SemaLookup.cpp revision 6ab3524f72a6e64aa04973fa9433b5559abb3525
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/LangOptions.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include <set>
26#include <vector>
27#include <iterator>
28#include <utility>
29#include <algorithm>
30
31using namespace clang;
32
33typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy;
34typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet;
35typedef llvm::SmallVector<Sema::LookupResult, 3> LookupResultsTy;
36
37/// UsingDirAncestorCompare - Implements strict weak ordering of
38/// UsingDirectives. It orders them by address of its common ancestor.
39struct UsingDirAncestorCompare {
40
41  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
42  bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const {
43    return U->getCommonAncestor() < Ctx;
44  }
45
46  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
47  bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const {
48    return Ctx < U->getCommonAncestor();
49  }
50
51  /// @brief Compares UsingDirectiveDecl common ancestors.
52  bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const {
53    return U1->getCommonAncestor() < U2->getCommonAncestor();
54  }
55};
56
57/// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs
58/// (ordered by common ancestors), found in namespace NS,
59/// including all found (recursively) in their nominated namespaces.
60void AddNamespaceUsingDirectives(ASTContext &Context,
61                                 DeclContext *NS,
62                                 UsingDirectivesTy &UDirs,
63                                 NamespaceSet &Visited) {
64  DeclContext::udir_iterator I, End;
65
66  for (llvm::tie(I, End) = NS->getUsingDirectives(Context); I !=End; ++I) {
67    UDirs.push_back(*I);
68    std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
69    NamespaceDecl *Nominated = (*I)->getNominatedNamespace();
70    if (Visited.insert(Nominated).second)
71      AddNamespaceUsingDirectives(Context, Nominated, UDirs, /*ref*/ Visited);
72  }
73}
74
75/// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S,
76/// including all found in the namespaces they nominate.
77static void AddScopeUsingDirectives(ASTContext &Context, Scope *S,
78                                    UsingDirectivesTy &UDirs) {
79  NamespaceSet VisitedNS;
80
81  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
82
83    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx))
84      VisitedNS.insert(NS);
85
86    AddNamespaceUsingDirectives(Context, Ctx, UDirs, /*ref*/ VisitedNS);
87
88  } else {
89    Scope::udir_iterator I = S->using_directives_begin(),
90                         End = S->using_directives_end();
91
92    for (; I != End; ++I) {
93      UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>();
94      UDirs.push_back(UD);
95      std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
96
97      NamespaceDecl *Nominated = UD->getNominatedNamespace();
98      if (!VisitedNS.count(Nominated)) {
99        VisitedNS.insert(Nominated);
100        AddNamespaceUsingDirectives(Context, Nominated, UDirs,
101                                    /*ref*/ VisitedNS);
102      }
103    }
104  }
105}
106
107/// MaybeConstructOverloadSet - Name lookup has determined that the
108/// elements in [I, IEnd) have the name that we are looking for, and
109/// *I is a match for the namespace. This routine returns an
110/// appropriate Decl for name lookup, which may either be *I or an
111/// OverloadedFunctionDecl that represents the overloaded functions in
112/// [I, IEnd).
113///
114/// The existance of this routine is temporary; users of LookupResult
115/// should be able to handle multiple results, to deal with cases of
116/// ambiguity and overloaded functions without needing to create a
117/// Decl node.
118template<typename DeclIterator>
119static NamedDecl *
120MaybeConstructOverloadSet(ASTContext &Context,
121                          DeclIterator I, DeclIterator IEnd) {
122  assert(I != IEnd && "Iterator range cannot be empty");
123  assert(!isa<OverloadedFunctionDecl>(*I) &&
124         "Cannot have an overloaded function");
125
126  if (isa<FunctionDecl>(*I)) {
127    // If we found a function, there might be more functions. If
128    // so, collect them into an overload set.
129    DeclIterator Last = I;
130    OverloadedFunctionDecl *Ovl = 0;
131    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
132      if (!Ovl) {
133        // FIXME: We leak this overload set. Eventually, we want to
134        // stop building the declarations for these overload sets, so
135        // there will be nothing to leak.
136        Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(),
137                                             (*I)->getDeclName());
138        Ovl->addOverload(cast<FunctionDecl>(*I));
139      }
140      Ovl->addOverload(cast<FunctionDecl>(*Last));
141    }
142
143    // If we had more than one function, we built an overload
144    // set. Return it.
145    if (Ovl)
146      return Ovl;
147  }
148
149  return *I;
150}
151
152/// Merges together multiple LookupResults dealing with duplicated Decl's.
153static Sema::LookupResult
154MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) {
155  typedef Sema::LookupResult LResult;
156  typedef llvm::SmallPtrSet<NamedDecl*, 4> DeclsSetTy;
157
158  // Remove duplicated Decl pointing at same Decl, by storing them in
159  // associative collection. This might be case for code like:
160  //
161  //    namespace A { int i; }
162  //    namespace B { using namespace A; }
163  //    namespace C { using namespace A; }
164  //
165  //    void foo() {
166  //      using namespace B;
167  //      using namespace C;
168  //      ++i; // finds A::i, from both namespace B and C at global scope
169  //    }
170  //
171  //  C++ [namespace.qual].p3:
172  //    The same declaration found more than once is not an ambiguity
173  //    (because it is still a unique declaration).
174  DeclsSetTy FoundDecls;
175
176  // Counter of tag names, and functions for resolving ambiguity
177  // and name hiding.
178  std::size_t TagNames = 0, Functions = 0, OrdinaryNonFunc = 0;
179
180  LookupResultsTy::iterator I = Results.begin(), End = Results.end();
181
182  // No name lookup results, return early.
183  if (I == End) return LResult::CreateLookupResult(Context, 0);
184
185  // Keep track of the tag declaration we found. We only use this if
186  // we find a single tag declaration.
187  TagDecl *TagFound = 0;
188
189  for (; I != End; ++I) {
190    switch (I->getKind()) {
191    case LResult::NotFound:
192      assert(false &&
193             "Should be always successful name lookup result here.");
194      break;
195
196    case LResult::AmbiguousReference:
197    case LResult::AmbiguousBaseSubobjectTypes:
198    case LResult::AmbiguousBaseSubobjects:
199      assert(false && "Shouldn't get ambiguous lookup here.");
200      break;
201
202    case LResult::Found: {
203      NamedDecl *ND = I->getAsDecl();
204      if (TagDecl *TD = dyn_cast<TagDecl>(ND)) {
205        TagFound = Context.getCanonicalDecl(TD);
206        TagNames += FoundDecls.insert(TagFound)?  1 : 0;
207      } else if (isa<FunctionDecl>(ND))
208        Functions += FoundDecls.insert(ND)? 1 : 0;
209      else
210        FoundDecls.insert(ND);
211      break;
212    }
213
214    case LResult::FoundOverloaded:
215      for (LResult::iterator FI = I->begin(), FEnd = I->end(); FI != FEnd; ++FI)
216        Functions += FoundDecls.insert(*FI)? 1 : 0;
217      break;
218    }
219  }
220  OrdinaryNonFunc = FoundDecls.size() - TagNames - Functions;
221  bool Ambiguous = false, NameHidesTags = false;
222
223  if (FoundDecls.size() == 1) {
224    // 1) Exactly one result.
225  } else if (TagNames > 1) {
226    // 2) Multiple tag names (even though they may be hidden by an
227    // object name).
228    Ambiguous = true;
229  } else if (FoundDecls.size() - TagNames == 1) {
230    // 3) Ordinary name hides (optional) tag.
231    NameHidesTags = TagFound;
232  } else if (Functions) {
233    // C++ [basic.lookup].p1:
234    // ... Name lookup may associate more than one declaration with
235    // a name if it finds the name to be a function name; the declarations
236    // are said to form a set of overloaded functions (13.1).
237    // Overload resolution (13.3) takes place after name lookup has succeeded.
238    //
239    if (!OrdinaryNonFunc) {
240      // 4) Functions hide tag names.
241      NameHidesTags = TagFound;
242    } else {
243      // 5) Functions + ordinary names.
244      Ambiguous = true;
245    }
246  } else {
247    // 6) Multiple non-tag names
248    Ambiguous = true;
249  }
250
251  if (Ambiguous)
252    return LResult::CreateLookupResult(Context,
253                                       FoundDecls.begin(), FoundDecls.size());
254  if (NameHidesTags) {
255    // There's only one tag, TagFound. Remove it.
256    assert(TagFound && FoundDecls.count(TagFound) && "No tag name found?");
257    FoundDecls.erase(TagFound);
258  }
259
260  // Return successful name lookup result.
261  return LResult::CreateLookupResult(Context,
262                                MaybeConstructOverloadSet(Context,
263                                                          FoundDecls.begin(),
264                                                          FoundDecls.end()));
265}
266
267// Retrieve the set of identifier namespaces that correspond to a
268// specific kind of name lookup.
269inline unsigned
270getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
271                                          bool CPlusPlus) {
272  unsigned IDNS = 0;
273  switch (NameKind) {
274  case Sema::LookupOrdinaryName:
275  case Sema::LookupOperatorName:
276  case Sema::LookupRedeclarationWithLinkage:
277    IDNS = Decl::IDNS_Ordinary;
278    if (CPlusPlus)
279      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
280    break;
281
282  case Sema::LookupTagName:
283    IDNS = Decl::IDNS_Tag;
284    break;
285
286  case Sema::LookupMemberName:
287    IDNS = Decl::IDNS_Member;
288    if (CPlusPlus)
289      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
290    break;
291
292  case Sema::LookupNestedNameSpecifierName:
293  case Sema::LookupNamespaceName:
294    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
295    break;
296  }
297  return IDNS;
298}
299
300Sema::LookupResult
301Sema::LookupResult::CreateLookupResult(ASTContext &Context, NamedDecl *D) {
302  LookupResult Result;
303  Result.StoredKind = (D && isa<OverloadedFunctionDecl>(D))?
304    OverloadedDeclSingleDecl : SingleDecl;
305  Result.First = reinterpret_cast<uintptr_t>(D);
306  Result.Last = 0;
307  Result.Context = &Context;
308  return Result;
309}
310
311/// @brief Moves the name-lookup results from Other to this LookupResult.
312Sema::LookupResult
313Sema::LookupResult::CreateLookupResult(ASTContext &Context,
314                                       IdentifierResolver::iterator F,
315                                       IdentifierResolver::iterator L) {
316  LookupResult Result;
317  Result.Context = &Context;
318
319  if (F != L && isa<FunctionDecl>(*F)) {
320    IdentifierResolver::iterator Next = F;
321    ++Next;
322    if (Next != L && isa<FunctionDecl>(*Next)) {
323      Result.StoredKind = OverloadedDeclFromIdResolver;
324      Result.First = F.getAsOpaqueValue();
325      Result.Last = L.getAsOpaqueValue();
326      return Result;
327    }
328  }
329
330  Result.StoredKind = SingleDecl;
331  Result.First = reinterpret_cast<uintptr_t>(*F);
332  Result.Last = 0;
333  return Result;
334}
335
336Sema::LookupResult
337Sema::LookupResult::CreateLookupResult(ASTContext &Context,
338                                       DeclContext::lookup_iterator F,
339                                       DeclContext::lookup_iterator L) {
340  LookupResult Result;
341  Result.Context = &Context;
342
343  if (F != L && isa<FunctionDecl>(*F)) {
344    DeclContext::lookup_iterator Next = F;
345    ++Next;
346    if (Next != L && isa<FunctionDecl>(*Next)) {
347      Result.StoredKind = OverloadedDeclFromDeclContext;
348      Result.First = reinterpret_cast<uintptr_t>(F);
349      Result.Last = reinterpret_cast<uintptr_t>(L);
350      return Result;
351    }
352  }
353
354  Result.StoredKind = SingleDecl;
355  Result.First = reinterpret_cast<uintptr_t>(*F);
356  Result.Last = 0;
357  return Result;
358}
359
360/// @brief Determine the result of name lookup.
361Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
362  switch (StoredKind) {
363  case SingleDecl:
364    return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
365
366  case OverloadedDeclSingleDecl:
367  case OverloadedDeclFromIdResolver:
368  case OverloadedDeclFromDeclContext:
369    return FoundOverloaded;
370
371  case AmbiguousLookupStoresBasePaths:
372    return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
373
374  case AmbiguousLookupStoresDecls:
375    return AmbiguousReference;
376  }
377
378  // We can't ever get here.
379  return NotFound;
380}
381
382/// @brief Converts the result of name lookup into a single (possible
383/// NULL) pointer to a declaration.
384///
385/// The resulting declaration will either be the declaration we found
386/// (if only a single declaration was found), an
387/// OverloadedFunctionDecl (if an overloaded function was found), or
388/// NULL (if no declaration was found). This conversion must not be
389/// used anywhere where name lookup could result in an ambiguity.
390///
391/// The OverloadedFunctionDecl conversion is meant as a stop-gap
392/// solution, since it causes the OverloadedFunctionDecl to be
393/// leaked. FIXME: Eventually, there will be a better way to iterate
394/// over the set of overloaded functions returned by name lookup.
395NamedDecl *Sema::LookupResult::getAsDecl() const {
396  switch (StoredKind) {
397  case SingleDecl:
398    return reinterpret_cast<NamedDecl *>(First);
399
400  case OverloadedDeclFromIdResolver:
401    return MaybeConstructOverloadSet(*Context,
402                         IdentifierResolver::iterator::getFromOpaqueValue(First),
403                         IdentifierResolver::iterator::getFromOpaqueValue(Last));
404
405  case OverloadedDeclFromDeclContext:
406    return MaybeConstructOverloadSet(*Context,
407                           reinterpret_cast<DeclContext::lookup_iterator>(First),
408                           reinterpret_cast<DeclContext::lookup_iterator>(Last));
409
410  case OverloadedDeclSingleDecl:
411    return reinterpret_cast<OverloadedFunctionDecl*>(First);
412
413  case AmbiguousLookupStoresDecls:
414  case AmbiguousLookupStoresBasePaths:
415    assert(false &&
416           "Name lookup returned an ambiguity that could not be handled");
417    break;
418  }
419
420  return 0;
421}
422
423/// @brief Retrieves the BasePaths structure describing an ambiguous
424/// name lookup, or null.
425BasePaths *Sema::LookupResult::getBasePaths() const {
426  if (StoredKind == AmbiguousLookupStoresBasePaths)
427      return reinterpret_cast<BasePaths *>(First);
428  return 0;
429}
430
431Sema::LookupResult::iterator::reference
432Sema::LookupResult::iterator::operator*() const {
433  switch (Result->StoredKind) {
434  case SingleDecl:
435    return reinterpret_cast<NamedDecl*>(Current);
436
437  case OverloadedDeclSingleDecl:
438    return *reinterpret_cast<NamedDecl**>(Current);
439
440  case OverloadedDeclFromIdResolver:
441    return *IdentifierResolver::iterator::getFromOpaqueValue(Current);
442
443  case AmbiguousLookupStoresBasePaths:
444    if (Result->Last)
445      return *reinterpret_cast<NamedDecl**>(Current);
446
447    // Fall through to handle the DeclContext::lookup_iterator we're
448    // storing.
449
450  case OverloadedDeclFromDeclContext:
451  case AmbiguousLookupStoresDecls:
452    return *reinterpret_cast<DeclContext::lookup_iterator>(Current);
453  }
454
455  return 0;
456}
457
458Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() {
459  switch (Result->StoredKind) {
460  case SingleDecl:
461    Current = reinterpret_cast<uintptr_t>((NamedDecl*)0);
462    break;
463
464  case OverloadedDeclSingleDecl: {
465    NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
466    ++I;
467    Current = reinterpret_cast<uintptr_t>(I);
468    break;
469  }
470
471  case OverloadedDeclFromIdResolver: {
472    IdentifierResolver::iterator I
473      = IdentifierResolver::iterator::getFromOpaqueValue(Current);
474    ++I;
475    Current = I.getAsOpaqueValue();
476    break;
477  }
478
479  case AmbiguousLookupStoresBasePaths:
480    if (Result->Last) {
481      NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
482      ++I;
483      Current = reinterpret_cast<uintptr_t>(I);
484      break;
485    }
486    // Fall through to handle the DeclContext::lookup_iterator we're
487    // storing.
488
489  case OverloadedDeclFromDeclContext:
490  case AmbiguousLookupStoresDecls: {
491    DeclContext::lookup_iterator I
492      = reinterpret_cast<DeclContext::lookup_iterator>(Current);
493    ++I;
494    Current = reinterpret_cast<uintptr_t>(I);
495    break;
496  }
497  }
498
499  return *this;
500}
501
502Sema::LookupResult::iterator Sema::LookupResult::begin() {
503  switch (StoredKind) {
504  case SingleDecl:
505  case OverloadedDeclFromIdResolver:
506  case OverloadedDeclFromDeclContext:
507  case AmbiguousLookupStoresDecls:
508    return iterator(this, First);
509
510  case OverloadedDeclSingleDecl: {
511    OverloadedFunctionDecl * Ovl =
512      reinterpret_cast<OverloadedFunctionDecl*>(First);
513    return iterator(this,
514                    reinterpret_cast<uintptr_t>(&(*Ovl->function_begin())));
515  }
516
517  case AmbiguousLookupStoresBasePaths:
518    if (Last)
519      return iterator(this,
520              reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_begin()));
521    else
522      return iterator(this,
523              reinterpret_cast<uintptr_t>(getBasePaths()->front().Decls.first));
524  }
525
526  // Required to suppress GCC warning.
527  return iterator();
528}
529
530Sema::LookupResult::iterator Sema::LookupResult::end() {
531  switch (StoredKind) {
532  case SingleDecl:
533  case OverloadedDeclFromIdResolver:
534  case OverloadedDeclFromDeclContext:
535  case AmbiguousLookupStoresDecls:
536    return iterator(this, Last);
537
538  case OverloadedDeclSingleDecl: {
539    OverloadedFunctionDecl * Ovl =
540      reinterpret_cast<OverloadedFunctionDecl*>(First);
541    return iterator(this,
542                    reinterpret_cast<uintptr_t>(&(*Ovl->function_end())));
543  }
544
545  case AmbiguousLookupStoresBasePaths:
546    if (Last)
547      return iterator(this,
548               reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_end()));
549    else
550      return iterator(this, reinterpret_cast<uintptr_t>(
551                                     getBasePaths()->front().Decls.second));
552  }
553
554  // Required to suppress GCC warning.
555  return iterator();
556}
557
558void Sema::LookupResult::Destroy() {
559  if (BasePaths *Paths = getBasePaths())
560    delete Paths;
561  else if (getKind() == AmbiguousReference)
562    delete[] reinterpret_cast<NamedDecl **>(First);
563}
564
565static void
566CppNamespaceLookup(ASTContext &Context, DeclContext *NS,
567                   DeclarationName Name, Sema::LookupNameKind NameKind,
568                   unsigned IDNS, LookupResultsTy &Results,
569                   UsingDirectivesTy *UDirs = 0) {
570
571  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
572
573  // Perform qualified name lookup into the LookupCtx.
574  DeclContext::lookup_iterator I, E;
575  for (llvm::tie(I, E) = NS->lookup(Context, Name); I != E; ++I)
576    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS)) {
577      Results.push_back(Sema::LookupResult::CreateLookupResult(Context, I, E));
578      break;
579    }
580
581  if (UDirs) {
582    // For each UsingDirectiveDecl, which common ancestor is equal
583    // to NS, we preform qualified name lookup into namespace nominated by it.
584    UsingDirectivesTy::const_iterator UI, UEnd;
585    llvm::tie(UI, UEnd) =
586      std::equal_range(UDirs->begin(), UDirs->end(), NS,
587                       UsingDirAncestorCompare());
588
589    for (; UI != UEnd; ++UI)
590      CppNamespaceLookup(Context, (*UI)->getNominatedNamespace(),
591                         Name, NameKind, IDNS, Results);
592  }
593}
594
595static bool isNamespaceOrTranslationUnitScope(Scope *S) {
596  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
597    return Ctx->isFileContext();
598  return false;
599}
600
601std::pair<bool, Sema::LookupResult>
602Sema::CppLookupName(Scope *S, DeclarationName Name,
603                    LookupNameKind NameKind, bool RedeclarationOnly) {
604  assert(getLangOptions().CPlusPlus &&
605         "Can perform only C++ lookup");
606  unsigned IDNS
607    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
608  Scope *Initial = S;
609  DeclContext *OutOfLineCtx = 0;
610  IdentifierResolver::iterator
611    I = IdResolver.begin(Name),
612    IEnd = IdResolver.end();
613
614  // First we lookup local scope.
615  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
616  // ...During unqualified name lookup (3.4.1), the names appear as if
617  // they were declared in the nearest enclosing namespace which contains
618  // both the using-directive and the nominated namespace.
619  // [Note: in this context, “contains” means “contains directly or
620  // indirectly”.
621  //
622  // For example:
623  // namespace A { int i; }
624  // void foo() {
625  //   int i;
626  //   {
627  //     using namespace A;
628  //     ++i; // finds local 'i', A::i appears at global scope
629  //   }
630  // }
631  //
632  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
633    // Check whether the IdResolver has anything in this scope.
634    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
635      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
636        // We found something.  Look for anything else in our scope
637        // with this same name and in an acceptable identifier
638        // namespace, so that we can construct an overload set if we
639        // need to.
640        IdentifierResolver::iterator LastI = I;
641        for (++LastI; LastI != IEnd; ++LastI) {
642          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
643            break;
644        }
645        LookupResult Result =
646          LookupResult::CreateLookupResult(Context, I, LastI);
647        return std::make_pair(true, Result);
648      }
649    }
650    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
651      LookupResult R;
652      // Perform member lookup into struct.
653      // FIXME: In some cases, we know that every name that could be
654      // found by this qualified name lookup will also be on the
655      // identifier chain. For example, inside a class without any
656      // base classes, we never need to perform qualified lookup
657      // because all of the members are on top of the identifier
658      // chain.
659      if (isa<RecordDecl>(Ctx)) {
660        R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly);
661        if (R || RedeclarationOnly)
662          return std::make_pair(true, R);
663      }
664      if (Ctx->getParent() != Ctx->getLexicalParent()) {
665        // It is out of line defined C++ method or struct, we continue
666        // doing name lookup in parent context. Once we will find namespace
667        // or translation-unit we save it for possible checking
668        // using-directives later.
669        for (OutOfLineCtx = Ctx; OutOfLineCtx && !OutOfLineCtx->isFileContext();
670             OutOfLineCtx = OutOfLineCtx->getParent()) {
671          R = LookupQualifiedName(OutOfLineCtx, Name, NameKind, RedeclarationOnly);
672          if (R || RedeclarationOnly)
673            return std::make_pair(true, R);
674        }
675      }
676    }
677  }
678
679  // Collect UsingDirectiveDecls in all scopes, and recursively all
680  // nominated namespaces by those using-directives.
681  // UsingDirectives are pushed to heap, in common ancestor pointer
682  // value order.
683  // FIXME: Cache this sorted list in Scope structure, and DeclContext,
684  // so we don't build it for each lookup!
685  UsingDirectivesTy UDirs;
686  for (Scope *SC = Initial; SC; SC = SC->getParent())
687    if (SC->getFlags() & Scope::DeclScope)
688      AddScopeUsingDirectives(Context, SC, UDirs);
689
690  // Sort heapified UsingDirectiveDecls.
691  std::sort_heap(UDirs.begin(), UDirs.end());
692
693  // Lookup namespace scope, and global scope.
694  // Unqualified name lookup in C++ requires looking into scopes
695  // that aren't strictly lexical, and therefore we walk through the
696  // context as well as walking through the scopes.
697
698  LookupResultsTy LookupResults;
699  assert((!OutOfLineCtx || OutOfLineCtx->isFileContext()) &&
700         "We should have been looking only at file context here already.");
701  bool LookedInCtx = false;
702  LookupResult Result;
703  while (OutOfLineCtx &&
704         OutOfLineCtx != S->getEntity() &&
705         OutOfLineCtx->isNamespace()) {
706    LookedInCtx = true;
707
708    // Look into context considering using-directives.
709    CppNamespaceLookup(Context, OutOfLineCtx, Name, NameKind, IDNS,
710                       LookupResults, &UDirs);
711
712    if ((Result = MergeLookupResults(Context, LookupResults)) ||
713        (RedeclarationOnly && !OutOfLineCtx->isTransparentContext()))
714      return std::make_pair(true, Result);
715
716    OutOfLineCtx = OutOfLineCtx->getParent();
717  }
718
719  for (; S; S = S->getParent()) {
720    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
721    assert(Ctx && Ctx->isFileContext() &&
722           "We should have been looking only at file context here already.");
723
724    // Check whether the IdResolver has anything in this scope.
725    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
726      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
727        // We found something.  Look for anything else in our scope
728        // with this same name and in an acceptable identifier
729        // namespace, so that we can construct an overload set if we
730        // need to.
731        IdentifierResolver::iterator LastI = I;
732        for (++LastI; LastI != IEnd; ++LastI) {
733          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
734            break;
735        }
736
737        // We store name lookup result, and continue trying to look into
738        // associated context, and maybe namespaces nominated by
739        // using-directives.
740        LookupResults.push_back(
741          LookupResult::CreateLookupResult(Context, I, LastI));
742        break;
743      }
744    }
745
746    LookedInCtx = true;
747    // Look into context considering using-directives.
748    CppNamespaceLookup(Context, Ctx, Name, NameKind, IDNS,
749                       LookupResults, &UDirs);
750
751    if ((Result = MergeLookupResults(Context, LookupResults)) ||
752        (RedeclarationOnly && !Ctx->isTransparentContext()))
753      return std::make_pair(true, Result);
754  }
755
756  if (!(LookedInCtx || LookupResults.empty())) {
757    // We didn't Performed lookup in Scope entity, so we return
758    // result form IdentifierResolver.
759    assert((LookupResults.size() == 1) && "Wrong size!");
760    return std::make_pair(true, LookupResults.front());
761  }
762  return std::make_pair(false, LookupResult());
763}
764
765/// @brief Perform unqualified name lookup starting from a given
766/// scope.
767///
768/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
769/// used to find names within the current scope. For example, 'x' in
770/// @code
771/// int x;
772/// int f() {
773///   return x; // unqualified name look finds 'x' in the global scope
774/// }
775/// @endcode
776///
777/// Different lookup criteria can find different names. For example, a
778/// particular scope can have both a struct and a function of the same
779/// name, and each can be found by certain lookup criteria. For more
780/// information about lookup criteria, see the documentation for the
781/// class LookupCriteria.
782///
783/// @param S        The scope from which unqualified name lookup will
784/// begin. If the lookup criteria permits, name lookup may also search
785/// in the parent scopes.
786///
787/// @param Name     The name of the entity that we are searching for.
788///
789/// @param Loc      If provided, the source location where we're performing
790/// name lookup. At present, this is only used to produce diagnostics when
791/// C library functions (like "malloc") are implicitly declared.
792///
793/// @returns The result of name lookup, which includes zero or more
794/// declarations and possibly additional information used to diagnose
795/// ambiguities.
796Sema::LookupResult
797Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind,
798                 bool RedeclarationOnly, bool AllowBuiltinCreation,
799                 SourceLocation Loc) {
800  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
801
802  if (!getLangOptions().CPlusPlus) {
803    // Unqualified name lookup in C/Objective-C is purely lexical, so
804    // search in the declarations attached to the name.
805    unsigned IDNS = 0;
806    switch (NameKind) {
807    case Sema::LookupOrdinaryName:
808      IDNS = Decl::IDNS_Ordinary;
809      break;
810
811    case Sema::LookupTagName:
812      IDNS = Decl::IDNS_Tag;
813      break;
814
815    case Sema::LookupMemberName:
816      IDNS = Decl::IDNS_Member;
817      break;
818
819    case Sema::LookupOperatorName:
820    case Sema::LookupNestedNameSpecifierName:
821    case Sema::LookupNamespaceName:
822      assert(false && "C does not perform these kinds of name lookup");
823      break;
824
825    case Sema::LookupRedeclarationWithLinkage:
826      // Find the nearest non-transparent declaration scope.
827      while (!(S->getFlags() & Scope::DeclScope) ||
828             (S->getEntity() &&
829              static_cast<DeclContext *>(S->getEntity())
830                ->isTransparentContext()))
831        S = S->getParent();
832      IDNS = Decl::IDNS_Ordinary;
833      break;
834    }
835
836    // Scan up the scope chain looking for a decl that matches this
837    // identifier that is in the appropriate namespace.  This search
838    // should not take long, as shadowing of names is uncommon, and
839    // deep shadowing is extremely uncommon.
840    bool LeftStartingScope = false;
841
842    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
843                                   IEnd = IdResolver.end();
844         I != IEnd; ++I)
845      if ((*I)->isInIdentifierNamespace(IDNS)) {
846        if (NameKind == LookupRedeclarationWithLinkage) {
847          // Determine whether this (or a previous) declaration is
848          // out-of-scope.
849          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
850            LeftStartingScope = true;
851
852          // If we found something outside of our starting scope that
853          // does not have linkage, skip it.
854          if (LeftStartingScope && !((*I)->hasLinkage()))
855            continue;
856        }
857
858        if ((*I)->getAttr<OverloadableAttr>()) {
859          // If this declaration has the "overloadable" attribute, we
860          // might have a set of overloaded functions.
861
862          // Figure out what scope the identifier is in.
863          while (!(S->getFlags() & Scope::DeclScope) ||
864                 !S->isDeclScope(DeclPtrTy::make(*I)))
865            S = S->getParent();
866
867          // Find the last declaration in this scope (with the same
868          // name, naturally).
869          IdentifierResolver::iterator LastI = I;
870          for (++LastI; LastI != IEnd; ++LastI) {
871            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
872              break;
873          }
874
875          return LookupResult::CreateLookupResult(Context, I, LastI);
876        }
877
878        // We have a single lookup result.
879        return LookupResult::CreateLookupResult(Context, *I);
880      }
881  } else {
882    // Perform C++ unqualified name lookup.
883    std::pair<bool, LookupResult> MaybeResult =
884      CppLookupName(S, Name, NameKind, RedeclarationOnly);
885    if (MaybeResult.first)
886      return MaybeResult.second;
887  }
888
889  // If we didn't find a use of this identifier, and if the identifier
890  // corresponds to a compiler builtin, create the decl object for the builtin
891  // now, injecting it into translation unit scope, and return it.
892  if (NameKind == LookupOrdinaryName ||
893      NameKind == LookupRedeclarationWithLinkage) {
894    IdentifierInfo *II = Name.getAsIdentifierInfo();
895    if (II && AllowBuiltinCreation) {
896      // If this is a builtin on this (or all) targets, create the decl.
897      if (unsigned BuiltinID = II->getBuiltinID()) {
898        // In C++, we don't have any predefined library functions like
899        // 'malloc'. Instead, we'll just error.
900        if (getLangOptions().CPlusPlus &&
901            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
902          return LookupResult::CreateLookupResult(Context, 0);
903
904        return LookupResult::CreateLookupResult(Context,
905                            LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
906                                                S, RedeclarationOnly, Loc));
907      }
908    }
909    if (getLangOptions().ObjC1 && II) {
910      // @interface and @compatibility_alias introduce typedef-like names.
911      // Unlike typedef's, they can only be introduced at file-scope (and are
912      // therefore not scoped decls). They can, however, be shadowed by
913      // other names in IDNS_Ordinary.
914      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
915      if (IDI != ObjCInterfaceDecls.end())
916        return LookupResult::CreateLookupResult(Context, IDI->second);
917      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
918      if (I != ObjCAliasDecls.end())
919        return LookupResult::CreateLookupResult(Context,
920                                                I->second->getClassInterface());
921    }
922  }
923  return LookupResult::CreateLookupResult(Context, 0);
924}
925
926/// @brief Perform qualified name lookup into a given context.
927///
928/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
929/// names when the context of those names is explicit specified, e.g.,
930/// "std::vector" or "x->member".
931///
932/// Different lookup criteria can find different names. For example, a
933/// particular scope can have both a struct and a function of the same
934/// name, and each can be found by certain lookup criteria. For more
935/// information about lookup criteria, see the documentation for the
936/// class LookupCriteria.
937///
938/// @param LookupCtx The context in which qualified name lookup will
939/// search. If the lookup criteria permits, name lookup may also search
940/// in the parent contexts or (for C++ classes) base classes.
941///
942/// @param Name     The name of the entity that we are searching for.
943///
944/// @param Criteria The criteria that this routine will use to
945/// determine which names are visible and which names will be
946/// found. Note that name lookup will find a name that is visible by
947/// the given criteria, but the entity itself may not be semantically
948/// correct or even the kind of entity expected based on the
949/// lookup. For example, searching for a nested-name-specifier name
950/// might result in an EnumDecl, which is visible but is not permitted
951/// as a nested-name-specifier in C++03.
952///
953/// @returns The result of name lookup, which includes zero or more
954/// declarations and possibly additional information used to diagnose
955/// ambiguities.
956Sema::LookupResult
957Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
958                          LookupNameKind NameKind, bool RedeclarationOnly) {
959  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
960
961  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
962
963  // If we're performing qualified name lookup (e.g., lookup into a
964  // struct), find fields as part of ordinary name lookup.
965  unsigned IDNS
966    = getIdentifierNamespacesFromLookupNameKind(NameKind,
967                                                getLangOptions().CPlusPlus);
968  if (NameKind == LookupOrdinaryName)
969    IDNS |= Decl::IDNS_Member;
970
971  // Perform qualified name lookup into the LookupCtx.
972  DeclContext::lookup_iterator I, E;
973  for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
974    if (isAcceptableLookupResult(*I, NameKind, IDNS))
975      return LookupResult::CreateLookupResult(Context, I, E);
976
977  // If this isn't a C++ class or we aren't allowed to look into base
978  // classes, we're done.
979  if (RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
980    return LookupResult::CreateLookupResult(Context, 0);
981
982  // Perform lookup into our base classes.
983  BasePaths Paths;
984  Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
985
986  // Look for this member in our base classes
987  if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
988                     MemberLookupCriteria(Name, NameKind, IDNS), Paths))
989    return LookupResult::CreateLookupResult(Context, 0);
990
991  // C++ [class.member.lookup]p2:
992  //   [...] If the resulting set of declarations are not all from
993  //   sub-objects of the same type, or the set has a nonstatic member
994  //   and includes members from distinct sub-objects, there is an
995  //   ambiguity and the program is ill-formed. Otherwise that set is
996  //   the result of the lookup.
997  // FIXME: support using declarations!
998  QualType SubobjectType;
999  int SubobjectNumber = 0;
1000  for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1001       Path != PathEnd; ++Path) {
1002    const BasePathElement &PathElement = Path->back();
1003
1004    // Determine whether we're looking at a distinct sub-object or not.
1005    if (SubobjectType.isNull()) {
1006      // This is the first subobject we've looked at. Record it's type.
1007      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1008      SubobjectNumber = PathElement.SubobjectNumber;
1009    } else if (SubobjectType
1010                 != Context.getCanonicalType(PathElement.Base->getType())) {
1011      // We found members of the given name in two subobjects of
1012      // different types. This lookup is ambiguous.
1013      BasePaths *PathsOnHeap = new BasePaths;
1014      PathsOnHeap->swap(Paths);
1015      return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
1016    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1017      // We have a different subobject of the same type.
1018
1019      // C++ [class.member.lookup]p5:
1020      //   A static member, a nested type or an enumerator defined in
1021      //   a base class T can unambiguously be found even if an object
1022      //   has more than one base class subobject of type T.
1023      Decl *FirstDecl = *Path->Decls.first;
1024      if (isa<VarDecl>(FirstDecl) ||
1025          isa<TypeDecl>(FirstDecl) ||
1026          isa<EnumConstantDecl>(FirstDecl))
1027        continue;
1028
1029      if (isa<CXXMethodDecl>(FirstDecl)) {
1030        // Determine whether all of the methods are static.
1031        bool AllMethodsAreStatic = true;
1032        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1033             Func != Path->Decls.second; ++Func) {
1034          if (!isa<CXXMethodDecl>(*Func)) {
1035            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1036            break;
1037          }
1038
1039          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1040            AllMethodsAreStatic = false;
1041            break;
1042          }
1043        }
1044
1045        if (AllMethodsAreStatic)
1046          continue;
1047      }
1048
1049      // We have found a nonstatic member name in multiple, distinct
1050      // subobjects. Name lookup is ambiguous.
1051      BasePaths *PathsOnHeap = new BasePaths;
1052      PathsOnHeap->swap(Paths);
1053      return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
1054    }
1055  }
1056
1057  // Lookup in a base class succeeded; return these results.
1058
1059  // If we found a function declaration, return an overload set.
1060  if (isa<FunctionDecl>(*Paths.front().Decls.first))
1061    return LookupResult::CreateLookupResult(Context,
1062                        Paths.front().Decls.first, Paths.front().Decls.second);
1063
1064  // We found a non-function declaration; return a single declaration.
1065  return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
1066}
1067
1068/// @brief Performs name lookup for a name that was parsed in the
1069/// source code, and may contain a C++ scope specifier.
1070///
1071/// This routine is a convenience routine meant to be called from
1072/// contexts that receive a name and an optional C++ scope specifier
1073/// (e.g., "N::M::x"). It will then perform either qualified or
1074/// unqualified name lookup (with LookupQualifiedName or LookupName,
1075/// respectively) on the given name and return those results.
1076///
1077/// @param S        The scope from which unqualified name lookup will
1078/// begin.
1079///
1080/// @param SS       An optional C++ scope-specified, e.g., "::N::M".
1081///
1082/// @param Name     The name of the entity that name lookup will
1083/// search for.
1084///
1085/// @param Loc      If provided, the source location where we're performing
1086/// name lookup. At present, this is only used to produce diagnostics when
1087/// C library functions (like "malloc") are implicitly declared.
1088///
1089/// @returns The result of qualified or unqualified name lookup.
1090Sema::LookupResult
1091Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS,
1092                       DeclarationName Name, LookupNameKind NameKind,
1093                       bool RedeclarationOnly, bool AllowBuiltinCreation,
1094                       SourceLocation Loc) {
1095  if (SS) {
1096    if (SS->isInvalid() || RequireCompleteDeclContext(*SS))
1097      return LookupResult::CreateLookupResult(Context, 0);
1098
1099    if (SS->isSet()) {
1100      return LookupQualifiedName(computeDeclContext(*SS),
1101                                 Name, NameKind, RedeclarationOnly);
1102    }
1103  }
1104
1105  return LookupName(S, Name, NameKind, RedeclarationOnly,
1106                    AllowBuiltinCreation, Loc);
1107}
1108
1109
1110/// @brief Produce a diagnostic describing the ambiguity that resulted
1111/// from name lookup.
1112///
1113/// @param Result       The ambiguous name lookup result.
1114///
1115/// @param Name         The name of the entity that name lookup was
1116/// searching for.
1117///
1118/// @param NameLoc      The location of the name within the source code.
1119///
1120/// @param LookupRange  A source range that provides more
1121/// source-location information concerning the lookup itself. For
1122/// example, this range might highlight a nested-name-specifier that
1123/// precedes the name.
1124///
1125/// @returns true
1126bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1127                                   SourceLocation NameLoc,
1128                                   SourceRange LookupRange) {
1129  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1130
1131  if (BasePaths *Paths = Result.getBasePaths()) {
1132    if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
1133      QualType SubobjectType = Paths->front().back().Base->getType();
1134      Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1135        << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1136        << LookupRange;
1137
1138      DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1139      while (isa<CXXMethodDecl>(*Found) &&
1140             cast<CXXMethodDecl>(*Found)->isStatic())
1141        ++Found;
1142
1143      Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1144
1145      Result.Destroy();
1146      return true;
1147    }
1148
1149    assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
1150           "Unhandled form of name lookup ambiguity");
1151
1152    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1153      << Name << LookupRange;
1154
1155    std::set<Decl *> DeclsPrinted;
1156    for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
1157         Path != PathEnd; ++Path) {
1158      Decl *D = *Path->Decls.first;
1159      if (DeclsPrinted.insert(D).second)
1160        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1161    }
1162
1163    Result.Destroy();
1164    return true;
1165  } else if (Result.getKind() == LookupResult::AmbiguousReference) {
1166    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1167
1168    NamedDecl **DI = reinterpret_cast<NamedDecl **>(Result.First),
1169            **DEnd = reinterpret_cast<NamedDecl **>(Result.Last);
1170
1171    for (; DI != DEnd; ++DI)
1172      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1173
1174    Result.Destroy();
1175    return true;
1176  }
1177
1178  assert(false && "Unhandled form of name lookup ambiguity");
1179
1180  // We can't reach here.
1181  return true;
1182}
1183
1184// \brief Add the associated classes and namespaces for
1185// argument-dependent lookup with an argument of class type
1186// (C++ [basic.lookup.koenig]p2).
1187static void
1188addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1189                                  ASTContext &Context,
1190                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1191                            Sema::AssociatedClassSet &AssociatedClasses) {
1192  // C++ [basic.lookup.koenig]p2:
1193  //   [...]
1194  //     -- If T is a class type (including unions), its associated
1195  //        classes are: the class itself; the class of which it is a
1196  //        member, if any; and its direct and indirect base
1197  //        classes. Its associated namespaces are the namespaces in
1198  //        which its associated classes are defined.
1199
1200  // Add the class of which it is a member, if any.
1201  DeclContext *Ctx = Class->getDeclContext();
1202  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1203    AssociatedClasses.insert(EnclosingClass);
1204
1205  // Add the associated namespace for this class.
1206  while (Ctx->isRecord())
1207    Ctx = Ctx->getParent();
1208  if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1209    AssociatedNamespaces.insert(EnclosingNamespace);
1210
1211  // Add the class itself. If we've already seen this class, we don't
1212  // need to visit base classes.
1213  if (!AssociatedClasses.insert(Class))
1214    return;
1215
1216  // FIXME: Handle class template specializations
1217
1218  // Add direct and indirect base classes along with their associated
1219  // namespaces.
1220  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1221  Bases.push_back(Class);
1222  while (!Bases.empty()) {
1223    // Pop this class off the stack.
1224    Class = Bases.back();
1225    Bases.pop_back();
1226
1227    // Visit the base classes.
1228    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1229                                         BaseEnd = Class->bases_end();
1230         Base != BaseEnd; ++Base) {
1231      const RecordType *BaseType = Base->getType()->getAsRecordType();
1232      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1233      if (AssociatedClasses.insert(BaseDecl)) {
1234        // Find the associated namespace for this base class.
1235        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1236        while (BaseCtx->isRecord())
1237          BaseCtx = BaseCtx->getParent();
1238        if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(BaseCtx))
1239          AssociatedNamespaces.insert(EnclosingNamespace);
1240
1241        // Make sure we visit the bases of this base class.
1242        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1243          Bases.push_back(BaseDecl);
1244      }
1245    }
1246  }
1247}
1248
1249// \brief Add the associated classes and namespaces for
1250// argument-dependent lookup with an argument of type T
1251// (C++ [basic.lookup.koenig]p2).
1252static void
1253addAssociatedClassesAndNamespaces(QualType T,
1254                                  ASTContext &Context,
1255                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1256                            Sema::AssociatedClassSet &AssociatedClasses) {
1257  // C++ [basic.lookup.koenig]p2:
1258  //
1259  //   For each argument type T in the function call, there is a set
1260  //   of zero or more associated namespaces and a set of zero or more
1261  //   associated classes to be considered. The sets of namespaces and
1262  //   classes is determined entirely by the types of the function
1263  //   arguments (and the namespace of any template template
1264  //   argument). Typedef names and using-declarations used to specify
1265  //   the types do not contribute to this set. The sets of namespaces
1266  //   and classes are determined in the following way:
1267  T = Context.getCanonicalType(T).getUnqualifiedType();
1268
1269  //    -- If T is a pointer to U or an array of U, its associated
1270  //       namespaces and classes are those associated with U.
1271  //
1272  // We handle this by unwrapping pointer and array types immediately,
1273  // to avoid unnecessary recursion.
1274  while (true) {
1275    if (const PointerType *Ptr = T->getAsPointerType())
1276      T = Ptr->getPointeeType();
1277    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1278      T = Ptr->getElementType();
1279    else
1280      break;
1281  }
1282
1283  //     -- If T is a fundamental type, its associated sets of
1284  //        namespaces and classes are both empty.
1285  if (T->getAsBuiltinType())
1286    return;
1287
1288  //     -- If T is a class type (including unions), its associated
1289  //        classes are: the class itself; the class of which it is a
1290  //        member, if any; and its direct and indirect base
1291  //        classes. Its associated namespaces are the namespaces in
1292  //        which its associated classes are defined.
1293  if (const RecordType *ClassType = T->getAsRecordType())
1294    if (CXXRecordDecl *ClassDecl
1295        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1296      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1297                                        AssociatedNamespaces,
1298                                        AssociatedClasses);
1299      return;
1300    }
1301
1302  //     -- If T is an enumeration type, its associated namespace is
1303  //        the namespace in which it is defined. If it is class
1304  //        member, its associated class is the member’s class; else
1305  //        it has no associated class.
1306  if (const EnumType *EnumT = T->getAsEnumType()) {
1307    EnumDecl *Enum = EnumT->getDecl();
1308
1309    DeclContext *Ctx = Enum->getDeclContext();
1310    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1311      AssociatedClasses.insert(EnclosingClass);
1312
1313    // Add the associated namespace for this class.
1314    while (Ctx->isRecord())
1315      Ctx = Ctx->getParent();
1316    if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1317      AssociatedNamespaces.insert(EnclosingNamespace);
1318
1319    return;
1320  }
1321
1322  //     -- If T is a function type, its associated namespaces and
1323  //        classes are those associated with the function parameter
1324  //        types and those associated with the return type.
1325  if (const FunctionType *FunctionType = T->getAsFunctionType()) {
1326    // Return type
1327    addAssociatedClassesAndNamespaces(FunctionType->getResultType(),
1328                                      Context,
1329                                      AssociatedNamespaces, AssociatedClasses);
1330
1331    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType);
1332    if (!Proto)
1333      return;
1334
1335    // Argument types
1336    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1337                                           ArgEnd = Proto->arg_type_end();
1338         Arg != ArgEnd; ++Arg)
1339      addAssociatedClassesAndNamespaces(*Arg, Context,
1340                                        AssociatedNamespaces, AssociatedClasses);
1341
1342    return;
1343  }
1344
1345  //     -- If T is a pointer to a member function of a class X, its
1346  //        associated namespaces and classes are those associated
1347  //        with the function parameter types and return type,
1348  //        together with those associated with X.
1349  //
1350  //     -- If T is a pointer to a data member of class X, its
1351  //        associated namespaces and classes are those associated
1352  //        with the member type together with those associated with
1353  //        X.
1354  if (const MemberPointerType *MemberPtr = T->getAsMemberPointerType()) {
1355    // Handle the type that the pointer to member points to.
1356    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1357                                      Context,
1358                                      AssociatedNamespaces, AssociatedClasses);
1359
1360    // Handle the class type into which this points.
1361    if (const RecordType *Class = MemberPtr->getClass()->getAsRecordType())
1362      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1363                                        Context,
1364                                        AssociatedNamespaces, AssociatedClasses);
1365
1366    return;
1367  }
1368
1369  // FIXME: What about block pointers?
1370  // FIXME: What about Objective-C message sends?
1371}
1372
1373/// \brief Find the associated classes and namespaces for
1374/// argument-dependent lookup for a call with the given set of
1375/// arguments.
1376///
1377/// This routine computes the sets of associated classes and associated
1378/// namespaces searched by argument-dependent lookup
1379/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1380void
1381Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1382                                 AssociatedNamespaceSet &AssociatedNamespaces,
1383                                 AssociatedClassSet &AssociatedClasses) {
1384  AssociatedNamespaces.clear();
1385  AssociatedClasses.clear();
1386
1387  // C++ [basic.lookup.koenig]p2:
1388  //   For each argument type T in the function call, there is a set
1389  //   of zero or more associated namespaces and a set of zero or more
1390  //   associated classes to be considered. The sets of namespaces and
1391  //   classes is determined entirely by the types of the function
1392  //   arguments (and the namespace of any template template
1393  //   argument).
1394  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1395    Expr *Arg = Args[ArgIdx];
1396
1397    if (Arg->getType() != Context.OverloadTy) {
1398      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1399                                        AssociatedNamespaces, AssociatedClasses);
1400      continue;
1401    }
1402
1403    // [...] In addition, if the argument is the name or address of a
1404    // set of overloaded functions and/or function templates, its
1405    // associated classes and namespaces are the union of those
1406    // associated with each of the members of the set: the namespace
1407    // in which the function or function template is defined and the
1408    // classes and namespaces associated with its (non-dependent)
1409    // parameter types and return type.
1410    DeclRefExpr *DRE = 0;
1411    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1412      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1413        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1414    } else
1415      DRE = dyn_cast<DeclRefExpr>(Arg);
1416    if (!DRE)
1417      continue;
1418
1419    OverloadedFunctionDecl *Ovl
1420      = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1421    if (!Ovl)
1422      continue;
1423
1424    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1425                                                FuncEnd = Ovl->function_end();
1426         Func != FuncEnd; ++Func) {
1427      FunctionDecl *FDecl = cast<FunctionDecl>(*Func);
1428
1429      // Add the namespace in which this function was defined. Note
1430      // that, if this is a member function, we do *not* consider the
1431      // enclosing namespace of its class.
1432      DeclContext *Ctx = FDecl->getDeclContext();
1433      if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1434        AssociatedNamespaces.insert(EnclosingNamespace);
1435
1436      // Add the classes and namespaces associated with the parameter
1437      // types and return type of this function.
1438      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1439                                        AssociatedNamespaces, AssociatedClasses);
1440    }
1441  }
1442}
1443
1444/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1445/// an acceptable non-member overloaded operator for a call whose
1446/// arguments have types T1 (and, if non-empty, T2). This routine
1447/// implements the check in C++ [over.match.oper]p3b2 concerning
1448/// enumeration types.
1449static bool
1450IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1451                                       QualType T1, QualType T2,
1452                                       ASTContext &Context) {
1453  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1454    return true;
1455
1456  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1457    return true;
1458
1459  const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
1460  if (Proto->getNumArgs() < 1)
1461    return false;
1462
1463  if (T1->isEnumeralType()) {
1464    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1465    if (Context.getCanonicalType(T1).getUnqualifiedType()
1466          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1467      return true;
1468  }
1469
1470  if (Proto->getNumArgs() < 2)
1471    return false;
1472
1473  if (!T2.isNull() && T2->isEnumeralType()) {
1474    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1475    if (Context.getCanonicalType(T2).getUnqualifiedType()
1476          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1477      return true;
1478  }
1479
1480  return false;
1481}
1482
1483void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1484                                        QualType T1, QualType T2,
1485                                        FunctionSet &Functions) {
1486  // C++ [over.match.oper]p3:
1487  //     -- The set of non-member candidates is the result of the
1488  //        unqualified lookup of operator@ in the context of the
1489  //        expression according to the usual rules for name lookup in
1490  //        unqualified function calls (3.4.2) except that all member
1491  //        functions are ignored. However, if no operand has a class
1492  //        type, only those non-member functions in the lookup set
1493  //        that have a first parameter of type T1 or “reference to
1494  //        (possibly cv-qualified) T1”, when T1 is an enumeration
1495  //        type, or (if there is a right operand) a second parameter
1496  //        of type T2 or “reference to (possibly cv-qualified) T2”,
1497  //        when T2 is an enumeration type, are candidate functions.
1498  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1499  LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
1500
1501  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1502
1503  if (!Operators)
1504    return;
1505
1506  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1507       Op != OpEnd; ++Op) {
1508    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
1509      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1510        Functions.insert(FD); // FIXME: canonical FD
1511  }
1512}
1513
1514void Sema::ArgumentDependentLookup(DeclarationName Name,
1515                                   Expr **Args, unsigned NumArgs,
1516                                   FunctionSet &Functions) {
1517  // Find all of the associated namespaces and classes based on the
1518  // arguments we have.
1519  AssociatedNamespaceSet AssociatedNamespaces;
1520  AssociatedClassSet AssociatedClasses;
1521  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1522                                     AssociatedNamespaces, AssociatedClasses);
1523
1524  // C++ [basic.lookup.argdep]p3:
1525  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1526  //   and let Y be the lookup set produced by argument dependent
1527  //   lookup (defined as follows). If X contains [...] then Y is
1528  //   empty. Otherwise Y is the set of declarations found in the
1529  //   namespaces associated with the argument types as described
1530  //   below. The set of declarations found by the lookup of the name
1531  //   is the union of X and Y.
1532  //
1533  // Here, we compute Y and add its members to the overloaded
1534  // candidate set.
1535  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1536                                     NSEnd = AssociatedNamespaces.end();
1537       NS != NSEnd; ++NS) {
1538    //   When considering an associated namespace, the lookup is the
1539    //   same as the lookup performed when the associated namespace is
1540    //   used as a qualifier (3.4.3.2) except that:
1541    //
1542    //     -- Any using-directives in the associated namespace are
1543    //        ignored.
1544    //
1545    //     -- FIXME: Any namespace-scope friend functions declared in
1546    //        associated classes are visible within their respective
1547    //        namespaces even if they are not visible during an ordinary
1548    //        lookup (11.4).
1549    DeclContext::lookup_iterator I, E;
1550    for (llvm::tie(I, E) = (*NS)->lookup(Context, Name); I != E; ++I) {
1551      FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
1552      if (!Func)
1553        break;
1554
1555      Functions.insert(Func);
1556    }
1557  }
1558}
1559
1560