ParseExprCXX.cpp revision b7e9589bce9852b4db9575f55ac9137572147eb5
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "llvm/Support/ErrorHandling.h"
20
21using namespace clang;
22
23static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
24  switch (Kind) {
25    case tok::kw_template:         return 0;
26    case tok::kw_const_cast:       return 1;
27    case tok::kw_dynamic_cast:     return 2;
28    case tok::kw_reinterpret_cast: return 3;
29    case tok::kw_static_cast:      return 4;
30    default:
31      assert(0 && "Unknown type for digraph error message.");
32      return -1;
33  }
34}
35
36// Are the two tokens adjacent in the same source file?
37static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
38  SourceManager &SM = PP.getSourceManager();
39  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
40  SourceLocation FirstEnd = FirstLoc.getFileLocWithOffset(First.getLength());
41  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
42}
43
44// Suggest fixit for "<::" after a cast.
45static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
46                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
47  // Pull '<:' and ':' off token stream.
48  if (!AtDigraph)
49    PP.Lex(DigraphToken);
50  PP.Lex(ColonToken);
51
52  SourceRange Range;
53  Range.setBegin(DigraphToken.getLocation());
54  Range.setEnd(ColonToken.getLocation());
55  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
56      << SelectDigraphErrorMessage(Kind)
57      << FixItHint::CreateReplacement(Range, "< ::");
58
59  // Update token information to reflect their change in token type.
60  ColonToken.setKind(tok::coloncolon);
61  ColonToken.setLocation(ColonToken.getLocation().getFileLocWithOffset(-1));
62  ColonToken.setLength(2);
63  DigraphToken.setKind(tok::less);
64  DigraphToken.setLength(1);
65
66  // Push new tokens back to token stream.
67  PP.EnterToken(ColonToken);
68  if (!AtDigraph)
69    PP.EnterToken(DigraphToken);
70}
71
72/// \brief Parse global scope or nested-name-specifier if present.
73///
74/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
75/// may be preceded by '::'). Note that this routine will not parse ::new or
76/// ::delete; it will just leave them in the token stream.
77///
78///       '::'[opt] nested-name-specifier
79///       '::'
80///
81///       nested-name-specifier:
82///         type-name '::'
83///         namespace-name '::'
84///         nested-name-specifier identifier '::'
85///         nested-name-specifier 'template'[opt] simple-template-id '::'
86///
87///
88/// \param SS the scope specifier that will be set to the parsed
89/// nested-name-specifier (or empty)
90///
91/// \param ObjectType if this nested-name-specifier is being parsed following
92/// the "." or "->" of a member access expression, this parameter provides the
93/// type of the object whose members are being accessed.
94///
95/// \param EnteringContext whether we will be entering into the context of
96/// the nested-name-specifier after parsing it.
97///
98/// \param MayBePseudoDestructor When non-NULL, points to a flag that
99/// indicates whether this nested-name-specifier may be part of a
100/// pseudo-destructor name. In this case, the flag will be set false
101/// if we don't actually end up parsing a destructor name. Moreorover,
102/// if we do end up determining that we are parsing a destructor name,
103/// the last component of the nested-name-specifier is not parsed as
104/// part of the scope specifier.
105
106/// member access expression, e.g., the \p T:: in \p p->T::m.
107///
108/// \returns true if there was an error parsing a scope specifier
109bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
110                                            ParsedType ObjectType,
111                                            bool EnteringContext,
112                                            bool *MayBePseudoDestructor,
113                                            bool IsTypename) {
114  assert(getLang().CPlusPlus &&
115         "Call sites of this function should be guarded by checking for C++");
116
117  if (Tok.is(tok::annot_cxxscope)) {
118    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
119                                                 Tok.getAnnotationRange(),
120                                                 SS);
121    ConsumeToken();
122    return false;
123  }
124
125  bool HasScopeSpecifier = false;
126
127  if (Tok.is(tok::coloncolon)) {
128    // ::new and ::delete aren't nested-name-specifiers.
129    tok::TokenKind NextKind = NextToken().getKind();
130    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
131      return false;
132
133    // '::' - Global scope qualifier.
134    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
135      return true;
136
137    HasScopeSpecifier = true;
138  }
139
140  bool CheckForDestructor = false;
141  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
142    CheckForDestructor = true;
143    *MayBePseudoDestructor = false;
144  }
145
146  while (true) {
147    if (HasScopeSpecifier) {
148      // C++ [basic.lookup.classref]p5:
149      //   If the qualified-id has the form
150      //
151      //       ::class-name-or-namespace-name::...
152      //
153      //   the class-name-or-namespace-name is looked up in global scope as a
154      //   class-name or namespace-name.
155      //
156      // To implement this, we clear out the object type as soon as we've
157      // seen a leading '::' or part of a nested-name-specifier.
158      ObjectType = ParsedType();
159
160      if (Tok.is(tok::code_completion)) {
161        // Code completion for a nested-name-specifier, where the code
162        // code completion token follows the '::'.
163        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
164        SourceLocation ccLoc = ConsumeCodeCompletionToken();
165        // Include code completion token into the range of the scope otherwise
166        // when we try to annotate the scope tokens the dangling code completion
167        // token will cause assertion in
168        // Preprocessor::AnnotatePreviousCachedTokens.
169        SS.setEndLoc(ccLoc);
170      }
171    }
172
173    // nested-name-specifier:
174    //   nested-name-specifier 'template'[opt] simple-template-id '::'
175
176    // Parse the optional 'template' keyword, then make sure we have
177    // 'identifier <' after it.
178    if (Tok.is(tok::kw_template)) {
179      // If we don't have a scope specifier or an object type, this isn't a
180      // nested-name-specifier, since they aren't allowed to start with
181      // 'template'.
182      if (!HasScopeSpecifier && !ObjectType)
183        break;
184
185      TentativeParsingAction TPA(*this);
186      SourceLocation TemplateKWLoc = ConsumeToken();
187
188      UnqualifiedId TemplateName;
189      if (Tok.is(tok::identifier)) {
190        // Consume the identifier.
191        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
192        ConsumeToken();
193      } else if (Tok.is(tok::kw_operator)) {
194        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
195                                       TemplateName)) {
196          TPA.Commit();
197          break;
198        }
199
200        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
201            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
202          Diag(TemplateName.getSourceRange().getBegin(),
203               diag::err_id_after_template_in_nested_name_spec)
204            << TemplateName.getSourceRange();
205          TPA.Commit();
206          break;
207        }
208      } else {
209        TPA.Revert();
210        break;
211      }
212
213      // If the next token is not '<', we have a qualified-id that refers
214      // to a template name, such as T::template apply, but is not a
215      // template-id.
216      if (Tok.isNot(tok::less)) {
217        TPA.Revert();
218        break;
219      }
220
221      // Commit to parsing the template-id.
222      TPA.Commit();
223      TemplateTy Template;
224      if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(getCurScope(),
225                                                                TemplateKWLoc,
226                                                                    SS,
227                                                                  TemplateName,
228                                                                    ObjectType,
229                                                                EnteringContext,
230                                                                    Template)) {
231        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
232                                    TemplateKWLoc, false))
233          return true;
234      } else
235        return true;
236
237      continue;
238    }
239
240    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
241      // We have
242      //
243      //   simple-template-id '::'
244      //
245      // So we need to check whether the simple-template-id is of the
246      // right kind (it should name a type or be dependent), and then
247      // convert it into a type within the nested-name-specifier.
248      TemplateIdAnnotation *TemplateId
249        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
250      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
251        *MayBePseudoDestructor = true;
252        return false;
253      }
254
255      // Consume the template-id token.
256      ConsumeToken();
257
258      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
259      SourceLocation CCLoc = ConsumeToken();
260
261      if (!HasScopeSpecifier)
262        HasScopeSpecifier = true;
263
264      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
265                                         TemplateId->getTemplateArgs(),
266                                         TemplateId->NumArgs);
267
268      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
269                                              /*FIXME:*/SourceLocation(),
270                                              SS,
271                                              TemplateId->Template,
272                                              TemplateId->TemplateNameLoc,
273                                              TemplateId->LAngleLoc,
274                                              TemplateArgsPtr,
275                                              TemplateId->RAngleLoc,
276                                              CCLoc,
277                                              EnteringContext)) {
278        SourceLocation StartLoc
279          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
280                                      : TemplateId->TemplateNameLoc;
281        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
282      }
283
284      TemplateId->Destroy();
285      continue;
286    }
287
288
289    // The rest of the nested-name-specifier possibilities start with
290    // tok::identifier.
291    if (Tok.isNot(tok::identifier))
292      break;
293
294    IdentifierInfo &II = *Tok.getIdentifierInfo();
295
296    // nested-name-specifier:
297    //   type-name '::'
298    //   namespace-name '::'
299    //   nested-name-specifier identifier '::'
300    Token Next = NextToken();
301
302    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
303    // and emit a fixit hint for it.
304    if (Next.is(tok::colon) && !ColonIsSacred) {
305      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
306                                            Tok.getLocation(),
307                                            Next.getLocation(), ObjectType,
308                                            EnteringContext) &&
309          // If the token after the colon isn't an identifier, it's still an
310          // error, but they probably meant something else strange so don't
311          // recover like this.
312          PP.LookAhead(1).is(tok::identifier)) {
313        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
314          << FixItHint::CreateReplacement(Next.getLocation(), "::");
315
316        // Recover as if the user wrote '::'.
317        Next.setKind(tok::coloncolon);
318      }
319    }
320
321    if (Next.is(tok::coloncolon)) {
322      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
323          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
324                                                II, ObjectType)) {
325        *MayBePseudoDestructor = true;
326        return false;
327      }
328
329      // We have an identifier followed by a '::'. Lookup this name
330      // as the name in a nested-name-specifier.
331      SourceLocation IdLoc = ConsumeToken();
332      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
333             "NextToken() not working properly!");
334      SourceLocation CCLoc = ConsumeToken();
335
336      HasScopeSpecifier = true;
337      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
338                                              ObjectType, EnteringContext, SS))
339        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
340
341      continue;
342    }
343
344    // Check for '<::' which should be '< ::' instead of '[:' when following
345    // a template name.
346    if (Next.is(tok::l_square) && Next.getLength() == 2) {
347      Token SecondToken = GetLookAheadToken(2);
348      if (SecondToken.is(tok::colon) &&
349          AreTokensAdjacent(PP, Next, SecondToken)) {
350        TemplateTy Template;
351        UnqualifiedId TemplateName;
352        TemplateName.setIdentifier(&II, Tok.getLocation());
353        bool MemberOfUnknownSpecialization;
354        if (Actions.isTemplateName(getCurScope(), SS,
355                                   /*hasTemplateKeyword=*/false,
356                                   TemplateName,
357                                   ObjectType,
358                                   EnteringContext,
359                                   Template,
360                                   MemberOfUnknownSpecialization)) {
361          FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
362                     /*AtDigraph*/false);
363        }
364      }
365    }
366
367    // nested-name-specifier:
368    //   type-name '<'
369    if (Next.is(tok::less)) {
370      TemplateTy Template;
371      UnqualifiedId TemplateName;
372      TemplateName.setIdentifier(&II, Tok.getLocation());
373      bool MemberOfUnknownSpecialization;
374      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
375                                              /*hasTemplateKeyword=*/false,
376                                                        TemplateName,
377                                                        ObjectType,
378                                                        EnteringContext,
379                                                        Template,
380                                              MemberOfUnknownSpecialization)) {
381        // We have found a template name, so annotate this this token
382        // with a template-id annotation. We do not permit the
383        // template-id to be translated into a type annotation,
384        // because some clients (e.g., the parsing of class template
385        // specializations) still want to see the original template-id
386        // token.
387        ConsumeToken();
388        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
389                                    SourceLocation(), false))
390          return true;
391        continue;
392      }
393
394      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
395          (IsTypename || IsTemplateArgumentList(1))) {
396        // We have something like t::getAs<T>, where getAs is a
397        // member of an unknown specialization. However, this will only
398        // parse correctly as a template, so suggest the keyword 'template'
399        // before 'getAs' and treat this as a dependent template name.
400        unsigned DiagID = diag::err_missing_dependent_template_keyword;
401        if (getLang().Microsoft)
402          DiagID = diag::warn_missing_dependent_template_keyword;
403
404        Diag(Tok.getLocation(), DiagID)
405          << II.getName()
406          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
407
408        if (TemplateNameKind TNK
409              = Actions.ActOnDependentTemplateName(getCurScope(),
410                                                   Tok.getLocation(), SS,
411                                                   TemplateName, ObjectType,
412                                                   EnteringContext, Template)) {
413          // Consume the identifier.
414          ConsumeToken();
415          if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
416                                      SourceLocation(), false))
417            return true;
418        }
419        else
420          return true;
421
422        continue;
423      }
424    }
425
426    // We don't have any tokens that form the beginning of a
427    // nested-name-specifier, so we're done.
428    break;
429  }
430
431  // Even if we didn't see any pieces of a nested-name-specifier, we
432  // still check whether there is a tilde in this position, which
433  // indicates a potential pseudo-destructor.
434  if (CheckForDestructor && Tok.is(tok::tilde))
435    *MayBePseudoDestructor = true;
436
437  return false;
438}
439
440/// ParseCXXIdExpression - Handle id-expression.
441///
442///       id-expression:
443///         unqualified-id
444///         qualified-id
445///
446///       qualified-id:
447///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
448///         '::' identifier
449///         '::' operator-function-id
450///         '::' template-id
451///
452/// NOTE: The standard specifies that, for qualified-id, the parser does not
453/// expect:
454///
455///   '::' conversion-function-id
456///   '::' '~' class-name
457///
458/// This may cause a slight inconsistency on diagnostics:
459///
460/// class C {};
461/// namespace A {}
462/// void f() {
463///   :: A :: ~ C(); // Some Sema error about using destructor with a
464///                  // namespace.
465///   :: ~ C(); // Some Parser error like 'unexpected ~'.
466/// }
467///
468/// We simplify the parser a bit and make it work like:
469///
470///       qualified-id:
471///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
472///         '::' unqualified-id
473///
474/// That way Sema can handle and report similar errors for namespaces and the
475/// global scope.
476///
477/// The isAddressOfOperand parameter indicates that this id-expression is a
478/// direct operand of the address-of operator. This is, besides member contexts,
479/// the only place where a qualified-id naming a non-static class member may
480/// appear.
481///
482ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
483  // qualified-id:
484  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
485  //   '::' unqualified-id
486  //
487  CXXScopeSpec SS;
488  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
489
490  UnqualifiedId Name;
491  if (ParseUnqualifiedId(SS,
492                         /*EnteringContext=*/false,
493                         /*AllowDestructorName=*/false,
494                         /*AllowConstructorName=*/false,
495                         /*ObjectType=*/ ParsedType(),
496                         Name))
497    return ExprError();
498
499  // This is only the direct operand of an & operator if it is not
500  // followed by a postfix-expression suffix.
501  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
502    isAddressOfOperand = false;
503
504  return Actions.ActOnIdExpression(getCurScope(), SS, Name, Tok.is(tok::l_paren),
505                                   isAddressOfOperand);
506
507}
508
509/// ParseCXXCasts - This handles the various ways to cast expressions to another
510/// type.
511///
512///       postfix-expression: [C++ 5.2p1]
513///         'dynamic_cast' '<' type-name '>' '(' expression ')'
514///         'static_cast' '<' type-name '>' '(' expression ')'
515///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
516///         'const_cast' '<' type-name '>' '(' expression ')'
517///
518ExprResult Parser::ParseCXXCasts() {
519  tok::TokenKind Kind = Tok.getKind();
520  const char *CastName = 0;     // For error messages
521
522  switch (Kind) {
523  default: assert(0 && "Unknown C++ cast!"); abort();
524  case tok::kw_const_cast:       CastName = "const_cast";       break;
525  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
526  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
527  case tok::kw_static_cast:      CastName = "static_cast";      break;
528  }
529
530  SourceLocation OpLoc = ConsumeToken();
531  SourceLocation LAngleBracketLoc = Tok.getLocation();
532
533  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
534  // diagnose error, suggest fix, and recover parsing.
535  Token Next = NextToken();
536  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
537      AreTokensAdjacent(PP, Tok, Next))
538    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
539
540  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
541    return ExprError();
542
543  TypeResult CastTy = ParseTypeName();
544  SourceLocation RAngleBracketLoc = Tok.getLocation();
545
546  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
547    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
548
549  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
550
551  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
552    return ExprError();
553
554  ExprResult Result = ParseExpression();
555
556  // Match the ')'.
557  RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
558
559  if (!Result.isInvalid() && !CastTy.isInvalid())
560    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
561                                       LAngleBracketLoc, CastTy.get(),
562                                       RAngleBracketLoc,
563                                       LParenLoc, Result.take(), RParenLoc);
564
565  return move(Result);
566}
567
568/// ParseCXXTypeid - This handles the C++ typeid expression.
569///
570///       postfix-expression: [C++ 5.2p1]
571///         'typeid' '(' expression ')'
572///         'typeid' '(' type-id ')'
573///
574ExprResult Parser::ParseCXXTypeid() {
575  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
576
577  SourceLocation OpLoc = ConsumeToken();
578  SourceLocation LParenLoc = Tok.getLocation();
579  SourceLocation RParenLoc;
580
581  // typeid expressions are always parenthesized.
582  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
583      "typeid"))
584    return ExprError();
585
586  ExprResult Result;
587
588  if (isTypeIdInParens()) {
589    TypeResult Ty = ParseTypeName();
590
591    // Match the ')'.
592    RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
593
594    if (Ty.isInvalid() || RParenLoc.isInvalid())
595      return ExprError();
596
597    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
598                                    Ty.get().getAsOpaquePtr(), RParenLoc);
599  } else {
600    // C++0x [expr.typeid]p3:
601    //   When typeid is applied to an expression other than an lvalue of a
602    //   polymorphic class type [...] The expression is an unevaluated
603    //   operand (Clause 5).
604    //
605    // Note that we can't tell whether the expression is an lvalue of a
606    // polymorphic class type until after we've parsed the expression, so
607    // we the expression is potentially potentially evaluated.
608    EnterExpressionEvaluationContext Unevaluated(Actions,
609                                       Sema::PotentiallyPotentiallyEvaluated);
610    Result = ParseExpression();
611
612    // Match the ')'.
613    if (Result.isInvalid())
614      SkipUntil(tok::r_paren);
615    else {
616      RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
617      if (RParenLoc.isInvalid())
618        return ExprError();
619
620      // If we are a foo<int> that identifies a single function, resolve it now...
621      Expr* e = Result.get();
622      if (e->getType() == Actions.Context.OverloadTy) {
623        ExprResult er =
624              Actions.ResolveAndFixSingleFunctionTemplateSpecialization(e);
625        if (er.isUsable())
626          Result = er.release();
627      }
628      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
629                                      Result.release(), RParenLoc);
630    }
631  }
632
633  return move(Result);
634}
635
636/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
637///
638///         '__uuidof' '(' expression ')'
639///         '__uuidof' '(' type-id ')'
640///
641ExprResult Parser::ParseCXXUuidof() {
642  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
643
644  SourceLocation OpLoc = ConsumeToken();
645  SourceLocation LParenLoc = Tok.getLocation();
646  SourceLocation RParenLoc;
647
648  // __uuidof expressions are always parenthesized.
649  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
650      "__uuidof"))
651    return ExprError();
652
653  ExprResult Result;
654
655  if (isTypeIdInParens()) {
656    TypeResult Ty = ParseTypeName();
657
658    // Match the ')'.
659    RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
660
661    if (Ty.isInvalid())
662      return ExprError();
663
664    Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/true,
665                                    Ty.get().getAsOpaquePtr(), RParenLoc);
666  } else {
667    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
668    Result = ParseExpression();
669
670    // Match the ')'.
671    if (Result.isInvalid())
672      SkipUntil(tok::r_paren);
673    else {
674      RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
675
676      Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/false,
677                                      Result.release(), RParenLoc);
678    }
679  }
680
681  return move(Result);
682}
683
684/// \brief Parse a C++ pseudo-destructor expression after the base,
685/// . or -> operator, and nested-name-specifier have already been
686/// parsed.
687///
688///       postfix-expression: [C++ 5.2]
689///         postfix-expression . pseudo-destructor-name
690///         postfix-expression -> pseudo-destructor-name
691///
692///       pseudo-destructor-name:
693///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
694///         ::[opt] nested-name-specifier template simple-template-id ::
695///                 ~type-name
696///         ::[opt] nested-name-specifier[opt] ~type-name
697///
698ExprResult
699Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
700                                 tok::TokenKind OpKind,
701                                 CXXScopeSpec &SS,
702                                 ParsedType ObjectType) {
703  // We're parsing either a pseudo-destructor-name or a dependent
704  // member access that has the same form as a
705  // pseudo-destructor-name. We parse both in the same way and let
706  // the action model sort them out.
707  //
708  // Note that the ::[opt] nested-name-specifier[opt] has already
709  // been parsed, and if there was a simple-template-id, it has
710  // been coalesced into a template-id annotation token.
711  UnqualifiedId FirstTypeName;
712  SourceLocation CCLoc;
713  if (Tok.is(tok::identifier)) {
714    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
715    ConsumeToken();
716    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
717    CCLoc = ConsumeToken();
718  } else if (Tok.is(tok::annot_template_id)) {
719    FirstTypeName.setTemplateId(
720                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
721    ConsumeToken();
722    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
723    CCLoc = ConsumeToken();
724  } else {
725    FirstTypeName.setIdentifier(0, SourceLocation());
726  }
727
728  // Parse the tilde.
729  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
730  SourceLocation TildeLoc = ConsumeToken();
731  if (!Tok.is(tok::identifier)) {
732    Diag(Tok, diag::err_destructor_tilde_identifier);
733    return ExprError();
734  }
735
736  // Parse the second type.
737  UnqualifiedId SecondTypeName;
738  IdentifierInfo *Name = Tok.getIdentifierInfo();
739  SourceLocation NameLoc = ConsumeToken();
740  SecondTypeName.setIdentifier(Name, NameLoc);
741
742  // If there is a '<', the second type name is a template-id. Parse
743  // it as such.
744  if (Tok.is(tok::less) &&
745      ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
746                                   SecondTypeName, /*AssumeTemplateName=*/true,
747                                   /*TemplateKWLoc*/SourceLocation()))
748    return ExprError();
749
750  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
751                                           OpLoc, OpKind,
752                                           SS, FirstTypeName, CCLoc,
753                                           TildeLoc, SecondTypeName,
754                                           Tok.is(tok::l_paren));
755}
756
757/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
758///
759///       boolean-literal: [C++ 2.13.5]
760///         'true'
761///         'false'
762ExprResult Parser::ParseCXXBoolLiteral() {
763  tok::TokenKind Kind = Tok.getKind();
764  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
765}
766
767/// ParseThrowExpression - This handles the C++ throw expression.
768///
769///       throw-expression: [C++ 15]
770///         'throw' assignment-expression[opt]
771ExprResult Parser::ParseThrowExpression() {
772  assert(Tok.is(tok::kw_throw) && "Not throw!");
773  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
774
775  // If the current token isn't the start of an assignment-expression,
776  // then the expression is not present.  This handles things like:
777  //   "C ? throw : (void)42", which is crazy but legal.
778  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
779  case tok::semi:
780  case tok::r_paren:
781  case tok::r_square:
782  case tok::r_brace:
783  case tok::colon:
784  case tok::comma:
785    return Actions.ActOnCXXThrow(ThrowLoc, 0);
786
787  default:
788    ExprResult Expr(ParseAssignmentExpression());
789    if (Expr.isInvalid()) return move(Expr);
790    return Actions.ActOnCXXThrow(ThrowLoc, Expr.take());
791  }
792}
793
794/// ParseCXXThis - This handles the C++ 'this' pointer.
795///
796/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
797/// a non-lvalue expression whose value is the address of the object for which
798/// the function is called.
799ExprResult Parser::ParseCXXThis() {
800  assert(Tok.is(tok::kw_this) && "Not 'this'!");
801  SourceLocation ThisLoc = ConsumeToken();
802  return Actions.ActOnCXXThis(ThisLoc);
803}
804
805/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
806/// Can be interpreted either as function-style casting ("int(x)")
807/// or class type construction ("ClassType(x,y,z)")
808/// or creation of a value-initialized type ("int()").
809///
810///       postfix-expression: [C++ 5.2p1]
811///         simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
812///         typename-specifier '(' expression-list[opt] ')'         [TODO]
813///
814ExprResult
815Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
816  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
817  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
818
819  assert(Tok.is(tok::l_paren) && "Expected '('!");
820  GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
821
822  SourceLocation LParenLoc = ConsumeParen();
823
824  ExprVector Exprs(Actions);
825  CommaLocsTy CommaLocs;
826
827  if (Tok.isNot(tok::r_paren)) {
828    if (ParseExpressionList(Exprs, CommaLocs)) {
829      SkipUntil(tok::r_paren);
830      return ExprError();
831    }
832  }
833
834  // Match the ')'.
835  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
836
837  // TypeRep could be null, if it references an invalid typedef.
838  if (!TypeRep)
839    return ExprError();
840
841  assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
842         "Unexpected number of commas!");
843  return Actions.ActOnCXXTypeConstructExpr(TypeRep, LParenLoc, move_arg(Exprs),
844                                           RParenLoc);
845}
846
847/// ParseCXXCondition - if/switch/while condition expression.
848///
849///       condition:
850///         expression
851///         type-specifier-seq declarator '=' assignment-expression
852/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
853///             '=' assignment-expression
854///
855/// \param ExprResult if the condition was parsed as an expression, the
856/// parsed expression.
857///
858/// \param DeclResult if the condition was parsed as a declaration, the
859/// parsed declaration.
860///
861/// \param Loc The location of the start of the statement that requires this
862/// condition, e.g., the "for" in a for loop.
863///
864/// \param ConvertToBoolean Whether the condition expression should be
865/// converted to a boolean value.
866///
867/// \returns true if there was a parsing, false otherwise.
868bool Parser::ParseCXXCondition(ExprResult &ExprOut,
869                               Decl *&DeclOut,
870                               SourceLocation Loc,
871                               bool ConvertToBoolean) {
872  if (Tok.is(tok::code_completion)) {
873    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
874    ConsumeCodeCompletionToken();
875  }
876
877  if (!isCXXConditionDeclaration()) {
878    // Parse the expression.
879    ExprOut = ParseExpression(); // expression
880    DeclOut = 0;
881    if (ExprOut.isInvalid())
882      return true;
883
884    // If required, convert to a boolean value.
885    if (ConvertToBoolean)
886      ExprOut
887        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
888    return ExprOut.isInvalid();
889  }
890
891  // type-specifier-seq
892  DeclSpec DS(AttrFactory);
893  ParseSpecifierQualifierList(DS);
894
895  // declarator
896  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
897  ParseDeclarator(DeclaratorInfo);
898
899  // simple-asm-expr[opt]
900  if (Tok.is(tok::kw_asm)) {
901    SourceLocation Loc;
902    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
903    if (AsmLabel.isInvalid()) {
904      SkipUntil(tok::semi);
905      return true;
906    }
907    DeclaratorInfo.setAsmLabel(AsmLabel.release());
908    DeclaratorInfo.SetRangeEnd(Loc);
909  }
910
911  // If attributes are present, parse them.
912  MaybeParseGNUAttributes(DeclaratorInfo);
913
914  // Type-check the declaration itself.
915  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
916                                                        DeclaratorInfo);
917  DeclOut = Dcl.get();
918  ExprOut = ExprError();
919
920  // '=' assignment-expression
921  if (isTokenEqualOrMistypedEqualEqual(
922                               diag::err_invalid_equalequal_after_declarator)) {
923    ConsumeToken();
924    ExprResult AssignExpr(ParseAssignmentExpression());
925    if (!AssignExpr.isInvalid())
926      Actions.AddInitializerToDecl(DeclOut, AssignExpr.take(), false,
927                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
928  } else {
929    // FIXME: C++0x allows a braced-init-list
930    Diag(Tok, diag::err_expected_equal_after_declarator);
931  }
932
933  // FIXME: Build a reference to this declaration? Convert it to bool?
934  // (This is currently handled by Sema).
935
936  Actions.FinalizeDeclaration(DeclOut);
937
938  return false;
939}
940
941/// \brief Determine whether the current token starts a C++
942/// simple-type-specifier.
943bool Parser::isCXXSimpleTypeSpecifier() const {
944  switch (Tok.getKind()) {
945  case tok::annot_typename:
946  case tok::kw_short:
947  case tok::kw_long:
948  case tok::kw_signed:
949  case tok::kw_unsigned:
950  case tok::kw_void:
951  case tok::kw_char:
952  case tok::kw_int:
953  case tok::kw_float:
954  case tok::kw_double:
955  case tok::kw_wchar_t:
956  case tok::kw_char16_t:
957  case tok::kw_char32_t:
958  case tok::kw_bool:
959    // FIXME: C++0x decltype support.
960  // GNU typeof support.
961  case tok::kw_typeof:
962    return true;
963
964  default:
965    break;
966  }
967
968  return false;
969}
970
971/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
972/// This should only be called when the current token is known to be part of
973/// simple-type-specifier.
974///
975///       simple-type-specifier:
976///         '::'[opt] nested-name-specifier[opt] type-name
977///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
978///         char
979///         wchar_t
980///         bool
981///         short
982///         int
983///         long
984///         signed
985///         unsigned
986///         float
987///         double
988///         void
989/// [GNU]   typeof-specifier
990/// [C++0x] auto               [TODO]
991///
992///       type-name:
993///         class-name
994///         enum-name
995///         typedef-name
996///
997void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
998  DS.SetRangeStart(Tok.getLocation());
999  const char *PrevSpec;
1000  unsigned DiagID;
1001  SourceLocation Loc = Tok.getLocation();
1002
1003  switch (Tok.getKind()) {
1004  case tok::identifier:   // foo::bar
1005  case tok::coloncolon:   // ::foo::bar
1006    assert(0 && "Annotation token should already be formed!");
1007  default:
1008    assert(0 && "Not a simple-type-specifier token!");
1009    abort();
1010
1011  // type-name
1012  case tok::annot_typename: {
1013    if (getTypeAnnotation(Tok))
1014      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1015                         getTypeAnnotation(Tok));
1016    else
1017      DS.SetTypeSpecError();
1018
1019    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1020    ConsumeToken();
1021
1022    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1023    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1024    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1025    // just a normal reference to a typedef name.
1026    if (Tok.is(tok::less) && getLang().ObjC1)
1027      ParseObjCProtocolQualifiers(DS);
1028
1029    DS.Finish(Diags, PP);
1030    return;
1031  }
1032
1033  // builtin types
1034  case tok::kw_short:
1035    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1036    break;
1037  case tok::kw_long:
1038    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1039    break;
1040  case tok::kw_signed:
1041    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1042    break;
1043  case tok::kw_unsigned:
1044    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1045    break;
1046  case tok::kw_void:
1047    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1048    break;
1049  case tok::kw_char:
1050    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1051    break;
1052  case tok::kw_int:
1053    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1054    break;
1055  case tok::kw_float:
1056    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1057    break;
1058  case tok::kw_double:
1059    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1060    break;
1061  case tok::kw_wchar_t:
1062    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1063    break;
1064  case tok::kw_char16_t:
1065    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1066    break;
1067  case tok::kw_char32_t:
1068    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1069    break;
1070  case tok::kw_bool:
1071    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1072    break;
1073
1074    // FIXME: C++0x decltype support.
1075  // GNU typeof support.
1076  case tok::kw_typeof:
1077    ParseTypeofSpecifier(DS);
1078    DS.Finish(Diags, PP);
1079    return;
1080  }
1081  if (Tok.is(tok::annot_typename))
1082    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1083  else
1084    DS.SetRangeEnd(Tok.getLocation());
1085  ConsumeToken();
1086  DS.Finish(Diags, PP);
1087}
1088
1089/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1090/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1091/// e.g., "const short int". Note that the DeclSpec is *not* finished
1092/// by parsing the type-specifier-seq, because these sequences are
1093/// typically followed by some form of declarator. Returns true and
1094/// emits diagnostics if this is not a type-specifier-seq, false
1095/// otherwise.
1096///
1097///   type-specifier-seq: [C++ 8.1]
1098///     type-specifier type-specifier-seq[opt]
1099///
1100bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1101  DS.SetRangeStart(Tok.getLocation());
1102  const char *PrevSpec = 0;
1103  unsigned DiagID;
1104  bool isInvalid = 0;
1105
1106  // Parse one or more of the type specifiers.
1107  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1108      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
1109    Diag(Tok, diag::err_expected_type);
1110    return true;
1111  }
1112
1113  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1114         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
1115  {}
1116
1117  DS.Finish(Diags, PP);
1118  return false;
1119}
1120
1121/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1122/// some form.
1123///
1124/// This routine is invoked when a '<' is encountered after an identifier or
1125/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1126/// whether the unqualified-id is actually a template-id. This routine will
1127/// then parse the template arguments and form the appropriate template-id to
1128/// return to the caller.
1129///
1130/// \param SS the nested-name-specifier that precedes this template-id, if
1131/// we're actually parsing a qualified-id.
1132///
1133/// \param Name for constructor and destructor names, this is the actual
1134/// identifier that may be a template-name.
1135///
1136/// \param NameLoc the location of the class-name in a constructor or
1137/// destructor.
1138///
1139/// \param EnteringContext whether we're entering the scope of the
1140/// nested-name-specifier.
1141///
1142/// \param ObjectType if this unqualified-id occurs within a member access
1143/// expression, the type of the base object whose member is being accessed.
1144///
1145/// \param Id as input, describes the template-name or operator-function-id
1146/// that precedes the '<'. If template arguments were parsed successfully,
1147/// will be updated with the template-id.
1148///
1149/// \param AssumeTemplateId When true, this routine will assume that the name
1150/// refers to a template without performing name lookup to verify.
1151///
1152/// \returns true if a parse error occurred, false otherwise.
1153bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1154                                          IdentifierInfo *Name,
1155                                          SourceLocation NameLoc,
1156                                          bool EnteringContext,
1157                                          ParsedType ObjectType,
1158                                          UnqualifiedId &Id,
1159                                          bool AssumeTemplateId,
1160                                          SourceLocation TemplateKWLoc) {
1161  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1162         "Expected '<' to finish parsing a template-id");
1163
1164  TemplateTy Template;
1165  TemplateNameKind TNK = TNK_Non_template;
1166  switch (Id.getKind()) {
1167  case UnqualifiedId::IK_Identifier:
1168  case UnqualifiedId::IK_OperatorFunctionId:
1169  case UnqualifiedId::IK_LiteralOperatorId:
1170    if (AssumeTemplateId) {
1171      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1172                                               Id, ObjectType, EnteringContext,
1173                                               Template);
1174      if (TNK == TNK_Non_template)
1175        return true;
1176    } else {
1177      bool MemberOfUnknownSpecialization;
1178      TNK = Actions.isTemplateName(getCurScope(), SS,
1179                                   TemplateKWLoc.isValid(), Id,
1180                                   ObjectType, EnteringContext, Template,
1181                                   MemberOfUnknownSpecialization);
1182
1183      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1184          ObjectType && IsTemplateArgumentList()) {
1185        // We have something like t->getAs<T>(), where getAs is a
1186        // member of an unknown specialization. However, this will only
1187        // parse correctly as a template, so suggest the keyword 'template'
1188        // before 'getAs' and treat this as a dependent template name.
1189        std::string Name;
1190        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1191          Name = Id.Identifier->getName();
1192        else {
1193          Name = "operator ";
1194          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1195            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1196          else
1197            Name += Id.Identifier->getName();
1198        }
1199        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1200          << Name
1201          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1202        TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc,
1203                                                 SS, Id, ObjectType,
1204                                                 EnteringContext, Template);
1205        if (TNK == TNK_Non_template)
1206          return true;
1207      }
1208    }
1209    break;
1210
1211  case UnqualifiedId::IK_ConstructorName: {
1212    UnqualifiedId TemplateName;
1213    bool MemberOfUnknownSpecialization;
1214    TemplateName.setIdentifier(Name, NameLoc);
1215    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1216                                 TemplateName, ObjectType,
1217                                 EnteringContext, Template,
1218                                 MemberOfUnknownSpecialization);
1219    break;
1220  }
1221
1222  case UnqualifiedId::IK_DestructorName: {
1223    UnqualifiedId TemplateName;
1224    bool MemberOfUnknownSpecialization;
1225    TemplateName.setIdentifier(Name, NameLoc);
1226    if (ObjectType) {
1227      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1228                                               TemplateName, ObjectType,
1229                                               EnteringContext, Template);
1230      if (TNK == TNK_Non_template)
1231        return true;
1232    } else {
1233      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1234                                   TemplateName, ObjectType,
1235                                   EnteringContext, Template,
1236                                   MemberOfUnknownSpecialization);
1237
1238      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1239        Diag(NameLoc, diag::err_destructor_template_id)
1240          << Name << SS.getRange();
1241        return true;
1242      }
1243    }
1244    break;
1245  }
1246
1247  default:
1248    return false;
1249  }
1250
1251  if (TNK == TNK_Non_template)
1252    return false;
1253
1254  // Parse the enclosed template argument list.
1255  SourceLocation LAngleLoc, RAngleLoc;
1256  TemplateArgList TemplateArgs;
1257  if (Tok.is(tok::less) &&
1258      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1259                                       SS, true, LAngleLoc,
1260                                       TemplateArgs,
1261                                       RAngleLoc))
1262    return true;
1263
1264  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1265      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1266      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1267    // Form a parsed representation of the template-id to be stored in the
1268    // UnqualifiedId.
1269    TemplateIdAnnotation *TemplateId
1270      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1271
1272    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1273      TemplateId->Name = Id.Identifier;
1274      TemplateId->Operator = OO_None;
1275      TemplateId->TemplateNameLoc = Id.StartLocation;
1276    } else {
1277      TemplateId->Name = 0;
1278      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1279      TemplateId->TemplateNameLoc = Id.StartLocation;
1280    }
1281
1282    TemplateId->SS = SS;
1283    TemplateId->Template = Template;
1284    TemplateId->Kind = TNK;
1285    TemplateId->LAngleLoc = LAngleLoc;
1286    TemplateId->RAngleLoc = RAngleLoc;
1287    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1288    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1289         Arg != ArgEnd; ++Arg)
1290      Args[Arg] = TemplateArgs[Arg];
1291
1292    Id.setTemplateId(TemplateId);
1293    return false;
1294  }
1295
1296  // Bundle the template arguments together.
1297  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1298                                     TemplateArgs.size());
1299
1300  // Constructor and destructor names.
1301  TypeResult Type
1302    = Actions.ActOnTemplateIdType(SS, Template, NameLoc,
1303                                  LAngleLoc, TemplateArgsPtr,
1304                                  RAngleLoc);
1305  if (Type.isInvalid())
1306    return true;
1307
1308  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1309    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1310  else
1311    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1312
1313  return false;
1314}
1315
1316/// \brief Parse an operator-function-id or conversion-function-id as part
1317/// of a C++ unqualified-id.
1318///
1319/// This routine is responsible only for parsing the operator-function-id or
1320/// conversion-function-id; it does not handle template arguments in any way.
1321///
1322/// \code
1323///       operator-function-id: [C++ 13.5]
1324///         'operator' operator
1325///
1326///       operator: one of
1327///            new   delete  new[]   delete[]
1328///            +     -    *  /    %  ^    &   |   ~
1329///            !     =    <  >    += -=   *=  /=  %=
1330///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1331///            <=    >=   && ||   ++ --   ,   ->* ->
1332///            ()    []
1333///
1334///       conversion-function-id: [C++ 12.3.2]
1335///         operator conversion-type-id
1336///
1337///       conversion-type-id:
1338///         type-specifier-seq conversion-declarator[opt]
1339///
1340///       conversion-declarator:
1341///         ptr-operator conversion-declarator[opt]
1342/// \endcode
1343///
1344/// \param The nested-name-specifier that preceded this unqualified-id. If
1345/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1346///
1347/// \param EnteringContext whether we are entering the scope of the
1348/// nested-name-specifier.
1349///
1350/// \param ObjectType if this unqualified-id occurs within a member access
1351/// expression, the type of the base object whose member is being accessed.
1352///
1353/// \param Result on a successful parse, contains the parsed unqualified-id.
1354///
1355/// \returns true if parsing fails, false otherwise.
1356bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1357                                        ParsedType ObjectType,
1358                                        UnqualifiedId &Result) {
1359  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1360
1361  // Consume the 'operator' keyword.
1362  SourceLocation KeywordLoc = ConsumeToken();
1363
1364  // Determine what kind of operator name we have.
1365  unsigned SymbolIdx = 0;
1366  SourceLocation SymbolLocations[3];
1367  OverloadedOperatorKind Op = OO_None;
1368  switch (Tok.getKind()) {
1369    case tok::kw_new:
1370    case tok::kw_delete: {
1371      bool isNew = Tok.getKind() == tok::kw_new;
1372      // Consume the 'new' or 'delete'.
1373      SymbolLocations[SymbolIdx++] = ConsumeToken();
1374      if (Tok.is(tok::l_square)) {
1375        // Consume the '['.
1376        SourceLocation LBracketLoc = ConsumeBracket();
1377        // Consume the ']'.
1378        SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1379                                                         LBracketLoc);
1380        if (RBracketLoc.isInvalid())
1381          return true;
1382
1383        SymbolLocations[SymbolIdx++] = LBracketLoc;
1384        SymbolLocations[SymbolIdx++] = RBracketLoc;
1385        Op = isNew? OO_Array_New : OO_Array_Delete;
1386      } else {
1387        Op = isNew? OO_New : OO_Delete;
1388      }
1389      break;
1390    }
1391
1392#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1393    case tok::Token:                                                     \
1394      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1395      Op = OO_##Name;                                                    \
1396      break;
1397#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1398#include "clang/Basic/OperatorKinds.def"
1399
1400    case tok::l_paren: {
1401      // Consume the '('.
1402      SourceLocation LParenLoc = ConsumeParen();
1403      // Consume the ')'.
1404      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1405                                                     LParenLoc);
1406      if (RParenLoc.isInvalid())
1407        return true;
1408
1409      SymbolLocations[SymbolIdx++] = LParenLoc;
1410      SymbolLocations[SymbolIdx++] = RParenLoc;
1411      Op = OO_Call;
1412      break;
1413    }
1414
1415    case tok::l_square: {
1416      // Consume the '['.
1417      SourceLocation LBracketLoc = ConsumeBracket();
1418      // Consume the ']'.
1419      SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1420                                                       LBracketLoc);
1421      if (RBracketLoc.isInvalid())
1422        return true;
1423
1424      SymbolLocations[SymbolIdx++] = LBracketLoc;
1425      SymbolLocations[SymbolIdx++] = RBracketLoc;
1426      Op = OO_Subscript;
1427      break;
1428    }
1429
1430    case tok::code_completion: {
1431      // Code completion for the operator name.
1432      Actions.CodeCompleteOperatorName(getCurScope());
1433
1434      // Consume the operator token.
1435      ConsumeCodeCompletionToken();
1436
1437      // Don't try to parse any further.
1438      return true;
1439    }
1440
1441    default:
1442      break;
1443  }
1444
1445  if (Op != OO_None) {
1446    // We have parsed an operator-function-id.
1447    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1448    return false;
1449  }
1450
1451  // Parse a literal-operator-id.
1452  //
1453  //   literal-operator-id: [C++0x 13.5.8]
1454  //     operator "" identifier
1455
1456  if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1457    if (Tok.getLength() != 2)
1458      Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1459    ConsumeStringToken();
1460
1461    if (Tok.isNot(tok::identifier)) {
1462      Diag(Tok.getLocation(), diag::err_expected_ident);
1463      return true;
1464    }
1465
1466    IdentifierInfo *II = Tok.getIdentifierInfo();
1467    Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1468    return false;
1469  }
1470
1471  // Parse a conversion-function-id.
1472  //
1473  //   conversion-function-id: [C++ 12.3.2]
1474  //     operator conversion-type-id
1475  //
1476  //   conversion-type-id:
1477  //     type-specifier-seq conversion-declarator[opt]
1478  //
1479  //   conversion-declarator:
1480  //     ptr-operator conversion-declarator[opt]
1481
1482  // Parse the type-specifier-seq.
1483  DeclSpec DS(AttrFactory);
1484  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1485    return true;
1486
1487  // Parse the conversion-declarator, which is merely a sequence of
1488  // ptr-operators.
1489  Declarator D(DS, Declarator::TypeNameContext);
1490  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1491
1492  // Finish up the type.
1493  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1494  if (Ty.isInvalid())
1495    return true;
1496
1497  // Note that this is a conversion-function-id.
1498  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1499                                 D.getSourceRange().getEnd());
1500  return false;
1501}
1502
1503/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1504/// name of an entity.
1505///
1506/// \code
1507///       unqualified-id: [C++ expr.prim.general]
1508///         identifier
1509///         operator-function-id
1510///         conversion-function-id
1511/// [C++0x] literal-operator-id [TODO]
1512///         ~ class-name
1513///         template-id
1514///
1515/// \endcode
1516///
1517/// \param The nested-name-specifier that preceded this unqualified-id. If
1518/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1519///
1520/// \param EnteringContext whether we are entering the scope of the
1521/// nested-name-specifier.
1522///
1523/// \param AllowDestructorName whether we allow parsing of a destructor name.
1524///
1525/// \param AllowConstructorName whether we allow parsing a constructor name.
1526///
1527/// \param ObjectType if this unqualified-id occurs within a member access
1528/// expression, the type of the base object whose member is being accessed.
1529///
1530/// \param Result on a successful parse, contains the parsed unqualified-id.
1531///
1532/// \returns true if parsing fails, false otherwise.
1533bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1534                                bool AllowDestructorName,
1535                                bool AllowConstructorName,
1536                                ParsedType ObjectType,
1537                                UnqualifiedId &Result) {
1538
1539  // Handle 'A::template B'. This is for template-ids which have not
1540  // already been annotated by ParseOptionalCXXScopeSpecifier().
1541  bool TemplateSpecified = false;
1542  SourceLocation TemplateKWLoc;
1543  if (getLang().CPlusPlus && Tok.is(tok::kw_template) &&
1544      (ObjectType || SS.isSet())) {
1545    TemplateSpecified = true;
1546    TemplateKWLoc = ConsumeToken();
1547  }
1548
1549  // unqualified-id:
1550  //   identifier
1551  //   template-id (when it hasn't already been annotated)
1552  if (Tok.is(tok::identifier)) {
1553    // Consume the identifier.
1554    IdentifierInfo *Id = Tok.getIdentifierInfo();
1555    SourceLocation IdLoc = ConsumeToken();
1556
1557    if (!getLang().CPlusPlus) {
1558      // If we're not in C++, only identifiers matter. Record the
1559      // identifier and return.
1560      Result.setIdentifier(Id, IdLoc);
1561      return false;
1562    }
1563
1564    if (AllowConstructorName &&
1565        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
1566      // We have parsed a constructor name.
1567      Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, getCurScope(),
1568                                                    &SS, false, false,
1569                                                    ParsedType(),
1570                                            /*NonTrivialTypeSourceInfo=*/true),
1571                                IdLoc, IdLoc);
1572    } else {
1573      // We have parsed an identifier.
1574      Result.setIdentifier(Id, IdLoc);
1575    }
1576
1577    // If the next token is a '<', we may have a template.
1578    if (TemplateSpecified || Tok.is(tok::less))
1579      return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1580                                          ObjectType, Result,
1581                                          TemplateSpecified, TemplateKWLoc);
1582
1583    return false;
1584  }
1585
1586  // unqualified-id:
1587  //   template-id (already parsed and annotated)
1588  if (Tok.is(tok::annot_template_id)) {
1589    TemplateIdAnnotation *TemplateId
1590      = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1591
1592    // If the template-name names the current class, then this is a constructor
1593    if (AllowConstructorName && TemplateId->Name &&
1594        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1595      if (SS.isSet()) {
1596        // C++ [class.qual]p2 specifies that a qualified template-name
1597        // is taken as the constructor name where a constructor can be
1598        // declared. Thus, the template arguments are extraneous, so
1599        // complain about them and remove them entirely.
1600        Diag(TemplateId->TemplateNameLoc,
1601             diag::err_out_of_line_constructor_template_id)
1602          << TemplateId->Name
1603          << FixItHint::CreateRemoval(
1604                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1605        Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1606                                                  TemplateId->TemplateNameLoc,
1607                                                      getCurScope(),
1608                                                      &SS, false, false,
1609                                                      ParsedType(),
1610                                            /*NontrivialTypeSourceInfo=*/true),
1611                                  TemplateId->TemplateNameLoc,
1612                                  TemplateId->RAngleLoc);
1613        TemplateId->Destroy();
1614        ConsumeToken();
1615        return false;
1616      }
1617
1618      Result.setConstructorTemplateId(TemplateId);
1619      ConsumeToken();
1620      return false;
1621    }
1622
1623    // We have already parsed a template-id; consume the annotation token as
1624    // our unqualified-id.
1625    Result.setTemplateId(TemplateId);
1626    ConsumeToken();
1627    return false;
1628  }
1629
1630  // unqualified-id:
1631  //   operator-function-id
1632  //   conversion-function-id
1633  if (Tok.is(tok::kw_operator)) {
1634    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1635      return true;
1636
1637    // If we have an operator-function-id or a literal-operator-id and the next
1638    // token is a '<', we may have a
1639    //
1640    //   template-id:
1641    //     operator-function-id < template-argument-list[opt] >
1642    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1643         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1644        (TemplateSpecified || Tok.is(tok::less)))
1645      return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1646                                          EnteringContext, ObjectType,
1647                                          Result,
1648                                          TemplateSpecified, TemplateKWLoc);
1649
1650    return false;
1651  }
1652
1653  if (getLang().CPlusPlus &&
1654      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1655    // C++ [expr.unary.op]p10:
1656    //   There is an ambiguity in the unary-expression ~X(), where X is a
1657    //   class-name. The ambiguity is resolved in favor of treating ~ as a
1658    //    unary complement rather than treating ~X as referring to a destructor.
1659
1660    // Parse the '~'.
1661    SourceLocation TildeLoc = ConsumeToken();
1662
1663    // Parse the class-name.
1664    if (Tok.isNot(tok::identifier)) {
1665      Diag(Tok, diag::err_destructor_tilde_identifier);
1666      return true;
1667    }
1668
1669    // Parse the class-name (or template-name in a simple-template-id).
1670    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1671    SourceLocation ClassNameLoc = ConsumeToken();
1672
1673    if (TemplateSpecified || Tok.is(tok::less)) {
1674      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
1675      return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1676                                          EnteringContext, ObjectType, Result,
1677                                          TemplateSpecified, TemplateKWLoc);
1678    }
1679
1680    // Note that this is a destructor name.
1681    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
1682                                              ClassNameLoc, getCurScope(),
1683                                              SS, ObjectType,
1684                                              EnteringContext);
1685    if (!Ty)
1686      return true;
1687
1688    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1689    return false;
1690  }
1691
1692  Diag(Tok, diag::err_expected_unqualified_id)
1693    << getLang().CPlusPlus;
1694  return true;
1695}
1696
1697/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1698/// memory in a typesafe manner and call constructors.
1699///
1700/// This method is called to parse the new expression after the optional :: has
1701/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
1702/// is its location.  Otherwise, "Start" is the location of the 'new' token.
1703///
1704///        new-expression:
1705///                   '::'[opt] 'new' new-placement[opt] new-type-id
1706///                                     new-initializer[opt]
1707///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1708///                                     new-initializer[opt]
1709///
1710///        new-placement:
1711///                   '(' expression-list ')'
1712///
1713///        new-type-id:
1714///                   type-specifier-seq new-declarator[opt]
1715/// [GNU]             attributes type-specifier-seq new-declarator[opt]
1716///
1717///        new-declarator:
1718///                   ptr-operator new-declarator[opt]
1719///                   direct-new-declarator
1720///
1721///        new-initializer:
1722///                   '(' expression-list[opt] ')'
1723/// [C++0x]           braced-init-list                                   [TODO]
1724///
1725ExprResult
1726Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1727  assert(Tok.is(tok::kw_new) && "expected 'new' token");
1728  ConsumeToken();   // Consume 'new'
1729
1730  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1731  // second form of new-expression. It can't be a new-type-id.
1732
1733  ExprVector PlacementArgs(Actions);
1734  SourceLocation PlacementLParen, PlacementRParen;
1735
1736  SourceRange TypeIdParens;
1737  DeclSpec DS(AttrFactory);
1738  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1739  if (Tok.is(tok::l_paren)) {
1740    // If it turns out to be a placement, we change the type location.
1741    PlacementLParen = ConsumeParen();
1742    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1743      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1744      return ExprError();
1745    }
1746
1747    PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1748    if (PlacementRParen.isInvalid()) {
1749      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1750      return ExprError();
1751    }
1752
1753    if (PlacementArgs.empty()) {
1754      // Reset the placement locations. There was no placement.
1755      TypeIdParens = SourceRange(PlacementLParen, PlacementRParen);
1756      PlacementLParen = PlacementRParen = SourceLocation();
1757    } else {
1758      // We still need the type.
1759      if (Tok.is(tok::l_paren)) {
1760        TypeIdParens.setBegin(ConsumeParen());
1761        MaybeParseGNUAttributes(DeclaratorInfo);
1762        ParseSpecifierQualifierList(DS);
1763        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1764        ParseDeclarator(DeclaratorInfo);
1765        TypeIdParens.setEnd(MatchRHSPunctuation(tok::r_paren,
1766                                                TypeIdParens.getBegin()));
1767      } else {
1768        MaybeParseGNUAttributes(DeclaratorInfo);
1769        if (ParseCXXTypeSpecifierSeq(DS))
1770          DeclaratorInfo.setInvalidType(true);
1771        else {
1772          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1773          ParseDeclaratorInternal(DeclaratorInfo,
1774                                  &Parser::ParseDirectNewDeclarator);
1775        }
1776      }
1777    }
1778  } else {
1779    // A new-type-id is a simplified type-id, where essentially the
1780    // direct-declarator is replaced by a direct-new-declarator.
1781    MaybeParseGNUAttributes(DeclaratorInfo);
1782    if (ParseCXXTypeSpecifierSeq(DS))
1783      DeclaratorInfo.setInvalidType(true);
1784    else {
1785      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1786      ParseDeclaratorInternal(DeclaratorInfo,
1787                              &Parser::ParseDirectNewDeclarator);
1788    }
1789  }
1790  if (DeclaratorInfo.isInvalidType()) {
1791    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1792    return ExprError();
1793  }
1794
1795  ExprVector ConstructorArgs(Actions);
1796  SourceLocation ConstructorLParen, ConstructorRParen;
1797
1798  if (Tok.is(tok::l_paren)) {
1799    ConstructorLParen = ConsumeParen();
1800    if (Tok.isNot(tok::r_paren)) {
1801      CommaLocsTy CommaLocs;
1802      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1803        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1804        return ExprError();
1805      }
1806    }
1807    ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1808    if (ConstructorRParen.isInvalid()) {
1809      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1810      return ExprError();
1811    }
1812  }
1813
1814  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1815                             move_arg(PlacementArgs), PlacementRParen,
1816                             TypeIdParens, DeclaratorInfo, ConstructorLParen,
1817                             move_arg(ConstructorArgs), ConstructorRParen);
1818}
1819
1820/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1821/// passed to ParseDeclaratorInternal.
1822///
1823///        direct-new-declarator:
1824///                   '[' expression ']'
1825///                   direct-new-declarator '[' constant-expression ']'
1826///
1827void Parser::ParseDirectNewDeclarator(Declarator &D) {
1828  // Parse the array dimensions.
1829  bool first = true;
1830  while (Tok.is(tok::l_square)) {
1831    SourceLocation LLoc = ConsumeBracket();
1832    ExprResult Size(first ? ParseExpression()
1833                                : ParseConstantExpression());
1834    if (Size.isInvalid()) {
1835      // Recover
1836      SkipUntil(tok::r_square);
1837      return;
1838    }
1839    first = false;
1840
1841    SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1842
1843    ParsedAttributes attrs(AttrFactory);
1844    D.AddTypeInfo(DeclaratorChunk::getArray(0,
1845                                            /*static=*/false, /*star=*/false,
1846                                            Size.release(), LLoc, RLoc),
1847                  attrs, RLoc);
1848
1849    if (RLoc.isInvalid())
1850      return;
1851  }
1852}
1853
1854/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1855/// This ambiguity appears in the syntax of the C++ new operator.
1856///
1857///        new-expression:
1858///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1859///                                     new-initializer[opt]
1860///
1861///        new-placement:
1862///                   '(' expression-list ')'
1863///
1864bool Parser::ParseExpressionListOrTypeId(
1865                                   llvm::SmallVectorImpl<Expr*> &PlacementArgs,
1866                                         Declarator &D) {
1867  // The '(' was already consumed.
1868  if (isTypeIdInParens()) {
1869    ParseSpecifierQualifierList(D.getMutableDeclSpec());
1870    D.SetSourceRange(D.getDeclSpec().getSourceRange());
1871    ParseDeclarator(D);
1872    return D.isInvalidType();
1873  }
1874
1875  // It's not a type, it has to be an expression list.
1876  // Discard the comma locations - ActOnCXXNew has enough parameters.
1877  CommaLocsTy CommaLocs;
1878  return ParseExpressionList(PlacementArgs, CommaLocs);
1879}
1880
1881/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1882/// to free memory allocated by new.
1883///
1884/// This method is called to parse the 'delete' expression after the optional
1885/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
1886/// and "Start" is its location.  Otherwise, "Start" is the location of the
1887/// 'delete' token.
1888///
1889///        delete-expression:
1890///                   '::'[opt] 'delete' cast-expression
1891///                   '::'[opt] 'delete' '[' ']' cast-expression
1892ExprResult
1893Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1894  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1895  ConsumeToken(); // Consume 'delete'
1896
1897  // Array delete?
1898  bool ArrayDelete = false;
1899  if (Tok.is(tok::l_square)) {
1900    ArrayDelete = true;
1901    SourceLocation LHS = ConsumeBracket();
1902    SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1903    if (RHS.isInvalid())
1904      return ExprError();
1905  }
1906
1907  ExprResult Operand(ParseCastExpression(false));
1908  if (Operand.isInvalid())
1909    return move(Operand);
1910
1911  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
1912}
1913
1914static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1915  switch(kind) {
1916  default: llvm_unreachable("Not a known unary type trait");
1917  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
1918  case tok::kw___has_nothrow_copy:        return UTT_HasNothrowCopy;
1919  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1920  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
1921  case tok::kw___has_trivial_copy:        return UTT_HasTrivialCopy;
1922  case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1923  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
1924  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
1925  case tok::kw___is_abstract:             return UTT_IsAbstract;
1926  case tok::kw___is_class:                return UTT_IsClass;
1927  case tok::kw___is_empty:                return UTT_IsEmpty;
1928  case tok::kw___is_enum:                 return UTT_IsEnum;
1929  case tok::kw___is_literal:              return UTT_IsLiteral;
1930  case tok::kw___is_pod:                  return UTT_IsPOD;
1931  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
1932  case tok::kw___is_trivial:              return UTT_IsTrivial;
1933  case tok::kw___is_union:                return UTT_IsUnion;
1934  }
1935}
1936
1937static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
1938  switch(kind) {
1939  default: llvm_unreachable("Not a known binary type trait");
1940  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
1941  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
1942  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
1943  }
1944}
1945
1946/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1947/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1948/// templates.
1949///
1950///       primary-expression:
1951/// [GNU]             unary-type-trait '(' type-id ')'
1952///
1953ExprResult Parser::ParseUnaryTypeTrait() {
1954  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1955  SourceLocation Loc = ConsumeToken();
1956
1957  SourceLocation LParen = Tok.getLocation();
1958  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1959    return ExprError();
1960
1961  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1962  // there will be cryptic errors about mismatched parentheses and missing
1963  // specifiers.
1964  TypeResult Ty = ParseTypeName();
1965
1966  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1967
1968  if (Ty.isInvalid())
1969    return ExprError();
1970
1971  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), RParen);
1972}
1973
1974/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
1975/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1976/// templates.
1977///
1978///       primary-expression:
1979/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
1980///
1981ExprResult Parser::ParseBinaryTypeTrait() {
1982  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
1983  SourceLocation Loc = ConsumeToken();
1984
1985  SourceLocation LParen = Tok.getLocation();
1986  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1987    return ExprError();
1988
1989  TypeResult LhsTy = ParseTypeName();
1990  if (LhsTy.isInvalid()) {
1991    SkipUntil(tok::r_paren);
1992    return ExprError();
1993  }
1994
1995  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
1996    SkipUntil(tok::r_paren);
1997    return ExprError();
1998  }
1999
2000  TypeResult RhsTy = ParseTypeName();
2001  if (RhsTy.isInvalid()) {
2002    SkipUntil(tok::r_paren);
2003    return ExprError();
2004  }
2005
2006  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
2007
2008  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(), RParen);
2009}
2010
2011/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2012/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2013/// based on the context past the parens.
2014ExprResult
2015Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2016                                         ParsedType &CastTy,
2017                                         SourceLocation LParenLoc,
2018                                         SourceLocation &RParenLoc) {
2019  assert(getLang().CPlusPlus && "Should only be called for C++!");
2020  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2021  assert(isTypeIdInParens() && "Not a type-id!");
2022
2023  ExprResult Result(true);
2024  CastTy = ParsedType();
2025
2026  // We need to disambiguate a very ugly part of the C++ syntax:
2027  //
2028  // (T())x;  - type-id
2029  // (T())*x; - type-id
2030  // (T())/x; - expression
2031  // (T());   - expression
2032  //
2033  // The bad news is that we cannot use the specialized tentative parser, since
2034  // it can only verify that the thing inside the parens can be parsed as
2035  // type-id, it is not useful for determining the context past the parens.
2036  //
2037  // The good news is that the parser can disambiguate this part without
2038  // making any unnecessary Action calls.
2039  //
2040  // It uses a scheme similar to parsing inline methods. The parenthesized
2041  // tokens are cached, the context that follows is determined (possibly by
2042  // parsing a cast-expression), and then we re-introduce the cached tokens
2043  // into the token stream and parse them appropriately.
2044
2045  ParenParseOption ParseAs;
2046  CachedTokens Toks;
2047
2048  // Store the tokens of the parentheses. We will parse them after we determine
2049  // the context that follows them.
2050  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2051    // We didn't find the ')' we expected.
2052    MatchRHSPunctuation(tok::r_paren, LParenLoc);
2053    return ExprError();
2054  }
2055
2056  if (Tok.is(tok::l_brace)) {
2057    ParseAs = CompoundLiteral;
2058  } else {
2059    bool NotCastExpr;
2060    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2061    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2062      NotCastExpr = true;
2063    } else {
2064      // Try parsing the cast-expression that may follow.
2065      // If it is not a cast-expression, NotCastExpr will be true and no token
2066      // will be consumed.
2067      Result = ParseCastExpression(false/*isUnaryExpression*/,
2068                                   false/*isAddressofOperand*/,
2069                                   NotCastExpr,
2070                                   ParsedType()/*TypeOfCast*/);
2071    }
2072
2073    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2074    // an expression.
2075    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2076  }
2077
2078  // The current token should go after the cached tokens.
2079  Toks.push_back(Tok);
2080  // Re-enter the stored parenthesized tokens into the token stream, so we may
2081  // parse them now.
2082  PP.EnterTokenStream(Toks.data(), Toks.size(),
2083                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2084  // Drop the current token and bring the first cached one. It's the same token
2085  // as when we entered this function.
2086  ConsumeAnyToken();
2087
2088  if (ParseAs >= CompoundLiteral) {
2089    TypeResult Ty = ParseTypeName();
2090
2091    // Match the ')'.
2092    if (Tok.is(tok::r_paren))
2093      RParenLoc = ConsumeParen();
2094    else
2095      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2096
2097    if (ParseAs == CompoundLiteral) {
2098      ExprType = CompoundLiteral;
2099      return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
2100    }
2101
2102    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2103    assert(ParseAs == CastExpr);
2104
2105    if (Ty.isInvalid())
2106      return ExprError();
2107
2108    CastTy = Ty.get();
2109
2110    // Result is what ParseCastExpression returned earlier.
2111    if (!Result.isInvalid())
2112      Result = Actions.ActOnCastExpr(getCurScope(), LParenLoc, CastTy, RParenLoc,
2113                                     Result.take());
2114    return move(Result);
2115  }
2116
2117  // Not a compound literal, and not followed by a cast-expression.
2118  assert(ParseAs == SimpleExpr);
2119
2120  ExprType = SimpleExpr;
2121  Result = ParseExpression();
2122  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2123    Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), Result.take());
2124
2125  // Match the ')'.
2126  if (Result.isInvalid()) {
2127    SkipUntil(tok::r_paren);
2128    return ExprError();
2129  }
2130
2131  if (Tok.is(tok::r_paren))
2132    RParenLoc = ConsumeParen();
2133  else
2134    MatchRHSPunctuation(tok::r_paren, LParenLoc);
2135
2136  return move(Result);
2137}
2138