalid() && Tok.is(tok::r_paren))
1787    Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), move(Result));
1788
1789  // Match the ')'.
1790  if (Result.isInvalid()) {
1791    SkipUntil(tok::r_paren);
1792    return ExprError();
1793  }
1794
1795  if (Tok.is(tok::r_paren))
1796    RParenLoc = ConsumeParen();
1797  else
1798    MatchRHSPunctuation(tok::r_paren, LParenLoc);
1799
1800  return move(Result);
1801}
1802