SemaLookup.cpp revision 0f4b5be4a3b3e1c18e611e5a5c262ef028e8320a
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/Overload.h"
18#include "clang/Sema/DeclSpec.h"
19#include "clang/Sema/Scope.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/Sema/ExternalSemaSource.h"
23#include "clang/Sema/TypoCorrection.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CXXInheritance.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/DeclCXX.h"
28#include "clang/AST/DeclLookups.h"
29#include "clang/AST/DeclObjC.h"
30#include "clang/AST/DeclTemplate.h"
31#include "clang/AST/Expr.h"
32#include "clang/AST/ExprCXX.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/LangOptions.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/StringMap.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/ADT/edit_distance.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <map>
47#include <set>
48#include <utility>
49#include <vector>
50
51using namespace clang;
52using namespace sema;
53
54namespace {
55  class UnqualUsingEntry {
56    const DeclContext *Nominated;
57    const DeclContext *CommonAncestor;
58
59  public:
60    UnqualUsingEntry(const DeclContext *Nominated,
61                     const DeclContext *CommonAncestor)
62      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63    }
64
65    const DeclContext *getCommonAncestor() const {
66      return CommonAncestor;
67    }
68
69    const DeclContext *getNominatedNamespace() const {
70      return Nominated;
71    }
72
73    // Sort by the pointer value of the common ancestor.
74    struct Comparator {
75      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76        return L.getCommonAncestor() < R.getCommonAncestor();
77      }
78
79      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80        return E.getCommonAncestor() < DC;
81      }
82
83      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84        return DC < E.getCommonAncestor();
85      }
86    };
87  };
88
89  /// A collection of using directives, as used by C++ unqualified
90  /// lookup.
91  class UnqualUsingDirectiveSet {
92    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94    ListTy list;
95    llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97  public:
98    UnqualUsingDirectiveSet() {}
99
100    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101      // C++ [namespace.udir]p1:
102      //   During unqualified name lookup, the names appear as if they
103      //   were declared in the nearest enclosing namespace which contains
104      //   both the using-directive and the nominated namespace.
105      DeclContext *InnermostFileDC
106        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107      assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109      for (; S; S = S->getParent()) {
110        // C++ [namespace.udir]p1:
111        //   A using-directive shall not appear in class scope, but may
112        //   appear in namespace scope or in block scope.
113        DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114        if (Ctx && Ctx->isFileContext()) {
115          visit(Ctx, Ctx);
116        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117          Scope::udir_iterator I = S->using_directives_begin(),
118                             End = S->using_directives_end();
119          for (; I != End; ++I)
120            visit(*I, InnermostFileDC);
121        }
122      }
123    }
124
125    // Visits a context and collect all of its using directives
126    // recursively.  Treats all using directives as if they were
127    // declared in the context.
128    //
129    // A given context is only every visited once, so it is important
130    // that contexts be visited from the inside out in order to get
131    // the effective DCs right.
132    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133      if (!visited.insert(DC))
134        return;
135
136      addUsingDirectives(DC, EffectiveDC);
137    }
138
139    // Visits a using directive and collects all of its using
140    // directives recursively.  Treats all using directives as if they
141    // were declared in the effective DC.
142    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143      DeclContext *NS = UD->getNominatedNamespace();
144      if (!visited.insert(NS))
145        return;
146
147      addUsingDirective(UD, EffectiveDC);
148      addUsingDirectives(NS, EffectiveDC);
149    }
150
151    // Adds all the using directives in a context (and those nominated
152    // by its using directives, transitively) as if they appeared in
153    // the given effective context.
154    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155      SmallVector<DeclContext*,4> queue;
156      while (true) {
157        DeclContext::udir_iterator I, End;
158        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159          UsingDirectiveDecl *UD = *I;
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS)) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.back();
171        queue.pop_back();
172      }
173    }
174
175    // Add a using directive as if it had been declared in the given
176    // context.  This helps implement C++ [namespace.udir]p3:
177    //   The using-directive is transitive: if a scope contains a
178    //   using-directive that nominates a second namespace that itself
179    //   contains using-directives, the effect is as if the
180    //   using-directives from the second namespace also appeared in
181    //   the first.
182    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183      // Find the common ancestor between the effective context and
184      // the nominated namespace.
185      DeclContext *Common = UD->getNominatedNamespace();
186      while (!Common->Encloses(EffectiveDC))
187        Common = Common->getParent();
188      Common = Common->getPrimaryContext();
189
190      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191    }
192
193    void done() {
194      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195    }
196
197    typedef ListTy::const_iterator const_iterator;
198
199    const_iterator begin() const { return list.begin(); }
200    const_iterator end() const { return list.end(); }
201
202    std::pair<const_iterator,const_iterator>
203    getNamespacesFor(DeclContext *DC) const {
204      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                              UnqualUsingEntry::Comparator());
206    }
207  };
208}
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220    IDNS = Decl::IDNS_Ordinary;
221    if (CPlusPlus) {
222      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223      if (Redeclaration)
224        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225    }
226    break;
227
228  case Sema::LookupOperatorName:
229    // Operator lookup is its own crazy thing;  it is not the same
230    // as (e.g.) looking up an operator name for redeclaration.
231    assert(!Redeclaration && "cannot do redeclaration operator lookup");
232    IDNS = Decl::IDNS_NonMemberOperator;
233    break;
234
235  case Sema::LookupTagName:
236    if (CPlusPlus) {
237      IDNS = Decl::IDNS_Type;
238
239      // When looking for a redeclaration of a tag name, we add:
240      // 1) TagFriend to find undeclared friend decls
241      // 2) Namespace because they can't "overload" with tag decls.
242      // 3) Tag because it includes class templates, which can't
243      //    "overload" with tag decls.
244      if (Redeclaration)
245        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246    } else {
247      IDNS = Decl::IDNS_Tag;
248    }
249    break;
250  case Sema::LookupLabel:
251    IDNS = Decl::IDNS_Label;
252    break;
253
254  case Sema::LookupMemberName:
255    IDNS = Decl::IDNS_Member;
256    if (CPlusPlus)
257      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258    break;
259
260  case Sema::LookupNestedNameSpecifierName:
261    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262    break;
263
264  case Sema::LookupNamespaceName:
265    IDNS = Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupUsingDeclName:
269    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270         | Decl::IDNS_Member | Decl::IDNS_Using;
271    break;
272
273  case Sema::LookupObjCProtocolName:
274    IDNS = Decl::IDNS_ObjCProtocol;
275    break;
276
277  case Sema::LookupAnyName:
278    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280      | Decl::IDNS_Type;
281    break;
282  }
283  return IDNS;
284}
285
286void LookupResult::configure() {
287  IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                 isForRedeclaration());
289
290  // If we're looking for one of the allocation or deallocation
291  // operators, make sure that the implicitly-declared new and delete
292  // operators can be found.
293  if (!isForRedeclaration()) {
294    switch (NameInfo.getName().getCXXOverloadedOperator()) {
295    case OO_New:
296    case OO_Delete:
297    case OO_Array_New:
298    case OO_Array_Delete:
299      SemaRef.DeclareGlobalNewDelete();
300      break;
301
302    default:
303      break;
304    }
305  }
306}
307
308void LookupResult::sanityImpl() const {
309  // Note that this function is never called by NDEBUG builds. See
310  // LookupResult::sanity().
311  assert(ResultKind != NotFound || Decls.size() == 0);
312  assert(ResultKind != Found || Decls.size() == 1);
313  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314         (Decls.size() == 1 &&
315          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319                                Ambiguity == AmbiguousBaseSubobjectTypes)));
320  assert((Paths != NULL) == (ResultKind == Ambiguous &&
321                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
322                              Ambiguity == AmbiguousBaseSubobjects)));
323}
324
325// Necessary because CXXBasePaths is not complete in Sema.h
326void LookupResult::deletePaths(CXXBasePaths *Paths) {
327  delete Paths;
328}
329
330static NamedDecl *getVisibleDecl(NamedDecl *D);
331
332NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333  return getVisibleDecl(D);
334}
335
336/// Resolves the result kind of this lookup.
337void LookupResult::resolveKind() {
338  unsigned N = Decls.size();
339
340  // Fast case: no possible ambiguity.
341  if (N == 0) {
342    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343    return;
344  }
345
346  // If there's a single decl, we need to examine it to decide what
347  // kind of lookup this is.
348  if (N == 1) {
349    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350    if (isa<FunctionTemplateDecl>(D))
351      ResultKind = FoundOverloaded;
352    else if (isa<UnresolvedUsingValueDecl>(D))
353      ResultKind = FoundUnresolvedValue;
354    return;
355  }
356
357  // Don't do any extra resolution if we've already resolved as ambiguous.
358  if (ResultKind == Ambiguous) return;
359
360  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362
363  bool Ambiguous = false;
364  bool HasTag = false, HasFunction = false, HasNonFunction = false;
365  bool HasFunctionTemplate = false, HasUnresolved = false;
366
367  unsigned UniqueTagIndex = 0;
368
369  unsigned I = 0;
370  while (I < N) {
371    NamedDecl *D = Decls[I]->getUnderlyingDecl();
372    D = cast<NamedDecl>(D->getCanonicalDecl());
373
374    // Redeclarations of types via typedef can occur both within a scope
375    // and, through using declarations and directives, across scopes. There is
376    // no ambiguity if they all refer to the same type, so unique based on the
377    // canonical type.
378    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
379      if (!TD->getDeclContext()->isRecord()) {
380        QualType T = SemaRef.Context.getTypeDeclType(TD);
381        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
382          // The type is not unique; pull something off the back and continue
383          // at this index.
384          Decls[I] = Decls[--N];
385          continue;
386        }
387      }
388    }
389
390    if (!Unique.insert(D)) {
391      // If it's not unique, pull something off the back (and
392      // continue at this index).
393      Decls[I] = Decls[--N];
394      continue;
395    }
396
397    // Otherwise, do some decl type analysis and then continue.
398
399    if (isa<UnresolvedUsingValueDecl>(D)) {
400      HasUnresolved = true;
401    } else if (isa<TagDecl>(D)) {
402      if (HasTag)
403        Ambiguous = true;
404      UniqueTagIndex = I;
405      HasTag = true;
406    } else if (isa<FunctionTemplateDecl>(D)) {
407      HasFunction = true;
408      HasFunctionTemplate = true;
409    } else if (isa<FunctionDecl>(D)) {
410      HasFunction = true;
411    } else {
412      if (HasNonFunction)
413        Ambiguous = true;
414      HasNonFunction = true;
415    }
416    I++;
417  }
418
419  // C++ [basic.scope.hiding]p2:
420  //   A class name or enumeration name can be hidden by the name of
421  //   an object, function, or enumerator declared in the same
422  //   scope. If a class or enumeration name and an object, function,
423  //   or enumerator are declared in the same scope (in any order)
424  //   with the same name, the class or enumeration name is hidden
425  //   wherever the object, function, or enumerator name is visible.
426  // But it's still an error if there are distinct tag types found,
427  // even if they're not visible. (ref?)
428  if (HideTags && HasTag && !Ambiguous &&
429      (HasFunction || HasNonFunction || HasUnresolved)) {
430    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
431         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
432      Decls[UniqueTagIndex] = Decls[--N];
433    else
434      Ambiguous = true;
435  }
436
437  Decls.set_size(N);
438
439  if (HasNonFunction && (HasFunction || HasUnresolved))
440    Ambiguous = true;
441
442  if (Ambiguous)
443    setAmbiguous(LookupResult::AmbiguousReference);
444  else if (HasUnresolved)
445    ResultKind = LookupResult::FoundUnresolvedValue;
446  else if (N > 1 || HasFunctionTemplate)
447    ResultKind = LookupResult::FoundOverloaded;
448  else
449    ResultKind = LookupResult::Found;
450}
451
452void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
453  CXXBasePaths::const_paths_iterator I, E;
454  DeclContext::lookup_iterator DI, DE;
455  for (I = P.begin(), E = P.end(); I != E; ++I)
456    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
457      addDecl(*DI);
458}
459
460void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
461  Paths = new CXXBasePaths;
462  Paths->swap(P);
463  addDeclsFromBasePaths(*Paths);
464  resolveKind();
465  setAmbiguous(AmbiguousBaseSubobjects);
466}
467
468void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
469  Paths = new CXXBasePaths;
470  Paths->swap(P);
471  addDeclsFromBasePaths(*Paths);
472  resolveKind();
473  setAmbiguous(AmbiguousBaseSubobjectTypes);
474}
475
476void LookupResult::print(raw_ostream &Out) {
477  Out << Decls.size() << " result(s)";
478  if (isAmbiguous()) Out << ", ambiguous";
479  if (Paths) Out << ", base paths present";
480
481  for (iterator I = begin(), E = end(); I != E; ++I) {
482    Out << "\n";
483    (*I)->print(Out, 2);
484  }
485}
486
487/// \brief Lookup a builtin function, when name lookup would otherwise
488/// fail.
489static bool LookupBuiltin(Sema &S, LookupResult &R) {
490  Sema::LookupNameKind NameKind = R.getLookupKind();
491
492  // If we didn't find a use of this identifier, and if the identifier
493  // corresponds to a compiler builtin, create the decl object for the builtin
494  // now, injecting it into translation unit scope, and return it.
495  if (NameKind == Sema::LookupOrdinaryName ||
496      NameKind == Sema::LookupRedeclarationWithLinkage) {
497    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
498    if (II) {
499      // If this is a builtin on this (or all) targets, create the decl.
500      if (unsigned BuiltinID = II->getBuiltinID()) {
501        // In C++, we don't have any predefined library functions like
502        // 'malloc'. Instead, we'll just error.
503        if (S.getLangOpts().CPlusPlus &&
504            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
505          return false;
506
507        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
508                                                 BuiltinID, S.TUScope,
509                                                 R.isForRedeclaration(),
510                                                 R.getNameLoc())) {
511          R.addDecl(D);
512          return true;
513        }
514
515        if (R.isForRedeclaration()) {
516          // If we're redeclaring this function anyway, forget that
517          // this was a builtin at all.
518          S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
519        }
520
521        return false;
522      }
523    }
524  }
525
526  return false;
527}
528
529/// \brief Determine whether we can declare a special member function within
530/// the class at this point.
531static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
532                                            const CXXRecordDecl *Class) {
533  // We need to have a definition for the class.
534  if (!Class->getDefinition() || Class->isDependentContext())
535    return false;
536
537  // We can't be in the middle of defining the class.
538  if (const RecordType *RecordTy
539                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
540    return !RecordTy->isBeingDefined();
541
542  return false;
543}
544
545void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
546  if (!CanDeclareSpecialMemberFunction(Context, Class))
547    return;
548
549  // If the default constructor has not yet been declared, do so now.
550  if (Class->needsImplicitDefaultConstructor())
551    DeclareImplicitDefaultConstructor(Class);
552
553  // If the copy constructor has not yet been declared, do so now.
554  if (!Class->hasDeclaredCopyConstructor())
555    DeclareImplicitCopyConstructor(Class);
556
557  // If the copy assignment operator has not yet been declared, do so now.
558  if (!Class->hasDeclaredCopyAssignment())
559    DeclareImplicitCopyAssignment(Class);
560
561  if (getLangOpts().CPlusPlus0x) {
562    // If the move constructor has not yet been declared, do so now.
563    if (Class->needsImplicitMoveConstructor())
564      DeclareImplicitMoveConstructor(Class); // might not actually do it
565
566    // If the move assignment operator has not yet been declared, do so now.
567    if (Class->needsImplicitMoveAssignment())
568      DeclareImplicitMoveAssignment(Class); // might not actually do it
569  }
570
571  // If the destructor has not yet been declared, do so now.
572  if (!Class->hasDeclaredDestructor())
573    DeclareImplicitDestructor(Class);
574}
575
576/// \brief Determine whether this is the name of an implicitly-declared
577/// special member function.
578static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
579  switch (Name.getNameKind()) {
580  case DeclarationName::CXXConstructorName:
581  case DeclarationName::CXXDestructorName:
582    return true;
583
584  case DeclarationName::CXXOperatorName:
585    return Name.getCXXOverloadedOperator() == OO_Equal;
586
587  default:
588    break;
589  }
590
591  return false;
592}
593
594/// \brief If there are any implicit member functions with the given name
595/// that need to be declared in the given declaration context, do so.
596static void DeclareImplicitMemberFunctionsWithName(Sema &S,
597                                                   DeclarationName Name,
598                                                   const DeclContext *DC) {
599  if (!DC)
600    return;
601
602  switch (Name.getNameKind()) {
603  case DeclarationName::CXXConstructorName:
604    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
605      if (Record->getDefinition() &&
606          CanDeclareSpecialMemberFunction(S.Context, Record)) {
607        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608        if (Record->needsImplicitDefaultConstructor())
609          S.DeclareImplicitDefaultConstructor(Class);
610        if (!Record->hasDeclaredCopyConstructor())
611          S.DeclareImplicitCopyConstructor(Class);
612        if (S.getLangOpts().CPlusPlus0x &&
613            Record->needsImplicitMoveConstructor())
614          S.DeclareImplicitMoveConstructor(Class);
615      }
616    break;
617
618  case DeclarationName::CXXDestructorName:
619    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
621          CanDeclareSpecialMemberFunction(S.Context, Record))
622        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623    break;
624
625  case DeclarationName::CXXOperatorName:
626    if (Name.getCXXOverloadedOperator() != OO_Equal)
627      break;
628
629    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630      if (Record->getDefinition() &&
631          CanDeclareSpecialMemberFunction(S.Context, Record)) {
632        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
633        if (!Record->hasDeclaredCopyAssignment())
634          S.DeclareImplicitCopyAssignment(Class);
635        if (S.getLangOpts().CPlusPlus0x &&
636            Record->needsImplicitMoveAssignment())
637          S.DeclareImplicitMoveAssignment(Class);
638      }
639    }
640    break;
641
642  default:
643    break;
644  }
645}
646
647// Adds all qualifying matches for a name within a decl context to the
648// given lookup result.  Returns true if any matches were found.
649static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
650  bool Found = false;
651
652  // Lazily declare C++ special member functions.
653  if (S.getLangOpts().CPlusPlus)
654    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
655
656  // Perform lookup into this declaration context.
657  DeclContext::lookup_const_iterator I, E;
658  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
659    NamedDecl *D = *I;
660    if ((D = R.getAcceptableDecl(D))) {
661      R.addDecl(D);
662      Found = true;
663    }
664  }
665
666  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667    return true;
668
669  if (R.getLookupName().getNameKind()
670        != DeclarationName::CXXConversionFunctionName ||
671      R.getLookupName().getCXXNameType()->isDependentType() ||
672      !isa<CXXRecordDecl>(DC))
673    return Found;
674
675  // C++ [temp.mem]p6:
676  //   A specialization of a conversion function template is not found by
677  //   name lookup. Instead, any conversion function templates visible in the
678  //   context of the use are considered. [...]
679  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680  if (!Record->isCompleteDefinition())
681    return Found;
682
683  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
684  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
685         UEnd = Unresolved->end(); U != UEnd; ++U) {
686    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
687    if (!ConvTemplate)
688      continue;
689
690    // When we're performing lookup for the purposes of redeclaration, just
691    // add the conversion function template. When we deduce template
692    // arguments for specializations, we'll end up unifying the return
693    // type of the new declaration with the type of the function template.
694    if (R.isForRedeclaration()) {
695      R.addDecl(ConvTemplate);
696      Found = true;
697      continue;
698    }
699
700    // C++ [temp.mem]p6:
701    //   [...] For each such operator, if argument deduction succeeds
702    //   (14.9.2.3), the resulting specialization is used as if found by
703    //   name lookup.
704    //
705    // When referencing a conversion function for any purpose other than
706    // a redeclaration (such that we'll be building an expression with the
707    // result), perform template argument deduction and place the
708    // specialization into the result set. We do this to avoid forcing all
709    // callers to perform special deduction for conversion functions.
710    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
711    FunctionDecl *Specialization = 0;
712
713    const FunctionProtoType *ConvProto
714      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
715    assert(ConvProto && "Nonsensical conversion function template type");
716
717    // Compute the type of the function that we would expect the conversion
718    // function to have, if it were to match the name given.
719    // FIXME: Calling convention!
720    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
721    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
722    EPI.ExceptionSpecType = EST_None;
723    EPI.NumExceptions = 0;
724    QualType ExpectedType
725      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
726                                            0, 0, EPI);
727
728    // Perform template argument deduction against the type that we would
729    // expect the function to have.
730    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
731                                            Specialization, Info)
732          == Sema::TDK_Success) {
733      R.addDecl(Specialization);
734      Found = true;
735    }
736  }
737
738  return Found;
739}
740
741// Performs C++ unqualified lookup into the given file context.
742static bool
743CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
744                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
745
746  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
747
748  // Perform direct name lookup into the LookupCtx.
749  bool Found = LookupDirect(S, R, NS);
750
751  // Perform direct name lookup into the namespaces nominated by the
752  // using directives whose common ancestor is this namespace.
753  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
754  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
755
756  for (; UI != UEnd; ++UI)
757    if (LookupDirect(S, R, UI->getNominatedNamespace()))
758      Found = true;
759
760  R.resolveKind();
761
762  return Found;
763}
764
765static bool isNamespaceOrTranslationUnitScope(Scope *S) {
766  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
767    return Ctx->isFileContext();
768  return false;
769}
770
771// Find the next outer declaration context from this scope. This
772// routine actually returns the semantic outer context, which may
773// differ from the lexical context (encoded directly in the Scope
774// stack) when we are parsing a member of a class template. In this
775// case, the second element of the pair will be true, to indicate that
776// name lookup should continue searching in this semantic context when
777// it leaves the current template parameter scope.
778static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
779  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
780  DeclContext *Lexical = 0;
781  for (Scope *OuterS = S->getParent(); OuterS;
782       OuterS = OuterS->getParent()) {
783    if (OuterS->getEntity()) {
784      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
785      break;
786    }
787  }
788
789  // C++ [temp.local]p8:
790  //   In the definition of a member of a class template that appears
791  //   outside of the namespace containing the class template
792  //   definition, the name of a template-parameter hides the name of
793  //   a member of this namespace.
794  //
795  // Example:
796  //
797  //   namespace N {
798  //     class C { };
799  //
800  //     template<class T> class B {
801  //       void f(T);
802  //     };
803  //   }
804  //
805  //   template<class C> void N::B<C>::f(C) {
806  //     C b;  // C is the template parameter, not N::C
807  //   }
808  //
809  // In this example, the lexical context we return is the
810  // TranslationUnit, while the semantic context is the namespace N.
811  if (!Lexical || !DC || !S->getParent() ||
812      !S->getParent()->isTemplateParamScope())
813    return std::make_pair(Lexical, false);
814
815  // Find the outermost template parameter scope.
816  // For the example, this is the scope for the template parameters of
817  // template<class C>.
818  Scope *OutermostTemplateScope = S->getParent();
819  while (OutermostTemplateScope->getParent() &&
820         OutermostTemplateScope->getParent()->isTemplateParamScope())
821    OutermostTemplateScope = OutermostTemplateScope->getParent();
822
823  // Find the namespace context in which the original scope occurs. In
824  // the example, this is namespace N.
825  DeclContext *Semantic = DC;
826  while (!Semantic->isFileContext())
827    Semantic = Semantic->getParent();
828
829  // Find the declaration context just outside of the template
830  // parameter scope. This is the context in which the template is
831  // being lexically declaration (a namespace context). In the
832  // example, this is the global scope.
833  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
834      Lexical->Encloses(Semantic))
835    return std::make_pair(Semantic, true);
836
837  return std::make_pair(Lexical, false);
838}
839
840bool Sema::CppLookupName(LookupResult &R, Scope *S) {
841  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
842
843  DeclarationName Name = R.getLookupName();
844
845  // If this is the name of an implicitly-declared special member function,
846  // go through the scope stack to implicitly declare
847  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
848    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
849      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
850        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
851  }
852
853  // Implicitly declare member functions with the name we're looking for, if in
854  // fact we are in a scope where it matters.
855
856  Scope *Initial = S;
857  IdentifierResolver::iterator
858    I = IdResolver.begin(Name),
859    IEnd = IdResolver.end();
860
861  // First we lookup local scope.
862  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
863  // ...During unqualified name lookup (3.4.1), the names appear as if
864  // they were declared in the nearest enclosing namespace which contains
865  // both the using-directive and the nominated namespace.
866  // [Note: in this context, "contains" means "contains directly or
867  // indirectly".
868  //
869  // For example:
870  // namespace A { int i; }
871  // void foo() {
872  //   int i;
873  //   {
874  //     using namespace A;
875  //     ++i; // finds local 'i', A::i appears at global scope
876  //   }
877  // }
878  //
879  DeclContext *OutsideOfTemplateParamDC = 0;
880  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
881    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
882
883    // Check whether the IdResolver has anything in this scope.
884    bool Found = false;
885    for (; I != IEnd && S->isDeclScope(*I); ++I) {
886      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
887        Found = true;
888        R.addDecl(ND);
889      }
890    }
891    if (Found) {
892      R.resolveKind();
893      if (S->isClassScope())
894        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
895          R.setNamingClass(Record);
896      return true;
897    }
898
899    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
900        S->getParent() && !S->getParent()->isTemplateParamScope()) {
901      // We've just searched the last template parameter scope and
902      // found nothing, so look into the the contexts between the
903      // lexical and semantic declaration contexts returned by
904      // findOuterContext(). This implements the name lookup behavior
905      // of C++ [temp.local]p8.
906      Ctx = OutsideOfTemplateParamDC;
907      OutsideOfTemplateParamDC = 0;
908    }
909
910    if (Ctx) {
911      DeclContext *OuterCtx;
912      bool SearchAfterTemplateScope;
913      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
914      if (SearchAfterTemplateScope)
915        OutsideOfTemplateParamDC = OuterCtx;
916
917      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
918        // We do not directly look into transparent contexts, since
919        // those entities will be found in the nearest enclosing
920        // non-transparent context.
921        if (Ctx->isTransparentContext())
922          continue;
923
924        // We do not look directly into function or method contexts,
925        // since all of the local variables and parameters of the
926        // function/method are present within the Scope.
927        if (Ctx->isFunctionOrMethod()) {
928          // If we have an Objective-C instance method, look for ivars
929          // in the corresponding interface.
930          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
931            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
932              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
933                ObjCInterfaceDecl *ClassDeclared;
934                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
935                                                 Name.getAsIdentifierInfo(),
936                                                             ClassDeclared)) {
937                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
938                    R.addDecl(ND);
939                    R.resolveKind();
940                    return true;
941                  }
942                }
943              }
944          }
945
946          continue;
947        }
948
949        // Perform qualified name lookup into this context.
950        // FIXME: In some cases, we know that every name that could be found by
951        // this qualified name lookup will also be on the identifier chain. For
952        // example, inside a class without any base classes, we never need to
953        // perform qualified lookup because all of the members are on top of the
954        // identifier chain.
955        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
956          return true;
957      }
958    }
959  }
960
961  // Stop if we ran out of scopes.
962  // FIXME:  This really, really shouldn't be happening.
963  if (!S) return false;
964
965  // If we are looking for members, no need to look into global/namespace scope.
966  if (R.getLookupKind() == LookupMemberName)
967    return false;
968
969  // Collect UsingDirectiveDecls in all scopes, and recursively all
970  // nominated namespaces by those using-directives.
971  //
972  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
973  // don't build it for each lookup!
974
975  UnqualUsingDirectiveSet UDirs;
976  UDirs.visitScopeChain(Initial, S);
977  UDirs.done();
978
979  // Lookup namespace scope, and global scope.
980  // Unqualified name lookup in C++ requires looking into scopes
981  // that aren't strictly lexical, and therefore we walk through the
982  // context as well as walking through the scopes.
983
984  for (; S; S = S->getParent()) {
985    // Check whether the IdResolver has anything in this scope.
986    bool Found = false;
987    for (; I != IEnd && S->isDeclScope(*I); ++I) {
988      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
989        // We found something.  Look for anything else in our scope
990        // with this same name and in an acceptable identifier
991        // namespace, so that we can construct an overload set if we
992        // need to.
993        Found = true;
994        R.addDecl(ND);
995      }
996    }
997
998    if (Found && S->isTemplateParamScope()) {
999      R.resolveKind();
1000      return true;
1001    }
1002
1003    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1004    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1005        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1006      // We've just searched the last template parameter scope and
1007      // found nothing, so look into the the contexts between the
1008      // lexical and semantic declaration contexts returned by
1009      // findOuterContext(). This implements the name lookup behavior
1010      // of C++ [temp.local]p8.
1011      Ctx = OutsideOfTemplateParamDC;
1012      OutsideOfTemplateParamDC = 0;
1013    }
1014
1015    if (Ctx) {
1016      DeclContext *OuterCtx;
1017      bool SearchAfterTemplateScope;
1018      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1019      if (SearchAfterTemplateScope)
1020        OutsideOfTemplateParamDC = OuterCtx;
1021
1022      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1023        // We do not directly look into transparent contexts, since
1024        // those entities will be found in the nearest enclosing
1025        // non-transparent context.
1026        if (Ctx->isTransparentContext())
1027          continue;
1028
1029        // If we have a context, and it's not a context stashed in the
1030        // template parameter scope for an out-of-line definition, also
1031        // look into that context.
1032        if (!(Found && S && S->isTemplateParamScope())) {
1033          assert(Ctx->isFileContext() &&
1034              "We should have been looking only at file context here already.");
1035
1036          // Look into context considering using-directives.
1037          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1038            Found = true;
1039        }
1040
1041        if (Found) {
1042          R.resolveKind();
1043          return true;
1044        }
1045
1046        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1047          return false;
1048      }
1049    }
1050
1051    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1052      return false;
1053  }
1054
1055  return !R.empty();
1056}
1057
1058/// \brief Retrieve the visible declaration corresponding to D, if any.
1059///
1060/// This routine determines whether the declaration D is visible in the current
1061/// module, with the current imports. If not, it checks whether any
1062/// redeclaration of D is visible, and if so, returns that declaration.
1063///
1064/// \returns D, or a visible previous declaration of D, whichever is more recent
1065/// and visible. If no declaration of D is visible, returns null.
1066static NamedDecl *getVisibleDecl(NamedDecl *D) {
1067  if (LookupResult::isVisible(D))
1068    return D;
1069
1070  for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1071       RD != RDEnd; ++RD) {
1072    if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1073      if (LookupResult::isVisible(ND))
1074        return ND;
1075    }
1076  }
1077
1078  return 0;
1079}
1080
1081/// @brief Perform unqualified name lookup starting from a given
1082/// scope.
1083///
1084/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1085/// used to find names within the current scope. For example, 'x' in
1086/// @code
1087/// int x;
1088/// int f() {
1089///   return x; // unqualified name look finds 'x' in the global scope
1090/// }
1091/// @endcode
1092///
1093/// Different lookup criteria can find different names. For example, a
1094/// particular scope can have both a struct and a function of the same
1095/// name, and each can be found by certain lookup criteria. For more
1096/// information about lookup criteria, see the documentation for the
1097/// class LookupCriteria.
1098///
1099/// @param S        The scope from which unqualified name lookup will
1100/// begin. If the lookup criteria permits, name lookup may also search
1101/// in the parent scopes.
1102///
1103/// @param Name     The name of the entity that we are searching for.
1104///
1105/// @param Loc      If provided, the source location where we're performing
1106/// name lookup. At present, this is only used to produce diagnostics when
1107/// C library functions (like "malloc") are implicitly declared.
1108///
1109/// @returns The result of name lookup, which includes zero or more
1110/// declarations and possibly additional information used to diagnose
1111/// ambiguities.
1112bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1113  DeclarationName Name = R.getLookupName();
1114  if (!Name) return false;
1115
1116  LookupNameKind NameKind = R.getLookupKind();
1117
1118  if (!getLangOpts().CPlusPlus) {
1119    // Unqualified name lookup in C/Objective-C is purely lexical, so
1120    // search in the declarations attached to the name.
1121    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1122      // Find the nearest non-transparent declaration scope.
1123      while (!(S->getFlags() & Scope::DeclScope) ||
1124             (S->getEntity() &&
1125              static_cast<DeclContext *>(S->getEntity())
1126                ->isTransparentContext()))
1127        S = S->getParent();
1128    }
1129
1130    unsigned IDNS = R.getIdentifierNamespace();
1131
1132    // Scan up the scope chain looking for a decl that matches this
1133    // identifier that is in the appropriate namespace.  This search
1134    // should not take long, as shadowing of names is uncommon, and
1135    // deep shadowing is extremely uncommon.
1136    bool LeftStartingScope = false;
1137
1138    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1139                                   IEnd = IdResolver.end();
1140         I != IEnd; ++I)
1141      if ((*I)->isInIdentifierNamespace(IDNS)) {
1142        if (NameKind == LookupRedeclarationWithLinkage) {
1143          // Determine whether this (or a previous) declaration is
1144          // out-of-scope.
1145          if (!LeftStartingScope && !S->isDeclScope(*I))
1146            LeftStartingScope = true;
1147
1148          // If we found something outside of our starting scope that
1149          // does not have linkage, skip it.
1150          if (LeftStartingScope && !((*I)->hasLinkage()))
1151            continue;
1152        }
1153        else if (NameKind == LookupObjCImplicitSelfParam &&
1154                 !isa<ImplicitParamDecl>(*I))
1155          continue;
1156
1157        // If this declaration is module-private and it came from an AST
1158        // file, we can't see it.
1159        NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1160        if (!D)
1161          continue;
1162
1163        R.addDecl(D);
1164
1165        // Check whether there are any other declarations with the same name
1166        // and in the same scope.
1167        if (I != IEnd) {
1168          // Find the scope in which this declaration was declared (if it
1169          // actually exists in a Scope).
1170          while (S && !S->isDeclScope(D))
1171            S = S->getParent();
1172
1173          // If the scope containing the declaration is the translation unit,
1174          // then we'll need to perform our checks based on the matching
1175          // DeclContexts rather than matching scopes.
1176          if (S && isNamespaceOrTranslationUnitScope(S))
1177            S = 0;
1178
1179          // Compute the DeclContext, if we need it.
1180          DeclContext *DC = 0;
1181          if (!S)
1182            DC = (*I)->getDeclContext()->getRedeclContext();
1183
1184          IdentifierResolver::iterator LastI = I;
1185          for (++LastI; LastI != IEnd; ++LastI) {
1186            if (S) {
1187              // Match based on scope.
1188              if (!S->isDeclScope(*LastI))
1189                break;
1190            } else {
1191              // Match based on DeclContext.
1192              DeclContext *LastDC
1193                = (*LastI)->getDeclContext()->getRedeclContext();
1194              if (!LastDC->Equals(DC))
1195                break;
1196            }
1197
1198            // If the declaration isn't in the right namespace, skip it.
1199            if (!(*LastI)->isInIdentifierNamespace(IDNS))
1200              continue;
1201
1202            D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1203            if (D)
1204              R.addDecl(D);
1205          }
1206
1207          R.resolveKind();
1208        }
1209        return true;
1210      }
1211  } else {
1212    // Perform C++ unqualified name lookup.
1213    if (CppLookupName(R, S))
1214      return true;
1215  }
1216
1217  // If we didn't find a use of this identifier, and if the identifier
1218  // corresponds to a compiler builtin, create the decl object for the builtin
1219  // now, injecting it into translation unit scope, and return it.
1220  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1221    return true;
1222
1223  // If we didn't find a use of this identifier, the ExternalSource
1224  // may be able to handle the situation.
1225  // Note: some lookup failures are expected!
1226  // See e.g. R.isForRedeclaration().
1227  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1228}
1229
1230/// @brief Perform qualified name lookup in the namespaces nominated by
1231/// using directives by the given context.
1232///
1233/// C++98 [namespace.qual]p2:
1234///   Given X::m (where X is a user-declared namespace), or given ::m
1235///   (where X is the global namespace), let S be the set of all
1236///   declarations of m in X and in the transitive closure of all
1237///   namespaces nominated by using-directives in X and its used
1238///   namespaces, except that using-directives are ignored in any
1239///   namespace, including X, directly containing one or more
1240///   declarations of m. No namespace is searched more than once in
1241///   the lookup of a name. If S is the empty set, the program is
1242///   ill-formed. Otherwise, if S has exactly one member, or if the
1243///   context of the reference is a using-declaration
1244///   (namespace.udecl), S is the required set of declarations of
1245///   m. Otherwise if the use of m is not one that allows a unique
1246///   declaration to be chosen from S, the program is ill-formed.
1247/// C++98 [namespace.qual]p5:
1248///   During the lookup of a qualified namespace member name, if the
1249///   lookup finds more than one declaration of the member, and if one
1250///   declaration introduces a class name or enumeration name and the
1251///   other declarations either introduce the same object, the same
1252///   enumerator or a set of functions, the non-type name hides the
1253///   class or enumeration name if and only if the declarations are
1254///   from the same namespace; otherwise (the declarations are from
1255///   different namespaces), the program is ill-formed.
1256static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1257                                                 DeclContext *StartDC) {
1258  assert(StartDC->isFileContext() && "start context is not a file context");
1259
1260  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1261  DeclContext::udir_iterator E = StartDC->using_directives_end();
1262
1263  if (I == E) return false;
1264
1265  // We have at least added all these contexts to the queue.
1266  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1267  Visited.insert(StartDC);
1268
1269  // We have not yet looked into these namespaces, much less added
1270  // their "using-children" to the queue.
1271  SmallVector<NamespaceDecl*, 8> Queue;
1272
1273  // We have already looked into the initial namespace; seed the queue
1274  // with its using-children.
1275  for (; I != E; ++I) {
1276    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1277    if (Visited.insert(ND))
1278      Queue.push_back(ND);
1279  }
1280
1281  // The easiest way to implement the restriction in [namespace.qual]p5
1282  // is to check whether any of the individual results found a tag
1283  // and, if so, to declare an ambiguity if the final result is not
1284  // a tag.
1285  bool FoundTag = false;
1286  bool FoundNonTag = false;
1287
1288  LookupResult LocalR(LookupResult::Temporary, R);
1289
1290  bool Found = false;
1291  while (!Queue.empty()) {
1292    NamespaceDecl *ND = Queue.back();
1293    Queue.pop_back();
1294
1295    // We go through some convolutions here to avoid copying results
1296    // between LookupResults.
1297    bool UseLocal = !R.empty();
1298    LookupResult &DirectR = UseLocal ? LocalR : R;
1299    bool FoundDirect = LookupDirect(S, DirectR, ND);
1300
1301    if (FoundDirect) {
1302      // First do any local hiding.
1303      DirectR.resolveKind();
1304
1305      // If the local result is a tag, remember that.
1306      if (DirectR.isSingleTagDecl())
1307        FoundTag = true;
1308      else
1309        FoundNonTag = true;
1310
1311      // Append the local results to the total results if necessary.
1312      if (UseLocal) {
1313        R.addAllDecls(LocalR);
1314        LocalR.clear();
1315      }
1316    }
1317
1318    // If we find names in this namespace, ignore its using directives.
1319    if (FoundDirect) {
1320      Found = true;
1321      continue;
1322    }
1323
1324    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1325      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1326      if (Visited.insert(Nom))
1327        Queue.push_back(Nom);
1328    }
1329  }
1330
1331  if (Found) {
1332    if (FoundTag && FoundNonTag)
1333      R.setAmbiguousQualifiedTagHiding();
1334    else
1335      R.resolveKind();
1336  }
1337
1338  return Found;
1339}
1340
1341/// \brief Callback that looks for any member of a class with the given name.
1342static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1343                            CXXBasePath &Path,
1344                            void *Name) {
1345  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1346
1347  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1348  Path.Decls = BaseRecord->lookup(N);
1349  return Path.Decls.first != Path.Decls.second;
1350}
1351
1352/// \brief Determine whether the given set of member declarations contains only
1353/// static members, nested types, and enumerators.
1354template<typename InputIterator>
1355static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1356  Decl *D = (*First)->getUnderlyingDecl();
1357  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1358    return true;
1359
1360  if (isa<CXXMethodDecl>(D)) {
1361    // Determine whether all of the methods are static.
1362    bool AllMethodsAreStatic = true;
1363    for(; First != Last; ++First) {
1364      D = (*First)->getUnderlyingDecl();
1365
1366      if (!isa<CXXMethodDecl>(D)) {
1367        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1368        break;
1369      }
1370
1371      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1372        AllMethodsAreStatic = false;
1373        break;
1374      }
1375    }
1376
1377    if (AllMethodsAreStatic)
1378      return true;
1379  }
1380
1381  return false;
1382}
1383
1384/// \brief Perform qualified name lookup into a given context.
1385///
1386/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1387/// names when the context of those names is explicit specified, e.g.,
1388/// "std::vector" or "x->member", or as part of unqualified name lookup.
1389///
1390/// Different lookup criteria can find different names. For example, a
1391/// particular scope can have both a struct and a function of the same
1392/// name, and each can be found by certain lookup criteria. For more
1393/// information about lookup criteria, see the documentation for the
1394/// class LookupCriteria.
1395///
1396/// \param R captures both the lookup criteria and any lookup results found.
1397///
1398/// \param LookupCtx The context in which qualified name lookup will
1399/// search. If the lookup criteria permits, name lookup may also search
1400/// in the parent contexts or (for C++ classes) base classes.
1401///
1402/// \param InUnqualifiedLookup true if this is qualified name lookup that
1403/// occurs as part of unqualified name lookup.
1404///
1405/// \returns true if lookup succeeded, false if it failed.
1406bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1407                               bool InUnqualifiedLookup) {
1408  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1409
1410  if (!R.getLookupName())
1411    return false;
1412
1413  // Make sure that the declaration context is complete.
1414  assert((!isa<TagDecl>(LookupCtx) ||
1415          LookupCtx->isDependentContext() ||
1416          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1417          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1418         "Declaration context must already be complete!");
1419
1420  // Perform qualified name lookup into the LookupCtx.
1421  if (LookupDirect(*this, R, LookupCtx)) {
1422    R.resolveKind();
1423    if (isa<CXXRecordDecl>(LookupCtx))
1424      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1425    return true;
1426  }
1427
1428  // Don't descend into implied contexts for redeclarations.
1429  // C++98 [namespace.qual]p6:
1430  //   In a declaration for a namespace member in which the
1431  //   declarator-id is a qualified-id, given that the qualified-id
1432  //   for the namespace member has the form
1433  //     nested-name-specifier unqualified-id
1434  //   the unqualified-id shall name a member of the namespace
1435  //   designated by the nested-name-specifier.
1436  // See also [class.mfct]p5 and [class.static.data]p2.
1437  if (R.isForRedeclaration())
1438    return false;
1439
1440  // If this is a namespace, look it up in the implied namespaces.
1441  if (LookupCtx->isFileContext())
1442    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1443
1444  // If this isn't a C++ class, we aren't allowed to look into base
1445  // classes, we're done.
1446  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1447  if (!LookupRec || !LookupRec->getDefinition())
1448    return false;
1449
1450  // If we're performing qualified name lookup into a dependent class,
1451  // then we are actually looking into a current instantiation. If we have any
1452  // dependent base classes, then we either have to delay lookup until
1453  // template instantiation time (at which point all bases will be available)
1454  // or we have to fail.
1455  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1456      LookupRec->hasAnyDependentBases()) {
1457    R.setNotFoundInCurrentInstantiation();
1458    return false;
1459  }
1460
1461  // Perform lookup into our base classes.
1462  CXXBasePaths Paths;
1463  Paths.setOrigin(LookupRec);
1464
1465  // Look for this member in our base classes
1466  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1467  switch (R.getLookupKind()) {
1468    case LookupObjCImplicitSelfParam:
1469    case LookupOrdinaryName:
1470    case LookupMemberName:
1471    case LookupRedeclarationWithLinkage:
1472      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1473      break;
1474
1475    case LookupTagName:
1476      BaseCallback = &CXXRecordDecl::FindTagMember;
1477      break;
1478
1479    case LookupAnyName:
1480      BaseCallback = &LookupAnyMember;
1481      break;
1482
1483    case LookupUsingDeclName:
1484      // This lookup is for redeclarations only.
1485
1486    case LookupOperatorName:
1487    case LookupNamespaceName:
1488    case LookupObjCProtocolName:
1489    case LookupLabel:
1490      // These lookups will never find a member in a C++ class (or base class).
1491      return false;
1492
1493    case LookupNestedNameSpecifierName:
1494      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1495      break;
1496  }
1497
1498  if (!LookupRec->lookupInBases(BaseCallback,
1499                                R.getLookupName().getAsOpaquePtr(), Paths))
1500    return false;
1501
1502  R.setNamingClass(LookupRec);
1503
1504  // C++ [class.member.lookup]p2:
1505  //   [...] If the resulting set of declarations are not all from
1506  //   sub-objects of the same type, or the set has a nonstatic member
1507  //   and includes members from distinct sub-objects, there is an
1508  //   ambiguity and the program is ill-formed. Otherwise that set is
1509  //   the result of the lookup.
1510  QualType SubobjectType;
1511  int SubobjectNumber = 0;
1512  AccessSpecifier SubobjectAccess = AS_none;
1513
1514  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1515       Path != PathEnd; ++Path) {
1516    const CXXBasePathElement &PathElement = Path->back();
1517
1518    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1519    // across all paths.
1520    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1521
1522    // Determine whether we're looking at a distinct sub-object or not.
1523    if (SubobjectType.isNull()) {
1524      // This is the first subobject we've looked at. Record its type.
1525      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1526      SubobjectNumber = PathElement.SubobjectNumber;
1527      continue;
1528    }
1529
1530    if (SubobjectType
1531                 != Context.getCanonicalType(PathElement.Base->getType())) {
1532      // We found members of the given name in two subobjects of
1533      // different types. If the declaration sets aren't the same, this
1534      // this lookup is ambiguous.
1535      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1536        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1537        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1538        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1539
1540        while (FirstD != FirstPath->Decls.second &&
1541               CurrentD != Path->Decls.second) {
1542         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1543             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1544           break;
1545
1546          ++FirstD;
1547          ++CurrentD;
1548        }
1549
1550        if (FirstD == FirstPath->Decls.second &&
1551            CurrentD == Path->Decls.second)
1552          continue;
1553      }
1554
1555      R.setAmbiguousBaseSubobjectTypes(Paths);
1556      return true;
1557    }
1558
1559    if (SubobjectNumber != PathElement.SubobjectNumber) {
1560      // We have a different subobject of the same type.
1561
1562      // C++ [class.member.lookup]p5:
1563      //   A static member, a nested type or an enumerator defined in
1564      //   a base class T can unambiguously be found even if an object
1565      //   has more than one base class subobject of type T.
1566      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1567        continue;
1568
1569      // We have found a nonstatic member name in multiple, distinct
1570      // subobjects. Name lookup is ambiguous.
1571      R.setAmbiguousBaseSubobjects(Paths);
1572      return true;
1573    }
1574  }
1575
1576  // Lookup in a base class succeeded; return these results.
1577
1578  DeclContext::lookup_iterator I, E;
1579  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1580    NamedDecl *D = *I;
1581    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1582                                                    D->getAccess());
1583    R.addDecl(D, AS);
1584  }
1585  R.resolveKind();
1586  return true;
1587}
1588
1589/// @brief Performs name lookup for a name that was parsed in the
1590/// source code, and may contain a C++ scope specifier.
1591///
1592/// This routine is a convenience routine meant to be called from
1593/// contexts that receive a name and an optional C++ scope specifier
1594/// (e.g., "N::M::x"). It will then perform either qualified or
1595/// unqualified name lookup (with LookupQualifiedName or LookupName,
1596/// respectively) on the given name and return those results.
1597///
1598/// @param S        The scope from which unqualified name lookup will
1599/// begin.
1600///
1601/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1602///
1603/// @param EnteringContext Indicates whether we are going to enter the
1604/// context of the scope-specifier SS (if present).
1605///
1606/// @returns True if any decls were found (but possibly ambiguous)
1607bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1608                            bool AllowBuiltinCreation, bool EnteringContext) {
1609  if (SS && SS->isInvalid()) {
1610    // When the scope specifier is invalid, don't even look for
1611    // anything.
1612    return false;
1613  }
1614
1615  if (SS && SS->isSet()) {
1616    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1617      // We have resolved the scope specifier to a particular declaration
1618      // contex, and will perform name lookup in that context.
1619      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1620        return false;
1621
1622      R.setContextRange(SS->getRange());
1623      return LookupQualifiedName(R, DC);
1624    }
1625
1626    // We could not resolve the scope specified to a specific declaration
1627    // context, which means that SS refers to an unknown specialization.
1628    // Name lookup can't find anything in this case.
1629    R.setNotFoundInCurrentInstantiation();
1630    R.setContextRange(SS->getRange());
1631    return false;
1632  }
1633
1634  // Perform unqualified name lookup starting in the given scope.
1635  return LookupName(R, S, AllowBuiltinCreation);
1636}
1637
1638
1639/// @brief Produce a diagnostic describing the ambiguity that resulted
1640/// from name lookup.
1641///
1642/// @param Result       The ambiguous name lookup result.
1643///
1644/// @param Name         The name of the entity that name lookup was
1645/// searching for.
1646///
1647/// @param NameLoc      The location of the name within the source code.
1648///
1649/// @param LookupRange  A source range that provides more
1650/// source-location information concerning the lookup itself. For
1651/// example, this range might highlight a nested-name-specifier that
1652/// precedes the name.
1653///
1654/// @returns true
1655bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1656  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1657
1658  DeclarationName Name = Result.getLookupName();
1659  SourceLocation NameLoc = Result.getNameLoc();
1660  SourceRange LookupRange = Result.getContextRange();
1661
1662  switch (Result.getAmbiguityKind()) {
1663  case LookupResult::AmbiguousBaseSubobjects: {
1664    CXXBasePaths *Paths = Result.getBasePaths();
1665    QualType SubobjectType = Paths->front().back().Base->getType();
1666    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1667      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1668      << LookupRange;
1669
1670    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1671    while (isa<CXXMethodDecl>(*Found) &&
1672           cast<CXXMethodDecl>(*Found)->isStatic())
1673      ++Found;
1674
1675    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1676
1677    return true;
1678  }
1679
1680  case LookupResult::AmbiguousBaseSubobjectTypes: {
1681    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1682      << Name << LookupRange;
1683
1684    CXXBasePaths *Paths = Result.getBasePaths();
1685    std::set<Decl *> DeclsPrinted;
1686    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1687                                      PathEnd = Paths->end();
1688         Path != PathEnd; ++Path) {
1689      Decl *D = *Path->Decls.first;
1690      if (DeclsPrinted.insert(D).second)
1691        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1692    }
1693
1694    return true;
1695  }
1696
1697  case LookupResult::AmbiguousTagHiding: {
1698    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1699
1700    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1701
1702    LookupResult::iterator DI, DE = Result.end();
1703    for (DI = Result.begin(); DI != DE; ++DI)
1704      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1705        TagDecls.insert(TD);
1706        Diag(TD->getLocation(), diag::note_hidden_tag);
1707      }
1708
1709    for (DI = Result.begin(); DI != DE; ++DI)
1710      if (!isa<TagDecl>(*DI))
1711        Diag((*DI)->getLocation(), diag::note_hiding_object);
1712
1713    // For recovery purposes, go ahead and implement the hiding.
1714    LookupResult::Filter F = Result.makeFilter();
1715    while (F.hasNext()) {
1716      if (TagDecls.count(F.next()))
1717        F.erase();
1718    }
1719    F.done();
1720
1721    return true;
1722  }
1723
1724  case LookupResult::AmbiguousReference: {
1725    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1726
1727    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1728    for (; DI != DE; ++DI)
1729      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1730
1731    return true;
1732  }
1733  }
1734
1735  llvm_unreachable("unknown ambiguity kind");
1736}
1737
1738namespace {
1739  struct AssociatedLookup {
1740    AssociatedLookup(Sema &S,
1741                     Sema::AssociatedNamespaceSet &Namespaces,
1742                     Sema::AssociatedClassSet &Classes)
1743      : S(S), Namespaces(Namespaces), Classes(Classes) {
1744    }
1745
1746    Sema &S;
1747    Sema::AssociatedNamespaceSet &Namespaces;
1748    Sema::AssociatedClassSet &Classes;
1749  };
1750}
1751
1752static void
1753addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1754
1755static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1756                                      DeclContext *Ctx) {
1757  // Add the associated namespace for this class.
1758
1759  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1760  // be a locally scoped record.
1761
1762  // We skip out of inline namespaces. The innermost non-inline namespace
1763  // contains all names of all its nested inline namespaces anyway, so we can
1764  // replace the entire inline namespace tree with its root.
1765  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1766         Ctx->isInlineNamespace())
1767    Ctx = Ctx->getParent();
1768
1769  if (Ctx->isFileContext())
1770    Namespaces.insert(Ctx->getPrimaryContext());
1771}
1772
1773// \brief Add the associated classes and namespaces for argument-dependent
1774// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1775static void
1776addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1777                                  const TemplateArgument &Arg) {
1778  // C++ [basic.lookup.koenig]p2, last bullet:
1779  //   -- [...] ;
1780  switch (Arg.getKind()) {
1781    case TemplateArgument::Null:
1782      break;
1783
1784    case TemplateArgument::Type:
1785      // [...] the namespaces and classes associated with the types of the
1786      // template arguments provided for template type parameters (excluding
1787      // template template parameters)
1788      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1789      break;
1790
1791    case TemplateArgument::Template:
1792    case TemplateArgument::TemplateExpansion: {
1793      // [...] the namespaces in which any template template arguments are
1794      // defined; and the classes in which any member templates used as
1795      // template template arguments are defined.
1796      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1797      if (ClassTemplateDecl *ClassTemplate
1798                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1799        DeclContext *Ctx = ClassTemplate->getDeclContext();
1800        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1801          Result.Classes.insert(EnclosingClass);
1802        // Add the associated namespace for this class.
1803        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1804      }
1805      break;
1806    }
1807
1808    case TemplateArgument::Declaration:
1809    case TemplateArgument::Integral:
1810    case TemplateArgument::Expression:
1811      // [Note: non-type template arguments do not contribute to the set of
1812      //  associated namespaces. ]
1813      break;
1814
1815    case TemplateArgument::Pack:
1816      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1817                                        PEnd = Arg.pack_end();
1818           P != PEnd; ++P)
1819        addAssociatedClassesAndNamespaces(Result, *P);
1820      break;
1821  }
1822}
1823
1824// \brief Add the associated classes and namespaces for
1825// argument-dependent lookup with an argument of class type
1826// (C++ [basic.lookup.koenig]p2).
1827static void
1828addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1829                                  CXXRecordDecl *Class) {
1830
1831  // Just silently ignore anything whose name is __va_list_tag.
1832  if (Class->getDeclName() == Result.S.VAListTagName)
1833    return;
1834
1835  // C++ [basic.lookup.koenig]p2:
1836  //   [...]
1837  //     -- If T is a class type (including unions), its associated
1838  //        classes are: the class itself; the class of which it is a
1839  //        member, if any; and its direct and indirect base
1840  //        classes. Its associated namespaces are the namespaces in
1841  //        which its associated classes are defined.
1842
1843  // Add the class of which it is a member, if any.
1844  DeclContext *Ctx = Class->getDeclContext();
1845  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1846    Result.Classes.insert(EnclosingClass);
1847  // Add the associated namespace for this class.
1848  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1849
1850  // Add the class itself. If we've already seen this class, we don't
1851  // need to visit base classes.
1852  if (!Result.Classes.insert(Class))
1853    return;
1854
1855  // -- If T is a template-id, its associated namespaces and classes are
1856  //    the namespace in which the template is defined; for member
1857  //    templates, the member template's class; the namespaces and classes
1858  //    associated with the types of the template arguments provided for
1859  //    template type parameters (excluding template template parameters); the
1860  //    namespaces in which any template template arguments are defined; and
1861  //    the classes in which any member templates used as template template
1862  //    arguments are defined. [Note: non-type template arguments do not
1863  //    contribute to the set of associated namespaces. ]
1864  if (ClassTemplateSpecializationDecl *Spec
1865        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1866    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1867    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1868      Result.Classes.insert(EnclosingClass);
1869    // Add the associated namespace for this class.
1870    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1871
1872    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1873    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1874      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1875  }
1876
1877  // Only recurse into base classes for complete types.
1878  if (!Class->hasDefinition()) {
1879    // FIXME: we might need to instantiate templates here
1880    return;
1881  }
1882
1883  // Add direct and indirect base classes along with their associated
1884  // namespaces.
1885  SmallVector<CXXRecordDecl *, 32> Bases;
1886  Bases.push_back(Class);
1887  while (!Bases.empty()) {
1888    // Pop this class off the stack.
1889    Class = Bases.back();
1890    Bases.pop_back();
1891
1892    // Visit the base classes.
1893    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1894                                         BaseEnd = Class->bases_end();
1895         Base != BaseEnd; ++Base) {
1896      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1897      // In dependent contexts, we do ADL twice, and the first time around,
1898      // the base type might be a dependent TemplateSpecializationType, or a
1899      // TemplateTypeParmType. If that happens, simply ignore it.
1900      // FIXME: If we want to support export, we probably need to add the
1901      // namespace of the template in a TemplateSpecializationType, or even
1902      // the classes and namespaces of known non-dependent arguments.
1903      if (!BaseType)
1904        continue;
1905      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1906      if (Result.Classes.insert(BaseDecl)) {
1907        // Find the associated namespace for this base class.
1908        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1909        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1910
1911        // Make sure we visit the bases of this base class.
1912        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1913          Bases.push_back(BaseDecl);
1914      }
1915    }
1916  }
1917}
1918
1919// \brief Add the associated classes and namespaces for
1920// argument-dependent lookup with an argument of type T
1921// (C++ [basic.lookup.koenig]p2).
1922static void
1923addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1924  // C++ [basic.lookup.koenig]p2:
1925  //
1926  //   For each argument type T in the function call, there is a set
1927  //   of zero or more associated namespaces and a set of zero or more
1928  //   associated classes to be considered. The sets of namespaces and
1929  //   classes is determined entirely by the types of the function
1930  //   arguments (and the namespace of any template template
1931  //   argument). Typedef names and using-declarations used to specify
1932  //   the types do not contribute to this set. The sets of namespaces
1933  //   and classes are determined in the following way:
1934
1935  SmallVector<const Type *, 16> Queue;
1936  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1937
1938  while (true) {
1939    switch (T->getTypeClass()) {
1940
1941#define TYPE(Class, Base)
1942#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1943#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1944#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1945#define ABSTRACT_TYPE(Class, Base)
1946#include "clang/AST/TypeNodes.def"
1947      // T is canonical.  We can also ignore dependent types because
1948      // we don't need to do ADL at the definition point, but if we
1949      // wanted to implement template export (or if we find some other
1950      // use for associated classes and namespaces...) this would be
1951      // wrong.
1952      break;
1953
1954    //    -- If T is a pointer to U or an array of U, its associated
1955    //       namespaces and classes are those associated with U.
1956    case Type::Pointer:
1957      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1958      continue;
1959    case Type::ConstantArray:
1960    case Type::IncompleteArray:
1961    case Type::VariableArray:
1962      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1963      continue;
1964
1965    //     -- If T is a fundamental type, its associated sets of
1966    //        namespaces and classes are both empty.
1967    case Type::Builtin:
1968      break;
1969
1970    //     -- If T is a class type (including unions), its associated
1971    //        classes are: the class itself; the class of which it is a
1972    //        member, if any; and its direct and indirect base
1973    //        classes. Its associated namespaces are the namespaces in
1974    //        which its associated classes are defined.
1975    case Type::Record: {
1976      CXXRecordDecl *Class
1977        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1978      addAssociatedClassesAndNamespaces(Result, Class);
1979      break;
1980    }
1981
1982    //     -- If T is an enumeration type, its associated namespace is
1983    //        the namespace in which it is defined. If it is class
1984    //        member, its associated class is the member's class; else
1985    //        it has no associated class.
1986    case Type::Enum: {
1987      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1988
1989      DeclContext *Ctx = Enum->getDeclContext();
1990      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1991        Result.Classes.insert(EnclosingClass);
1992
1993      // Add the associated namespace for this class.
1994      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1995
1996      break;
1997    }
1998
1999    //     -- If T is a function type, its associated namespaces and
2000    //        classes are those associated with the function parameter
2001    //        types and those associated with the return type.
2002    case Type::FunctionProto: {
2003      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2004      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2005                                             ArgEnd = Proto->arg_type_end();
2006             Arg != ArgEnd; ++Arg)
2007        Queue.push_back(Arg->getTypePtr());
2008      // fallthrough
2009    }
2010    case Type::FunctionNoProto: {
2011      const FunctionType *FnType = cast<FunctionType>(T);
2012      T = FnType->getResultType().getTypePtr();
2013      continue;
2014    }
2015
2016    //     -- If T is a pointer to a member function of a class X, its
2017    //        associated namespaces and classes are those associated
2018    //        with the function parameter types and return type,
2019    //        together with those associated with X.
2020    //
2021    //     -- If T is a pointer to a data member of class X, its
2022    //        associated namespaces and classes are those associated
2023    //        with the member type together with those associated with
2024    //        X.
2025    case Type::MemberPointer: {
2026      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2027
2028      // Queue up the class type into which this points.
2029      Queue.push_back(MemberPtr->getClass());
2030
2031      // And directly continue with the pointee type.
2032      T = MemberPtr->getPointeeType().getTypePtr();
2033      continue;
2034    }
2035
2036    // As an extension, treat this like a normal pointer.
2037    case Type::BlockPointer:
2038      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2039      continue;
2040
2041    // References aren't covered by the standard, but that's such an
2042    // obvious defect that we cover them anyway.
2043    case Type::LValueReference:
2044    case Type::RValueReference:
2045      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2046      continue;
2047
2048    // These are fundamental types.
2049    case Type::Vector:
2050    case Type::ExtVector:
2051    case Type::Complex:
2052      break;
2053
2054    // If T is an Objective-C object or interface type, or a pointer to an
2055    // object or interface type, the associated namespace is the global
2056    // namespace.
2057    case Type::ObjCObject:
2058    case Type::ObjCInterface:
2059    case Type::ObjCObjectPointer:
2060      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2061      break;
2062
2063    // Atomic types are just wrappers; use the associations of the
2064    // contained type.
2065    case Type::Atomic:
2066      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2067      continue;
2068    }
2069
2070    if (Queue.empty()) break;
2071    T = Queue.back();
2072    Queue.pop_back();
2073  }
2074}
2075
2076/// \brief Find the associated classes and namespaces for
2077/// argument-dependent lookup for a call with the given set of
2078/// arguments.
2079///
2080/// This routine computes the sets of associated classes and associated
2081/// namespaces searched by argument-dependent lookup
2082/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2083void
2084Sema::FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr *> Args,
2085                                 AssociatedNamespaceSet &AssociatedNamespaces,
2086                                 AssociatedClassSet &AssociatedClasses) {
2087  AssociatedNamespaces.clear();
2088  AssociatedClasses.clear();
2089
2090  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
2091
2092  // C++ [basic.lookup.koenig]p2:
2093  //   For each argument type T in the function call, there is a set
2094  //   of zero or more associated namespaces and a set of zero or more
2095  //   associated classes to be considered. The sets of namespaces and
2096  //   classes is determined entirely by the types of the function
2097  //   arguments (and the namespace of any template template
2098  //   argument).
2099  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2100    Expr *Arg = Args[ArgIdx];
2101
2102    if (Arg->getType() != Context.OverloadTy) {
2103      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2104      continue;
2105    }
2106
2107    // [...] In addition, if the argument is the name or address of a
2108    // set of overloaded functions and/or function templates, its
2109    // associated classes and namespaces are the union of those
2110    // associated with each of the members of the set: the namespace
2111    // in which the function or function template is defined and the
2112    // classes and namespaces associated with its (non-dependent)
2113    // parameter types and return type.
2114    Arg = Arg->IgnoreParens();
2115    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2116      if (unaryOp->getOpcode() == UO_AddrOf)
2117        Arg = unaryOp->getSubExpr();
2118
2119    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2120    if (!ULE) continue;
2121
2122    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2123           I != E; ++I) {
2124      // Look through any using declarations to find the underlying function.
2125      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2126
2127      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2128      if (!FDecl)
2129        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2130
2131      // Add the classes and namespaces associated with the parameter
2132      // types and return type of this function.
2133      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2134    }
2135  }
2136}
2137
2138/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2139/// an acceptable non-member overloaded operator for a call whose
2140/// arguments have types T1 (and, if non-empty, T2). This routine
2141/// implements the check in C++ [over.match.oper]p3b2 concerning
2142/// enumeration types.
2143static bool
2144IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2145                                       QualType T1, QualType T2,
2146                                       ASTContext &Context) {
2147  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2148    return true;
2149
2150  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2151    return true;
2152
2153  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2154  if (Proto->getNumArgs() < 1)
2155    return false;
2156
2157  if (T1->isEnumeralType()) {
2158    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2159    if (Context.hasSameUnqualifiedType(T1, ArgType))
2160      return true;
2161  }
2162
2163  if (Proto->getNumArgs() < 2)
2164    return false;
2165
2166  if (!T2.isNull() && T2->isEnumeralType()) {
2167    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2168    if (Context.hasSameUnqualifiedType(T2, ArgType))
2169      return true;
2170  }
2171
2172  return false;
2173}
2174
2175NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2176                                  SourceLocation Loc,
2177                                  LookupNameKind NameKind,
2178                                  RedeclarationKind Redecl) {
2179  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2180  LookupName(R, S);
2181  return R.getAsSingle<NamedDecl>();
2182}
2183
2184/// \brief Find the protocol with the given name, if any.
2185ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2186                                       SourceLocation IdLoc,
2187                                       RedeclarationKind Redecl) {
2188  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2189                             LookupObjCProtocolName, Redecl);
2190  return cast_or_null<ObjCProtocolDecl>(D);
2191}
2192
2193void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2194                                        QualType T1, QualType T2,
2195                                        UnresolvedSetImpl &Functions) {
2196  // C++ [over.match.oper]p3:
2197  //     -- The set of non-member candidates is the result of the
2198  //        unqualified lookup of operator@ in the context of the
2199  //        expression according to the usual rules for name lookup in
2200  //        unqualified function calls (3.4.2) except that all member
2201  //        functions are ignored. However, if no operand has a class
2202  //        type, only those non-member functions in the lookup set
2203  //        that have a first parameter of type T1 or "reference to
2204  //        (possibly cv-qualified) T1", when T1 is an enumeration
2205  //        type, or (if there is a right operand) a second parameter
2206  //        of type T2 or "reference to (possibly cv-qualified) T2",
2207  //        when T2 is an enumeration type, are candidate functions.
2208  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2209  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2210  LookupName(Operators, S);
2211
2212  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2213
2214  if (Operators.empty())
2215    return;
2216
2217  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2218       Op != OpEnd; ++Op) {
2219    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2220    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2221      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2222        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2223    } else if (FunctionTemplateDecl *FunTmpl
2224                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2225      // FIXME: friend operators?
2226      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2227      // later?
2228      if (!FunTmpl->getDeclContext()->isRecord())
2229        Functions.addDecl(*Op, Op.getAccess());
2230    }
2231  }
2232}
2233
2234Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2235                                                            CXXSpecialMember SM,
2236                                                            bool ConstArg,
2237                                                            bool VolatileArg,
2238                                                            bool RValueThis,
2239                                                            bool ConstThis,
2240                                                            bool VolatileThis) {
2241  RD = RD->getDefinition();
2242  assert((RD && !RD->isBeingDefined()) &&
2243         "doing special member lookup into record that isn't fully complete");
2244  if (RValueThis || ConstThis || VolatileThis)
2245    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2246           "constructors and destructors always have unqualified lvalue this");
2247  if (ConstArg || VolatileArg)
2248    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2249           "parameter-less special members can't have qualified arguments");
2250
2251  llvm::FoldingSetNodeID ID;
2252  ID.AddPointer(RD);
2253  ID.AddInteger(SM);
2254  ID.AddInteger(ConstArg);
2255  ID.AddInteger(VolatileArg);
2256  ID.AddInteger(RValueThis);
2257  ID.AddInteger(ConstThis);
2258  ID.AddInteger(VolatileThis);
2259
2260  void *InsertPoint;
2261  SpecialMemberOverloadResult *Result =
2262    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2263
2264  // This was already cached
2265  if (Result)
2266    return Result;
2267
2268  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2269  Result = new (Result) SpecialMemberOverloadResult(ID);
2270  SpecialMemberCache.InsertNode(Result, InsertPoint);
2271
2272  if (SM == CXXDestructor) {
2273    if (!RD->hasDeclaredDestructor())
2274      DeclareImplicitDestructor(RD);
2275    CXXDestructorDecl *DD = RD->getDestructor();
2276    assert(DD && "record without a destructor");
2277    Result->setMethod(DD);
2278    Result->setKind(DD->isDeleted() ?
2279                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2280                    SpecialMemberOverloadResult::Success);
2281    return Result;
2282  }
2283
2284  // Prepare for overload resolution. Here we construct a synthetic argument
2285  // if necessary and make sure that implicit functions are declared.
2286  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2287  DeclarationName Name;
2288  Expr *Arg = 0;
2289  unsigned NumArgs;
2290
2291  QualType ArgType = CanTy;
2292  ExprValueKind VK = VK_LValue;
2293
2294  if (SM == CXXDefaultConstructor) {
2295    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2296    NumArgs = 0;
2297    if (RD->needsImplicitDefaultConstructor())
2298      DeclareImplicitDefaultConstructor(RD);
2299  } else {
2300    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2301      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2302      if (!RD->hasDeclaredCopyConstructor())
2303        DeclareImplicitCopyConstructor(RD);
2304      if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
2305        DeclareImplicitMoveConstructor(RD);
2306    } else {
2307      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2308      if (!RD->hasDeclaredCopyAssignment())
2309        DeclareImplicitCopyAssignment(RD);
2310      if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
2311        DeclareImplicitMoveAssignment(RD);
2312    }
2313
2314    if (ConstArg)
2315      ArgType.addConst();
2316    if (VolatileArg)
2317      ArgType.addVolatile();
2318
2319    // This isn't /really/ specified by the standard, but it's implied
2320    // we should be working from an RValue in the case of move to ensure
2321    // that we prefer to bind to rvalue references, and an LValue in the
2322    // case of copy to ensure we don't bind to rvalue references.
2323    // Possibly an XValue is actually correct in the case of move, but
2324    // there is no semantic difference for class types in this restricted
2325    // case.
2326    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2327      VK = VK_LValue;
2328    else
2329      VK = VK_RValue;
2330  }
2331
2332  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2333
2334  if (SM != CXXDefaultConstructor) {
2335    NumArgs = 1;
2336    Arg = &FakeArg;
2337  }
2338
2339  // Create the object argument
2340  QualType ThisTy = CanTy;
2341  if (ConstThis)
2342    ThisTy.addConst();
2343  if (VolatileThis)
2344    ThisTy.addVolatile();
2345  Expr::Classification Classification =
2346    OpaqueValueExpr(SourceLocation(), ThisTy,
2347                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2348
2349  // Now we perform lookup on the name we computed earlier and do overload
2350  // resolution. Lookup is only performed directly into the class since there
2351  // will always be a (possibly implicit) declaration to shadow any others.
2352  OverloadCandidateSet OCS((SourceLocation()));
2353  DeclContext::lookup_iterator I, E;
2354
2355  llvm::tie(I, E) = RD->lookup(Name);
2356  assert((I != E) &&
2357         "lookup for a constructor or assignment operator was empty");
2358  for ( ; I != E; ++I) {
2359    Decl *Cand = *I;
2360
2361    if (Cand->isInvalidDecl())
2362      continue;
2363
2364    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2365      // FIXME: [namespace.udecl]p15 says that we should only consider a
2366      // using declaration here if it does not match a declaration in the
2367      // derived class. We do not implement this correctly in other cases
2368      // either.
2369      Cand = U->getTargetDecl();
2370
2371      if (Cand->isInvalidDecl())
2372        continue;
2373    }
2374
2375    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2376      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2377        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2378                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2379                           OCS, true);
2380      else
2381        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2382                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2383    } else if (FunctionTemplateDecl *Tmpl =
2384                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2385      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2386        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2387                                   RD, 0, ThisTy, Classification,
2388                                   llvm::makeArrayRef(&Arg, NumArgs),
2389                                   OCS, true);
2390      else
2391        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2392                                     0, llvm::makeArrayRef(&Arg, NumArgs),
2393                                     OCS, true);
2394    } else {
2395      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2396    }
2397  }
2398
2399  OverloadCandidateSet::iterator Best;
2400  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2401    case OR_Success:
2402      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2403      Result->setKind(SpecialMemberOverloadResult::Success);
2404      break;
2405
2406    case OR_Deleted:
2407      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2408      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2409      break;
2410
2411    case OR_Ambiguous:
2412      Result->setMethod(0);
2413      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2414      break;
2415
2416    case OR_No_Viable_Function:
2417      Result->setMethod(0);
2418      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2419      break;
2420  }
2421
2422  return Result;
2423}
2424
2425/// \brief Look up the default constructor for the given class.
2426CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2427  SpecialMemberOverloadResult *Result =
2428    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2429                        false, false);
2430
2431  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2432}
2433
2434/// \brief Look up the copying constructor for the given class.
2435CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2436                                                   unsigned Quals) {
2437  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2438         "non-const, non-volatile qualifiers for copy ctor arg");
2439  SpecialMemberOverloadResult *Result =
2440    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2441                        Quals & Qualifiers::Volatile, false, false, false);
2442
2443  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2444}
2445
2446/// \brief Look up the moving constructor for the given class.
2447CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) {
2448  SpecialMemberOverloadResult *Result =
2449    LookupSpecialMember(Class, CXXMoveConstructor, false,
2450                        false, false, false, false);
2451
2452  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2453}
2454
2455/// \brief Look up the constructors for the given class.
2456DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2457  // If the implicit constructors have not yet been declared, do so now.
2458  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2459    if (Class->needsImplicitDefaultConstructor())
2460      DeclareImplicitDefaultConstructor(Class);
2461    if (!Class->hasDeclaredCopyConstructor())
2462      DeclareImplicitCopyConstructor(Class);
2463    if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
2464      DeclareImplicitMoveConstructor(Class);
2465  }
2466
2467  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2468  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2469  return Class->lookup(Name);
2470}
2471
2472/// \brief Look up the copying assignment operator for the given class.
2473CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2474                                             unsigned Quals, bool RValueThis,
2475                                             unsigned ThisQuals) {
2476  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2477         "non-const, non-volatile qualifiers for copy assignment arg");
2478  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2479         "non-const, non-volatile qualifiers for copy assignment this");
2480  SpecialMemberOverloadResult *Result =
2481    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2482                        Quals & Qualifiers::Volatile, RValueThis,
2483                        ThisQuals & Qualifiers::Const,
2484                        ThisQuals & Qualifiers::Volatile);
2485
2486  return Result->getMethod();
2487}
2488
2489/// \brief Look up the moving assignment operator for the given class.
2490CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2491                                            bool RValueThis,
2492                                            unsigned ThisQuals) {
2493  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2494         "non-const, non-volatile qualifiers for copy assignment this");
2495  SpecialMemberOverloadResult *Result =
2496    LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis,
2497                        ThisQuals & Qualifiers::Const,
2498                        ThisQuals & Qualifiers::Volatile);
2499
2500  return Result->getMethod();
2501}
2502
2503/// \brief Look for the destructor of the given class.
2504///
2505/// During semantic analysis, this routine should be used in lieu of
2506/// CXXRecordDecl::getDestructor().
2507///
2508/// \returns The destructor for this class.
2509CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2510  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2511                                                     false, false, false,
2512                                                     false, false)->getMethod());
2513}
2514
2515/// LookupLiteralOperator - Determine which literal operator should be used for
2516/// a user-defined literal, per C++11 [lex.ext].
2517///
2518/// Normal overload resolution is not used to select which literal operator to
2519/// call for a user-defined literal. Look up the provided literal operator name,
2520/// and filter the results to the appropriate set for the given argument types.
2521Sema::LiteralOperatorLookupResult
2522Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2523                            ArrayRef<QualType> ArgTys,
2524                            bool AllowRawAndTemplate) {
2525  LookupName(R, S);
2526  assert(R.getResultKind() != LookupResult::Ambiguous &&
2527         "literal operator lookup can't be ambiguous");
2528
2529  // Filter the lookup results appropriately.
2530  LookupResult::Filter F = R.makeFilter();
2531
2532  bool FoundTemplate = false;
2533  bool FoundRaw = false;
2534  bool FoundExactMatch = false;
2535
2536  while (F.hasNext()) {
2537    Decl *D = F.next();
2538    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2539      D = USD->getTargetDecl();
2540
2541    bool IsTemplate = isa<FunctionTemplateDecl>(D);
2542    bool IsRaw = false;
2543    bool IsExactMatch = false;
2544
2545    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2546      if (FD->getNumParams() == 1 &&
2547          FD->getParamDecl(0)->getType()->getAs<PointerType>())
2548        IsRaw = true;
2549      else {
2550        IsExactMatch = true;
2551        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2552          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2553          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2554            IsExactMatch = false;
2555            break;
2556          }
2557        }
2558      }
2559    }
2560
2561    if (IsExactMatch) {
2562      FoundExactMatch = true;
2563      AllowRawAndTemplate = false;
2564      if (FoundRaw || FoundTemplate) {
2565        // Go through again and remove the raw and template decls we've
2566        // already found.
2567        F.restart();
2568        FoundRaw = FoundTemplate = false;
2569      }
2570    } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2571      FoundTemplate |= IsTemplate;
2572      FoundRaw |= IsRaw;
2573    } else {
2574      F.erase();
2575    }
2576  }
2577
2578  F.done();
2579
2580  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2581  // parameter type, that is used in preference to a raw literal operator
2582  // or literal operator template.
2583  if (FoundExactMatch)
2584    return LOLR_Cooked;
2585
2586  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2587  // operator template, but not both.
2588  if (FoundRaw && FoundTemplate) {
2589    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2590    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2591      Decl *D = *I;
2592      if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2593        D = USD->getTargetDecl();
2594      if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2595        D = FunTmpl->getTemplatedDecl();
2596      NoteOverloadCandidate(cast<FunctionDecl>(D));
2597    }
2598    return LOLR_Error;
2599  }
2600
2601  if (FoundRaw)
2602    return LOLR_Raw;
2603
2604  if (FoundTemplate)
2605    return LOLR_Template;
2606
2607  // Didn't find anything we could use.
2608  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2609    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2610    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2611  return LOLR_Error;
2612}
2613
2614void ADLResult::insert(NamedDecl *New) {
2615  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2616
2617  // If we haven't yet seen a decl for this key, or the last decl
2618  // was exactly this one, we're done.
2619  if (Old == 0 || Old == New) {
2620    Old = New;
2621    return;
2622  }
2623
2624  // Otherwise, decide which is a more recent redeclaration.
2625  FunctionDecl *OldFD, *NewFD;
2626  if (isa<FunctionTemplateDecl>(New)) {
2627    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2628    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2629  } else {
2630    OldFD = cast<FunctionDecl>(Old);
2631    NewFD = cast<FunctionDecl>(New);
2632  }
2633
2634  FunctionDecl *Cursor = NewFD;
2635  while (true) {
2636    Cursor = Cursor->getPreviousDecl();
2637
2638    // If we got to the end without finding OldFD, OldFD is the newer
2639    // declaration;  leave things as they are.
2640    if (!Cursor) return;
2641
2642    // If we do find OldFD, then NewFD is newer.
2643    if (Cursor == OldFD) break;
2644
2645    // Otherwise, keep looking.
2646  }
2647
2648  Old = New;
2649}
2650
2651void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2652                                   SourceLocation Loc,
2653                                   llvm::ArrayRef<Expr *> Args,
2654                                   ADLResult &Result,
2655                                   bool StdNamespaceIsAssociated) {
2656  // Find all of the associated namespaces and classes based on the
2657  // arguments we have.
2658  AssociatedNamespaceSet AssociatedNamespaces;
2659  AssociatedClassSet AssociatedClasses;
2660  FindAssociatedClassesAndNamespaces(Args,
2661                                     AssociatedNamespaces,
2662                                     AssociatedClasses);
2663  if (StdNamespaceIsAssociated && StdNamespace)
2664    AssociatedNamespaces.insert(getStdNamespace());
2665
2666  QualType T1, T2;
2667  if (Operator) {
2668    T1 = Args[0]->getType();
2669    if (Args.size() >= 2)
2670      T2 = Args[1]->getType();
2671  }
2672
2673  // Try to complete all associated classes, in case they contain a
2674  // declaration of a friend function.
2675  for (AssociatedClassSet::iterator C = AssociatedClasses.begin(),
2676                                    CEnd = AssociatedClasses.end();
2677       C != CEnd; ++C)
2678    RequireCompleteType(Loc, Context.getRecordType(*C), 0);
2679
2680  // C++ [basic.lookup.argdep]p3:
2681  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2682  //   and let Y be the lookup set produced by argument dependent
2683  //   lookup (defined as follows). If X contains [...] then Y is
2684  //   empty. Otherwise Y is the set of declarations found in the
2685  //   namespaces associated with the argument types as described
2686  //   below. The set of declarations found by the lookup of the name
2687  //   is the union of X and Y.
2688  //
2689  // Here, we compute Y and add its members to the overloaded
2690  // candidate set.
2691  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2692                                     NSEnd = AssociatedNamespaces.end();
2693       NS != NSEnd; ++NS) {
2694    //   When considering an associated namespace, the lookup is the
2695    //   same as the lookup performed when the associated namespace is
2696    //   used as a qualifier (3.4.3.2) except that:
2697    //
2698    //     -- Any using-directives in the associated namespace are
2699    //        ignored.
2700    //
2701    //     -- Any namespace-scope friend functions declared in
2702    //        associated classes are visible within their respective
2703    //        namespaces even if they are not visible during an ordinary
2704    //        lookup (11.4).
2705    DeclContext::lookup_iterator I, E;
2706    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2707      NamedDecl *D = *I;
2708      // If the only declaration here is an ordinary friend, consider
2709      // it only if it was declared in an associated classes.
2710      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2711        DeclContext *LexDC = D->getLexicalDeclContext();
2712        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2713          continue;
2714      }
2715
2716      if (isa<UsingShadowDecl>(D))
2717        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2718
2719      if (isa<FunctionDecl>(D)) {
2720        if (Operator &&
2721            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2722                                                    T1, T2, Context))
2723          continue;
2724      } else if (!isa<FunctionTemplateDecl>(D))
2725        continue;
2726
2727      Result.insert(D);
2728    }
2729  }
2730}
2731
2732//----------------------------------------------------------------------------
2733// Search for all visible declarations.
2734//----------------------------------------------------------------------------
2735VisibleDeclConsumer::~VisibleDeclConsumer() { }
2736
2737namespace {
2738
2739class ShadowContextRAII;
2740
2741class VisibleDeclsRecord {
2742public:
2743  /// \brief An entry in the shadow map, which is optimized to store a
2744  /// single declaration (the common case) but can also store a list
2745  /// of declarations.
2746  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2747
2748private:
2749  /// \brief A mapping from declaration names to the declarations that have
2750  /// this name within a particular scope.
2751  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2752
2753  /// \brief A list of shadow maps, which is used to model name hiding.
2754  std::list<ShadowMap> ShadowMaps;
2755
2756  /// \brief The declaration contexts we have already visited.
2757  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2758
2759  friend class ShadowContextRAII;
2760
2761public:
2762  /// \brief Determine whether we have already visited this context
2763  /// (and, if not, note that we are going to visit that context now).
2764  bool visitedContext(DeclContext *Ctx) {
2765    return !VisitedContexts.insert(Ctx);
2766  }
2767
2768  bool alreadyVisitedContext(DeclContext *Ctx) {
2769    return VisitedContexts.count(Ctx);
2770  }
2771
2772  /// \brief Determine whether the given declaration is hidden in the
2773  /// current scope.
2774  ///
2775  /// \returns the declaration that hides the given declaration, or
2776  /// NULL if no such declaration exists.
2777  NamedDecl *checkHidden(NamedDecl *ND);
2778
2779  /// \brief Add a declaration to the current shadow map.
2780  void add(NamedDecl *ND) {
2781    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2782  }
2783};
2784
2785/// \brief RAII object that records when we've entered a shadow context.
2786class ShadowContextRAII {
2787  VisibleDeclsRecord &Visible;
2788
2789  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2790
2791public:
2792  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2793    Visible.ShadowMaps.push_back(ShadowMap());
2794  }
2795
2796  ~ShadowContextRAII() {
2797    Visible.ShadowMaps.pop_back();
2798  }
2799};
2800
2801} // end anonymous namespace
2802
2803NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2804  // Look through using declarations.
2805  ND = ND->getUnderlyingDecl();
2806
2807  unsigned IDNS = ND->getIdentifierNamespace();
2808  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2809  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2810       SM != SMEnd; ++SM) {
2811    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2812    if (Pos == SM->end())
2813      continue;
2814
2815    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2816                               IEnd = Pos->second.end();
2817         I != IEnd; ++I) {
2818      // A tag declaration does not hide a non-tag declaration.
2819      if ((*I)->hasTagIdentifierNamespace() &&
2820          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2821                   Decl::IDNS_ObjCProtocol)))
2822        continue;
2823
2824      // Protocols are in distinct namespaces from everything else.
2825      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2826           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2827          (*I)->getIdentifierNamespace() != IDNS)
2828        continue;
2829
2830      // Functions and function templates in the same scope overload
2831      // rather than hide.  FIXME: Look for hiding based on function
2832      // signatures!
2833      if ((*I)->isFunctionOrFunctionTemplate() &&
2834          ND->isFunctionOrFunctionTemplate() &&
2835          SM == ShadowMaps.rbegin())
2836        continue;
2837
2838      // We've found a declaration that hides this one.
2839      return *I;
2840    }
2841  }
2842
2843  return 0;
2844}
2845
2846static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2847                               bool QualifiedNameLookup,
2848                               bool InBaseClass,
2849                               VisibleDeclConsumer &Consumer,
2850                               VisibleDeclsRecord &Visited) {
2851  if (!Ctx)
2852    return;
2853
2854  // Make sure we don't visit the same context twice.
2855  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2856    return;
2857
2858  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2859    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2860
2861  // Enumerate all of the results in this context.
2862  for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2863                                      LEnd = Ctx->lookups_end();
2864       L != LEnd; ++L) {
2865    for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
2866      if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
2867        if ((ND = Result.getAcceptableDecl(ND))) {
2868          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2869          Visited.add(ND);
2870        }
2871      }
2872    }
2873  }
2874
2875  // Traverse using directives for qualified name lookup.
2876  if (QualifiedNameLookup) {
2877    ShadowContextRAII Shadow(Visited);
2878    DeclContext::udir_iterator I, E;
2879    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2880      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2881                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2882    }
2883  }
2884
2885  // Traverse the contexts of inherited C++ classes.
2886  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2887    if (!Record->hasDefinition())
2888      return;
2889
2890    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2891                                         BEnd = Record->bases_end();
2892         B != BEnd; ++B) {
2893      QualType BaseType = B->getType();
2894
2895      // Don't look into dependent bases, because name lookup can't look
2896      // there anyway.
2897      if (BaseType->isDependentType())
2898        continue;
2899
2900      const RecordType *Record = BaseType->getAs<RecordType>();
2901      if (!Record)
2902        continue;
2903
2904      // FIXME: It would be nice to be able to determine whether referencing
2905      // a particular member would be ambiguous. For example, given
2906      //
2907      //   struct A { int member; };
2908      //   struct B { int member; };
2909      //   struct C : A, B { };
2910      //
2911      //   void f(C *c) { c->### }
2912      //
2913      // accessing 'member' would result in an ambiguity. However, we
2914      // could be smart enough to qualify the member with the base
2915      // class, e.g.,
2916      //
2917      //   c->B::member
2918      //
2919      // or
2920      //
2921      //   c->A::member
2922
2923      // Find results in this base class (and its bases).
2924      ShadowContextRAII Shadow(Visited);
2925      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2926                         true, Consumer, Visited);
2927    }
2928  }
2929
2930  // Traverse the contexts of Objective-C classes.
2931  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2932    // Traverse categories.
2933    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2934         Category; Category = Category->getNextClassCategory()) {
2935      ShadowContextRAII Shadow(Visited);
2936      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2937                         Consumer, Visited);
2938    }
2939
2940    // Traverse protocols.
2941    for (ObjCInterfaceDecl::all_protocol_iterator
2942         I = IFace->all_referenced_protocol_begin(),
2943         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2944      ShadowContextRAII Shadow(Visited);
2945      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2946                         Visited);
2947    }
2948
2949    // Traverse the superclass.
2950    if (IFace->getSuperClass()) {
2951      ShadowContextRAII Shadow(Visited);
2952      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2953                         true, Consumer, Visited);
2954    }
2955
2956    // If there is an implementation, traverse it. We do this to find
2957    // synthesized ivars.
2958    if (IFace->getImplementation()) {
2959      ShadowContextRAII Shadow(Visited);
2960      LookupVisibleDecls(IFace->getImplementation(), Result,
2961                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2962    }
2963  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2964    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2965           E = Protocol->protocol_end(); I != E; ++I) {
2966      ShadowContextRAII Shadow(Visited);
2967      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2968                         Visited);
2969    }
2970  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2971    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2972           E = Category->protocol_end(); I != E; ++I) {
2973      ShadowContextRAII Shadow(Visited);
2974      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2975                         Visited);
2976    }
2977
2978    // If there is an implementation, traverse it.
2979    if (Category->getImplementation()) {
2980      ShadowContextRAII Shadow(Visited);
2981      LookupVisibleDecls(Category->getImplementation(), Result,
2982                         QualifiedNameLookup, true, Consumer, Visited);
2983    }
2984  }
2985}
2986
2987static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2988                               UnqualUsingDirectiveSet &UDirs,
2989                               VisibleDeclConsumer &Consumer,
2990                               VisibleDeclsRecord &Visited) {
2991  if (!S)
2992    return;
2993
2994  if (!S->getEntity() ||
2995      (!S->getParent() &&
2996       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2997      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2998    // Walk through the declarations in this Scope.
2999    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
3000         D != DEnd; ++D) {
3001      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
3002        if ((ND = Result.getAcceptableDecl(ND))) {
3003          Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
3004          Visited.add(ND);
3005        }
3006    }
3007  }
3008
3009  // FIXME: C++ [temp.local]p8
3010  DeclContext *Entity = 0;
3011  if (S->getEntity()) {
3012    // Look into this scope's declaration context, along with any of its
3013    // parent lookup contexts (e.g., enclosing classes), up to the point
3014    // where we hit the context stored in the next outer scope.
3015    Entity = (DeclContext *)S->getEntity();
3016    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3017
3018    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3019         Ctx = Ctx->getLookupParent()) {
3020      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3021        if (Method->isInstanceMethod()) {
3022          // For instance methods, look for ivars in the method's interface.
3023          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3024                                  Result.getNameLoc(), Sema::LookupMemberName);
3025          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3026            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3027                               /*InBaseClass=*/false, Consumer, Visited);
3028          }
3029        }
3030
3031        // We've already performed all of the name lookup that we need
3032        // to for Objective-C methods; the next context will be the
3033        // outer scope.
3034        break;
3035      }
3036
3037      if (Ctx->isFunctionOrMethod())
3038        continue;
3039
3040      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3041                         /*InBaseClass=*/false, Consumer, Visited);
3042    }
3043  } else if (!S->getParent()) {
3044    // Look into the translation unit scope. We walk through the translation
3045    // unit's declaration context, because the Scope itself won't have all of
3046    // the declarations if we loaded a precompiled header.
3047    // FIXME: We would like the translation unit's Scope object to point to the
3048    // translation unit, so we don't need this special "if" branch. However,
3049    // doing so would force the normal C++ name-lookup code to look into the
3050    // translation unit decl when the IdentifierInfo chains would suffice.
3051    // Once we fix that problem (which is part of a more general "don't look
3052    // in DeclContexts unless we have to" optimization), we can eliminate this.
3053    Entity = Result.getSema().Context.getTranslationUnitDecl();
3054    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3055                       /*InBaseClass=*/false, Consumer, Visited);
3056  }
3057
3058  if (Entity) {
3059    // Lookup visible declarations in any namespaces found by using
3060    // directives.
3061    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3062    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3063    for (; UI != UEnd; ++UI)
3064      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3065                         Result, /*QualifiedNameLookup=*/false,
3066                         /*InBaseClass=*/false, Consumer, Visited);
3067  }
3068
3069  // Lookup names in the parent scope.
3070  ShadowContextRAII Shadow(Visited);
3071  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3072}
3073
3074void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3075                              VisibleDeclConsumer &Consumer,
3076                              bool IncludeGlobalScope) {
3077  // Determine the set of using directives available during
3078  // unqualified name lookup.
3079  Scope *Initial = S;
3080  UnqualUsingDirectiveSet UDirs;
3081  if (getLangOpts().CPlusPlus) {
3082    // Find the first namespace or translation-unit scope.
3083    while (S && !isNamespaceOrTranslationUnitScope(S))
3084      S = S->getParent();
3085
3086    UDirs.visitScopeChain(Initial, S);
3087  }
3088  UDirs.done();
3089
3090  // Look for visible declarations.
3091  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3092  VisibleDeclsRecord Visited;
3093  if (!IncludeGlobalScope)
3094    Visited.visitedContext(Context.getTranslationUnitDecl());
3095  ShadowContextRAII Shadow(Visited);
3096  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3097}
3098
3099void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3100                              VisibleDeclConsumer &Consumer,
3101                              bool IncludeGlobalScope) {
3102  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3103  VisibleDeclsRecord Visited;
3104  if (!IncludeGlobalScope)
3105    Visited.visitedContext(Context.getTranslationUnitDecl());
3106  ShadowContextRAII Shadow(Visited);
3107  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3108                       /*InBaseClass=*/false, Consumer, Visited);
3109}
3110
3111/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3112/// If GnuLabelLoc is a valid source location, then this is a definition
3113/// of an __label__ label name, otherwise it is a normal label definition
3114/// or use.
3115LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3116                                     SourceLocation GnuLabelLoc) {
3117  // Do a lookup to see if we have a label with this name already.
3118  NamedDecl *Res = 0;
3119
3120  if (GnuLabelLoc.isValid()) {
3121    // Local label definitions always shadow existing labels.
3122    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3123    Scope *S = CurScope;
3124    PushOnScopeChains(Res, S, true);
3125    return cast<LabelDecl>(Res);
3126  }
3127
3128  // Not a GNU local label.
3129  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3130  // If we found a label, check to see if it is in the same context as us.
3131  // When in a Block, we don't want to reuse a label in an enclosing function.
3132  if (Res && Res->getDeclContext() != CurContext)
3133    Res = 0;
3134  if (Res == 0) {
3135    // If not forward referenced or defined already, create the backing decl.
3136    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3137    Scope *S = CurScope->getFnParent();
3138    assert(S && "Not in a function?");
3139    PushOnScopeChains(Res, S, true);
3140  }
3141  return cast<LabelDecl>(Res);
3142}
3143
3144//===----------------------------------------------------------------------===//
3145// Typo correction
3146//===----------------------------------------------------------------------===//
3147
3148namespace {
3149
3150typedef llvm::SmallVector<TypoCorrection, 1> TypoResultList;
3151typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3152typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3153
3154static const unsigned MaxTypoDistanceResultSets = 5;
3155
3156class TypoCorrectionConsumer : public VisibleDeclConsumer {
3157  /// \brief The name written that is a typo in the source.
3158  StringRef Typo;
3159
3160  /// \brief The results found that have the smallest edit distance
3161  /// found (so far) with the typo name.
3162  ///
3163  /// The pointer value being set to the current DeclContext indicates
3164  /// whether there is a keyword with this name.
3165  TypoEditDistanceMap CorrectionResults;
3166
3167  Sema &SemaRef;
3168
3169public:
3170  explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3171    : Typo(Typo->getName()),
3172      SemaRef(SemaRef) { }
3173
3174  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3175                         bool InBaseClass);
3176  void FoundName(StringRef Name);
3177  void addKeywordResult(StringRef Keyword);
3178  void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3179               NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3180  void addCorrection(TypoCorrection Correction);
3181
3182  typedef TypoResultsMap::iterator result_iterator;
3183  typedef TypoEditDistanceMap::iterator distance_iterator;
3184  distance_iterator begin() { return CorrectionResults.begin(); }
3185  distance_iterator end()  { return CorrectionResults.end(); }
3186  void erase(distance_iterator I) { CorrectionResults.erase(I); }
3187  unsigned size() const { return CorrectionResults.size(); }
3188  bool empty() const { return CorrectionResults.empty(); }
3189
3190  TypoResultList &operator[](StringRef Name) {
3191    return CorrectionResults.begin()->second[Name];
3192  }
3193
3194  unsigned getBestEditDistance(bool Normalized) {
3195    if (CorrectionResults.empty())
3196      return (std::numeric_limits<unsigned>::max)();
3197
3198    unsigned BestED = CorrectionResults.begin()->first;
3199    return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3200  }
3201
3202  TypoResultsMap &getBestResults() {
3203    return CorrectionResults.begin()->second;
3204  }
3205
3206};
3207
3208}
3209
3210void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3211                                       DeclContext *Ctx, bool InBaseClass) {
3212  // Don't consider hidden names for typo correction.
3213  if (Hiding)
3214    return;
3215
3216  // Only consider entities with identifiers for names, ignoring
3217  // special names (constructors, overloaded operators, selectors,
3218  // etc.).
3219  IdentifierInfo *Name = ND->getIdentifier();
3220  if (!Name)
3221    return;
3222
3223  FoundName(Name->getName());
3224}
3225
3226void TypoCorrectionConsumer::FoundName(StringRef Name) {
3227  // Use a simple length-based heuristic to determine the minimum possible
3228  // edit distance. If the minimum isn't good enough, bail out early.
3229  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3230  if (MinED && Typo.size() / MinED < 3)
3231    return;
3232
3233  // Compute an upper bound on the allowable edit distance, so that the
3234  // edit-distance algorithm can short-circuit.
3235  unsigned UpperBound = (Typo.size() + 2) / 3;
3236
3237  // Compute the edit distance between the typo and the name of this
3238  // entity, and add the identifier to the list of results.
3239  addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3240}
3241
3242void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3243  // Compute the edit distance between the typo and this keyword,
3244  // and add the keyword to the list of results.
3245  addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3246}
3247
3248void TypoCorrectionConsumer::addName(StringRef Name,
3249                                     NamedDecl *ND,
3250                                     unsigned Distance,
3251                                     NestedNameSpecifier *NNS,
3252                                     bool isKeyword) {
3253  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3254  if (isKeyword) TC.makeKeyword();
3255  addCorrection(TC);
3256}
3257
3258void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3259  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3260  TypoResultList &CList =
3261      CorrectionResults[Correction.getEditDistance(false)][Name];
3262
3263  if (!CList.empty() && !CList.back().isResolved())
3264    CList.pop_back();
3265  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3266    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3267    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3268         RI != RIEnd; ++RI) {
3269      // If the Correction refers to a decl already in the result list,
3270      // replace the existing result if the string representation of Correction
3271      // comes before the current result alphabetically, then stop as there is
3272      // nothing more to be done to add Correction to the candidate set.
3273      if (RI->getCorrectionDecl() == NewND) {
3274        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3275          *RI = Correction;
3276        return;
3277      }
3278    }
3279  }
3280  if (CList.empty() || Correction.isResolved())
3281    CList.push_back(Correction);
3282
3283  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3284    erase(llvm::prior(CorrectionResults.end()));
3285}
3286
3287// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3288// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3289// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3290static void getNestedNameSpecifierIdentifiers(
3291    NestedNameSpecifier *NNS,
3292    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3293  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3294    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3295  else
3296    Identifiers.clear();
3297
3298  const IdentifierInfo *II = NULL;
3299
3300  switch (NNS->getKind()) {
3301  case NestedNameSpecifier::Identifier:
3302    II = NNS->getAsIdentifier();
3303    break;
3304
3305  case NestedNameSpecifier::Namespace:
3306    if (NNS->getAsNamespace()->isAnonymousNamespace())
3307      return;
3308    II = NNS->getAsNamespace()->getIdentifier();
3309    break;
3310
3311  case NestedNameSpecifier::NamespaceAlias:
3312    II = NNS->getAsNamespaceAlias()->getIdentifier();
3313    break;
3314
3315  case NestedNameSpecifier::TypeSpecWithTemplate:
3316  case NestedNameSpecifier::TypeSpec:
3317    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3318    break;
3319
3320  case NestedNameSpecifier::Global:
3321    return;
3322  }
3323
3324  if (II)
3325    Identifiers.push_back(II);
3326}
3327
3328namespace {
3329
3330class SpecifierInfo {
3331 public:
3332  DeclContext* DeclCtx;
3333  NestedNameSpecifier* NameSpecifier;
3334  unsigned EditDistance;
3335
3336  SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3337      : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3338};
3339
3340typedef SmallVector<DeclContext*, 4> DeclContextList;
3341typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3342
3343class NamespaceSpecifierSet {
3344  ASTContext &Context;
3345  DeclContextList CurContextChain;
3346  SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3347  SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3348  bool isSorted;
3349
3350  SpecifierInfoList Specifiers;
3351  llvm::SmallSetVector<unsigned, 4> Distances;
3352  llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3353
3354  /// \brief Helper for building the list of DeclContexts between the current
3355  /// context and the top of the translation unit
3356  static DeclContextList BuildContextChain(DeclContext *Start);
3357
3358  void SortNamespaces();
3359
3360 public:
3361  NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3362                        CXXScopeSpec *CurScopeSpec)
3363      : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3364        isSorted(true) {
3365    if (CurScopeSpec && CurScopeSpec->getScopeRep())
3366      getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3367                                        CurNameSpecifierIdentifiers);
3368    // Build the list of identifiers that would be used for an absolute
3369    // (from the global context) NestedNameSpecifier referring to the current
3370    // context.
3371    for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3372                                        CEnd = CurContextChain.rend();
3373         C != CEnd; ++C) {
3374      if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3375        CurContextIdentifiers.push_back(ND->getIdentifier());
3376    }
3377  }
3378
3379  /// \brief Add the namespace to the set, computing the corresponding
3380  /// NestedNameSpecifier and its distance in the process.
3381  void AddNamespace(NamespaceDecl *ND);
3382
3383  typedef SpecifierInfoList::iterator iterator;
3384  iterator begin() {
3385    if (!isSorted) SortNamespaces();
3386    return Specifiers.begin();
3387  }
3388  iterator end() { return Specifiers.end(); }
3389};
3390
3391}
3392
3393DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3394  assert(Start && "Bulding a context chain from a null context");
3395  DeclContextList Chain;
3396  for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3397       DC = DC->getLookupParent()) {
3398    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3399    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3400        !(ND && ND->isAnonymousNamespace()))
3401      Chain.push_back(DC->getPrimaryContext());
3402  }
3403  return Chain;
3404}
3405
3406void NamespaceSpecifierSet::SortNamespaces() {
3407  SmallVector<unsigned, 4> sortedDistances;
3408  sortedDistances.append(Distances.begin(), Distances.end());
3409
3410  if (sortedDistances.size() > 1)
3411    std::sort(sortedDistances.begin(), sortedDistances.end());
3412
3413  Specifiers.clear();
3414  for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3415                                       DIEnd = sortedDistances.end();
3416       DI != DIEnd; ++DI) {
3417    SpecifierInfoList &SpecList = DistanceMap[*DI];
3418    Specifiers.append(SpecList.begin(), SpecList.end());
3419  }
3420
3421  isSorted = true;
3422}
3423
3424void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3425  DeclContext *Ctx = cast<DeclContext>(ND);
3426  NestedNameSpecifier *NNS = NULL;
3427  unsigned NumSpecifiers = 0;
3428  DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3429  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3430
3431  // Eliminate common elements from the two DeclContext chains.
3432  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3433                                      CEnd = CurContextChain.rend();
3434       C != CEnd && !NamespaceDeclChain.empty() &&
3435       NamespaceDeclChain.back() == *C; ++C) {
3436    NamespaceDeclChain.pop_back();
3437  }
3438
3439  // Add an explicit leading '::' specifier if needed.
3440  if (NamespaceDecl *ND =
3441        NamespaceDeclChain.empty() ? NULL :
3442          dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3443    IdentifierInfo *Name = ND->getIdentifier();
3444    if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3445                  Name) != CurContextIdentifiers.end() ||
3446        std::find(CurNameSpecifierIdentifiers.begin(),
3447                  CurNameSpecifierIdentifiers.end(),
3448                  Name) != CurNameSpecifierIdentifiers.end()) {
3449      NamespaceDeclChain = FullNamespaceDeclChain;
3450      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3451    }
3452  }
3453
3454  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3455  for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3456                                      CEnd = NamespaceDeclChain.rend();
3457       C != CEnd; ++C) {
3458    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3459    if (ND) {
3460      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3461      ++NumSpecifiers;
3462    }
3463  }
3464
3465  // If the built NestedNameSpecifier would be replacing an existing
3466  // NestedNameSpecifier, use the number of component identifiers that
3467  // would need to be changed as the edit distance instead of the number
3468  // of components in the built NestedNameSpecifier.
3469  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3470    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3471    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3472    NumSpecifiers = llvm::ComputeEditDistance(
3473      llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3474      llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3475  }
3476
3477  isSorted = false;
3478  Distances.insert(NumSpecifiers);
3479  DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3480}
3481
3482/// \brief Perform name lookup for a possible result for typo correction.
3483static void LookupPotentialTypoResult(Sema &SemaRef,
3484                                      LookupResult &Res,
3485                                      IdentifierInfo *Name,
3486                                      Scope *S, CXXScopeSpec *SS,
3487                                      DeclContext *MemberContext,
3488                                      bool EnteringContext,
3489                                      bool isObjCIvarLookup) {
3490  Res.suppressDiagnostics();
3491  Res.clear();
3492  Res.setLookupName(Name);
3493  if (MemberContext) {
3494    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3495      if (isObjCIvarLookup) {
3496        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3497          Res.addDecl(Ivar);
3498          Res.resolveKind();
3499          return;
3500        }
3501      }
3502
3503      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3504        Res.addDecl(Prop);
3505        Res.resolveKind();
3506        return;
3507      }
3508    }
3509
3510    SemaRef.LookupQualifiedName(Res, MemberContext);
3511    return;
3512  }
3513
3514  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3515                           EnteringContext);
3516
3517  // Fake ivar lookup; this should really be part of
3518  // LookupParsedName.
3519  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3520    if (Method->isInstanceMethod() && Method->getClassInterface() &&
3521        (Res.empty() ||
3522         (Res.isSingleResult() &&
3523          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3524       if (ObjCIvarDecl *IV
3525             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3526         Res.addDecl(IV);
3527         Res.resolveKind();
3528       }
3529     }
3530  }
3531}
3532
3533/// \brief Add keywords to the consumer as possible typo corrections.
3534static void AddKeywordsToConsumer(Sema &SemaRef,
3535                                  TypoCorrectionConsumer &Consumer,
3536                                  Scope *S, CorrectionCandidateCallback &CCC,
3537                                  bool AfterNestedNameSpecifier) {
3538  if (AfterNestedNameSpecifier) {
3539    // For 'X::', we know exactly which keywords can appear next.
3540    Consumer.addKeywordResult("template");
3541    if (CCC.WantExpressionKeywords)
3542      Consumer.addKeywordResult("operator");
3543    return;
3544  }
3545
3546  if (CCC.WantObjCSuper)
3547    Consumer.addKeywordResult("super");
3548
3549  if (CCC.WantTypeSpecifiers) {
3550    // Add type-specifier keywords to the set of results.
3551    const char *CTypeSpecs[] = {
3552      "char", "const", "double", "enum", "float", "int", "long", "short",
3553      "signed", "struct", "union", "unsigned", "void", "volatile",
3554      "_Complex", "_Imaginary",
3555      // storage-specifiers as well
3556      "extern", "inline", "static", "typedef"
3557    };
3558
3559    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3560    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3561      Consumer.addKeywordResult(CTypeSpecs[I]);
3562
3563    if (SemaRef.getLangOpts().C99)
3564      Consumer.addKeywordResult("restrict");
3565    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3566      Consumer.addKeywordResult("bool");
3567    else if (SemaRef.getLangOpts().C99)
3568      Consumer.addKeywordResult("_Bool");
3569
3570    if (SemaRef.getLangOpts().CPlusPlus) {
3571      Consumer.addKeywordResult("class");
3572      Consumer.addKeywordResult("typename");
3573      Consumer.addKeywordResult("wchar_t");
3574
3575      if (SemaRef.getLangOpts().CPlusPlus0x) {
3576        Consumer.addKeywordResult("char16_t");
3577        Consumer.addKeywordResult("char32_t");
3578        Consumer.addKeywordResult("constexpr");
3579        Consumer.addKeywordResult("decltype");
3580        Consumer.addKeywordResult("thread_local");
3581      }
3582    }
3583
3584    if (SemaRef.getLangOpts().GNUMode)
3585      Consumer.addKeywordResult("typeof");
3586  }
3587
3588  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3589    Consumer.addKeywordResult("const_cast");
3590    Consumer.addKeywordResult("dynamic_cast");
3591    Consumer.addKeywordResult("reinterpret_cast");
3592    Consumer.addKeywordResult("static_cast");
3593  }
3594
3595  if (CCC.WantExpressionKeywords) {
3596    Consumer.addKeywordResult("sizeof");
3597    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3598      Consumer.addKeywordResult("false");
3599      Consumer.addKeywordResult("true");
3600    }
3601
3602    if (SemaRef.getLangOpts().CPlusPlus) {
3603      const char *CXXExprs[] = {
3604        "delete", "new", "operator", "throw", "typeid"
3605      };
3606      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3607      for (unsigned I = 0; I != NumCXXExprs; ++I)
3608        Consumer.addKeywordResult(CXXExprs[I]);
3609
3610      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3611          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3612        Consumer.addKeywordResult("this");
3613
3614      if (SemaRef.getLangOpts().CPlusPlus0x) {
3615        Consumer.addKeywordResult("alignof");
3616        Consumer.addKeywordResult("nullptr");
3617      }
3618    }
3619  }
3620
3621  if (CCC.WantRemainingKeywords) {
3622    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3623      // Statements.
3624      const char *CStmts[] = {
3625        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3626      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3627      for (unsigned I = 0; I != NumCStmts; ++I)
3628        Consumer.addKeywordResult(CStmts[I]);
3629
3630      if (SemaRef.getLangOpts().CPlusPlus) {
3631        Consumer.addKeywordResult("catch");
3632        Consumer.addKeywordResult("try");
3633      }
3634
3635      if (S && S->getBreakParent())
3636        Consumer.addKeywordResult("break");
3637
3638      if (S && S->getContinueParent())
3639        Consumer.addKeywordResult("continue");
3640
3641      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3642        Consumer.addKeywordResult("case");
3643        Consumer.addKeywordResult("default");
3644      }
3645    } else {
3646      if (SemaRef.getLangOpts().CPlusPlus) {
3647        Consumer.addKeywordResult("namespace");
3648        Consumer.addKeywordResult("template");
3649      }
3650
3651      if (S && S->isClassScope()) {
3652        Consumer.addKeywordResult("explicit");
3653        Consumer.addKeywordResult("friend");
3654        Consumer.addKeywordResult("mutable");
3655        Consumer.addKeywordResult("private");
3656        Consumer.addKeywordResult("protected");
3657        Consumer.addKeywordResult("public");
3658        Consumer.addKeywordResult("virtual");
3659      }
3660    }
3661
3662    if (SemaRef.getLangOpts().CPlusPlus) {
3663      Consumer.addKeywordResult("using");
3664
3665      if (SemaRef.getLangOpts().CPlusPlus0x)
3666        Consumer.addKeywordResult("static_assert");
3667    }
3668  }
3669}
3670
3671static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3672                              TypoCorrection &Candidate) {
3673  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3674  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3675}
3676
3677/// \brief Try to "correct" a typo in the source code by finding
3678/// visible declarations whose names are similar to the name that was
3679/// present in the source code.
3680///
3681/// \param TypoName the \c DeclarationNameInfo structure that contains
3682/// the name that was present in the source code along with its location.
3683///
3684/// \param LookupKind the name-lookup criteria used to search for the name.
3685///
3686/// \param S the scope in which name lookup occurs.
3687///
3688/// \param SS the nested-name-specifier that precedes the name we're
3689/// looking for, if present.
3690///
3691/// \param CCC A CorrectionCandidateCallback object that provides further
3692/// validation of typo correction candidates. It also provides flags for
3693/// determining the set of keywords permitted.
3694///
3695/// \param MemberContext if non-NULL, the context in which to look for
3696/// a member access expression.
3697///
3698/// \param EnteringContext whether we're entering the context described by
3699/// the nested-name-specifier SS.
3700///
3701/// \param OPT when non-NULL, the search for visible declarations will
3702/// also walk the protocols in the qualified interfaces of \p OPT.
3703///
3704/// \returns a \c TypoCorrection containing the corrected name if the typo
3705/// along with information such as the \c NamedDecl where the corrected name
3706/// was declared, and any additional \c NestedNameSpecifier needed to access
3707/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
3708TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3709                                 Sema::LookupNameKind LookupKind,
3710                                 Scope *S, CXXScopeSpec *SS,
3711                                 CorrectionCandidateCallback &CCC,
3712                                 DeclContext *MemberContext,
3713                                 bool EnteringContext,
3714                                 const ObjCObjectPointerType *OPT) {
3715  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3716    return TypoCorrection();
3717
3718  // In Microsoft mode, don't perform typo correction in a template member
3719  // function dependent context because it interferes with the "lookup into
3720  // dependent bases of class templates" feature.
3721  if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3722      isa<CXXMethodDecl>(CurContext))
3723    return TypoCorrection();
3724
3725  // We only attempt to correct typos for identifiers.
3726  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3727  if (!Typo)
3728    return TypoCorrection();
3729
3730  // If the scope specifier itself was invalid, don't try to correct
3731  // typos.
3732  if (SS && SS->isInvalid())
3733    return TypoCorrection();
3734
3735  // Never try to correct typos during template deduction or
3736  // instantiation.
3737  if (!ActiveTemplateInstantiations.empty())
3738    return TypoCorrection();
3739
3740  NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3741
3742  TypoCorrectionConsumer Consumer(*this, Typo);
3743
3744  // If a callback object considers an empty typo correction candidate to be
3745  // viable, assume it does not do any actual validation of the candidates.
3746  TypoCorrection EmptyCorrection;
3747  bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3748
3749  // Perform name lookup to find visible, similarly-named entities.
3750  bool IsUnqualifiedLookup = false;
3751  DeclContext *QualifiedDC = MemberContext;
3752  if (MemberContext) {
3753    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3754
3755    // Look in qualified interfaces.
3756    if (OPT) {
3757      for (ObjCObjectPointerType::qual_iterator
3758             I = OPT->qual_begin(), E = OPT->qual_end();
3759           I != E; ++I)
3760        LookupVisibleDecls(*I, LookupKind, Consumer);
3761    }
3762  } else if (SS && SS->isSet()) {
3763    QualifiedDC = computeDeclContext(*SS, EnteringContext);
3764    if (!QualifiedDC)
3765      return TypoCorrection();
3766
3767    // Provide a stop gap for files that are just seriously broken.  Trying
3768    // to correct all typos can turn into a HUGE performance penalty, causing
3769    // some files to take minutes to get rejected by the parser.
3770    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3771      return TypoCorrection();
3772    ++TyposCorrected;
3773
3774    LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3775  } else {
3776    IsUnqualifiedLookup = true;
3777    UnqualifiedTyposCorrectedMap::iterator Cached
3778      = UnqualifiedTyposCorrected.find(Typo);
3779    if (Cached != UnqualifiedTyposCorrected.end()) {
3780      // Add the cached value, unless it's a keyword or fails validation. In the
3781      // keyword case, we'll end up adding the keyword below.
3782      if (Cached->second) {
3783        if (!Cached->second.isKeyword() &&
3784            isCandidateViable(CCC, Cached->second))
3785          Consumer.addCorrection(Cached->second);
3786      } else {
3787        // Only honor no-correction cache hits when a callback that will validate
3788        // correction candidates is not being used.
3789        if (!ValidatingCallback)
3790          return TypoCorrection();
3791      }
3792    }
3793    if (Cached == UnqualifiedTyposCorrected.end()) {
3794      // Provide a stop gap for files that are just seriously broken.  Trying
3795      // to correct all typos can turn into a HUGE performance penalty, causing
3796      // some files to take minutes to get rejected by the parser.
3797      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3798        return TypoCorrection();
3799    }
3800  }
3801
3802  // Determine whether we are going to search in the various namespaces for
3803  // corrections.
3804  bool SearchNamespaces
3805    = getLangOpts().CPlusPlus &&
3806      (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3807  // In a few cases we *only* want to search for corrections bases on just
3808  // adding or changing the nested name specifier.
3809  bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3810
3811  if (IsUnqualifiedLookup || SearchNamespaces) {
3812    // For unqualified lookup, look through all of the names that we have
3813    // seen in this translation unit.
3814    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3815    for (IdentifierTable::iterator I = Context.Idents.begin(),
3816                                IEnd = Context.Idents.end();
3817         I != IEnd; ++I)
3818      Consumer.FoundName(I->getKey());
3819
3820    // Walk through identifiers in external identifier sources.
3821    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3822    if (IdentifierInfoLookup *External
3823                            = Context.Idents.getExternalIdentifierLookup()) {
3824      OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3825      do {
3826        StringRef Name = Iter->Next();
3827        if (Name.empty())
3828          break;
3829
3830        Consumer.FoundName(Name);
3831      } while (true);
3832    }
3833  }
3834
3835  AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3836
3837  // If we haven't found anything, we're done.
3838  if (Consumer.empty()) {
3839    // If this was an unqualified lookup, note that no correction was found.
3840    if (IsUnqualifiedLookup)
3841      (void)UnqualifiedTyposCorrected[Typo];
3842
3843    return TypoCorrection();
3844  }
3845
3846  // Make sure the best edit distance (prior to adding any namespace qualifiers)
3847  // is not more that about a third of the length of the typo's identifier.
3848  unsigned ED = Consumer.getBestEditDistance(true);
3849  if (ED > 0 && Typo->getName().size() / ED < 3) {
3850    // If this was an unqualified lookup, note that no correction was found.
3851    if (IsUnqualifiedLookup)
3852      (void)UnqualifiedTyposCorrected[Typo];
3853
3854    return TypoCorrection();
3855  }
3856
3857  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3858  // to search those namespaces.
3859  if (SearchNamespaces) {
3860    // Load any externally-known namespaces.
3861    if (ExternalSource && !LoadedExternalKnownNamespaces) {
3862      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3863      LoadedExternalKnownNamespaces = true;
3864      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3865      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3866        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3867    }
3868
3869    for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3870           KNI = KnownNamespaces.begin(),
3871           KNIEnd = KnownNamespaces.end();
3872         KNI != KNIEnd; ++KNI)
3873      Namespaces.AddNamespace(KNI->first);
3874  }
3875
3876  // Weed out any names that could not be found by name lookup or, if a
3877  // CorrectionCandidateCallback object was provided, failed validation.
3878  llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
3879  LookupResult TmpRes(*this, TypoName, LookupKind);
3880  TmpRes.suppressDiagnostics();
3881  while (!Consumer.empty()) {
3882    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3883    unsigned ED = DI->first;
3884    for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3885                                              IEnd = DI->second.end();
3886         I != IEnd; /* Increment in loop. */) {
3887      // If we only want nested name specifier corrections, ignore potential
3888      // corrections that have a different base identifier from the typo.
3889      if (AllowOnlyNNSChanges &&
3890          I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3891        TypoCorrectionConsumer::result_iterator Prev = I;
3892        ++I;
3893        DI->second.erase(Prev);
3894        continue;
3895      }
3896
3897      // If the item already has been looked up or is a keyword, keep it.
3898      // If a validator callback object was given, drop the correction
3899      // unless it passes validation.
3900      bool Viable = false;
3901      for (TypoResultList::iterator RI = I->second.begin(), RIEnd = I->second.end();
3902           RI != RIEnd; /* Increment in loop. */) {
3903        TypoResultList::iterator Prev = RI;
3904        ++RI;
3905        if (Prev->isResolved()) {
3906          if (!isCandidateViable(CCC, *Prev))
3907            I->second.erase(Prev);
3908          else
3909            Viable = true;
3910        }
3911      }
3912      if (Viable || I->second.empty()) {
3913        TypoCorrectionConsumer::result_iterator Prev = I;
3914        ++I;
3915        if (!Viable)
3916          DI->second.erase(Prev);
3917        continue;
3918      }
3919      assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3920
3921      // Perform name lookup on this name.
3922      TypoCorrection &Candidate = I->second.front();
3923      IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3924      LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3925                                EnteringContext, CCC.IsObjCIvarLookup);
3926
3927      switch (TmpRes.getResultKind()) {
3928      case LookupResult::NotFound:
3929      case LookupResult::NotFoundInCurrentInstantiation:
3930      case LookupResult::FoundUnresolvedValue:
3931        QualifiedResults.push_back(Candidate);
3932        // We didn't find this name in our scope, or didn't like what we found;
3933        // ignore it.
3934        {
3935          TypoCorrectionConsumer::result_iterator Next = I;
3936          ++Next;
3937          DI->second.erase(I);
3938          I = Next;
3939        }
3940        break;
3941
3942      case LookupResult::Ambiguous:
3943        // We don't deal with ambiguities.
3944        return TypoCorrection();
3945
3946      case LookupResult::FoundOverloaded: {
3947        TypoCorrectionConsumer::result_iterator Prev = I;
3948        // Store all of the Decls for overloaded symbols
3949        for (LookupResult::iterator TRD = TmpRes.begin(),
3950                                 TRDEnd = TmpRes.end();
3951             TRD != TRDEnd; ++TRD)
3952          Candidate.addCorrectionDecl(*TRD);
3953        ++I;
3954        if (!isCandidateViable(CCC, Candidate))
3955          DI->second.erase(Prev);
3956        break;
3957      }
3958
3959      case LookupResult::Found: {
3960        TypoCorrectionConsumer::result_iterator Prev = I;
3961        Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3962        ++I;
3963        if (!isCandidateViable(CCC, Candidate))
3964          DI->second.erase(Prev);
3965        break;
3966      }
3967
3968      }
3969    }
3970
3971    if (DI->second.empty())
3972      Consumer.erase(DI);
3973    else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3974      // If there are results in the closest possible bucket, stop
3975      break;
3976
3977    // Only perform the qualified lookups for C++
3978    if (SearchNamespaces) {
3979      TmpRes.suppressDiagnostics();
3980      for (llvm::SmallVector<TypoCorrection,
3981                             16>::iterator QRI = QualifiedResults.begin(),
3982                                        QRIEnd = QualifiedResults.end();
3983           QRI != QRIEnd; ++QRI) {
3984        for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3985                                          NIEnd = Namespaces.end();
3986             NI != NIEnd; ++NI) {
3987          DeclContext *Ctx = NI->DeclCtx;
3988
3989          // FIXME: Stop searching once the namespaces are too far away to create
3990          // acceptable corrections for this identifier (since the namespaces
3991          // are sorted in ascending order by edit distance).
3992
3993          TmpRes.clear();
3994          TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
3995          if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3996
3997          // Any corrections added below will be validated in subsequent
3998          // iterations of the main while() loop over the Consumer's contents.
3999          switch (TmpRes.getResultKind()) {
4000          case LookupResult::Found: {
4001            TypoCorrection TC(*QRI);
4002            TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
4003            TC.setCorrectionSpecifier(NI->NameSpecifier);
4004            TC.setQualifierDistance(NI->EditDistance);
4005            Consumer.addCorrection(TC);
4006            break;
4007          }
4008          case LookupResult::FoundOverloaded: {
4009            TypoCorrection TC(*QRI);
4010            TC.setCorrectionSpecifier(NI->NameSpecifier);
4011            TC.setQualifierDistance(NI->EditDistance);
4012            for (LookupResult::iterator TRD = TmpRes.begin(),
4013                                     TRDEnd = TmpRes.end();
4014                 TRD != TRDEnd; ++TRD)
4015              TC.addCorrectionDecl(*TRD);
4016            Consumer.addCorrection(TC);
4017            break;
4018          }
4019          case LookupResult::NotFound:
4020          case LookupResult::NotFoundInCurrentInstantiation:
4021          case LookupResult::Ambiguous:
4022          case LookupResult::FoundUnresolvedValue:
4023            break;
4024          }
4025        }
4026      }
4027    }
4028
4029    QualifiedResults.clear();
4030  }
4031
4032  // No corrections remain...
4033  if (Consumer.empty()) return TypoCorrection();
4034
4035  TypoResultsMap &BestResults = Consumer.getBestResults();
4036  ED = Consumer.getBestEditDistance(true);
4037
4038  if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4039    // If this was an unqualified lookup and we believe the callback
4040    // object wouldn't have filtered out possible corrections, note
4041    // that no correction was found.
4042    if (IsUnqualifiedLookup && !ValidatingCallback)
4043      (void)UnqualifiedTyposCorrected[Typo];
4044
4045    return TypoCorrection();
4046  }
4047
4048  // If only a single name remains, return that result.
4049  if (BestResults.size() == 1) {
4050    const TypoResultList &CorrectionList = BestResults.begin()->second;
4051    const TypoCorrection &Result = CorrectionList.front();
4052    if (CorrectionList.size() != 1) return TypoCorrection();
4053
4054    // Don't correct to a keyword that's the same as the typo; the keyword
4055    // wasn't actually in scope.
4056    if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4057
4058    // Record the correction for unqualified lookup.
4059    if (IsUnqualifiedLookup)
4060      UnqualifiedTyposCorrected[Typo] = Result;
4061
4062    return Result;
4063  }
4064  else if (BestResults.size() > 1
4065           // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4066           // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4067           // some instances of CTC_Unknown, while WantRemainingKeywords is true
4068           // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4069           && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4070           && BestResults["super"].front().isKeyword()) {
4071    // Prefer 'super' when we're completing in a message-receiver
4072    // context.
4073
4074    // Don't correct to a keyword that's the same as the typo; the keyword
4075    // wasn't actually in scope.
4076    if (ED == 0) return TypoCorrection();
4077
4078    // Record the correction for unqualified lookup.
4079    if (IsUnqualifiedLookup)
4080      UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4081
4082    return BestResults["super"].front();
4083  }
4084
4085  // If this was an unqualified lookup and we believe the callback object did
4086  // not filter out possible corrections, note that no correction was found.
4087  if (IsUnqualifiedLookup && !ValidatingCallback)
4088    (void)UnqualifiedTyposCorrected[Typo];
4089
4090  return TypoCorrection();
4091}
4092
4093void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4094  if (!CDecl) return;
4095
4096  if (isKeyword())
4097    CorrectionDecls.clear();
4098
4099  CorrectionDecls.push_back(CDecl);
4100
4101  if (!CorrectionName)
4102    CorrectionName = CDecl->getDeclName();
4103}
4104
4105std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4106  if (CorrectionNameSpec) {
4107    std::string tmpBuffer;
4108    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4109    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4110    CorrectionName.printName(PrefixOStream);
4111    return PrefixOStream.str();
4112  }
4113
4114  return CorrectionName.getAsString();
4115}
4116