ParseExprCXX.cpp revision d0ebe080eee7c37e73754068b47fd90cc506e128
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/DeclSpec.h"
17#include "clang/Parse/Template.h"
18#include "llvm/Support/ErrorHandling.h"
19
20using namespace clang;
21
22/// \brief Parse global scope or nested-name-specifier if present.
23///
24/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
25/// may be preceded by '::'). Note that this routine will not parse ::new or
26/// ::delete; it will just leave them in the token stream.
27///
28///       '::'[opt] nested-name-specifier
29///       '::'
30///
31///       nested-name-specifier:
32///         type-name '::'
33///         namespace-name '::'
34///         nested-name-specifier identifier '::'
35///         nested-name-specifier 'template'[opt] simple-template-id '::'
36///
37///
38/// \param SS the scope specifier that will be set to the parsed
39/// nested-name-specifier (or empty)
40///
41/// \param ObjectType if this nested-name-specifier is being parsed following
42/// the "." or "->" of a member access expression, this parameter provides the
43/// type of the object whose members are being accessed.
44///
45/// \param EnteringContext whether we will be entering into the context of
46/// the nested-name-specifier after parsing it.
47///
48/// \param MayBePseudoDestructor When non-NULL, points to a flag that
49/// indicates whether this nested-name-specifier may be part of a
50/// pseudo-destructor name. In this case, the flag will be set false
51/// if we don't actually end up parsing a destructor name. Moreorover,
52/// if we do end up determining that we are parsing a destructor name,
53/// the last component of the nested-name-specifier is not parsed as
54/// part of the scope specifier.
55
56/// member access expression, e.g., the \p T:: in \p p->T::m.
57///
58/// \returns true if there was an error parsing a scope specifier
59bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
60                                            Action::TypeTy *ObjectType,
61                                            bool EnteringContext,
62                                            bool *MayBePseudoDestructor) {
63  assert(getLang().CPlusPlus &&
64         "Call sites of this function should be guarded by checking for C++");
65
66  if (Tok.is(tok::annot_cxxscope)) {
67    SS.setScopeRep(Tok.getAnnotationValue());
68    SS.setRange(Tok.getAnnotationRange());
69    ConsumeToken();
70    return false;
71  }
72
73  bool HasScopeSpecifier = false;
74
75  if (Tok.is(tok::coloncolon)) {
76    // ::new and ::delete aren't nested-name-specifiers.
77    tok::TokenKind NextKind = NextToken().getKind();
78    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
79      return false;
80
81    // '::' - Global scope qualifier.
82    SourceLocation CCLoc = ConsumeToken();
83    SS.setBeginLoc(CCLoc);
84    SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
85    SS.setEndLoc(CCLoc);
86    HasScopeSpecifier = true;
87  }
88
89  bool CheckForDestructor = false;
90  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
91    CheckForDestructor = true;
92    *MayBePseudoDestructor = false;
93  }
94
95  while (true) {
96    if (HasScopeSpecifier) {
97      // C++ [basic.lookup.classref]p5:
98      //   If the qualified-id has the form
99      //
100      //       ::class-name-or-namespace-name::...
101      //
102      //   the class-name-or-namespace-name is looked up in global scope as a
103      //   class-name or namespace-name.
104      //
105      // To implement this, we clear out the object type as soon as we've
106      // seen a leading '::' or part of a nested-name-specifier.
107      ObjectType = 0;
108
109      if (Tok.is(tok::code_completion)) {
110        // Code completion for a nested-name-specifier, where the code
111        // code completion token follows the '::'.
112        Actions.CodeCompleteQualifiedId(CurScope, SS, EnteringContext);
113        ConsumeToken();
114      }
115    }
116
117    // nested-name-specifier:
118    //   nested-name-specifier 'template'[opt] simple-template-id '::'
119
120    // Parse the optional 'template' keyword, then make sure we have
121    // 'identifier <' after it.
122    if (Tok.is(tok::kw_template)) {
123      // If we don't have a scope specifier or an object type, this isn't a
124      // nested-name-specifier, since they aren't allowed to start with
125      // 'template'.
126      if (!HasScopeSpecifier && !ObjectType)
127        break;
128
129      TentativeParsingAction TPA(*this);
130      SourceLocation TemplateKWLoc = ConsumeToken();
131
132      UnqualifiedId TemplateName;
133      if (Tok.is(tok::identifier)) {
134        // Consume the identifier.
135        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
136        ConsumeToken();
137      } else if (Tok.is(tok::kw_operator)) {
138        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
139                                       TemplateName)) {
140          TPA.Commit();
141          break;
142        }
143
144        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
145            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
146          Diag(TemplateName.getSourceRange().getBegin(),
147               diag::err_id_after_template_in_nested_name_spec)
148            << TemplateName.getSourceRange();
149          TPA.Commit();
150          break;
151        }
152      } else {
153        TPA.Revert();
154        break;
155      }
156
157      // If the next token is not '<', we have a qualified-id that refers
158      // to a template name, such as T::template apply, but is not a
159      // template-id.
160      if (Tok.isNot(tok::less)) {
161        TPA.Revert();
162        break;
163      }
164
165      // Commit to parsing the template-id.
166      TPA.Commit();
167      TemplateTy Template
168        = Actions.ActOnDependentTemplateName(TemplateKWLoc, SS, TemplateName,
169                                             ObjectType, EnteringContext);
170      if (!Template)
171        return true;
172      if (AnnotateTemplateIdToken(Template, TNK_Dependent_template_name,
173                                  &SS, TemplateName, TemplateKWLoc, false))
174        return true;
175
176      continue;
177    }
178
179    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
180      // We have
181      //
182      //   simple-template-id '::'
183      //
184      // So we need to check whether the simple-template-id is of the
185      // right kind (it should name a type or be dependent), and then
186      // convert it into a type within the nested-name-specifier.
187      TemplateIdAnnotation *TemplateId
188        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
189      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
190        *MayBePseudoDestructor = true;
191        return false;
192      }
193
194      if (TemplateId->Kind == TNK_Type_template ||
195          TemplateId->Kind == TNK_Dependent_template_name) {
196        AnnotateTemplateIdTokenAsType(&SS);
197
198        assert(Tok.is(tok::annot_typename) &&
199               "AnnotateTemplateIdTokenAsType isn't working");
200        Token TypeToken = Tok;
201        ConsumeToken();
202        assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
203        SourceLocation CCLoc = ConsumeToken();
204
205        if (!HasScopeSpecifier) {
206          SS.setBeginLoc(TypeToken.getLocation());
207          HasScopeSpecifier = true;
208        }
209
210        if (TypeToken.getAnnotationValue())
211          SS.setScopeRep(
212            Actions.ActOnCXXNestedNameSpecifier(CurScope, SS,
213                                                TypeToken.getAnnotationValue(),
214                                                TypeToken.getAnnotationRange(),
215                                                CCLoc));
216        else
217          SS.setScopeRep(0);
218        SS.setEndLoc(CCLoc);
219        continue;
220      }
221
222      assert(false && "FIXME: Only type template names supported here");
223    }
224
225
226    // The rest of the nested-name-specifier possibilities start with
227    // tok::identifier.
228    if (Tok.isNot(tok::identifier))
229      break;
230
231    IdentifierInfo &II = *Tok.getIdentifierInfo();
232
233    // nested-name-specifier:
234    //   type-name '::'
235    //   namespace-name '::'
236    //   nested-name-specifier identifier '::'
237    Token Next = NextToken();
238
239    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
240    // and emit a fixit hint for it.
241    if (Next.is(tok::colon) && !ColonIsSacred) {
242      if (Actions.IsInvalidUnlessNestedName(CurScope, SS, II, ObjectType,
243                                            EnteringContext) &&
244          // If the token after the colon isn't an identifier, it's still an
245          // error, but they probably meant something else strange so don't
246          // recover like this.
247          PP.LookAhead(1).is(tok::identifier)) {
248        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
249          << FixItHint::CreateReplacement(Next.getLocation(), "::");
250
251        // Recover as if the user wrote '::'.
252        Next.setKind(tok::coloncolon);
253      }
254    }
255
256    if (Next.is(tok::coloncolon)) {
257      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
258          !Actions.isNonTypeNestedNameSpecifier(CurScope, SS, Tok.getLocation(),
259                                                II, ObjectType)) {
260        *MayBePseudoDestructor = true;
261        return false;
262      }
263
264      // We have an identifier followed by a '::'. Lookup this name
265      // as the name in a nested-name-specifier.
266      SourceLocation IdLoc = ConsumeToken();
267      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
268             "NextToken() not working properly!");
269      SourceLocation CCLoc = ConsumeToken();
270
271      if (!HasScopeSpecifier) {
272        SS.setBeginLoc(IdLoc);
273        HasScopeSpecifier = true;
274      }
275
276      if (SS.isInvalid())
277        continue;
278
279      SS.setScopeRep(
280        Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, II,
281                                            ObjectType, EnteringContext));
282      SS.setEndLoc(CCLoc);
283      continue;
284    }
285
286    // nested-name-specifier:
287    //   type-name '<'
288    if (Next.is(tok::less)) {
289      TemplateTy Template;
290      UnqualifiedId TemplateName;
291      TemplateName.setIdentifier(&II, Tok.getLocation());
292      if (TemplateNameKind TNK = Actions.isTemplateName(CurScope, SS,
293                                                        TemplateName,
294                                                        ObjectType,
295                                                        EnteringContext,
296                                                        Template)) {
297        // We have found a template name, so annotate this this token
298        // with a template-id annotation. We do not permit the
299        // template-id to be translated into a type annotation,
300        // because some clients (e.g., the parsing of class template
301        // specializations) still want to see the original template-id
302        // token.
303        ConsumeToken();
304        if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
305                                    SourceLocation(), false))
306          return true;
307        continue;
308      }
309    }
310
311    // We don't have any tokens that form the beginning of a
312    // nested-name-specifier, so we're done.
313    break;
314  }
315
316  // Even if we didn't see any pieces of a nested-name-specifier, we
317  // still check whether there is a tilde in this position, which
318  // indicates a potential pseudo-destructor.
319  if (CheckForDestructor && Tok.is(tok::tilde))
320    *MayBePseudoDestructor = true;
321
322  return false;
323}
324
325/// ParseCXXIdExpression - Handle id-expression.
326///
327///       id-expression:
328///         unqualified-id
329///         qualified-id
330///
331///       qualified-id:
332///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
333///         '::' identifier
334///         '::' operator-function-id
335///         '::' template-id
336///
337/// NOTE: The standard specifies that, for qualified-id, the parser does not
338/// expect:
339///
340///   '::' conversion-function-id
341///   '::' '~' class-name
342///
343/// This may cause a slight inconsistency on diagnostics:
344///
345/// class C {};
346/// namespace A {}
347/// void f() {
348///   :: A :: ~ C(); // Some Sema error about using destructor with a
349///                  // namespace.
350///   :: ~ C(); // Some Parser error like 'unexpected ~'.
351/// }
352///
353/// We simplify the parser a bit and make it work like:
354///
355///       qualified-id:
356///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
357///         '::' unqualified-id
358///
359/// That way Sema can handle and report similar errors for namespaces and the
360/// global scope.
361///
362/// The isAddressOfOperand parameter indicates that this id-expression is a
363/// direct operand of the address-of operator. This is, besides member contexts,
364/// the only place where a qualified-id naming a non-static class member may
365/// appear.
366///
367Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
368  // qualified-id:
369  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
370  //   '::' unqualified-id
371  //
372  CXXScopeSpec SS;
373  ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false);
374
375  UnqualifiedId Name;
376  if (ParseUnqualifiedId(SS,
377                         /*EnteringContext=*/false,
378                         /*AllowDestructorName=*/false,
379                         /*AllowConstructorName=*/false,
380                         /*ObjectType=*/0,
381                         Name))
382    return ExprError();
383
384  // This is only the direct operand of an & operator if it is not
385  // followed by a postfix-expression suffix.
386  if (isAddressOfOperand) {
387    switch (Tok.getKind()) {
388    case tok::l_square:
389    case tok::l_paren:
390    case tok::arrow:
391    case tok::period:
392    case tok::plusplus:
393    case tok::minusminus:
394      isAddressOfOperand = false;
395      break;
396
397    default:
398      break;
399    }
400  }
401
402  return Actions.ActOnIdExpression(CurScope, SS, Name, Tok.is(tok::l_paren),
403                                   isAddressOfOperand);
404
405}
406
407/// ParseCXXCasts - This handles the various ways to cast expressions to another
408/// type.
409///
410///       postfix-expression: [C++ 5.2p1]
411///         'dynamic_cast' '<' type-name '>' '(' expression ')'
412///         'static_cast' '<' type-name '>' '(' expression ')'
413///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
414///         'const_cast' '<' type-name '>' '(' expression ')'
415///
416Parser::OwningExprResult Parser::ParseCXXCasts() {
417  tok::TokenKind Kind = Tok.getKind();
418  const char *CastName = 0;     // For error messages
419
420  switch (Kind) {
421  default: assert(0 && "Unknown C++ cast!"); abort();
422  case tok::kw_const_cast:       CastName = "const_cast";       break;
423  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
424  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
425  case tok::kw_static_cast:      CastName = "static_cast";      break;
426  }
427
428  SourceLocation OpLoc = ConsumeToken();
429  SourceLocation LAngleBracketLoc = Tok.getLocation();
430
431  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
432    return ExprError();
433
434  TypeResult CastTy = ParseTypeName();
435  SourceLocation RAngleBracketLoc = Tok.getLocation();
436
437  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
438    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
439
440  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
441
442  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
443    return ExprError();
444
445  OwningExprResult Result = ParseExpression();
446
447  // Match the ')'.
448  RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
449
450  if (!Result.isInvalid() && !CastTy.isInvalid())
451    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
452                                       LAngleBracketLoc, CastTy.get(),
453                                       RAngleBracketLoc,
454                                       LParenLoc, move(Result), RParenLoc);
455
456  return move(Result);
457}
458
459/// ParseCXXTypeid - This handles the C++ typeid expression.
460///
461///       postfix-expression: [C++ 5.2p1]
462///         'typeid' '(' expression ')'
463///         'typeid' '(' type-id ')'
464///
465Parser::OwningExprResult Parser::ParseCXXTypeid() {
466  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
467
468  SourceLocation OpLoc = ConsumeToken();
469  SourceLocation LParenLoc = Tok.getLocation();
470  SourceLocation RParenLoc;
471
472  // typeid expressions are always parenthesized.
473  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
474      "typeid"))
475    return ExprError();
476
477  OwningExprResult Result(Actions);
478
479  if (isTypeIdInParens()) {
480    TypeResult Ty = ParseTypeName();
481
482    // Match the ')'.
483    MatchRHSPunctuation(tok::r_paren, LParenLoc);
484
485    if (Ty.isInvalid())
486      return ExprError();
487
488    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
489                                    Ty.get(), RParenLoc);
490  } else {
491    // C++0x [expr.typeid]p3:
492    //   When typeid is applied to an expression other than an lvalue of a
493    //   polymorphic class type [...] The expression is an unevaluated
494    //   operand (Clause 5).
495    //
496    // Note that we can't tell whether the expression is an lvalue of a
497    // polymorphic class type until after we've parsed the expression, so
498    // we the expression is potentially potentially evaluated.
499    EnterExpressionEvaluationContext Unevaluated(Actions,
500                                       Action::PotentiallyPotentiallyEvaluated);
501    Result = ParseExpression();
502
503    // Match the ')'.
504    if (Result.isInvalid())
505      SkipUntil(tok::r_paren);
506    else {
507      MatchRHSPunctuation(tok::r_paren, LParenLoc);
508
509      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
510                                      Result.release(), RParenLoc);
511    }
512  }
513
514  return move(Result);
515}
516
517/// \brief Parse a C++ pseudo-destructor expression after the base,
518/// . or -> operator, and nested-name-specifier have already been
519/// parsed.
520///
521///       postfix-expression: [C++ 5.2]
522///         postfix-expression . pseudo-destructor-name
523///         postfix-expression -> pseudo-destructor-name
524///
525///       pseudo-destructor-name:
526///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
527///         ::[opt] nested-name-specifier template simple-template-id ::
528///                 ~type-name
529///         ::[opt] nested-name-specifier[opt] ~type-name
530///
531Parser::OwningExprResult
532Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
533                                 tok::TokenKind OpKind,
534                                 CXXScopeSpec &SS,
535                                 Action::TypeTy *ObjectType) {
536  // We're parsing either a pseudo-destructor-name or a dependent
537  // member access that has the same form as a
538  // pseudo-destructor-name. We parse both in the same way and let
539  // the action model sort them out.
540  //
541  // Note that the ::[opt] nested-name-specifier[opt] has already
542  // been parsed, and if there was a simple-template-id, it has
543  // been coalesced into a template-id annotation token.
544  UnqualifiedId FirstTypeName;
545  SourceLocation CCLoc;
546  if (Tok.is(tok::identifier)) {
547    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
548    ConsumeToken();
549    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
550    CCLoc = ConsumeToken();
551  } else if (Tok.is(tok::annot_template_id)) {
552    FirstTypeName.setTemplateId(
553                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
554    ConsumeToken();
555    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
556    CCLoc = ConsumeToken();
557  } else {
558    FirstTypeName.setIdentifier(0, SourceLocation());
559  }
560
561  // Parse the tilde.
562  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
563  SourceLocation TildeLoc = ConsumeToken();
564  if (!Tok.is(tok::identifier)) {
565    Diag(Tok, diag::err_destructor_tilde_identifier);
566    return ExprError();
567  }
568
569  // Parse the second type.
570  UnqualifiedId SecondTypeName;
571  IdentifierInfo *Name = Tok.getIdentifierInfo();
572  SourceLocation NameLoc = ConsumeToken();
573  SecondTypeName.setIdentifier(Name, NameLoc);
574
575  // If there is a '<', the second type name is a template-id. Parse
576  // it as such.
577  if (Tok.is(tok::less) &&
578      ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
579                                   SecondTypeName, /*AssumeTemplateName=*/true))
580    return ExprError();
581
582  return Actions.ActOnPseudoDestructorExpr(CurScope, move(Base), OpLoc, OpKind,
583                                           SS, FirstTypeName, CCLoc,
584                                           TildeLoc, SecondTypeName,
585                                           Tok.is(tok::l_paren));
586}
587
588/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
589///
590///       boolean-literal: [C++ 2.13.5]
591///         'true'
592///         'false'
593Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
594  tok::TokenKind Kind = Tok.getKind();
595  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
596}
597
598/// ParseThrowExpression - This handles the C++ throw expression.
599///
600///       throw-expression: [C++ 15]
601///         'throw' assignment-expression[opt]
602Parser::OwningExprResult Parser::ParseThrowExpression() {
603  assert(Tok.is(tok::kw_throw) && "Not throw!");
604  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
605
606  // If the current token isn't the start of an assignment-expression,
607  // then the expression is not present.  This handles things like:
608  //   "C ? throw : (void)42", which is crazy but legal.
609  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
610  case tok::semi:
611  case tok::r_paren:
612  case tok::r_square:
613  case tok::r_brace:
614  case tok::colon:
615  case tok::comma:
616    return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions));
617
618  default:
619    OwningExprResult Expr(ParseAssignmentExpression());
620    if (Expr.isInvalid()) return move(Expr);
621    return Actions.ActOnCXXThrow(ThrowLoc, move(Expr));
622  }
623}
624
625/// ParseCXXThis - This handles the C++ 'this' pointer.
626///
627/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
628/// a non-lvalue expression whose value is the address of the object for which
629/// the function is called.
630Parser::OwningExprResult Parser::ParseCXXThis() {
631  assert(Tok.is(tok::kw_this) && "Not 'this'!");
632  SourceLocation ThisLoc = ConsumeToken();
633  return Actions.ActOnCXXThis(ThisLoc);
634}
635
636/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
637/// Can be interpreted either as function-style casting ("int(x)")
638/// or class type construction ("ClassType(x,y,z)")
639/// or creation of a value-initialized type ("int()").
640///
641///       postfix-expression: [C++ 5.2p1]
642///         simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
643///         typename-specifier '(' expression-list[opt] ')'         [TODO]
644///
645Parser::OwningExprResult
646Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
647  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
648  TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get();
649
650  assert(Tok.is(tok::l_paren) && "Expected '('!");
651  SourceLocation LParenLoc = ConsumeParen();
652
653  ExprVector Exprs(Actions);
654  CommaLocsTy CommaLocs;
655
656  if (Tok.isNot(tok::r_paren)) {
657    if (ParseExpressionList(Exprs, CommaLocs)) {
658      SkipUntil(tok::r_paren);
659      return ExprError();
660    }
661  }
662
663  // Match the ')'.
664  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
665
666  // TypeRep could be null, if it references an invalid typedef.
667  if (!TypeRep)
668    return ExprError();
669
670  assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
671         "Unexpected number of commas!");
672  return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
673                                           LParenLoc, move_arg(Exprs),
674                                           CommaLocs.data(), RParenLoc);
675}
676
677/// ParseCXXCondition - if/switch/while condition expression.
678///
679///       condition:
680///         expression
681///         type-specifier-seq declarator '=' assignment-expression
682/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
683///             '=' assignment-expression
684///
685/// \param ExprResult if the condition was parsed as an expression, the
686/// parsed expression.
687///
688/// \param DeclResult if the condition was parsed as a declaration, the
689/// parsed declaration.
690///
691/// \returns true if there was a parsing, false otherwise.
692bool Parser::ParseCXXCondition(OwningExprResult &ExprResult,
693                               DeclPtrTy &DeclResult) {
694  if (Tok.is(tok::code_completion)) {
695    Actions.CodeCompleteOrdinaryName(CurScope, Action::CCC_Condition);
696    ConsumeToken();
697  }
698
699  if (!isCXXConditionDeclaration()) {
700    ExprResult = ParseExpression(); // expression
701    DeclResult = DeclPtrTy();
702    return ExprResult.isInvalid();
703  }
704
705  // type-specifier-seq
706  DeclSpec DS;
707  ParseSpecifierQualifierList(DS);
708
709  // declarator
710  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
711  ParseDeclarator(DeclaratorInfo);
712
713  // simple-asm-expr[opt]
714  if (Tok.is(tok::kw_asm)) {
715    SourceLocation Loc;
716    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
717    if (AsmLabel.isInvalid()) {
718      SkipUntil(tok::semi);
719      return true;
720    }
721    DeclaratorInfo.setAsmLabel(AsmLabel.release());
722    DeclaratorInfo.SetRangeEnd(Loc);
723  }
724
725  // If attributes are present, parse them.
726  if (Tok.is(tok::kw___attribute)) {
727    SourceLocation Loc;
728    AttributeList *AttrList = ParseGNUAttributes(&Loc);
729    DeclaratorInfo.AddAttributes(AttrList, Loc);
730  }
731
732  // Type-check the declaration itself.
733  Action::DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(CurScope,
734                                                                DeclaratorInfo);
735  DeclResult = Dcl.get();
736  ExprResult = ExprError();
737
738  // '=' assignment-expression
739  if (Tok.is(tok::equal)) {
740    SourceLocation EqualLoc = ConsumeToken();
741    OwningExprResult AssignExpr(ParseAssignmentExpression());
742    if (!AssignExpr.isInvalid())
743      Actions.AddInitializerToDecl(DeclResult, move(AssignExpr));
744  } else {
745    // FIXME: C++0x allows a braced-init-list
746    Diag(Tok, diag::err_expected_equal_after_declarator);
747  }
748
749  return false;
750}
751
752/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
753/// This should only be called when the current token is known to be part of
754/// simple-type-specifier.
755///
756///       simple-type-specifier:
757///         '::'[opt] nested-name-specifier[opt] type-name
758///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
759///         char
760///         wchar_t
761///         bool
762///         short
763///         int
764///         long
765///         signed
766///         unsigned
767///         float
768///         double
769///         void
770/// [GNU]   typeof-specifier
771/// [C++0x] auto               [TODO]
772///
773///       type-name:
774///         class-name
775///         enum-name
776///         typedef-name
777///
778void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
779  DS.SetRangeStart(Tok.getLocation());
780  const char *PrevSpec;
781  unsigned DiagID;
782  SourceLocation Loc = Tok.getLocation();
783
784  switch (Tok.getKind()) {
785  case tok::identifier:   // foo::bar
786  case tok::coloncolon:   // ::foo::bar
787    assert(0 && "Annotation token should already be formed!");
788  default:
789    assert(0 && "Not a simple-type-specifier token!");
790    abort();
791
792  // type-name
793  case tok::annot_typename: {
794    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
795                       Tok.getAnnotationValue());
796    break;
797  }
798
799  // builtin types
800  case tok::kw_short:
801    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
802    break;
803  case tok::kw_long:
804    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
805    break;
806  case tok::kw_signed:
807    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
808    break;
809  case tok::kw_unsigned:
810    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
811    break;
812  case tok::kw_void:
813    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
814    break;
815  case tok::kw_char:
816    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
817    break;
818  case tok::kw_int:
819    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
820    break;
821  case tok::kw_float:
822    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
823    break;
824  case tok::kw_double:
825    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
826    break;
827  case tok::kw_wchar_t:
828    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
829    break;
830  case tok::kw_char16_t:
831    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
832    break;
833  case tok::kw_char32_t:
834    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
835    break;
836  case tok::kw_bool:
837    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
838    break;
839
840  // GNU typeof support.
841  case tok::kw_typeof:
842    ParseTypeofSpecifier(DS);
843    DS.Finish(Diags, PP);
844    return;
845  }
846  if (Tok.is(tok::annot_typename))
847    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
848  else
849    DS.SetRangeEnd(Tok.getLocation());
850  ConsumeToken();
851  DS.Finish(Diags, PP);
852}
853
854/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
855/// [dcl.name]), which is a non-empty sequence of type-specifiers,
856/// e.g., "const short int". Note that the DeclSpec is *not* finished
857/// by parsing the type-specifier-seq, because these sequences are
858/// typically followed by some form of declarator. Returns true and
859/// emits diagnostics if this is not a type-specifier-seq, false
860/// otherwise.
861///
862///   type-specifier-seq: [C++ 8.1]
863///     type-specifier type-specifier-seq[opt]
864///
865bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
866  DS.SetRangeStart(Tok.getLocation());
867  const char *PrevSpec = 0;
868  unsigned DiagID;
869  bool isInvalid = 0;
870
871  // Parse one or more of the type specifiers.
872  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
873      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
874    Diag(Tok, diag::err_operator_missing_type_specifier);
875    return true;
876  }
877
878  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
879         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
880  {}
881
882  DS.Finish(Diags, PP);
883  return false;
884}
885
886/// \brief Finish parsing a C++ unqualified-id that is a template-id of
887/// some form.
888///
889/// This routine is invoked when a '<' is encountered after an identifier or
890/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
891/// whether the unqualified-id is actually a template-id. This routine will
892/// then parse the template arguments and form the appropriate template-id to
893/// return to the caller.
894///
895/// \param SS the nested-name-specifier that precedes this template-id, if
896/// we're actually parsing a qualified-id.
897///
898/// \param Name for constructor and destructor names, this is the actual
899/// identifier that may be a template-name.
900///
901/// \param NameLoc the location of the class-name in a constructor or
902/// destructor.
903///
904/// \param EnteringContext whether we're entering the scope of the
905/// nested-name-specifier.
906///
907/// \param ObjectType if this unqualified-id occurs within a member access
908/// expression, the type of the base object whose member is being accessed.
909///
910/// \param Id as input, describes the template-name or operator-function-id
911/// that precedes the '<'. If template arguments were parsed successfully,
912/// will be updated with the template-id.
913///
914/// \param AssumeTemplateId When true, this routine will assume that the name
915/// refers to a template without performing name lookup to verify.
916///
917/// \returns true if a parse error occurred, false otherwise.
918bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
919                                          IdentifierInfo *Name,
920                                          SourceLocation NameLoc,
921                                          bool EnteringContext,
922                                          TypeTy *ObjectType,
923                                          UnqualifiedId &Id,
924                                          bool AssumeTemplateId) {
925  assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
926
927  TemplateTy Template;
928  TemplateNameKind TNK = TNK_Non_template;
929  switch (Id.getKind()) {
930  case UnqualifiedId::IK_Identifier:
931  case UnqualifiedId::IK_OperatorFunctionId:
932  case UnqualifiedId::IK_LiteralOperatorId:
933    if (AssumeTemplateId) {
934      Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
935                                                    Id, ObjectType,
936                                                    EnteringContext);
937      TNK = TNK_Dependent_template_name;
938      if (!Template.get())
939        return true;
940    } else
941      TNK = Actions.isTemplateName(CurScope, SS, Id, ObjectType,
942                                   EnteringContext, Template);
943    break;
944
945  case UnqualifiedId::IK_ConstructorName: {
946    UnqualifiedId TemplateName;
947    TemplateName.setIdentifier(Name, NameLoc);
948    TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
949                                 EnteringContext, Template);
950    break;
951  }
952
953  case UnqualifiedId::IK_DestructorName: {
954    UnqualifiedId TemplateName;
955    TemplateName.setIdentifier(Name, NameLoc);
956    if (ObjectType) {
957      Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
958                                                    TemplateName, ObjectType,
959                                                    EnteringContext);
960      TNK = TNK_Dependent_template_name;
961      if (!Template.get())
962        return true;
963    } else {
964      TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
965                                   EnteringContext, Template);
966
967      if (TNK == TNK_Non_template && Id.DestructorName == 0) {
968        Diag(NameLoc, diag::err_destructor_template_id)
969          << Name << SS.getRange();
970        return true;
971      }
972    }
973    break;
974  }
975
976  default:
977    return false;
978  }
979
980  if (TNK == TNK_Non_template)
981    return false;
982
983  // Parse the enclosed template argument list.
984  SourceLocation LAngleLoc, RAngleLoc;
985  TemplateArgList TemplateArgs;
986  if (ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
987                                       &SS, true, LAngleLoc,
988                                       TemplateArgs,
989                                       RAngleLoc))
990    return true;
991
992  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
993      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
994      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
995    // Form a parsed representation of the template-id to be stored in the
996    // UnqualifiedId.
997    TemplateIdAnnotation *TemplateId
998      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
999
1000    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1001      TemplateId->Name = Id.Identifier;
1002      TemplateId->Operator = OO_None;
1003      TemplateId->TemplateNameLoc = Id.StartLocation;
1004    } else {
1005      TemplateId->Name = 0;
1006      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1007      TemplateId->TemplateNameLoc = Id.StartLocation;
1008    }
1009
1010    TemplateId->Template = Template.getAs<void*>();
1011    TemplateId->Kind = TNK;
1012    TemplateId->LAngleLoc = LAngleLoc;
1013    TemplateId->RAngleLoc = RAngleLoc;
1014    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1015    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1016         Arg != ArgEnd; ++Arg)
1017      Args[Arg] = TemplateArgs[Arg];
1018
1019    Id.setTemplateId(TemplateId);
1020    return false;
1021  }
1022
1023  // Bundle the template arguments together.
1024  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1025                                     TemplateArgs.size());
1026
1027  // Constructor and destructor names.
1028  Action::TypeResult Type
1029    = Actions.ActOnTemplateIdType(Template, NameLoc,
1030                                  LAngleLoc, TemplateArgsPtr,
1031                                  RAngleLoc);
1032  if (Type.isInvalid())
1033    return true;
1034
1035  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1036    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1037  else
1038    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1039
1040  return false;
1041}
1042
1043/// \brief Parse an operator-function-id or conversion-function-id as part
1044/// of a C++ unqualified-id.
1045///
1046/// This routine is responsible only for parsing the operator-function-id or
1047/// conversion-function-id; it does not handle template arguments in any way.
1048///
1049/// \code
1050///       operator-function-id: [C++ 13.5]
1051///         'operator' operator
1052///
1053///       operator: one of
1054///            new   delete  new[]   delete[]
1055///            +     -    *  /    %  ^    &   |   ~
1056///            !     =    <  >    += -=   *=  /=  %=
1057///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1058///            <=    >=   && ||   ++ --   ,   ->* ->
1059///            ()    []
1060///
1061///       conversion-function-id: [C++ 12.3.2]
1062///         operator conversion-type-id
1063///
1064///       conversion-type-id:
1065///         type-specifier-seq conversion-declarator[opt]
1066///
1067///       conversion-declarator:
1068///         ptr-operator conversion-declarator[opt]
1069/// \endcode
1070///
1071/// \param The nested-name-specifier that preceded this unqualified-id. If
1072/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1073///
1074/// \param EnteringContext whether we are entering the scope of the
1075/// nested-name-specifier.
1076///
1077/// \param ObjectType if this unqualified-id occurs within a member access
1078/// expression, the type of the base object whose member is being accessed.
1079///
1080/// \param Result on a successful parse, contains the parsed unqualified-id.
1081///
1082/// \returns true if parsing fails, false otherwise.
1083bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1084                                        TypeTy *ObjectType,
1085                                        UnqualifiedId &Result) {
1086  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1087
1088  // Consume the 'operator' keyword.
1089  SourceLocation KeywordLoc = ConsumeToken();
1090
1091  // Determine what kind of operator name we have.
1092  unsigned SymbolIdx = 0;
1093  SourceLocation SymbolLocations[3];
1094  OverloadedOperatorKind Op = OO_None;
1095  switch (Tok.getKind()) {
1096    case tok::kw_new:
1097    case tok::kw_delete: {
1098      bool isNew = Tok.getKind() == tok::kw_new;
1099      // Consume the 'new' or 'delete'.
1100      SymbolLocations[SymbolIdx++] = ConsumeToken();
1101      if (Tok.is(tok::l_square)) {
1102        // Consume the '['.
1103        SourceLocation LBracketLoc = ConsumeBracket();
1104        // Consume the ']'.
1105        SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1106                                                         LBracketLoc);
1107        if (RBracketLoc.isInvalid())
1108          return true;
1109
1110        SymbolLocations[SymbolIdx++] = LBracketLoc;
1111        SymbolLocations[SymbolIdx++] = RBracketLoc;
1112        Op = isNew? OO_Array_New : OO_Array_Delete;
1113      } else {
1114        Op = isNew? OO_New : OO_Delete;
1115      }
1116      break;
1117    }
1118
1119#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1120    case tok::Token:                                                     \
1121      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1122      Op = OO_##Name;                                                    \
1123      break;
1124#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1125#include "clang/Basic/OperatorKinds.def"
1126
1127    case tok::l_paren: {
1128      // Consume the '('.
1129      SourceLocation LParenLoc = ConsumeParen();
1130      // Consume the ')'.
1131      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1132                                                     LParenLoc);
1133      if (RParenLoc.isInvalid())
1134        return true;
1135
1136      SymbolLocations[SymbolIdx++] = LParenLoc;
1137      SymbolLocations[SymbolIdx++] = RParenLoc;
1138      Op = OO_Call;
1139      break;
1140    }
1141
1142    case tok::l_square: {
1143      // Consume the '['.
1144      SourceLocation LBracketLoc = ConsumeBracket();
1145      // Consume the ']'.
1146      SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1147                                                       LBracketLoc);
1148      if (RBracketLoc.isInvalid())
1149        return true;
1150
1151      SymbolLocations[SymbolIdx++] = LBracketLoc;
1152      SymbolLocations[SymbolIdx++] = RBracketLoc;
1153      Op = OO_Subscript;
1154      break;
1155    }
1156
1157    case tok::code_completion: {
1158      // Code completion for the operator name.
1159      Actions.CodeCompleteOperatorName(CurScope);
1160
1161      // Consume the operator token.
1162      ConsumeToken();
1163
1164      // Don't try to parse any further.
1165      return true;
1166    }
1167
1168    default:
1169      break;
1170  }
1171
1172  if (Op != OO_None) {
1173    // We have parsed an operator-function-id.
1174    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1175    return false;
1176  }
1177
1178  // Parse a literal-operator-id.
1179  //
1180  //   literal-operator-id: [C++0x 13.5.8]
1181  //     operator "" identifier
1182
1183  if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1184    if (Tok.getLength() != 2)
1185      Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1186    ConsumeStringToken();
1187
1188    if (Tok.isNot(tok::identifier)) {
1189      Diag(Tok.getLocation(), diag::err_expected_ident);
1190      return true;
1191    }
1192
1193    IdentifierInfo *II = Tok.getIdentifierInfo();
1194    Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1195    return false;
1196  }
1197
1198  // Parse a conversion-function-id.
1199  //
1200  //   conversion-function-id: [C++ 12.3.2]
1201  //     operator conversion-type-id
1202  //
1203  //   conversion-type-id:
1204  //     type-specifier-seq conversion-declarator[opt]
1205  //
1206  //   conversion-declarator:
1207  //     ptr-operator conversion-declarator[opt]
1208
1209  // Parse the type-specifier-seq.
1210  DeclSpec DS;
1211  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1212    return true;
1213
1214  // Parse the conversion-declarator, which is merely a sequence of
1215  // ptr-operators.
1216  Declarator D(DS, Declarator::TypeNameContext);
1217  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1218
1219  // Finish up the type.
1220  Action::TypeResult Ty = Actions.ActOnTypeName(CurScope, D);
1221  if (Ty.isInvalid())
1222    return true;
1223
1224  // Note that this is a conversion-function-id.
1225  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1226                                 D.getSourceRange().getEnd());
1227  return false;
1228}
1229
1230/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1231/// name of an entity.
1232///
1233/// \code
1234///       unqualified-id: [C++ expr.prim.general]
1235///         identifier
1236///         operator-function-id
1237///         conversion-function-id
1238/// [C++0x] literal-operator-id [TODO]
1239///         ~ class-name
1240///         template-id
1241///
1242/// \endcode
1243///
1244/// \param The nested-name-specifier that preceded this unqualified-id. If
1245/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1246///
1247/// \param EnteringContext whether we are entering the scope of the
1248/// nested-name-specifier.
1249///
1250/// \param AllowDestructorName whether we allow parsing of a destructor name.
1251///
1252/// \param AllowConstructorName whether we allow parsing a constructor name.
1253///
1254/// \param ObjectType if this unqualified-id occurs within a member access
1255/// expression, the type of the base object whose member is being accessed.
1256///
1257/// \param Result on a successful parse, contains the parsed unqualified-id.
1258///
1259/// \returns true if parsing fails, false otherwise.
1260bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1261                                bool AllowDestructorName,
1262                                bool AllowConstructorName,
1263                                TypeTy *ObjectType,
1264                                UnqualifiedId &Result) {
1265  // unqualified-id:
1266  //   identifier
1267  //   template-id (when it hasn't already been annotated)
1268  if (Tok.is(tok::identifier)) {
1269    // Consume the identifier.
1270    IdentifierInfo *Id = Tok.getIdentifierInfo();
1271    SourceLocation IdLoc = ConsumeToken();
1272
1273    if (!getLang().CPlusPlus) {
1274      // If we're not in C++, only identifiers matter. Record the
1275      // identifier and return.
1276      Result.setIdentifier(Id, IdLoc);
1277      return false;
1278    }
1279
1280    if (AllowConstructorName &&
1281        Actions.isCurrentClassName(*Id, CurScope, &SS)) {
1282      // We have parsed a constructor name.
1283      Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, CurScope,
1284                                                    &SS, false),
1285                                IdLoc, IdLoc);
1286    } else {
1287      // We have parsed an identifier.
1288      Result.setIdentifier(Id, IdLoc);
1289    }
1290
1291    // If the next token is a '<', we may have a template.
1292    if (Tok.is(tok::less))
1293      return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1294                                          ObjectType, Result);
1295
1296    return false;
1297  }
1298
1299  // unqualified-id:
1300  //   template-id (already parsed and annotated)
1301  if (Tok.is(tok::annot_template_id)) {
1302    TemplateIdAnnotation *TemplateId
1303      = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1304
1305    // If the template-name names the current class, then this is a constructor
1306    if (AllowConstructorName && TemplateId->Name &&
1307        Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) {
1308      if (SS.isSet()) {
1309        // C++ [class.qual]p2 specifies that a qualified template-name
1310        // is taken as the constructor name where a constructor can be
1311        // declared. Thus, the template arguments are extraneous, so
1312        // complain about them and remove them entirely.
1313        Diag(TemplateId->TemplateNameLoc,
1314             diag::err_out_of_line_constructor_template_id)
1315          << TemplateId->Name
1316          << FixItHint::CreateRemoval(
1317                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1318        Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1319                                                  TemplateId->TemplateNameLoc,
1320                                                      CurScope,
1321                                                      &SS, false),
1322                                  TemplateId->TemplateNameLoc,
1323                                  TemplateId->RAngleLoc);
1324        TemplateId->Destroy();
1325        ConsumeToken();
1326        return false;
1327      }
1328
1329      Result.setConstructorTemplateId(TemplateId);
1330      ConsumeToken();
1331      return false;
1332    }
1333
1334    // We have already parsed a template-id; consume the annotation token as
1335    // our unqualified-id.
1336    Result.setTemplateId(TemplateId);
1337    ConsumeToken();
1338    return false;
1339  }
1340
1341  // unqualified-id:
1342  //   operator-function-id
1343  //   conversion-function-id
1344  if (Tok.is(tok::kw_operator)) {
1345    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1346      return true;
1347
1348    // If we have an operator-function-id or a literal-operator-id and the next
1349    // token is a '<', we may have a
1350    //
1351    //   template-id:
1352    //     operator-function-id < template-argument-list[opt] >
1353    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1354         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1355        Tok.is(tok::less))
1356      return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1357                                          EnteringContext, ObjectType,
1358                                          Result);
1359
1360    return false;
1361  }
1362
1363  if (getLang().CPlusPlus &&
1364      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1365    // C++ [expr.unary.op]p10:
1366    //   There is an ambiguity in the unary-expression ~X(), where X is a
1367    //   class-name. The ambiguity is resolved in favor of treating ~ as a
1368    //    unary complement rather than treating ~X as referring to a destructor.
1369
1370    // Parse the '~'.
1371    SourceLocation TildeLoc = ConsumeToken();
1372
1373    // Parse the class-name.
1374    if (Tok.isNot(tok::identifier)) {
1375      Diag(Tok, diag::err_destructor_tilde_identifier);
1376      return true;
1377    }
1378
1379    // Parse the class-name (or template-name in a simple-template-id).
1380    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1381    SourceLocation ClassNameLoc = ConsumeToken();
1382
1383    if (Tok.is(tok::less)) {
1384      Result.setDestructorName(TildeLoc, 0, ClassNameLoc);
1385      return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1386                                          EnteringContext, ObjectType, Result);
1387    }
1388
1389    // Note that this is a destructor name.
1390    Action::TypeTy *Ty = Actions.getDestructorName(TildeLoc, *ClassName,
1391                                                   ClassNameLoc, CurScope,
1392                                                   SS, ObjectType,
1393                                                   EnteringContext);
1394    if (!Ty)
1395      return true;
1396
1397    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1398    return false;
1399  }
1400
1401  Diag(Tok, diag::err_expected_unqualified_id)
1402    << getLang().CPlusPlus;
1403  return true;
1404}
1405
1406/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1407/// memory in a typesafe manner and call constructors.
1408///
1409/// This method is called to parse the new expression after the optional :: has
1410/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
1411/// is its location.  Otherwise, "Start" is the location of the 'new' token.
1412///
1413///        new-expression:
1414///                   '::'[opt] 'new' new-placement[opt] new-type-id
1415///                                     new-initializer[opt]
1416///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1417///                                     new-initializer[opt]
1418///
1419///        new-placement:
1420///                   '(' expression-list ')'
1421///
1422///        new-type-id:
1423///                   type-specifier-seq new-declarator[opt]
1424///
1425///        new-declarator:
1426///                   ptr-operator new-declarator[opt]
1427///                   direct-new-declarator
1428///
1429///        new-initializer:
1430///                   '(' expression-list[opt] ')'
1431/// [C++0x]           braced-init-list                                   [TODO]
1432///
1433Parser::OwningExprResult
1434Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1435  assert(Tok.is(tok::kw_new) && "expected 'new' token");
1436  ConsumeToken();   // Consume 'new'
1437
1438  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1439  // second form of new-expression. It can't be a new-type-id.
1440
1441  ExprVector PlacementArgs(Actions);
1442  SourceLocation PlacementLParen, PlacementRParen;
1443
1444  bool ParenTypeId;
1445  DeclSpec DS;
1446  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1447  if (Tok.is(tok::l_paren)) {
1448    // If it turns out to be a placement, we change the type location.
1449    PlacementLParen = ConsumeParen();
1450    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1451      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1452      return ExprError();
1453    }
1454
1455    PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1456    if (PlacementRParen.isInvalid()) {
1457      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1458      return ExprError();
1459    }
1460
1461    if (PlacementArgs.empty()) {
1462      // Reset the placement locations. There was no placement.
1463      PlacementLParen = PlacementRParen = SourceLocation();
1464      ParenTypeId = true;
1465    } else {
1466      // We still need the type.
1467      if (Tok.is(tok::l_paren)) {
1468        SourceLocation LParen = ConsumeParen();
1469        ParseSpecifierQualifierList(DS);
1470        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1471        ParseDeclarator(DeclaratorInfo);
1472        MatchRHSPunctuation(tok::r_paren, LParen);
1473        ParenTypeId = true;
1474      } else {
1475        if (ParseCXXTypeSpecifierSeq(DS))
1476          DeclaratorInfo.setInvalidType(true);
1477        else {
1478          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1479          ParseDeclaratorInternal(DeclaratorInfo,
1480                                  &Parser::ParseDirectNewDeclarator);
1481        }
1482        ParenTypeId = false;
1483      }
1484    }
1485  } else {
1486    // A new-type-id is a simplified type-id, where essentially the
1487    // direct-declarator is replaced by a direct-new-declarator.
1488    if (ParseCXXTypeSpecifierSeq(DS))
1489      DeclaratorInfo.setInvalidType(true);
1490    else {
1491      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1492      ParseDeclaratorInternal(DeclaratorInfo,
1493                              &Parser::ParseDirectNewDeclarator);
1494    }
1495    ParenTypeId = false;
1496  }
1497  if (DeclaratorInfo.isInvalidType()) {
1498    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1499    return ExprError();
1500  }
1501
1502  ExprVector ConstructorArgs(Actions);
1503  SourceLocation ConstructorLParen, ConstructorRParen;
1504
1505  if (Tok.is(tok::l_paren)) {
1506    ConstructorLParen = ConsumeParen();
1507    if (Tok.isNot(tok::r_paren)) {
1508      CommaLocsTy CommaLocs;
1509      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1510        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1511        return ExprError();
1512      }
1513    }
1514    ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1515    if (ConstructorRParen.isInvalid()) {
1516      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1517      return ExprError();
1518    }
1519  }
1520
1521  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1522                             move_arg(PlacementArgs), PlacementRParen,
1523                             ParenTypeId, DeclaratorInfo, ConstructorLParen,
1524                             move_arg(ConstructorArgs), ConstructorRParen);
1525}
1526
1527/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1528/// passed to ParseDeclaratorInternal.
1529///
1530///        direct-new-declarator:
1531///                   '[' expression ']'
1532///                   direct-new-declarator '[' constant-expression ']'
1533///
1534void Parser::ParseDirectNewDeclarator(Declarator &D) {
1535  // Parse the array dimensions.
1536  bool first = true;
1537  while (Tok.is(tok::l_square)) {
1538    SourceLocation LLoc = ConsumeBracket();
1539    OwningExprResult Size(first ? ParseExpression()
1540                                : ParseConstantExpression());
1541    if (Size.isInvalid()) {
1542      // Recover
1543      SkipUntil(tok::r_square);
1544      return;
1545    }
1546    first = false;
1547
1548    SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1549    D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
1550                                            Size.release(), LLoc, RLoc),
1551                  RLoc);
1552
1553    if (RLoc.isInvalid())
1554      return;
1555  }
1556}
1557
1558/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1559/// This ambiguity appears in the syntax of the C++ new operator.
1560///
1561///        new-expression:
1562///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1563///                                     new-initializer[opt]
1564///
1565///        new-placement:
1566///                   '(' expression-list ')'
1567///
1568bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
1569                                         Declarator &D) {
1570  // The '(' was already consumed.
1571  if (isTypeIdInParens()) {
1572    ParseSpecifierQualifierList(D.getMutableDeclSpec());
1573    D.SetSourceRange(D.getDeclSpec().getSourceRange());
1574    ParseDeclarator(D);
1575    return D.isInvalidType();
1576  }
1577
1578  // It's not a type, it has to be an expression list.
1579  // Discard the comma locations - ActOnCXXNew has enough parameters.
1580  CommaLocsTy CommaLocs;
1581  return ParseExpressionList(PlacementArgs, CommaLocs);
1582}
1583
1584/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1585/// to free memory allocated by new.
1586///
1587/// This method is called to parse the 'delete' expression after the optional
1588/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
1589/// and "Start" is its location.  Otherwise, "Start" is the location of the
1590/// 'delete' token.
1591///
1592///        delete-expression:
1593///                   '::'[opt] 'delete' cast-expression
1594///                   '::'[opt] 'delete' '[' ']' cast-expression
1595Parser::OwningExprResult
1596Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1597  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1598  ConsumeToken(); // Consume 'delete'
1599
1600  // Array delete?
1601  bool ArrayDelete = false;
1602  if (Tok.is(tok::l_square)) {
1603    ArrayDelete = true;
1604    SourceLocation LHS = ConsumeBracket();
1605    SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1606    if (RHS.isInvalid())
1607      return ExprError();
1608  }
1609
1610  OwningExprResult Operand(ParseCastExpression(false));
1611  if (Operand.isInvalid())
1612    return move(Operand);
1613
1614  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand));
1615}
1616
1617static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1618  switch(kind) {
1619  default: assert(false && "Not a known unary type trait.");
1620  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
1621  case tok::kw___has_nothrow_copy:        return UTT_HasNothrowCopy;
1622  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1623  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
1624  case tok::kw___has_trivial_copy:        return UTT_HasTrivialCopy;
1625  case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1626  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
1627  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
1628  case tok::kw___is_abstract:             return UTT_IsAbstract;
1629  case tok::kw___is_class:                return UTT_IsClass;
1630  case tok::kw___is_empty:                return UTT_IsEmpty;
1631  case tok::kw___is_enum:                 return UTT_IsEnum;
1632  case tok::kw___is_pod:                  return UTT_IsPOD;
1633  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
1634  case tok::kw___is_union:                return UTT_IsUnion;
1635  case tok::kw___is_literal:              return UTT_IsLiteral;
1636  }
1637}
1638
1639/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1640/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1641/// templates.
1642///
1643///       primary-expression:
1644/// [GNU]             unary-type-trait '(' type-id ')'
1645///
1646Parser::OwningExprResult Parser::ParseUnaryTypeTrait() {
1647  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1648  SourceLocation Loc = ConsumeToken();
1649
1650  SourceLocation LParen = Tok.getLocation();
1651  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1652    return ExprError();
1653
1654  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1655  // there will be cryptic errors about mismatched parentheses and missing
1656  // specifiers.
1657  TypeResult Ty = ParseTypeName();
1658
1659  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1660
1661  if (Ty.isInvalid())
1662    return ExprError();
1663
1664  return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen);
1665}
1666
1667/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
1668/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
1669/// based on the context past the parens.
1670Parser::OwningExprResult
1671Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
1672                                         TypeTy *&CastTy,
1673                                         SourceLocation LParenLoc,
1674                                         SourceLocation &RParenLoc) {
1675  assert(getLang().CPlusPlus && "Should only be called for C++!");
1676  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
1677  assert(isTypeIdInParens() && "Not a type-id!");
1678
1679  OwningExprResult Result(Actions, true);
1680  CastTy = 0;
1681
1682  // We need to disambiguate a very ugly part of the C++ syntax:
1683  //
1684  // (T())x;  - type-id
1685  // (T())*x; - type-id
1686  // (T())/x; - expression
1687  // (T());   - expression
1688  //
1689  // The bad news is that we cannot use the specialized tentative parser, since
1690  // it can only verify that the thing inside the parens can be parsed as
1691  // type-id, it is not useful for determining the context past the parens.
1692  //
1693  // The good news is that the parser can disambiguate this part without
1694  // making any unnecessary Action calls.
1695  //
1696  // It uses a scheme similar to parsing inline methods. The parenthesized
1697  // tokens are cached, the context that follows is determined (possibly by
1698  // parsing a cast-expression), and then we re-introduce the cached tokens
1699  // into the token stream and parse them appropriately.
1700
1701  ParenParseOption ParseAs;
1702  CachedTokens Toks;
1703
1704  // Store the tokens of the parentheses. We will parse them after we determine
1705  // the context that follows them.
1706  if (!ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks, tok::semi)) {
1707    // We didn't find the ')' we expected.
1708    MatchRHSPunctuation(tok::r_paren, LParenLoc);
1709    return ExprError();
1710  }
1711
1712  if (Tok.is(tok::l_brace)) {
1713    ParseAs = CompoundLiteral;
1714  } else {
1715    bool NotCastExpr;
1716    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
1717    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
1718      NotCastExpr = true;
1719    } else {
1720      // Try parsing the cast-expression that may follow.
1721      // If it is not a cast-expression, NotCastExpr will be true and no token
1722      // will be consumed.
1723      Result = ParseCastExpression(false/*isUnaryExpression*/,
1724                                   false/*isAddressofOperand*/,
1725                                   NotCastExpr, false);
1726    }
1727
1728    // If we parsed a cast-expression, it's really a type-id, otherwise it's
1729    // an expression.
1730    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
1731  }
1732
1733  // The current token should go after the cached tokens.
1734  Toks.push_back(Tok);
1735  // Re-enter the stored parenthesized tokens into the token stream, so we may
1736  // parse them now.
1737  PP.EnterTokenStream(Toks.data(), Toks.size(),
1738                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
1739  // Drop the current token and bring the first cached one. It's the same token
1740  // as when we entered this function.
1741  ConsumeAnyToken();
1742
1743  if (ParseAs >= CompoundLiteral) {
1744    TypeResult Ty = ParseTypeName();
1745
1746    // Match the ')'.
1747    if (Tok.is(tok::r_paren))
1748      RParenLoc = ConsumeParen();
1749    else
1750      MatchRHSPunctuation(tok::r_paren, LParenLoc);
1751
1752    if (ParseAs == CompoundLiteral) {
1753      ExprType = CompoundLiteral;
1754      return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
1755    }
1756
1757    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
1758    assert(ParseAs == CastExpr);
1759
1760    if (Ty.isInvalid())
1761      return ExprError();
1762
1763    CastTy = Ty.get();
1764
1765    // Result is what ParseCastExpression returned earlier.
1766    if (!Result.isInvalid())
1767      Result = Actions.ActOnCastExpr(CurScope, LParenLoc, CastTy, RParenLoc,
1768                                     move(Result));
1769    return move(Result);
1770  }
1771
1772  // Not a compound literal, and not followed by a cast-expression.
1773  assert(ParseAs == SimpleExpr);
1774
1775  ExprType = SimpleExpr;
1776  Result = ParseExpression();
1777  if (!Result.isInvalid() && Tok.is(tok::r_paren))
1778    Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), move(Result));
1779
1780  // Match the ')'.
1781  if (Result.isInvalid()) {
1782    SkipUntil(tok::r_paren);
1783    return ExprError();
1784  }
1785
1786  if (Tok.is(tok::r_paren))
1787    RParenLoc = ConsumeParen();
1788  else
1789    MatchRHSPunctuation(tok::r_paren, LParenLoc);
1790
1791  return move(Result);
1792}
1793