ParseExprCXX.cpp revision d6c7c67313634b317a0d63c32be0511a121bb33d
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Sema/DeclSpec.h"
19#include "clang/Sema/Scope.h"
20#include "clang/Sema/ParsedTemplate.h"
21#include "llvm/Support/ErrorHandling.h"
22
23using namespace clang;
24
25static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
26  switch (Kind) {
27    case tok::kw_template:         return 0;
28    case tok::kw_const_cast:       return 1;
29    case tok::kw_dynamic_cast:     return 2;
30    case tok::kw_reinterpret_cast: return 3;
31    case tok::kw_static_cast:      return 4;
32    default:
33      llvm_unreachable("Unknown type for digraph error message.");
34  }
35}
36
37// Are the two tokens adjacent in the same source file?
38static bool AreTokensAdjacent(Preprocessor &PP, Token &First, Token &Second) {
39  SourceManager &SM = PP.getSourceManager();
40  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
41  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
42  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
43}
44
45// Suggest fixit for "<::" after a cast.
46static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
47                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
48  // Pull '<:' and ':' off token stream.
49  if (!AtDigraph)
50    PP.Lex(DigraphToken);
51  PP.Lex(ColonToken);
52
53  SourceRange Range;
54  Range.setBegin(DigraphToken.getLocation());
55  Range.setEnd(ColonToken.getLocation());
56  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
57      << SelectDigraphErrorMessage(Kind)
58      << FixItHint::CreateReplacement(Range, "< ::");
59
60  // Update token information to reflect their change in token type.
61  ColonToken.setKind(tok::coloncolon);
62  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
63  ColonToken.setLength(2);
64  DigraphToken.setKind(tok::less);
65  DigraphToken.setLength(1);
66
67  // Push new tokens back to token stream.
68  PP.EnterToken(ColonToken);
69  if (!AtDigraph)
70    PP.EnterToken(DigraphToken);
71}
72
73// Check for '<::' which should be '< ::' instead of '[:' when following
74// a template name.
75void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
76                                        bool EnteringContext,
77                                        IdentifierInfo &II, CXXScopeSpec &SS) {
78  if (!Next.is(tok::l_square) || Next.getLength() != 2)
79    return;
80
81  Token SecondToken = GetLookAheadToken(2);
82  if (!SecondToken.is(tok::colon) || !AreTokensAdjacent(PP, Next, SecondToken))
83    return;
84
85  TemplateTy Template;
86  UnqualifiedId TemplateName;
87  TemplateName.setIdentifier(&II, Tok.getLocation());
88  bool MemberOfUnknownSpecialization;
89  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
90                              TemplateName, ObjectType, EnteringContext,
91                              Template, MemberOfUnknownSpecialization))
92    return;
93
94  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
95             /*AtDigraph*/false);
96}
97
98/// \brief Parse global scope or nested-name-specifier if present.
99///
100/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
101/// may be preceded by '::'). Note that this routine will not parse ::new or
102/// ::delete; it will just leave them in the token stream.
103///
104///       '::'[opt] nested-name-specifier
105///       '::'
106///
107///       nested-name-specifier:
108///         type-name '::'
109///         namespace-name '::'
110///         nested-name-specifier identifier '::'
111///         nested-name-specifier 'template'[opt] simple-template-id '::'
112///
113///
114/// \param SS the scope specifier that will be set to the parsed
115/// nested-name-specifier (or empty)
116///
117/// \param ObjectType if this nested-name-specifier is being parsed following
118/// the "." or "->" of a member access expression, this parameter provides the
119/// type of the object whose members are being accessed.
120///
121/// \param EnteringContext whether we will be entering into the context of
122/// the nested-name-specifier after parsing it.
123///
124/// \param MayBePseudoDestructor When non-NULL, points to a flag that
125/// indicates whether this nested-name-specifier may be part of a
126/// pseudo-destructor name. In this case, the flag will be set false
127/// if we don't actually end up parsing a destructor name. Moreorover,
128/// if we do end up determining that we are parsing a destructor name,
129/// the last component of the nested-name-specifier is not parsed as
130/// part of the scope specifier.
131
132/// member access expression, e.g., the \p T:: in \p p->T::m.
133///
134/// \returns true if there was an error parsing a scope specifier
135bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
136                                            ParsedType ObjectType,
137                                            bool EnteringContext,
138                                            bool *MayBePseudoDestructor,
139                                            bool IsTypename) {
140  assert(getLang().CPlusPlus &&
141         "Call sites of this function should be guarded by checking for C++");
142
143  if (Tok.is(tok::annot_cxxscope)) {
144    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
145                                                 Tok.getAnnotationRange(),
146                                                 SS);
147    ConsumeToken();
148    return false;
149  }
150
151  bool HasScopeSpecifier = false;
152
153  if (Tok.is(tok::coloncolon)) {
154    // ::new and ::delete aren't nested-name-specifiers.
155    tok::TokenKind NextKind = NextToken().getKind();
156    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
157      return false;
158
159    // '::' - Global scope qualifier.
160    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
161      return true;
162
163    HasScopeSpecifier = true;
164  }
165
166  bool CheckForDestructor = false;
167  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
168    CheckForDestructor = true;
169    *MayBePseudoDestructor = false;
170  }
171
172  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
173    DeclSpec DS(AttrFactory);
174    SourceLocation DeclLoc = Tok.getLocation();
175    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
176    if (Tok.isNot(tok::coloncolon)) {
177      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
178      return false;
179    }
180
181    SourceLocation CCLoc = ConsumeToken();
182    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
183      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
184
185    HasScopeSpecifier = true;
186  }
187
188  while (true) {
189    if (HasScopeSpecifier) {
190      // C++ [basic.lookup.classref]p5:
191      //   If the qualified-id has the form
192      //
193      //       ::class-name-or-namespace-name::...
194      //
195      //   the class-name-or-namespace-name is looked up in global scope as a
196      //   class-name or namespace-name.
197      //
198      // To implement this, we clear out the object type as soon as we've
199      // seen a leading '::' or part of a nested-name-specifier.
200      ObjectType = ParsedType();
201
202      if (Tok.is(tok::code_completion)) {
203        // Code completion for a nested-name-specifier, where the code
204        // code completion token follows the '::'.
205        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
206        // Include code completion token into the range of the scope otherwise
207        // when we try to annotate the scope tokens the dangling code completion
208        // token will cause assertion in
209        // Preprocessor::AnnotatePreviousCachedTokens.
210        SS.setEndLoc(Tok.getLocation());
211        cutOffParsing();
212        return true;
213      }
214    }
215
216    // nested-name-specifier:
217    //   nested-name-specifier 'template'[opt] simple-template-id '::'
218
219    // Parse the optional 'template' keyword, then make sure we have
220    // 'identifier <' after it.
221    if (Tok.is(tok::kw_template)) {
222      // If we don't have a scope specifier or an object type, this isn't a
223      // nested-name-specifier, since they aren't allowed to start with
224      // 'template'.
225      if (!HasScopeSpecifier && !ObjectType)
226        break;
227
228      TentativeParsingAction TPA(*this);
229      SourceLocation TemplateKWLoc = ConsumeToken();
230
231      UnqualifiedId TemplateName;
232      if (Tok.is(tok::identifier)) {
233        // Consume the identifier.
234        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
235        ConsumeToken();
236      } else if (Tok.is(tok::kw_operator)) {
237        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
238                                       TemplateName)) {
239          TPA.Commit();
240          break;
241        }
242
243        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
244            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
245          Diag(TemplateName.getSourceRange().getBegin(),
246               diag::err_id_after_template_in_nested_name_spec)
247            << TemplateName.getSourceRange();
248          TPA.Commit();
249          break;
250        }
251      } else {
252        TPA.Revert();
253        break;
254      }
255
256      // If the next token is not '<', we have a qualified-id that refers
257      // to a template name, such as T::template apply, but is not a
258      // template-id.
259      if (Tok.isNot(tok::less)) {
260        TPA.Revert();
261        break;
262      }
263
264      // Commit to parsing the template-id.
265      TPA.Commit();
266      TemplateTy Template;
267      if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(getCurScope(),
268                                                                TemplateKWLoc,
269                                                                    SS,
270                                                                  TemplateName,
271                                                                    ObjectType,
272                                                                EnteringContext,
273                                                                    Template)) {
274        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
275                                    TemplateKWLoc, false))
276          return true;
277      } else
278        return true;
279
280      continue;
281    }
282
283    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
284      // We have
285      //
286      //   simple-template-id '::'
287      //
288      // So we need to check whether the simple-template-id is of the
289      // right kind (it should name a type or be dependent), and then
290      // convert it into a type within the nested-name-specifier.
291      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
292      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
293        *MayBePseudoDestructor = true;
294        return false;
295      }
296
297      // Consume the template-id token.
298      ConsumeToken();
299
300      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
301      SourceLocation CCLoc = ConsumeToken();
302
303      HasScopeSpecifier = true;
304
305      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
306                                         TemplateId->getTemplateArgs(),
307                                         TemplateId->NumArgs);
308
309      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
310                                              /*FIXME:*/SourceLocation(),
311                                              SS,
312                                              TemplateId->Template,
313                                              TemplateId->TemplateNameLoc,
314                                              TemplateId->LAngleLoc,
315                                              TemplateArgsPtr,
316                                              TemplateId->RAngleLoc,
317                                              CCLoc,
318                                              EnteringContext)) {
319        SourceLocation StartLoc
320          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
321                                      : TemplateId->TemplateNameLoc;
322        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
323      }
324
325      continue;
326    }
327
328
329    // The rest of the nested-name-specifier possibilities start with
330    // tok::identifier.
331    if (Tok.isNot(tok::identifier))
332      break;
333
334    IdentifierInfo &II = *Tok.getIdentifierInfo();
335
336    // nested-name-specifier:
337    //   type-name '::'
338    //   namespace-name '::'
339    //   nested-name-specifier identifier '::'
340    Token Next = NextToken();
341
342    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
343    // and emit a fixit hint for it.
344    if (Next.is(tok::colon) && !ColonIsSacred) {
345      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
346                                            Tok.getLocation(),
347                                            Next.getLocation(), ObjectType,
348                                            EnteringContext) &&
349          // If the token after the colon isn't an identifier, it's still an
350          // error, but they probably meant something else strange so don't
351          // recover like this.
352          PP.LookAhead(1).is(tok::identifier)) {
353        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
354          << FixItHint::CreateReplacement(Next.getLocation(), "::");
355
356        // Recover as if the user wrote '::'.
357        Next.setKind(tok::coloncolon);
358      }
359    }
360
361    if (Next.is(tok::coloncolon)) {
362      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
363          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
364                                                II, ObjectType)) {
365        *MayBePseudoDestructor = true;
366        return false;
367      }
368
369      // We have an identifier followed by a '::'. Lookup this name
370      // as the name in a nested-name-specifier.
371      SourceLocation IdLoc = ConsumeToken();
372      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
373             "NextToken() not working properly!");
374      SourceLocation CCLoc = ConsumeToken();
375
376      HasScopeSpecifier = true;
377      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
378                                              ObjectType, EnteringContext, SS))
379        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
380
381      continue;
382    }
383
384    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
385
386    // nested-name-specifier:
387    //   type-name '<'
388    if (Next.is(tok::less)) {
389      TemplateTy Template;
390      UnqualifiedId TemplateName;
391      TemplateName.setIdentifier(&II, Tok.getLocation());
392      bool MemberOfUnknownSpecialization;
393      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
394                                              /*hasTemplateKeyword=*/false,
395                                                        TemplateName,
396                                                        ObjectType,
397                                                        EnteringContext,
398                                                        Template,
399                                              MemberOfUnknownSpecialization)) {
400        // We have found a template name, so annotate this token
401        // with a template-id annotation. We do not permit the
402        // template-id to be translated into a type annotation,
403        // because some clients (e.g., the parsing of class template
404        // specializations) still want to see the original template-id
405        // token.
406        ConsumeToken();
407        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
408                                    SourceLocation(), false))
409          return true;
410        continue;
411      }
412
413      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
414          (IsTypename || IsTemplateArgumentList(1))) {
415        // We have something like t::getAs<T>, where getAs is a
416        // member of an unknown specialization. However, this will only
417        // parse correctly as a template, so suggest the keyword 'template'
418        // before 'getAs' and treat this as a dependent template name.
419        unsigned DiagID = diag::err_missing_dependent_template_keyword;
420        if (getLang().MicrosoftExt)
421          DiagID = diag::warn_missing_dependent_template_keyword;
422
423        Diag(Tok.getLocation(), DiagID)
424          << II.getName()
425          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
426
427        if (TemplateNameKind TNK
428              = Actions.ActOnDependentTemplateName(getCurScope(),
429                                                   Tok.getLocation(), SS,
430                                                   TemplateName, ObjectType,
431                                                   EnteringContext, Template)) {
432          // Consume the identifier.
433          ConsumeToken();
434          if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
435                                      SourceLocation(), false))
436            return true;
437        }
438        else
439          return true;
440
441        continue;
442      }
443    }
444
445    // We don't have any tokens that form the beginning of a
446    // nested-name-specifier, so we're done.
447    break;
448  }
449
450  // Even if we didn't see any pieces of a nested-name-specifier, we
451  // still check whether there is a tilde in this position, which
452  // indicates a potential pseudo-destructor.
453  if (CheckForDestructor && Tok.is(tok::tilde))
454    *MayBePseudoDestructor = true;
455
456  return false;
457}
458
459/// ParseCXXIdExpression - Handle id-expression.
460///
461///       id-expression:
462///         unqualified-id
463///         qualified-id
464///
465///       qualified-id:
466///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
467///         '::' identifier
468///         '::' operator-function-id
469///         '::' template-id
470///
471/// NOTE: The standard specifies that, for qualified-id, the parser does not
472/// expect:
473///
474///   '::' conversion-function-id
475///   '::' '~' class-name
476///
477/// This may cause a slight inconsistency on diagnostics:
478///
479/// class C {};
480/// namespace A {}
481/// void f() {
482///   :: A :: ~ C(); // Some Sema error about using destructor with a
483///                  // namespace.
484///   :: ~ C(); // Some Parser error like 'unexpected ~'.
485/// }
486///
487/// We simplify the parser a bit and make it work like:
488///
489///       qualified-id:
490///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
491///         '::' unqualified-id
492///
493/// That way Sema can handle and report similar errors for namespaces and the
494/// global scope.
495///
496/// The isAddressOfOperand parameter indicates that this id-expression is a
497/// direct operand of the address-of operator. This is, besides member contexts,
498/// the only place where a qualified-id naming a non-static class member may
499/// appear.
500///
501ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
502  // qualified-id:
503  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
504  //   '::' unqualified-id
505  //
506  CXXScopeSpec SS;
507  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
508
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         Name))
516    return ExprError();
517
518  // This is only the direct operand of an & operator if it is not
519  // followed by a postfix-expression suffix.
520  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
521    isAddressOfOperand = false;
522
523  return Actions.ActOnIdExpression(getCurScope(), SS, Name, Tok.is(tok::l_paren),
524                                   isAddressOfOperand);
525
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLang().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro) {
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma))
645        return DiagResult(diag::err_expected_comma_or_rsquare);
646      ConsumeToken();
647    }
648
649    first = false;
650
651    // Parse capture.
652    LambdaCaptureKind Kind = LCK_ByCopy;
653    SourceLocation Loc;
654    IdentifierInfo* Id = 0;
655
656    if (Tok.is(tok::kw_this)) {
657      Kind = LCK_This;
658      Loc = ConsumeToken();
659    } else {
660      if (Tok.is(tok::amp)) {
661        Kind = LCK_ByRef;
662        ConsumeToken();
663      }
664
665      if (Tok.is(tok::identifier)) {
666        Id = Tok.getIdentifierInfo();
667        Loc = ConsumeToken();
668      } else if (Tok.is(tok::kw_this)) {
669        // FIXME: If we want to suggest a fixit here, will need to return more
670        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
671        // Clear()ed to prevent emission in case of tentative parsing?
672        return DiagResult(diag::err_this_captured_by_reference);
673      } else {
674        return DiagResult(diag::err_expected_capture);
675      }
676    }
677
678    Intro.addCapture(Kind, Loc, Id);
679  }
680
681  T.consumeClose();
682  Intro.Range.setEnd(T.getCloseLocation());
683
684  return DiagResult();
685}
686
687/// TryParseLambdaExpression - Tentatively parse a lambda introducer.
688///
689/// Returns true if it hit something unexpected.
690bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
691  TentativeParsingAction PA(*this);
692
693  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
694
695  if (DiagID) {
696    PA.Revert();
697    return true;
698  }
699
700  PA.Commit();
701  return false;
702}
703
704/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
705/// expression.
706ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
707                     LambdaIntroducer &Intro) {
708  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
709  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
710
711  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
712                                "lambda expression parsing");
713
714  // Parse lambda-declarator[opt].
715  DeclSpec DS(AttrFactory);
716  Declarator D(DS, Declarator::LambdaExprContext);
717
718  if (Tok.is(tok::l_paren)) {
719    ParseScope PrototypeScope(this,
720                              Scope::FunctionPrototypeScope |
721                              Scope::DeclScope);
722
723    SourceLocation DeclLoc, DeclEndLoc;
724    BalancedDelimiterTracker T(*this, tok::l_paren);
725    T.consumeOpen();
726    DeclLoc = T.getOpenLocation();
727
728    // Parse parameter-declaration-clause.
729    ParsedAttributes Attr(AttrFactory);
730    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
731    SourceLocation EllipsisLoc;
732
733    if (Tok.isNot(tok::r_paren))
734      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
735
736    T.consumeClose();
737    DeclEndLoc = T.getCloseLocation();
738
739    // Parse 'mutable'[opt].
740    SourceLocation MutableLoc;
741    if (Tok.is(tok::kw_mutable)) {
742      MutableLoc = ConsumeToken();
743      DeclEndLoc = MutableLoc;
744    }
745
746    // Parse exception-specification[opt].
747    ExceptionSpecificationType ESpecType = EST_None;
748    SourceRange ESpecRange;
749    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
750    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
751    ExprResult NoexceptExpr;
752    ESpecType = MaybeParseExceptionSpecification(ESpecRange,
753                                                 DynamicExceptions,
754                                                 DynamicExceptionRanges,
755                                                 NoexceptExpr);
756
757    if (ESpecType != EST_None)
758      DeclEndLoc = ESpecRange.getEnd();
759
760    // Parse attribute-specifier[opt].
761    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
762
763    // Parse trailing-return-type[opt].
764    ParsedType TrailingReturnType;
765    if (Tok.is(tok::arrow)) {
766      SourceRange Range;
767      TrailingReturnType = ParseTrailingReturnType(Range).get();
768      if (Range.getEnd().isValid())
769        DeclEndLoc = Range.getEnd();
770    }
771
772    PrototypeScope.Exit();
773
774    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
775                                           /*isVariadic=*/EllipsisLoc.isValid(),
776                                           EllipsisLoc,
777                                           ParamInfo.data(), ParamInfo.size(),
778                                           DS.getTypeQualifiers(),
779                                           /*RefQualifierIsLValueRef=*/true,
780                                           /*RefQualifierLoc=*/SourceLocation(),
781                                         /*ConstQualifierLoc=*/SourceLocation(),
782                                      /*VolatileQualifierLoc=*/SourceLocation(),
783                                           MutableLoc,
784                                           ESpecType, ESpecRange.getBegin(),
785                                           DynamicExceptions.data(),
786                                           DynamicExceptionRanges.data(),
787                                           DynamicExceptions.size(),
788                                           NoexceptExpr.isUsable() ?
789                                             NoexceptExpr.get() : 0,
790                                           DeclLoc, DeclEndLoc, D,
791                                           TrailingReturnType),
792                  Attr, DeclEndLoc);
793  }
794
795  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
796  // it.
797  ParseScope BodyScope(this, Scope::BlockScope | Scope::FnScope |
798                             Scope::BreakScope | Scope::ContinueScope |
799                             Scope::DeclScope);
800
801  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
802
803  // Parse compound-statement.
804  if (!Tok.is(tok::l_brace)) {
805    Diag(Tok, diag::err_expected_lambda_body);
806    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
807    return ExprError();
808  }
809
810  StmtResult Stmt(ParseCompoundStatementBody());
811  BodyScope.Exit();
812
813  if (!Stmt.isInvalid())
814    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(),
815                                   getCurScope());
816
817  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
818  return ExprError();
819}
820
821/// ParseCXXCasts - This handles the various ways to cast expressions to another
822/// type.
823///
824///       postfix-expression: [C++ 5.2p1]
825///         'dynamic_cast' '<' type-name '>' '(' expression ')'
826///         'static_cast' '<' type-name '>' '(' expression ')'
827///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
828///         'const_cast' '<' type-name '>' '(' expression ')'
829///
830ExprResult Parser::ParseCXXCasts() {
831  tok::TokenKind Kind = Tok.getKind();
832  const char *CastName = 0;     // For error messages
833
834  switch (Kind) {
835  default: llvm_unreachable("Unknown C++ cast!");
836  case tok::kw_const_cast:       CastName = "const_cast";       break;
837  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
838  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
839  case tok::kw_static_cast:      CastName = "static_cast";      break;
840  }
841
842  SourceLocation OpLoc = ConsumeToken();
843  SourceLocation LAngleBracketLoc = Tok.getLocation();
844
845  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
846  // diagnose error, suggest fix, and recover parsing.
847  Token Next = NextToken();
848  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
849      AreTokensAdjacent(PP, Tok, Next))
850    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
851
852  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
853    return ExprError();
854
855  // Parse the common declaration-specifiers piece.
856  DeclSpec DS(AttrFactory);
857  ParseSpecifierQualifierList(DS);
858
859  // Parse the abstract-declarator, if present.
860  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
861  ParseDeclarator(DeclaratorInfo);
862
863  SourceLocation RAngleBracketLoc = Tok.getLocation();
864
865  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
866    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
867
868  SourceLocation LParenLoc, RParenLoc;
869  BalancedDelimiterTracker T(*this, tok::l_paren);
870
871  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
872    return ExprError();
873
874  ExprResult Result = ParseExpression();
875
876  // Match the ')'.
877  T.consumeClose();
878
879  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
880    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
881                                       LAngleBracketLoc, DeclaratorInfo,
882                                       RAngleBracketLoc,
883                                       T.getOpenLocation(), Result.take(),
884                                       T.getCloseLocation());
885
886  return move(Result);
887}
888
889/// ParseCXXTypeid - This handles the C++ typeid expression.
890///
891///       postfix-expression: [C++ 5.2p1]
892///         'typeid' '(' expression ')'
893///         'typeid' '(' type-id ')'
894///
895ExprResult Parser::ParseCXXTypeid() {
896  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
897
898  SourceLocation OpLoc = ConsumeToken();
899  SourceLocation LParenLoc, RParenLoc;
900  BalancedDelimiterTracker T(*this, tok::l_paren);
901
902  // typeid expressions are always parenthesized.
903  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
904    return ExprError();
905  LParenLoc = T.getOpenLocation();
906
907  ExprResult Result;
908
909  if (isTypeIdInParens()) {
910    TypeResult Ty = ParseTypeName();
911
912    // Match the ')'.
913    T.consumeClose();
914    RParenLoc = T.getCloseLocation();
915    if (Ty.isInvalid() || RParenLoc.isInvalid())
916      return ExprError();
917
918    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
919                                    Ty.get().getAsOpaquePtr(), RParenLoc);
920  } else {
921    // C++0x [expr.typeid]p3:
922    //   When typeid is applied to an expression other than an lvalue of a
923    //   polymorphic class type [...] The expression is an unevaluated
924    //   operand (Clause 5).
925    //
926    // Note that we can't tell whether the expression is an lvalue of a
927    // polymorphic class type until after we've parsed the expression, so
928    // we the expression is potentially potentially evaluated.
929    EnterExpressionEvaluationContext Unevaluated(Actions,
930                                       Sema::PotentiallyPotentiallyEvaluated);
931    Result = ParseExpression();
932
933    // Match the ')'.
934    if (Result.isInvalid())
935      SkipUntil(tok::r_paren);
936    else {
937      T.consumeClose();
938      RParenLoc = T.getCloseLocation();
939      if (RParenLoc.isInvalid())
940        return ExprError();
941
942      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
943                                      Result.release(), RParenLoc);
944    }
945  }
946
947  return move(Result);
948}
949
950/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
951///
952///         '__uuidof' '(' expression ')'
953///         '__uuidof' '(' type-id ')'
954///
955ExprResult Parser::ParseCXXUuidof() {
956  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
957
958  SourceLocation OpLoc = ConsumeToken();
959  BalancedDelimiterTracker T(*this, tok::l_paren);
960
961  // __uuidof expressions are always parenthesized.
962  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
963    return ExprError();
964
965  ExprResult Result;
966
967  if (isTypeIdInParens()) {
968    TypeResult Ty = ParseTypeName();
969
970    // Match the ')'.
971    T.consumeClose();
972
973    if (Ty.isInvalid())
974      return ExprError();
975
976    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
977                                    Ty.get().getAsOpaquePtr(),
978                                    T.getCloseLocation());
979  } else {
980    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
981    Result = ParseExpression();
982
983    // Match the ')'.
984    if (Result.isInvalid())
985      SkipUntil(tok::r_paren);
986    else {
987      T.consumeClose();
988
989      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
990                                      /*isType=*/false,
991                                      Result.release(), T.getCloseLocation());
992    }
993  }
994
995  return move(Result);
996}
997
998/// \brief Parse a C++ pseudo-destructor expression after the base,
999/// . or -> operator, and nested-name-specifier have already been
1000/// parsed.
1001///
1002///       postfix-expression: [C++ 5.2]
1003///         postfix-expression . pseudo-destructor-name
1004///         postfix-expression -> pseudo-destructor-name
1005///
1006///       pseudo-destructor-name:
1007///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1008///         ::[opt] nested-name-specifier template simple-template-id ::
1009///                 ~type-name
1010///         ::[opt] nested-name-specifier[opt] ~type-name
1011///
1012ExprResult
1013Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1014                                 tok::TokenKind OpKind,
1015                                 CXXScopeSpec &SS,
1016                                 ParsedType ObjectType) {
1017  // We're parsing either a pseudo-destructor-name or a dependent
1018  // member access that has the same form as a
1019  // pseudo-destructor-name. We parse both in the same way and let
1020  // the action model sort them out.
1021  //
1022  // Note that the ::[opt] nested-name-specifier[opt] has already
1023  // been parsed, and if there was a simple-template-id, it has
1024  // been coalesced into a template-id annotation token.
1025  UnqualifiedId FirstTypeName;
1026  SourceLocation CCLoc;
1027  if (Tok.is(tok::identifier)) {
1028    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1029    ConsumeToken();
1030    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1031    CCLoc = ConsumeToken();
1032  } else if (Tok.is(tok::annot_template_id)) {
1033    FirstTypeName.setTemplateId(
1034                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1035    ConsumeToken();
1036    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1037    CCLoc = ConsumeToken();
1038  } else {
1039    FirstTypeName.setIdentifier(0, SourceLocation());
1040  }
1041
1042  // Parse the tilde.
1043  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1044  SourceLocation TildeLoc = ConsumeToken();
1045
1046  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1047    DeclSpec DS(AttrFactory);
1048    ParseDecltypeSpecifier(DS);
1049    if (DS.getTypeSpecType() == TST_error)
1050      return ExprError();
1051    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1052                                             OpKind, TildeLoc, DS,
1053                                             Tok.is(tok::l_paren));
1054  }
1055
1056  if (!Tok.is(tok::identifier)) {
1057    Diag(Tok, diag::err_destructor_tilde_identifier);
1058    return ExprError();
1059  }
1060
1061  // Parse the second type.
1062  UnqualifiedId SecondTypeName;
1063  IdentifierInfo *Name = Tok.getIdentifierInfo();
1064  SourceLocation NameLoc = ConsumeToken();
1065  SecondTypeName.setIdentifier(Name, NameLoc);
1066
1067  // If there is a '<', the second type name is a template-id. Parse
1068  // it as such.
1069  if (Tok.is(tok::less) &&
1070      ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
1071                                   SecondTypeName, /*AssumeTemplateName=*/true,
1072                                   /*TemplateKWLoc*/SourceLocation()))
1073    return ExprError();
1074
1075  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1076                                           OpLoc, OpKind,
1077                                           SS, FirstTypeName, CCLoc,
1078                                           TildeLoc, SecondTypeName,
1079                                           Tok.is(tok::l_paren));
1080}
1081
1082/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1083///
1084///       boolean-literal: [C++ 2.13.5]
1085///         'true'
1086///         'false'
1087ExprResult Parser::ParseCXXBoolLiteral() {
1088  tok::TokenKind Kind = Tok.getKind();
1089  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1090}
1091
1092/// ParseThrowExpression - This handles the C++ throw expression.
1093///
1094///       throw-expression: [C++ 15]
1095///         'throw' assignment-expression[opt]
1096ExprResult Parser::ParseThrowExpression() {
1097  assert(Tok.is(tok::kw_throw) && "Not throw!");
1098  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1099
1100  // If the current token isn't the start of an assignment-expression,
1101  // then the expression is not present.  This handles things like:
1102  //   "C ? throw : (void)42", which is crazy but legal.
1103  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1104  case tok::semi:
1105  case tok::r_paren:
1106  case tok::r_square:
1107  case tok::r_brace:
1108  case tok::colon:
1109  case tok::comma:
1110    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1111
1112  default:
1113    ExprResult Expr(ParseAssignmentExpression());
1114    if (Expr.isInvalid()) return move(Expr);
1115    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1116  }
1117}
1118
1119/// ParseCXXThis - This handles the C++ 'this' pointer.
1120///
1121/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1122/// a non-lvalue expression whose value is the address of the object for which
1123/// the function is called.
1124ExprResult Parser::ParseCXXThis() {
1125  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1126  SourceLocation ThisLoc = ConsumeToken();
1127  return Actions.ActOnCXXThis(ThisLoc);
1128}
1129
1130/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1131/// Can be interpreted either as function-style casting ("int(x)")
1132/// or class type construction ("ClassType(x,y,z)")
1133/// or creation of a value-initialized type ("int()").
1134/// See [C++ 5.2.3].
1135///
1136///       postfix-expression: [C++ 5.2p1]
1137///         simple-type-specifier '(' expression-list[opt] ')'
1138/// [C++0x] simple-type-specifier braced-init-list
1139///         typename-specifier '(' expression-list[opt] ')'
1140/// [C++0x] typename-specifier braced-init-list
1141///
1142ExprResult
1143Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1144  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1145  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1146
1147  assert((Tok.is(tok::l_paren) ||
1148          (getLang().CPlusPlus0x && Tok.is(tok::l_brace)))
1149         && "Expected '(' or '{'!");
1150
1151  if (Tok.is(tok::l_brace)) {
1152
1153    // FIXME: Convert to a proper type construct expression.
1154    return ParseBraceInitializer();
1155
1156  } else {
1157    GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
1158
1159    BalancedDelimiterTracker T(*this, tok::l_paren);
1160    T.consumeOpen();
1161
1162    ExprVector Exprs(Actions);
1163    CommaLocsTy CommaLocs;
1164
1165    if (Tok.isNot(tok::r_paren)) {
1166      if (ParseExpressionList(Exprs, CommaLocs)) {
1167        SkipUntil(tok::r_paren);
1168        return ExprError();
1169      }
1170    }
1171
1172    // Match the ')'.
1173    T.consumeClose();
1174
1175    // TypeRep could be null, if it references an invalid typedef.
1176    if (!TypeRep)
1177      return ExprError();
1178
1179    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1180           "Unexpected number of commas!");
1181    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1182                                             move_arg(Exprs),
1183                                             T.getCloseLocation());
1184  }
1185}
1186
1187/// ParseCXXCondition - if/switch/while condition expression.
1188///
1189///       condition:
1190///         expression
1191///         type-specifier-seq declarator '=' assignment-expression
1192/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1193///             '=' assignment-expression
1194///
1195/// \param ExprResult if the condition was parsed as an expression, the
1196/// parsed expression.
1197///
1198/// \param DeclResult if the condition was parsed as a declaration, the
1199/// parsed declaration.
1200///
1201/// \param Loc The location of the start of the statement that requires this
1202/// condition, e.g., the "for" in a for loop.
1203///
1204/// \param ConvertToBoolean Whether the condition expression should be
1205/// converted to a boolean value.
1206///
1207/// \returns true if there was a parsing, false otherwise.
1208bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1209                               Decl *&DeclOut,
1210                               SourceLocation Loc,
1211                               bool ConvertToBoolean) {
1212  if (Tok.is(tok::code_completion)) {
1213    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1214    cutOffParsing();
1215    return true;
1216  }
1217
1218  if (!isCXXConditionDeclaration()) {
1219    // Parse the expression.
1220    ExprOut = ParseExpression(); // expression
1221    DeclOut = 0;
1222    if (ExprOut.isInvalid())
1223      return true;
1224
1225    // If required, convert to a boolean value.
1226    if (ConvertToBoolean)
1227      ExprOut
1228        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1229    return ExprOut.isInvalid();
1230  }
1231
1232  // type-specifier-seq
1233  DeclSpec DS(AttrFactory);
1234  ParseSpecifierQualifierList(DS);
1235
1236  // declarator
1237  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1238  ParseDeclarator(DeclaratorInfo);
1239
1240  // simple-asm-expr[opt]
1241  if (Tok.is(tok::kw_asm)) {
1242    SourceLocation Loc;
1243    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1244    if (AsmLabel.isInvalid()) {
1245      SkipUntil(tok::semi);
1246      return true;
1247    }
1248    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1249    DeclaratorInfo.SetRangeEnd(Loc);
1250  }
1251
1252  // If attributes are present, parse them.
1253  MaybeParseGNUAttributes(DeclaratorInfo);
1254
1255  // Type-check the declaration itself.
1256  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1257                                                        DeclaratorInfo);
1258  DeclOut = Dcl.get();
1259  ExprOut = ExprError();
1260
1261  // '=' assignment-expression
1262  // If a '==' or '+=' is found, suggest a fixit to '='.
1263  if (Tok.is(tok::equal) ||
1264      CreateTokenReplacement(tok::equal, tok::equalequal,
1265                             diag::err_invalid_equalequal_after_declarator) ||
1266      CreateTokenReplacement(tok::equal, tok::plusequal,
1267                             diag::err_invalid_plusequal_after_declarator)) {
1268    ConsumeToken();
1269    ExprResult AssignExpr(ParseAssignmentExpression());
1270    if (!AssignExpr.isInvalid())
1271      Actions.AddInitializerToDecl(DeclOut, AssignExpr.take(), false,
1272                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
1273  } else {
1274    // FIXME: C++0x allows a braced-init-list
1275    Diag(Tok, diag::err_expected_equal_after_declarator);
1276  }
1277
1278  // FIXME: Build a reference to this declaration? Convert it to bool?
1279  // (This is currently handled by Sema).
1280
1281  Actions.FinalizeDeclaration(DeclOut);
1282
1283  return false;
1284}
1285
1286/// \brief Determine whether the current token starts a C++
1287/// simple-type-specifier.
1288bool Parser::isCXXSimpleTypeSpecifier() const {
1289  switch (Tok.getKind()) {
1290  case tok::annot_typename:
1291  case tok::kw_short:
1292  case tok::kw_long:
1293  case tok::kw___int64:
1294  case tok::kw_signed:
1295  case tok::kw_unsigned:
1296  case tok::kw_void:
1297  case tok::kw_char:
1298  case tok::kw_int:
1299  case tok::kw_half:
1300  case tok::kw_float:
1301  case tok::kw_double:
1302  case tok::kw_wchar_t:
1303  case tok::kw_char16_t:
1304  case tok::kw_char32_t:
1305  case tok::kw_bool:
1306  case tok::kw_decltype:
1307  case tok::kw_typeof:
1308  case tok::kw___underlying_type:
1309    return true;
1310
1311  default:
1312    break;
1313  }
1314
1315  return false;
1316}
1317
1318/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1319/// This should only be called when the current token is known to be part of
1320/// simple-type-specifier.
1321///
1322///       simple-type-specifier:
1323///         '::'[opt] nested-name-specifier[opt] type-name
1324///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1325///         char
1326///         wchar_t
1327///         bool
1328///         short
1329///         int
1330///         long
1331///         signed
1332///         unsigned
1333///         float
1334///         double
1335///         void
1336/// [GNU]   typeof-specifier
1337/// [C++0x] auto               [TODO]
1338///
1339///       type-name:
1340///         class-name
1341///         enum-name
1342///         typedef-name
1343///
1344void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1345  DS.SetRangeStart(Tok.getLocation());
1346  const char *PrevSpec;
1347  unsigned DiagID;
1348  SourceLocation Loc = Tok.getLocation();
1349
1350  switch (Tok.getKind()) {
1351  case tok::identifier:   // foo::bar
1352  case tok::coloncolon:   // ::foo::bar
1353    llvm_unreachable("Annotation token should already be formed!");
1354  default:
1355    llvm_unreachable("Not a simple-type-specifier token!");
1356
1357  // type-name
1358  case tok::annot_typename: {
1359    if (getTypeAnnotation(Tok))
1360      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1361                         getTypeAnnotation(Tok));
1362    else
1363      DS.SetTypeSpecError();
1364
1365    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1366    ConsumeToken();
1367
1368    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1369    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1370    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1371    // just a normal reference to a typedef name.
1372    if (Tok.is(tok::less) && getLang().ObjC1)
1373      ParseObjCProtocolQualifiers(DS);
1374
1375    DS.Finish(Diags, PP);
1376    return;
1377  }
1378
1379  // builtin types
1380  case tok::kw_short:
1381    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1382    break;
1383  case tok::kw_long:
1384    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1385    break;
1386  case tok::kw___int64:
1387    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1388    break;
1389  case tok::kw_signed:
1390    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1391    break;
1392  case tok::kw_unsigned:
1393    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1394    break;
1395  case tok::kw_void:
1396    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1397    break;
1398  case tok::kw_char:
1399    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1400    break;
1401  case tok::kw_int:
1402    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1403    break;
1404  case tok::kw_half:
1405    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1406    break;
1407  case tok::kw_float:
1408    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1409    break;
1410  case tok::kw_double:
1411    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1412    break;
1413  case tok::kw_wchar_t:
1414    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1415    break;
1416  case tok::kw_char16_t:
1417    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1418    break;
1419  case tok::kw_char32_t:
1420    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1421    break;
1422  case tok::kw_bool:
1423    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1424    break;
1425
1426    // FIXME: C++0x decltype support.
1427  // GNU typeof support.
1428  case tok::kw_typeof:
1429    ParseTypeofSpecifier(DS);
1430    DS.Finish(Diags, PP);
1431    return;
1432  }
1433  if (Tok.is(tok::annot_typename))
1434    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1435  else
1436    DS.SetRangeEnd(Tok.getLocation());
1437  ConsumeToken();
1438  DS.Finish(Diags, PP);
1439}
1440
1441/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1442/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1443/// e.g., "const short int". Note that the DeclSpec is *not* finished
1444/// by parsing the type-specifier-seq, because these sequences are
1445/// typically followed by some form of declarator. Returns true and
1446/// emits diagnostics if this is not a type-specifier-seq, false
1447/// otherwise.
1448///
1449///   type-specifier-seq: [C++ 8.1]
1450///     type-specifier type-specifier-seq[opt]
1451///
1452bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1453  DS.SetRangeStart(Tok.getLocation());
1454  const char *PrevSpec = 0;
1455  unsigned DiagID;
1456  bool isInvalid = 0;
1457
1458  // Parse one or more of the type specifiers.
1459  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1460      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
1461    Diag(Tok, diag::err_expected_type);
1462    return true;
1463  }
1464
1465  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1466         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
1467  {}
1468
1469  DS.Finish(Diags, PP);
1470  return false;
1471}
1472
1473/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1474/// some form.
1475///
1476/// This routine is invoked when a '<' is encountered after an identifier or
1477/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1478/// whether the unqualified-id is actually a template-id. This routine will
1479/// then parse the template arguments and form the appropriate template-id to
1480/// return to the caller.
1481///
1482/// \param SS the nested-name-specifier that precedes this template-id, if
1483/// we're actually parsing a qualified-id.
1484///
1485/// \param Name for constructor and destructor names, this is the actual
1486/// identifier that may be a template-name.
1487///
1488/// \param NameLoc the location of the class-name in a constructor or
1489/// destructor.
1490///
1491/// \param EnteringContext whether we're entering the scope of the
1492/// nested-name-specifier.
1493///
1494/// \param ObjectType if this unqualified-id occurs within a member access
1495/// expression, the type of the base object whose member is being accessed.
1496///
1497/// \param Id as input, describes the template-name or operator-function-id
1498/// that precedes the '<'. If template arguments were parsed successfully,
1499/// will be updated with the template-id.
1500///
1501/// \param AssumeTemplateId When true, this routine will assume that the name
1502/// refers to a template without performing name lookup to verify.
1503///
1504/// \returns true if a parse error occurred, false otherwise.
1505bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1506                                          IdentifierInfo *Name,
1507                                          SourceLocation NameLoc,
1508                                          bool EnteringContext,
1509                                          ParsedType ObjectType,
1510                                          UnqualifiedId &Id,
1511                                          bool AssumeTemplateId,
1512                                          SourceLocation TemplateKWLoc) {
1513  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1514         "Expected '<' to finish parsing a template-id");
1515
1516  TemplateTy Template;
1517  TemplateNameKind TNK = TNK_Non_template;
1518  switch (Id.getKind()) {
1519  case UnqualifiedId::IK_Identifier:
1520  case UnqualifiedId::IK_OperatorFunctionId:
1521  case UnqualifiedId::IK_LiteralOperatorId:
1522    if (AssumeTemplateId) {
1523      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1524                                               Id, ObjectType, EnteringContext,
1525                                               Template);
1526      if (TNK == TNK_Non_template)
1527        return true;
1528    } else {
1529      bool MemberOfUnknownSpecialization;
1530      TNK = Actions.isTemplateName(getCurScope(), SS,
1531                                   TemplateKWLoc.isValid(), Id,
1532                                   ObjectType, EnteringContext, Template,
1533                                   MemberOfUnknownSpecialization);
1534
1535      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1536          ObjectType && IsTemplateArgumentList()) {
1537        // We have something like t->getAs<T>(), where getAs is a
1538        // member of an unknown specialization. However, this will only
1539        // parse correctly as a template, so suggest the keyword 'template'
1540        // before 'getAs' and treat this as a dependent template name.
1541        std::string Name;
1542        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1543          Name = Id.Identifier->getName();
1544        else {
1545          Name = "operator ";
1546          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1547            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1548          else
1549            Name += Id.Identifier->getName();
1550        }
1551        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1552          << Name
1553          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1554        TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc,
1555                                                 SS, Id, ObjectType,
1556                                                 EnteringContext, Template);
1557        if (TNK == TNK_Non_template)
1558          return true;
1559      }
1560    }
1561    break;
1562
1563  case UnqualifiedId::IK_ConstructorName: {
1564    UnqualifiedId TemplateName;
1565    bool MemberOfUnknownSpecialization;
1566    TemplateName.setIdentifier(Name, NameLoc);
1567    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1568                                 TemplateName, ObjectType,
1569                                 EnteringContext, Template,
1570                                 MemberOfUnknownSpecialization);
1571    break;
1572  }
1573
1574  case UnqualifiedId::IK_DestructorName: {
1575    UnqualifiedId TemplateName;
1576    bool MemberOfUnknownSpecialization;
1577    TemplateName.setIdentifier(Name, NameLoc);
1578    if (ObjectType) {
1579      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1580                                               TemplateName, ObjectType,
1581                                               EnteringContext, Template);
1582      if (TNK == TNK_Non_template)
1583        return true;
1584    } else {
1585      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1586                                   TemplateName, ObjectType,
1587                                   EnteringContext, Template,
1588                                   MemberOfUnknownSpecialization);
1589
1590      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1591        Diag(NameLoc, diag::err_destructor_template_id)
1592          << Name << SS.getRange();
1593        return true;
1594      }
1595    }
1596    break;
1597  }
1598
1599  default:
1600    return false;
1601  }
1602
1603  if (TNK == TNK_Non_template)
1604    return false;
1605
1606  // Parse the enclosed template argument list.
1607  SourceLocation LAngleLoc, RAngleLoc;
1608  TemplateArgList TemplateArgs;
1609  if (Tok.is(tok::less) &&
1610      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1611                                       SS, true, LAngleLoc,
1612                                       TemplateArgs,
1613                                       RAngleLoc))
1614    return true;
1615
1616  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1617      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1618      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1619    // Form a parsed representation of the template-id to be stored in the
1620    // UnqualifiedId.
1621    TemplateIdAnnotation *TemplateId
1622      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1623
1624    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1625      TemplateId->Name = Id.Identifier;
1626      TemplateId->Operator = OO_None;
1627      TemplateId->TemplateNameLoc = Id.StartLocation;
1628    } else {
1629      TemplateId->Name = 0;
1630      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1631      TemplateId->TemplateNameLoc = Id.StartLocation;
1632    }
1633
1634    TemplateId->SS = SS;
1635    TemplateId->Template = Template;
1636    TemplateId->Kind = TNK;
1637    TemplateId->LAngleLoc = LAngleLoc;
1638    TemplateId->RAngleLoc = RAngleLoc;
1639    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1640    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1641         Arg != ArgEnd; ++Arg)
1642      Args[Arg] = TemplateArgs[Arg];
1643
1644    Id.setTemplateId(TemplateId);
1645    return false;
1646  }
1647
1648  // Bundle the template arguments together.
1649  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1650                                     TemplateArgs.size());
1651
1652  // Constructor and destructor names.
1653  TypeResult Type
1654    = Actions.ActOnTemplateIdType(SS, Template, NameLoc,
1655                                  LAngleLoc, TemplateArgsPtr,
1656                                  RAngleLoc);
1657  if (Type.isInvalid())
1658    return true;
1659
1660  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1661    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1662  else
1663    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1664
1665  return false;
1666}
1667
1668/// \brief Parse an operator-function-id or conversion-function-id as part
1669/// of a C++ unqualified-id.
1670///
1671/// This routine is responsible only for parsing the operator-function-id or
1672/// conversion-function-id; it does not handle template arguments in any way.
1673///
1674/// \code
1675///       operator-function-id: [C++ 13.5]
1676///         'operator' operator
1677///
1678///       operator: one of
1679///            new   delete  new[]   delete[]
1680///            +     -    *  /    %  ^    &   |   ~
1681///            !     =    <  >    += -=   *=  /=  %=
1682///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1683///            <=    >=   && ||   ++ --   ,   ->* ->
1684///            ()    []
1685///
1686///       conversion-function-id: [C++ 12.3.2]
1687///         operator conversion-type-id
1688///
1689///       conversion-type-id:
1690///         type-specifier-seq conversion-declarator[opt]
1691///
1692///       conversion-declarator:
1693///         ptr-operator conversion-declarator[opt]
1694/// \endcode
1695///
1696/// \param The nested-name-specifier that preceded this unqualified-id. If
1697/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1698///
1699/// \param EnteringContext whether we are entering the scope of the
1700/// nested-name-specifier.
1701///
1702/// \param ObjectType if this unqualified-id occurs within a member access
1703/// expression, the type of the base object whose member is being accessed.
1704///
1705/// \param Result on a successful parse, contains the parsed unqualified-id.
1706///
1707/// \returns true if parsing fails, false otherwise.
1708bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1709                                        ParsedType ObjectType,
1710                                        UnqualifiedId &Result) {
1711  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1712
1713  // Consume the 'operator' keyword.
1714  SourceLocation KeywordLoc = ConsumeToken();
1715
1716  // Determine what kind of operator name we have.
1717  unsigned SymbolIdx = 0;
1718  SourceLocation SymbolLocations[3];
1719  OverloadedOperatorKind Op = OO_None;
1720  switch (Tok.getKind()) {
1721    case tok::kw_new:
1722    case tok::kw_delete: {
1723      bool isNew = Tok.getKind() == tok::kw_new;
1724      // Consume the 'new' or 'delete'.
1725      SymbolLocations[SymbolIdx++] = ConsumeToken();
1726      if (Tok.is(tok::l_square)) {
1727        // Consume the '[' and ']'.
1728        BalancedDelimiterTracker T(*this, tok::l_square);
1729        T.consumeOpen();
1730        T.consumeClose();
1731        if (T.getCloseLocation().isInvalid())
1732          return true;
1733
1734        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1735        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1736        Op = isNew? OO_Array_New : OO_Array_Delete;
1737      } else {
1738        Op = isNew? OO_New : OO_Delete;
1739      }
1740      break;
1741    }
1742
1743#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1744    case tok::Token:                                                     \
1745      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1746      Op = OO_##Name;                                                    \
1747      break;
1748#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1749#include "clang/Basic/OperatorKinds.def"
1750
1751    case tok::l_paren: {
1752      // Consume the '(' and ')'.
1753      BalancedDelimiterTracker T(*this, tok::l_paren);
1754      T.consumeOpen();
1755      T.consumeClose();
1756      if (T.getCloseLocation().isInvalid())
1757        return true;
1758
1759      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1760      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1761      Op = OO_Call;
1762      break;
1763    }
1764
1765    case tok::l_square: {
1766      // Consume the '[' and ']'.
1767      BalancedDelimiterTracker T(*this, tok::l_square);
1768      T.consumeOpen();
1769      T.consumeClose();
1770      if (T.getCloseLocation().isInvalid())
1771        return true;
1772
1773      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1774      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1775      Op = OO_Subscript;
1776      break;
1777    }
1778
1779    case tok::code_completion: {
1780      // Code completion for the operator name.
1781      Actions.CodeCompleteOperatorName(getCurScope());
1782      cutOffParsing();
1783      // Don't try to parse any further.
1784      return true;
1785    }
1786
1787    default:
1788      break;
1789  }
1790
1791  if (Op != OO_None) {
1792    // We have parsed an operator-function-id.
1793    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1794    return false;
1795  }
1796
1797  // Parse a literal-operator-id.
1798  //
1799  //   literal-operator-id: [C++0x 13.5.8]
1800  //     operator "" identifier
1801
1802  if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1803    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1804    if (Tok.getLength() != 2)
1805      Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1806    ConsumeStringToken();
1807
1808    if (Tok.isNot(tok::identifier)) {
1809      Diag(Tok.getLocation(), diag::err_expected_ident);
1810      return true;
1811    }
1812
1813    IdentifierInfo *II = Tok.getIdentifierInfo();
1814    Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1815    return false;
1816  }
1817
1818  // Parse a conversion-function-id.
1819  //
1820  //   conversion-function-id: [C++ 12.3.2]
1821  //     operator conversion-type-id
1822  //
1823  //   conversion-type-id:
1824  //     type-specifier-seq conversion-declarator[opt]
1825  //
1826  //   conversion-declarator:
1827  //     ptr-operator conversion-declarator[opt]
1828
1829  // Parse the type-specifier-seq.
1830  DeclSpec DS(AttrFactory);
1831  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1832    return true;
1833
1834  // Parse the conversion-declarator, which is merely a sequence of
1835  // ptr-operators.
1836  Declarator D(DS, Declarator::TypeNameContext);
1837  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1838
1839  // Finish up the type.
1840  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1841  if (Ty.isInvalid())
1842    return true;
1843
1844  // Note that this is a conversion-function-id.
1845  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1846                                 D.getSourceRange().getEnd());
1847  return false;
1848}
1849
1850/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1851/// name of an entity.
1852///
1853/// \code
1854///       unqualified-id: [C++ expr.prim.general]
1855///         identifier
1856///         operator-function-id
1857///         conversion-function-id
1858/// [C++0x] literal-operator-id [TODO]
1859///         ~ class-name
1860///         template-id
1861///
1862/// \endcode
1863///
1864/// \param The nested-name-specifier that preceded this unqualified-id. If
1865/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1866///
1867/// \param EnteringContext whether we are entering the scope of the
1868/// nested-name-specifier.
1869///
1870/// \param AllowDestructorName whether we allow parsing of a destructor name.
1871///
1872/// \param AllowConstructorName whether we allow parsing a constructor name.
1873///
1874/// \param ObjectType if this unqualified-id occurs within a member access
1875/// expression, the type of the base object whose member is being accessed.
1876///
1877/// \param Result on a successful parse, contains the parsed unqualified-id.
1878///
1879/// \returns true if parsing fails, false otherwise.
1880bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1881                                bool AllowDestructorName,
1882                                bool AllowConstructorName,
1883                                ParsedType ObjectType,
1884                                UnqualifiedId &Result) {
1885
1886  // Handle 'A::template B'. This is for template-ids which have not
1887  // already been annotated by ParseOptionalCXXScopeSpecifier().
1888  bool TemplateSpecified = false;
1889  SourceLocation TemplateKWLoc;
1890  if (getLang().CPlusPlus && Tok.is(tok::kw_template) &&
1891      (ObjectType || SS.isSet())) {
1892    TemplateSpecified = true;
1893    TemplateKWLoc = ConsumeToken();
1894  }
1895
1896  // unqualified-id:
1897  //   identifier
1898  //   template-id (when it hasn't already been annotated)
1899  if (Tok.is(tok::identifier)) {
1900    // Consume the identifier.
1901    IdentifierInfo *Id = Tok.getIdentifierInfo();
1902    SourceLocation IdLoc = ConsumeToken();
1903
1904    if (!getLang().CPlusPlus) {
1905      // If we're not in C++, only identifiers matter. Record the
1906      // identifier and return.
1907      Result.setIdentifier(Id, IdLoc);
1908      return false;
1909    }
1910
1911    if (AllowConstructorName &&
1912        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
1913      // We have parsed a constructor name.
1914      Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, getCurScope(),
1915                                                    &SS, false, false,
1916                                                    ParsedType(),
1917                                            /*NonTrivialTypeSourceInfo=*/true),
1918                                IdLoc, IdLoc);
1919    } else {
1920      // We have parsed an identifier.
1921      Result.setIdentifier(Id, IdLoc);
1922    }
1923
1924    // If the next token is a '<', we may have a template.
1925    if (TemplateSpecified || Tok.is(tok::less))
1926      return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1927                                          ObjectType, Result,
1928                                          TemplateSpecified, TemplateKWLoc);
1929
1930    return false;
1931  }
1932
1933  // unqualified-id:
1934  //   template-id (already parsed and annotated)
1935  if (Tok.is(tok::annot_template_id)) {
1936    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1937
1938    // If the template-name names the current class, then this is a constructor
1939    if (AllowConstructorName && TemplateId->Name &&
1940        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1941      if (SS.isSet()) {
1942        // C++ [class.qual]p2 specifies that a qualified template-name
1943        // is taken as the constructor name where a constructor can be
1944        // declared. Thus, the template arguments are extraneous, so
1945        // complain about them and remove them entirely.
1946        Diag(TemplateId->TemplateNameLoc,
1947             diag::err_out_of_line_constructor_template_id)
1948          << TemplateId->Name
1949          << FixItHint::CreateRemoval(
1950                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1951        Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1952                                                  TemplateId->TemplateNameLoc,
1953                                                      getCurScope(),
1954                                                      &SS, false, false,
1955                                                      ParsedType(),
1956                                            /*NontrivialTypeSourceInfo=*/true),
1957                                  TemplateId->TemplateNameLoc,
1958                                  TemplateId->RAngleLoc);
1959        ConsumeToken();
1960        return false;
1961      }
1962
1963      Result.setConstructorTemplateId(TemplateId);
1964      ConsumeToken();
1965      return false;
1966    }
1967
1968    // We have already parsed a template-id; consume the annotation token as
1969    // our unqualified-id.
1970    Result.setTemplateId(TemplateId);
1971    ConsumeToken();
1972    return false;
1973  }
1974
1975  // unqualified-id:
1976  //   operator-function-id
1977  //   conversion-function-id
1978  if (Tok.is(tok::kw_operator)) {
1979    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1980      return true;
1981
1982    // If we have an operator-function-id or a literal-operator-id and the next
1983    // token is a '<', we may have a
1984    //
1985    //   template-id:
1986    //     operator-function-id < template-argument-list[opt] >
1987    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1988         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1989        (TemplateSpecified || Tok.is(tok::less)))
1990      return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1991                                          EnteringContext, ObjectType,
1992                                          Result,
1993                                          TemplateSpecified, TemplateKWLoc);
1994
1995    return false;
1996  }
1997
1998  if (getLang().CPlusPlus &&
1999      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2000    // C++ [expr.unary.op]p10:
2001    //   There is an ambiguity in the unary-expression ~X(), where X is a
2002    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2003    //    unary complement rather than treating ~X as referring to a destructor.
2004
2005    // Parse the '~'.
2006    SourceLocation TildeLoc = ConsumeToken();
2007
2008    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2009      DeclSpec DS(AttrFactory);
2010      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2011      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2012        Result.setDestructorName(TildeLoc, Type, EndLoc);
2013        return false;
2014      }
2015      return true;
2016    }
2017
2018    // Parse the class-name.
2019    if (Tok.isNot(tok::identifier)) {
2020      Diag(Tok, diag::err_destructor_tilde_identifier);
2021      return true;
2022    }
2023
2024    // Parse the class-name (or template-name in a simple-template-id).
2025    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2026    SourceLocation ClassNameLoc = ConsumeToken();
2027
2028    if (TemplateSpecified || Tok.is(tok::less)) {
2029      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2030      return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
2031                                          EnteringContext, ObjectType, Result,
2032                                          TemplateSpecified, TemplateKWLoc);
2033    }
2034
2035    // Note that this is a destructor name.
2036    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2037                                              ClassNameLoc, getCurScope(),
2038                                              SS, ObjectType,
2039                                              EnteringContext);
2040    if (!Ty)
2041      return true;
2042
2043    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2044    return false;
2045  }
2046
2047  Diag(Tok, diag::err_expected_unqualified_id)
2048    << getLang().CPlusPlus;
2049  return true;
2050}
2051
2052/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2053/// memory in a typesafe manner and call constructors.
2054///
2055/// This method is called to parse the new expression after the optional :: has
2056/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2057/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2058///
2059///        new-expression:
2060///                   '::'[opt] 'new' new-placement[opt] new-type-id
2061///                                     new-initializer[opt]
2062///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2063///                                     new-initializer[opt]
2064///
2065///        new-placement:
2066///                   '(' expression-list ')'
2067///
2068///        new-type-id:
2069///                   type-specifier-seq new-declarator[opt]
2070/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2071///
2072///        new-declarator:
2073///                   ptr-operator new-declarator[opt]
2074///                   direct-new-declarator
2075///
2076///        new-initializer:
2077///                   '(' expression-list[opt] ')'
2078/// [C++0x]           braced-init-list
2079///
2080ExprResult
2081Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2082  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2083  ConsumeToken();   // Consume 'new'
2084
2085  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2086  // second form of new-expression. It can't be a new-type-id.
2087
2088  ExprVector PlacementArgs(Actions);
2089  SourceLocation PlacementLParen, PlacementRParen;
2090
2091  SourceRange TypeIdParens;
2092  DeclSpec DS(AttrFactory);
2093  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2094  if (Tok.is(tok::l_paren)) {
2095    // If it turns out to be a placement, we change the type location.
2096    BalancedDelimiterTracker T(*this, tok::l_paren);
2097    T.consumeOpen();
2098    PlacementLParen = T.getOpenLocation();
2099    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2100      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2101      return ExprError();
2102    }
2103
2104    T.consumeClose();
2105    PlacementRParen = T.getCloseLocation();
2106    if (PlacementRParen.isInvalid()) {
2107      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2108      return ExprError();
2109    }
2110
2111    if (PlacementArgs.empty()) {
2112      // Reset the placement locations. There was no placement.
2113      TypeIdParens = T.getRange();
2114      PlacementLParen = PlacementRParen = SourceLocation();
2115    } else {
2116      // We still need the type.
2117      if (Tok.is(tok::l_paren)) {
2118        BalancedDelimiterTracker T(*this, tok::l_paren);
2119        T.consumeOpen();
2120        MaybeParseGNUAttributes(DeclaratorInfo);
2121        ParseSpecifierQualifierList(DS);
2122        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2123        ParseDeclarator(DeclaratorInfo);
2124        T.consumeClose();
2125        TypeIdParens = T.getRange();
2126      } else {
2127        MaybeParseGNUAttributes(DeclaratorInfo);
2128        if (ParseCXXTypeSpecifierSeq(DS))
2129          DeclaratorInfo.setInvalidType(true);
2130        else {
2131          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2132          ParseDeclaratorInternal(DeclaratorInfo,
2133                                  &Parser::ParseDirectNewDeclarator);
2134        }
2135      }
2136    }
2137  } else {
2138    // A new-type-id is a simplified type-id, where essentially the
2139    // direct-declarator is replaced by a direct-new-declarator.
2140    MaybeParseGNUAttributes(DeclaratorInfo);
2141    if (ParseCXXTypeSpecifierSeq(DS))
2142      DeclaratorInfo.setInvalidType(true);
2143    else {
2144      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2145      ParseDeclaratorInternal(DeclaratorInfo,
2146                              &Parser::ParseDirectNewDeclarator);
2147    }
2148  }
2149  if (DeclaratorInfo.isInvalidType()) {
2150    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2151    return ExprError();
2152  }
2153
2154  ExprVector ConstructorArgs(Actions);
2155  SourceLocation ConstructorLParen, ConstructorRParen;
2156
2157  if (Tok.is(tok::l_paren)) {
2158    BalancedDelimiterTracker T(*this, tok::l_paren);
2159    T.consumeOpen();
2160    ConstructorLParen = T.getOpenLocation();
2161    if (Tok.isNot(tok::r_paren)) {
2162      CommaLocsTy CommaLocs;
2163      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2164        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2165        return ExprError();
2166      }
2167    }
2168    T.consumeClose();
2169    ConstructorRParen = T.getCloseLocation();
2170    if (ConstructorRParen.isInvalid()) {
2171      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2172      return ExprError();
2173    }
2174  } else if (Tok.is(tok::l_brace) && getLang().CPlusPlus0x) {
2175    Diag(Tok.getLocation(),
2176         diag::warn_cxx98_compat_generalized_initializer_lists);
2177    // FIXME: Have to communicate the init-list to ActOnCXXNew.
2178    ParseBraceInitializer();
2179  }
2180
2181  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2182                             move_arg(PlacementArgs), PlacementRParen,
2183                             TypeIdParens, DeclaratorInfo, ConstructorLParen,
2184                             move_arg(ConstructorArgs), ConstructorRParen);
2185}
2186
2187/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2188/// passed to ParseDeclaratorInternal.
2189///
2190///        direct-new-declarator:
2191///                   '[' expression ']'
2192///                   direct-new-declarator '[' constant-expression ']'
2193///
2194void Parser::ParseDirectNewDeclarator(Declarator &D) {
2195  // Parse the array dimensions.
2196  bool first = true;
2197  while (Tok.is(tok::l_square)) {
2198    BalancedDelimiterTracker T(*this, tok::l_square);
2199    T.consumeOpen();
2200
2201    ExprResult Size(first ? ParseExpression()
2202                                : ParseConstantExpression());
2203    if (Size.isInvalid()) {
2204      // Recover
2205      SkipUntil(tok::r_square);
2206      return;
2207    }
2208    first = false;
2209
2210    T.consumeClose();
2211
2212    ParsedAttributes attrs(AttrFactory);
2213    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2214                                            /*static=*/false, /*star=*/false,
2215                                            Size.release(),
2216                                            T.getOpenLocation(),
2217                                            T.getCloseLocation()),
2218                  attrs, T.getCloseLocation());
2219
2220    if (T.getCloseLocation().isInvalid())
2221      return;
2222  }
2223}
2224
2225/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2226/// This ambiguity appears in the syntax of the C++ new operator.
2227///
2228///        new-expression:
2229///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2230///                                     new-initializer[opt]
2231///
2232///        new-placement:
2233///                   '(' expression-list ')'
2234///
2235bool Parser::ParseExpressionListOrTypeId(
2236                                   SmallVectorImpl<Expr*> &PlacementArgs,
2237                                         Declarator &D) {
2238  // The '(' was already consumed.
2239  if (isTypeIdInParens()) {
2240    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2241    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2242    ParseDeclarator(D);
2243    return D.isInvalidType();
2244  }
2245
2246  // It's not a type, it has to be an expression list.
2247  // Discard the comma locations - ActOnCXXNew has enough parameters.
2248  CommaLocsTy CommaLocs;
2249  return ParseExpressionList(PlacementArgs, CommaLocs);
2250}
2251
2252/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2253/// to free memory allocated by new.
2254///
2255/// This method is called to parse the 'delete' expression after the optional
2256/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2257/// and "Start" is its location.  Otherwise, "Start" is the location of the
2258/// 'delete' token.
2259///
2260///        delete-expression:
2261///                   '::'[opt] 'delete' cast-expression
2262///                   '::'[opt] 'delete' '[' ']' cast-expression
2263ExprResult
2264Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2265  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2266  ConsumeToken(); // Consume 'delete'
2267
2268  // Array delete?
2269  bool ArrayDelete = false;
2270  if (Tok.is(tok::l_square)) {
2271    ArrayDelete = true;
2272    BalancedDelimiterTracker T(*this, tok::l_square);
2273
2274    T.consumeOpen();
2275    T.consumeClose();
2276    if (T.getCloseLocation().isInvalid())
2277      return ExprError();
2278  }
2279
2280  ExprResult Operand(ParseCastExpression(false));
2281  if (Operand.isInvalid())
2282    return move(Operand);
2283
2284  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2285}
2286
2287static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2288  switch(kind) {
2289  default: llvm_unreachable("Not a known unary type trait.");
2290  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2291  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2292  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2293  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2294  case tok::kw___has_trivial_constructor:
2295                                    return UTT_HasTrivialDefaultConstructor;
2296  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2297  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2298  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2299  case tok::kw___is_abstract:             return UTT_IsAbstract;
2300  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2301  case tok::kw___is_array:                   return UTT_IsArray;
2302  case tok::kw___is_class:                return UTT_IsClass;
2303  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2304  case tok::kw___is_compound:                return UTT_IsCompound;
2305  case tok::kw___is_const:                   return UTT_IsConst;
2306  case tok::kw___is_empty:                return UTT_IsEmpty;
2307  case tok::kw___is_enum:                 return UTT_IsEnum;
2308  case tok::kw___is_final:                 return UTT_IsFinal;
2309  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2310  case tok::kw___is_function:                return UTT_IsFunction;
2311  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2312  case tok::kw___is_integral:                return UTT_IsIntegral;
2313  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2314  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2315  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2316  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2317  case tok::kw___is_object:                  return UTT_IsObject;
2318  case tok::kw___is_literal:              return UTT_IsLiteral;
2319  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2320  case tok::kw___is_pod:                  return UTT_IsPOD;
2321  case tok::kw___is_pointer:                 return UTT_IsPointer;
2322  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2323  case tok::kw___is_reference:               return UTT_IsReference;
2324  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2325  case tok::kw___is_scalar:                  return UTT_IsScalar;
2326  case tok::kw___is_signed:                  return UTT_IsSigned;
2327  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2328  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2329  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2330  case tok::kw___is_union:                return UTT_IsUnion;
2331  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2332  case tok::kw___is_void:                    return UTT_IsVoid;
2333  case tok::kw___is_volatile:                return UTT_IsVolatile;
2334  }
2335}
2336
2337static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2338  switch(kind) {
2339  default: llvm_unreachable("Not a known binary type trait");
2340  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2341  case tok::kw___is_convertible:             return BTT_IsConvertible;
2342  case tok::kw___is_same:                    return BTT_IsSame;
2343  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2344  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2345  }
2346}
2347
2348static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2349  switch(kind) {
2350  default: llvm_unreachable("Not a known binary type trait");
2351  case tok::kw___array_rank:                 return ATT_ArrayRank;
2352  case tok::kw___array_extent:               return ATT_ArrayExtent;
2353  }
2354}
2355
2356static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2357  switch(kind) {
2358  default: llvm_unreachable("Not a known unary expression trait.");
2359  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2360  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2361  }
2362}
2363
2364/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2365/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2366/// templates.
2367///
2368///       primary-expression:
2369/// [GNU]             unary-type-trait '(' type-id ')'
2370///
2371ExprResult Parser::ParseUnaryTypeTrait() {
2372  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2373  SourceLocation Loc = ConsumeToken();
2374
2375  BalancedDelimiterTracker T(*this, tok::l_paren);
2376  if (T.expectAndConsume(diag::err_expected_lparen))
2377    return ExprError();
2378
2379  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2380  // there will be cryptic errors about mismatched parentheses and missing
2381  // specifiers.
2382  TypeResult Ty = ParseTypeName();
2383
2384  T.consumeClose();
2385
2386  if (Ty.isInvalid())
2387    return ExprError();
2388
2389  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2390}
2391
2392/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2393/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2394/// templates.
2395///
2396///       primary-expression:
2397/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2398///
2399ExprResult Parser::ParseBinaryTypeTrait() {
2400  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2401  SourceLocation Loc = ConsumeToken();
2402
2403  BalancedDelimiterTracker T(*this, tok::l_paren);
2404  if (T.expectAndConsume(diag::err_expected_lparen))
2405    return ExprError();
2406
2407  TypeResult LhsTy = ParseTypeName();
2408  if (LhsTy.isInvalid()) {
2409    SkipUntil(tok::r_paren);
2410    return ExprError();
2411  }
2412
2413  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2414    SkipUntil(tok::r_paren);
2415    return ExprError();
2416  }
2417
2418  TypeResult RhsTy = ParseTypeName();
2419  if (RhsTy.isInvalid()) {
2420    SkipUntil(tok::r_paren);
2421    return ExprError();
2422  }
2423
2424  T.consumeClose();
2425
2426  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2427                                      T.getCloseLocation());
2428}
2429
2430/// ParseArrayTypeTrait - Parse the built-in array type-trait
2431/// pseudo-functions.
2432///
2433///       primary-expression:
2434/// [Embarcadero]     '__array_rank' '(' type-id ')'
2435/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2436///
2437ExprResult Parser::ParseArrayTypeTrait() {
2438  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2439  SourceLocation Loc = ConsumeToken();
2440
2441  BalancedDelimiterTracker T(*this, tok::l_paren);
2442  if (T.expectAndConsume(diag::err_expected_lparen))
2443    return ExprError();
2444
2445  TypeResult Ty = ParseTypeName();
2446  if (Ty.isInvalid()) {
2447    SkipUntil(tok::comma);
2448    SkipUntil(tok::r_paren);
2449    return ExprError();
2450  }
2451
2452  switch (ATT) {
2453  case ATT_ArrayRank: {
2454    T.consumeClose();
2455    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2456                                       T.getCloseLocation());
2457  }
2458  case ATT_ArrayExtent: {
2459    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2460      SkipUntil(tok::r_paren);
2461      return ExprError();
2462    }
2463
2464    ExprResult DimExpr = ParseExpression();
2465    T.consumeClose();
2466
2467    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2468                                       T.getCloseLocation());
2469  }
2470  }
2471  return ExprError();
2472}
2473
2474/// ParseExpressionTrait - Parse built-in expression-trait
2475/// pseudo-functions like __is_lvalue_expr( xxx ).
2476///
2477///       primary-expression:
2478/// [Embarcadero]     expression-trait '(' expression ')'
2479///
2480ExprResult Parser::ParseExpressionTrait() {
2481  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2482  SourceLocation Loc = ConsumeToken();
2483
2484  BalancedDelimiterTracker T(*this, tok::l_paren);
2485  if (T.expectAndConsume(diag::err_expected_lparen))
2486    return ExprError();
2487
2488  ExprResult Expr = ParseExpression();
2489
2490  T.consumeClose();
2491
2492  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2493                                      T.getCloseLocation());
2494}
2495
2496
2497/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2498/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2499/// based on the context past the parens.
2500ExprResult
2501Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2502                                         ParsedType &CastTy,
2503                                         BalancedDelimiterTracker &Tracker) {
2504  assert(getLang().CPlusPlus && "Should only be called for C++!");
2505  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2506  assert(isTypeIdInParens() && "Not a type-id!");
2507
2508  ExprResult Result(true);
2509  CastTy = ParsedType();
2510
2511  // We need to disambiguate a very ugly part of the C++ syntax:
2512  //
2513  // (T())x;  - type-id
2514  // (T())*x; - type-id
2515  // (T())/x; - expression
2516  // (T());   - expression
2517  //
2518  // The bad news is that we cannot use the specialized tentative parser, since
2519  // it can only verify that the thing inside the parens can be parsed as
2520  // type-id, it is not useful for determining the context past the parens.
2521  //
2522  // The good news is that the parser can disambiguate this part without
2523  // making any unnecessary Action calls.
2524  //
2525  // It uses a scheme similar to parsing inline methods. The parenthesized
2526  // tokens are cached, the context that follows is determined (possibly by
2527  // parsing a cast-expression), and then we re-introduce the cached tokens
2528  // into the token stream and parse them appropriately.
2529
2530  ParenParseOption ParseAs;
2531  CachedTokens Toks;
2532
2533  // Store the tokens of the parentheses. We will parse them after we determine
2534  // the context that follows them.
2535  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2536    // We didn't find the ')' we expected.
2537    Tracker.consumeClose();
2538    return ExprError();
2539  }
2540
2541  if (Tok.is(tok::l_brace)) {
2542    ParseAs = CompoundLiteral;
2543  } else {
2544    bool NotCastExpr;
2545    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2546    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2547      NotCastExpr = true;
2548    } else {
2549      // Try parsing the cast-expression that may follow.
2550      // If it is not a cast-expression, NotCastExpr will be true and no token
2551      // will be consumed.
2552      Result = ParseCastExpression(false/*isUnaryExpression*/,
2553                                   false/*isAddressofOperand*/,
2554                                   NotCastExpr,
2555                                   // type-id has priority.
2556                                   true/*isTypeCast*/);
2557    }
2558
2559    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2560    // an expression.
2561    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2562  }
2563
2564  // The current token should go after the cached tokens.
2565  Toks.push_back(Tok);
2566  // Re-enter the stored parenthesized tokens into the token stream, so we may
2567  // parse them now.
2568  PP.EnterTokenStream(Toks.data(), Toks.size(),
2569                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2570  // Drop the current token and bring the first cached one. It's the same token
2571  // as when we entered this function.
2572  ConsumeAnyToken();
2573
2574  if (ParseAs >= CompoundLiteral) {
2575    // Parse the type declarator.
2576    DeclSpec DS(AttrFactory);
2577    ParseSpecifierQualifierList(DS);
2578    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2579    ParseDeclarator(DeclaratorInfo);
2580
2581    // Match the ')'.
2582    Tracker.consumeClose();
2583
2584    if (ParseAs == CompoundLiteral) {
2585      ExprType = CompoundLiteral;
2586      TypeResult Ty = ParseTypeName();
2587       return ParseCompoundLiteralExpression(Ty.get(),
2588                                            Tracker.getOpenLocation(),
2589                                            Tracker.getCloseLocation());
2590    }
2591
2592    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2593    assert(ParseAs == CastExpr);
2594
2595    if (DeclaratorInfo.isInvalidType())
2596      return ExprError();
2597
2598    // Result is what ParseCastExpression returned earlier.
2599    if (!Result.isInvalid())
2600      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2601                                    DeclaratorInfo, CastTy,
2602                                    Tracker.getCloseLocation(), Result.take());
2603    return move(Result);
2604  }
2605
2606  // Not a compound literal, and not followed by a cast-expression.
2607  assert(ParseAs == SimpleExpr);
2608
2609  ExprType = SimpleExpr;
2610  Result = ParseExpression();
2611  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2612    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2613                                    Tok.getLocation(), Result.take());
2614
2615  // Match the ')'.
2616  if (Result.isInvalid()) {
2617    SkipUntil(tok::r_paren);
2618    return ExprError();
2619  }
2620
2621  Tracker.consumeClose();
2622  return move(Result);
2623}
2624