BugReporter.cpp revision b85cce094887ab5cf1c47acfe306e2fb1d3cfbb1
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Analysis/ProgramPoint.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include <queue>
34
35using namespace clang;
36using namespace ento;
37
38BugReporterVisitor::~BugReporterVisitor() {}
39
40void BugReporterContext::anchor() {}
41
42//===----------------------------------------------------------------------===//
43// Helper routines for walking the ExplodedGraph and fetching statements.
44//===----------------------------------------------------------------------===//
45
46static inline const Stmt *GetStmt(const ProgramPoint &P) {
47  if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48    return SP->getStmt();
49  else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50    return BE->getSrc()->getTerminator();
51  else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52    return CE->getCallExpr();
53  else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54    return CEE->getCalleeContext()->getCallSite();
55
56  return 0;
57}
58
59static inline const ExplodedNode*
60GetPredecessorNode(const ExplodedNode *N) {
61  return N->pred_empty() ? NULL : *(N->pred_begin());
62}
63
64static inline const ExplodedNode*
65GetSuccessorNode(const ExplodedNode *N) {
66  return N->succ_empty() ? NULL : *(N->succ_begin());
67}
68
69static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71    if (const Stmt *S = GetStmt(N->getLocation()))
72      return S;
73
74  return 0;
75}
76
77static const Stmt *GetNextStmt(const ExplodedNode *N) {
78  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79    if (const Stmt *S = GetStmt(N->getLocation())) {
80      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81      // not actual statement points.
82      switch (S->getStmtClass()) {
83        case Stmt::ChooseExprClass:
84        case Stmt::BinaryConditionalOperatorClass: continue;
85        case Stmt::ConditionalOperatorClass: continue;
86        case Stmt::BinaryOperatorClass: {
87          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88          if (Op == BO_LAnd || Op == BO_LOr)
89            continue;
90          break;
91        }
92        default:
93          break;
94      }
95      return S;
96    }
97
98  return 0;
99}
100
101static inline const Stmt*
102GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103  if (const Stmt *S = GetStmt(N->getLocation()))
104    return S;
105
106  return GetPreviousStmt(N);
107}
108
109static inline const Stmt*
110GetCurrentOrNextStmt(const ExplodedNode *N) {
111  if (const Stmt *S = GetStmt(N->getLocation()))
112    return S;
113
114  return GetNextStmt(N);
115}
116
117//===----------------------------------------------------------------------===//
118// Diagnostic cleanup.
119//===----------------------------------------------------------------------===//
120
121static PathDiagnosticEventPiece *
122eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
123                            PathDiagnosticEventPiece *Y) {
124  // Prefer diagnostics that come from ConditionBRVisitor over
125  // those that came from TrackConstraintBRVisitor.
126  const void *tagPreferred = ConditionBRVisitor::getTag();
127  const void *tagLesser = TrackConstraintBRVisitor::getTag();
128
129  if (X->getLocation() != Y->getLocation())
130    return 0;
131
132  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
133    return X;
134
135  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
136    return Y;
137
138  return 0;
139}
140
141static void RemoveRedundantMsgs(PathPieces &path) {
142  unsigned N = path.size();
143  if (N < 2)
144    return;
145  for (unsigned i = 0; i < N; ++i) {
146    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
147    path.pop_front();
148
149    switch (piece->getKind()) {
150      case clang::ento::PathDiagnosticPiece::Call:
151        RemoveRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
152        break;
153      case clang::ento::PathDiagnosticPiece::Macro:
154        RemoveRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
155        break;
156      case clang::ento::PathDiagnosticPiece::ControlFlow:
157        break;
158      case clang::ento::PathDiagnosticPiece::Event: {
159        if (i == N-1)
160          break;
161
162        if (PathDiagnosticEventPiece *nextEvent =
163            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
164          PathDiagnosticEventPiece *event =
165            cast<PathDiagnosticEventPiece>(piece);
166          // Check to see if we should keep one of the two pieces.  If we
167          // come up with a preference, record which piece to keep, and consume
168          // another piece from the path.
169          if (PathDiagnosticEventPiece *pieceToKeep =
170              eventsDescribeSameCondition(event, nextEvent)) {
171            piece = pieceToKeep;
172            path.pop_front();
173            ++i;
174          }
175        }
176        break;
177      }
178    }
179    path.push_back(piece);
180  }
181}
182
183/// Recursively scan through a path and prune out calls and macros pieces
184/// that aren't needed.  Return true if afterwards the path contains
185/// "interesting stuff" which means it should be pruned from the parent path.
186bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R,
187                                     PathDiagnosticCallPiece *CallWithLoc) {
188  bool containsSomethingInteresting = false;
189  const unsigned N = pieces.size();
190
191  for (unsigned i = 0 ; i < N ; ++i) {
192    // Remove the front piece from the path.  If it is still something we
193    // want to keep once we are done, we will push it back on the end.
194    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
195    pieces.pop_front();
196
197    // Throw away pieces with invalid locations.
198    if (piece->getKind() != PathDiagnosticPiece::Call &&
199        piece->getLocation().asLocation().isInvalid())
200      continue;
201
202    switch (piece->getKind()) {
203      case PathDiagnosticPiece::Call: {
204        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
205        // Check if the location context is interesting.
206        assert(LocationContextMap.count(call));
207        if (R->isInteresting(LocationContextMap[call])) {
208          containsSomethingInteresting = true;
209          break;
210        }
211        // Recursively clean out the subclass.  Keep this call around if
212        // it contains any informative diagnostics.
213        PathDiagnosticCallPiece *NewCallWithLoc =
214          call->getLocation().asLocation().isValid()
215            ? call : CallWithLoc;
216
217        if (!RemoveUneededCalls(call->path, R, NewCallWithLoc))
218          continue;
219
220        if (NewCallWithLoc == CallWithLoc && CallWithLoc) {
221          call->callEnter = CallWithLoc->callEnter;
222        }
223
224        containsSomethingInteresting = true;
225        break;
226      }
227      case PathDiagnosticPiece::Macro: {
228        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
229        if (!RemoveUneededCalls(macro->subPieces, R))
230          continue;
231        containsSomethingInteresting = true;
232        break;
233      }
234      case PathDiagnosticPiece::Event: {
235        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
236
237        // We never throw away an event, but we do throw it away wholesale
238        // as part of a path if we throw the entire path away.
239        containsSomethingInteresting |= !event->isPrunable();
240        break;
241      }
242      case PathDiagnosticPiece::ControlFlow:
243        break;
244    }
245
246    pieces.push_back(piece);
247  }
248
249  return containsSomethingInteresting;
250}
251
252//===----------------------------------------------------------------------===//
253// PathDiagnosticBuilder and its associated routines and helper objects.
254//===----------------------------------------------------------------------===//
255
256typedef llvm::DenseMap<const ExplodedNode*,
257const ExplodedNode*> NodeBackMap;
258
259namespace {
260class NodeMapClosure : public BugReport::NodeResolver {
261  NodeBackMap& M;
262public:
263  NodeMapClosure(NodeBackMap *m) : M(*m) {}
264  ~NodeMapClosure() {}
265
266  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
267    NodeBackMap::iterator I = M.find(N);
268    return I == M.end() ? 0 : I->second;
269  }
270};
271
272class PathDiagnosticBuilder : public BugReporterContext {
273  BugReport *R;
274  PathDiagnosticConsumer *PDC;
275  OwningPtr<ParentMap> PM;
276  NodeMapClosure NMC;
277public:
278  const LocationContext *LC;
279
280  PathDiagnosticBuilder(GRBugReporter &br,
281                        BugReport *r, NodeBackMap *Backmap,
282                        PathDiagnosticConsumer *pdc)
283    : BugReporterContext(br),
284      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
285  {}
286
287  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
288
289  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
290                                            const ExplodedNode *N);
291
292  BugReport *getBugReport() { return R; }
293
294  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
295
296  ParentMap& getParentMap() { return LC->getParentMap(); }
297
298  const Stmt *getParent(const Stmt *S) {
299    return getParentMap().getParent(S);
300  }
301
302  virtual NodeMapClosure& getNodeResolver() { return NMC; }
303
304  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
305
306  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
307    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
308  }
309
310  bool supportsLogicalOpControlFlow() const {
311    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
312  }
313};
314} // end anonymous namespace
315
316PathDiagnosticLocation
317PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
318  if (const Stmt *S = GetNextStmt(N))
319    return PathDiagnosticLocation(S, getSourceManager(), LC);
320
321  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
322                                               getSourceManager());
323}
324
325PathDiagnosticLocation
326PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
327                                          const ExplodedNode *N) {
328
329  // Slow, but probably doesn't matter.
330  if (os.str().empty())
331    os << ' ';
332
333  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
334
335  if (Loc.asStmt())
336    os << "Execution continues on line "
337       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
338       << '.';
339  else {
340    os << "Execution jumps to the end of the ";
341    const Decl *D = N->getLocationContext()->getDecl();
342    if (isa<ObjCMethodDecl>(D))
343      os << "method";
344    else if (isa<FunctionDecl>(D))
345      os << "function";
346    else {
347      assert(isa<BlockDecl>(D));
348      os << "anonymous block";
349    }
350    os << '.';
351  }
352
353  return Loc;
354}
355
356static bool IsNested(const Stmt *S, ParentMap &PM) {
357  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
358    return true;
359
360  const Stmt *Parent = PM.getParentIgnoreParens(S);
361
362  if (Parent)
363    switch (Parent->getStmtClass()) {
364      case Stmt::ForStmtClass:
365      case Stmt::DoStmtClass:
366      case Stmt::WhileStmtClass:
367        return true;
368      default:
369        break;
370    }
371
372  return false;
373}
374
375PathDiagnosticLocation
376PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
377  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
378  ParentMap &P = getParentMap();
379  SourceManager &SMgr = getSourceManager();
380
381  while (IsNested(S, P)) {
382    const Stmt *Parent = P.getParentIgnoreParens(S);
383
384    if (!Parent)
385      break;
386
387    switch (Parent->getStmtClass()) {
388      case Stmt::BinaryOperatorClass: {
389        const BinaryOperator *B = cast<BinaryOperator>(Parent);
390        if (B->isLogicalOp())
391          return PathDiagnosticLocation(S, SMgr, LC);
392        break;
393      }
394      case Stmt::CompoundStmtClass:
395      case Stmt::StmtExprClass:
396        return PathDiagnosticLocation(S, SMgr, LC);
397      case Stmt::ChooseExprClass:
398        // Similar to '?' if we are referring to condition, just have the edge
399        // point to the entire choose expression.
400        if (cast<ChooseExpr>(Parent)->getCond() == S)
401          return PathDiagnosticLocation(Parent, SMgr, LC);
402        else
403          return PathDiagnosticLocation(S, SMgr, LC);
404      case Stmt::BinaryConditionalOperatorClass:
405      case Stmt::ConditionalOperatorClass:
406        // For '?', if we are referring to condition, just have the edge point
407        // to the entire '?' expression.
408        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
409          return PathDiagnosticLocation(Parent, SMgr, LC);
410        else
411          return PathDiagnosticLocation(S, SMgr, LC);
412      case Stmt::DoStmtClass:
413          return PathDiagnosticLocation(S, SMgr, LC);
414      case Stmt::ForStmtClass:
415        if (cast<ForStmt>(Parent)->getBody() == S)
416          return PathDiagnosticLocation(S, SMgr, LC);
417        break;
418      case Stmt::IfStmtClass:
419        if (cast<IfStmt>(Parent)->getCond() != S)
420          return PathDiagnosticLocation(S, SMgr, LC);
421        break;
422      case Stmt::ObjCForCollectionStmtClass:
423        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
424          return PathDiagnosticLocation(S, SMgr, LC);
425        break;
426      case Stmt::WhileStmtClass:
427        if (cast<WhileStmt>(Parent)->getCond() != S)
428          return PathDiagnosticLocation(S, SMgr, LC);
429        break;
430      default:
431        break;
432    }
433
434    S = Parent;
435  }
436
437  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
438
439  // Special case: DeclStmts can appear in for statement declarations, in which
440  //  case the ForStmt is the context.
441  if (isa<DeclStmt>(S)) {
442    if (const Stmt *Parent = P.getParent(S)) {
443      switch (Parent->getStmtClass()) {
444        case Stmt::ForStmtClass:
445        case Stmt::ObjCForCollectionStmtClass:
446          return PathDiagnosticLocation(Parent, SMgr, LC);
447        default:
448          break;
449      }
450    }
451  }
452  else if (isa<BinaryOperator>(S)) {
453    // Special case: the binary operator represents the initialization
454    // code in a for statement (this can happen when the variable being
455    // initialized is an old variable.
456    if (const ForStmt *FS =
457          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
458      if (FS->getInit() == S)
459        return PathDiagnosticLocation(FS, SMgr, LC);
460    }
461  }
462
463  return PathDiagnosticLocation(S, SMgr, LC);
464}
465
466//===----------------------------------------------------------------------===//
467// "Visitors only" path diagnostic generation algorithm.
468//===----------------------------------------------------------------------===//
469static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
470                                               PathDiagnosticBuilder &PDB,
471                                               const ExplodedNode *N,
472                                      ArrayRef<BugReporterVisitor *> visitors) {
473  // All path generation skips the very first node (the error node).
474  // This is because there is special handling for the end-of-path note.
475  N = N->getFirstPred();
476  if (!N)
477    return true;
478
479  BugReport *R = PDB.getBugReport();
480  while (const ExplodedNode *Pred = N->getFirstPred()) {
481    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
482                                                  E = visitors.end();
483         I != E; ++I) {
484      // Visit all the node pairs, but throw the path pieces away.
485      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
486      delete Piece;
487    }
488
489    N = Pred;
490  }
491
492  return R->isValid();
493}
494
495//===----------------------------------------------------------------------===//
496// "Minimal" path diagnostic generation algorithm.
497//===----------------------------------------------------------------------===//
498typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
499typedef SmallVector<StackDiagPair, 6> StackDiagVector;
500
501static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
502                                         StackDiagVector &CallStack) {
503  // If the piece contains a special message, add it to all the call
504  // pieces on the active stack.
505  if (PathDiagnosticEventPiece *ep =
506        dyn_cast<PathDiagnosticEventPiece>(P)) {
507
508    if (ep->hasCallStackHint())
509      for (StackDiagVector::iterator I = CallStack.begin(),
510                                     E = CallStack.end(); I != E; ++I) {
511        PathDiagnosticCallPiece *CP = I->first;
512        const ExplodedNode *N = I->second;
513        std::string stackMsg = ep->getCallStackMessage(N);
514
515        // The last message on the path to final bug is the most important
516        // one. Since we traverse the path backwards, do not add the message
517        // if one has been previously added.
518        if  (!CP->hasCallStackMessage())
519          CP->setCallStackMessage(stackMsg);
520      }
521  }
522}
523
524static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
525
526static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
527                                          PathDiagnosticBuilder &PDB,
528                                          const ExplodedNode *N,
529                                      ArrayRef<BugReporterVisitor *> visitors) {
530
531  SourceManager& SMgr = PDB.getSourceManager();
532  const LocationContext *LC = PDB.LC;
533  const ExplodedNode *NextNode = N->pred_empty()
534                                        ? NULL : *(N->pred_begin());
535
536  StackDiagVector CallStack;
537
538  while (NextNode) {
539    N = NextNode;
540    PDB.LC = N->getLocationContext();
541    NextNode = GetPredecessorNode(N);
542
543    ProgramPoint P = N->getLocation();
544
545    do {
546      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
547        PathDiagnosticCallPiece *C =
548            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
549        GRBugReporter& BR = PDB.getBugReporter();
550        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
551        PD.getActivePath().push_front(C);
552        PD.pushActivePath(&C->path);
553        CallStack.push_back(StackDiagPair(C, N));
554        break;
555      }
556
557      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
558        // Flush all locations, and pop the active path.
559        bool VisitedEntireCall = PD.isWithinCall();
560        PD.popActivePath();
561
562        // Either we just added a bunch of stuff to the top-level path, or
563        // we have a previous CallExitEnd.  If the former, it means that the
564        // path terminated within a function call.  We must then take the
565        // current contents of the active path and place it within
566        // a new PathDiagnosticCallPiece.
567        PathDiagnosticCallPiece *C;
568        if (VisitedEntireCall) {
569          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
570        } else {
571          const Decl *Caller = CE->getLocationContext()->getDecl();
572          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
573          GRBugReporter& BR = PDB.getBugReporter();
574          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
575        }
576
577        C->setCallee(*CE, SMgr);
578        if (!CallStack.empty()) {
579          assert(CallStack.back().first == C);
580          CallStack.pop_back();
581        }
582        break;
583      }
584
585      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
586        const CFGBlock *Src = BE->getSrc();
587        const CFGBlock *Dst = BE->getDst();
588        const Stmt *T = Src->getTerminator();
589
590        if (!T)
591          break;
592
593        PathDiagnosticLocation Start =
594            PathDiagnosticLocation::createBegin(T, SMgr,
595                N->getLocationContext());
596
597        switch (T->getStmtClass()) {
598        default:
599          break;
600
601        case Stmt::GotoStmtClass:
602        case Stmt::IndirectGotoStmtClass: {
603          const Stmt *S = GetNextStmt(N);
604
605          if (!S)
606            break;
607
608          std::string sbuf;
609          llvm::raw_string_ostream os(sbuf);
610          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
611
612          os << "Control jumps to line "
613              << End.asLocation().getExpansionLineNumber();
614          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
615              Start, End, os.str()));
616          break;
617        }
618
619        case Stmt::SwitchStmtClass: {
620          // Figure out what case arm we took.
621          std::string sbuf;
622          llvm::raw_string_ostream os(sbuf);
623
624          if (const Stmt *S = Dst->getLabel()) {
625            PathDiagnosticLocation End(S, SMgr, LC);
626
627            switch (S->getStmtClass()) {
628            default:
629              os << "No cases match in the switch statement. "
630              "Control jumps to line "
631              << End.asLocation().getExpansionLineNumber();
632              break;
633            case Stmt::DefaultStmtClass:
634              os << "Control jumps to the 'default' case at line "
635              << End.asLocation().getExpansionLineNumber();
636              break;
637
638            case Stmt::CaseStmtClass: {
639              os << "Control jumps to 'case ";
640              const CaseStmt *Case = cast<CaseStmt>(S);
641              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
642
643              // Determine if it is an enum.
644              bool GetRawInt = true;
645
646              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
647                // FIXME: Maybe this should be an assertion.  Are there cases
648                // were it is not an EnumConstantDecl?
649                const EnumConstantDecl *D =
650                    dyn_cast<EnumConstantDecl>(DR->getDecl());
651
652                if (D) {
653                  GetRawInt = false;
654                  os << *D;
655                }
656              }
657
658              if (GetRawInt)
659                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
660
661              os << ":'  at line "
662                  << End.asLocation().getExpansionLineNumber();
663              break;
664            }
665            }
666            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
667                Start, End, os.str()));
668          }
669          else {
670            os << "'Default' branch taken. ";
671            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
672            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
673                Start, End, os.str()));
674          }
675
676          break;
677        }
678
679        case Stmt::BreakStmtClass:
680        case Stmt::ContinueStmtClass: {
681          std::string sbuf;
682          llvm::raw_string_ostream os(sbuf);
683          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
684          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
685              Start, End, os.str()));
686          break;
687        }
688
689        // Determine control-flow for ternary '?'.
690        case Stmt::BinaryConditionalOperatorClass:
691        case Stmt::ConditionalOperatorClass: {
692          std::string sbuf;
693          llvm::raw_string_ostream os(sbuf);
694          os << "'?' condition is ";
695
696          if (*(Src->succ_begin()+1) == Dst)
697            os << "false";
698          else
699            os << "true";
700
701          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
702
703          if (const Stmt *S = End.asStmt())
704            End = PDB.getEnclosingStmtLocation(S);
705
706          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
707              Start, End, os.str()));
708          break;
709        }
710
711        // Determine control-flow for short-circuited '&&' and '||'.
712        case Stmt::BinaryOperatorClass: {
713          if (!PDB.supportsLogicalOpControlFlow())
714            break;
715
716          const BinaryOperator *B = cast<BinaryOperator>(T);
717          std::string sbuf;
718          llvm::raw_string_ostream os(sbuf);
719          os << "Left side of '";
720
721          if (B->getOpcode() == BO_LAnd) {
722            os << "&&" << "' is ";
723
724            if (*(Src->succ_begin()+1) == Dst) {
725              os << "false";
726              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
727              PathDiagnosticLocation Start =
728                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
729              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
730                  Start, End, os.str()));
731            }
732            else {
733              os << "true";
734              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
735              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
736              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
737                  Start, End, os.str()));
738            }
739          }
740          else {
741            assert(B->getOpcode() == BO_LOr);
742            os << "||" << "' is ";
743
744            if (*(Src->succ_begin()+1) == Dst) {
745              os << "false";
746              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
747              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
748              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
749                  Start, End, os.str()));
750            }
751            else {
752              os << "true";
753              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
754              PathDiagnosticLocation Start =
755                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
756              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
757                  Start, End, os.str()));
758            }
759          }
760
761          break;
762        }
763
764        case Stmt::DoStmtClass:  {
765          if (*(Src->succ_begin()) == Dst) {
766            std::string sbuf;
767            llvm::raw_string_ostream os(sbuf);
768
769            os << "Loop condition is true. ";
770            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
771
772            if (const Stmt *S = End.asStmt())
773              End = PDB.getEnclosingStmtLocation(S);
774
775            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
776                Start, End, os.str()));
777          }
778          else {
779            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
780
781            if (const Stmt *S = End.asStmt())
782              End = PDB.getEnclosingStmtLocation(S);
783
784            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
785                Start, End, "Loop condition is false.  Exiting loop"));
786          }
787
788          break;
789        }
790
791        case Stmt::WhileStmtClass:
792        case Stmt::ForStmtClass: {
793          if (*(Src->succ_begin()+1) == Dst) {
794            std::string sbuf;
795            llvm::raw_string_ostream os(sbuf);
796
797            os << "Loop condition is false. ";
798            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
799            if (const Stmt *S = End.asStmt())
800              End = PDB.getEnclosingStmtLocation(S);
801
802            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
803                Start, End, os.str()));
804          }
805          else {
806            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
807            if (const Stmt *S = End.asStmt())
808              End = PDB.getEnclosingStmtLocation(S);
809
810            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
811                Start, End, "Loop condition is true.  Entering loop body"));
812          }
813
814          break;
815        }
816
817        case Stmt::IfStmtClass: {
818          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
819
820          if (const Stmt *S = End.asStmt())
821            End = PDB.getEnclosingStmtLocation(S);
822
823          if (*(Src->succ_begin()+1) == Dst)
824            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
825                Start, End, "Taking false branch"));
826          else
827            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
828                Start, End, "Taking true branch"));
829
830          break;
831        }
832        }
833      }
834    } while(0);
835
836    if (NextNode) {
837      // Add diagnostic pieces from custom visitors.
838      BugReport *R = PDB.getBugReport();
839      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
840                                                    E = visitors.end();
841           I != E; ++I) {
842        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
843          PD.getActivePath().push_front(p);
844          updateStackPiecesWithMessage(p, CallStack);
845        }
846      }
847    }
848  }
849
850  if (!PDB.getBugReport()->isValid())
851    return false;
852
853  // After constructing the full PathDiagnostic, do a pass over it to compact
854  // PathDiagnosticPieces that occur within a macro.
855  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
856  return true;
857}
858
859//===----------------------------------------------------------------------===//
860// "Extensive" PathDiagnostic generation.
861//===----------------------------------------------------------------------===//
862
863static bool IsControlFlowExpr(const Stmt *S) {
864  const Expr *E = dyn_cast<Expr>(S);
865
866  if (!E)
867    return false;
868
869  E = E->IgnoreParenCasts();
870
871  if (isa<AbstractConditionalOperator>(E))
872    return true;
873
874  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
875    if (B->isLogicalOp())
876      return true;
877
878  return false;
879}
880
881namespace {
882class ContextLocation : public PathDiagnosticLocation {
883  bool IsDead;
884public:
885  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
886    : PathDiagnosticLocation(L), IsDead(isdead) {}
887
888  void markDead() { IsDead = true; }
889  bool isDead() const { return IsDead; }
890};
891
892class EdgeBuilder {
893  std::vector<ContextLocation> CLocs;
894  typedef std::vector<ContextLocation>::iterator iterator;
895  PathDiagnostic &PD;
896  PathDiagnosticBuilder &PDB;
897  PathDiagnosticLocation PrevLoc;
898
899  bool IsConsumedExpr(const PathDiagnosticLocation &L);
900
901  bool containsLocation(const PathDiagnosticLocation &Container,
902                        const PathDiagnosticLocation &Containee);
903
904  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
905
906  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
907                                         bool firstCharOnly = false) {
908    if (const Stmt *S = L.asStmt()) {
909      const Stmt *Original = S;
910      while (1) {
911        // Adjust the location for some expressions that are best referenced
912        // by one of their subexpressions.
913        switch (S->getStmtClass()) {
914          default:
915            break;
916          case Stmt::ParenExprClass:
917          case Stmt::GenericSelectionExprClass:
918            S = cast<Expr>(S)->IgnoreParens();
919            firstCharOnly = true;
920            continue;
921          case Stmt::BinaryConditionalOperatorClass:
922          case Stmt::ConditionalOperatorClass:
923            S = cast<AbstractConditionalOperator>(S)->getCond();
924            firstCharOnly = true;
925            continue;
926          case Stmt::ChooseExprClass:
927            S = cast<ChooseExpr>(S)->getCond();
928            firstCharOnly = true;
929            continue;
930          case Stmt::BinaryOperatorClass:
931            S = cast<BinaryOperator>(S)->getLHS();
932            firstCharOnly = true;
933            continue;
934        }
935
936        break;
937      }
938
939      if (S != Original)
940        L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
941    }
942
943    if (firstCharOnly)
944      L  = PathDiagnosticLocation::createSingleLocation(L);
945
946    return L;
947  }
948
949  void popLocation() {
950    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
951      // For contexts, we only one the first character as the range.
952      rawAddEdge(cleanUpLocation(CLocs.back(), true));
953    }
954    CLocs.pop_back();
955  }
956
957public:
958  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
959    : PD(pd), PDB(pdb) {
960
961      // If the PathDiagnostic already has pieces, add the enclosing statement
962      // of the first piece as a context as well.
963      if (!PD.path.empty()) {
964        PrevLoc = (*PD.path.begin())->getLocation();
965
966        if (const Stmt *S = PrevLoc.asStmt())
967          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
968      }
969  }
970
971  ~EdgeBuilder() {
972    while (!CLocs.empty()) popLocation();
973
974    // Finally, add an initial edge from the start location of the first
975    // statement (if it doesn't already exist).
976    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
977                                                       PDB.LC,
978                                                       PDB.getSourceManager());
979    if (L.isValid())
980      rawAddEdge(L);
981  }
982
983  void flushLocations() {
984    while (!CLocs.empty())
985      popLocation();
986    PrevLoc = PathDiagnosticLocation();
987  }
988
989  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
990
991  void rawAddEdge(PathDiagnosticLocation NewLoc);
992
993  void addContext(const Stmt *S);
994  void addContext(const PathDiagnosticLocation &L);
995  void addExtendedContext(const Stmt *S);
996};
997} // end anonymous namespace
998
999
1000PathDiagnosticLocation
1001EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1002  if (const Stmt *S = L.asStmt()) {
1003    if (IsControlFlowExpr(S))
1004      return L;
1005
1006    return PDB.getEnclosingStmtLocation(S);
1007  }
1008
1009  return L;
1010}
1011
1012bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1013                                   const PathDiagnosticLocation &Containee) {
1014
1015  if (Container == Containee)
1016    return true;
1017
1018  if (Container.asDecl())
1019    return true;
1020
1021  if (const Stmt *S = Containee.asStmt())
1022    if (const Stmt *ContainerS = Container.asStmt()) {
1023      while (S) {
1024        if (S == ContainerS)
1025          return true;
1026        S = PDB.getParent(S);
1027      }
1028      return false;
1029    }
1030
1031  // Less accurate: compare using source ranges.
1032  SourceRange ContainerR = Container.asRange();
1033  SourceRange ContaineeR = Containee.asRange();
1034
1035  SourceManager &SM = PDB.getSourceManager();
1036  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1037  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1038  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1039  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1040
1041  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1042  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1043  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1044  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1045
1046  assert(ContainerBegLine <= ContainerEndLine);
1047  assert(ContaineeBegLine <= ContaineeEndLine);
1048
1049  return (ContainerBegLine <= ContaineeBegLine &&
1050          ContainerEndLine >= ContaineeEndLine &&
1051          (ContainerBegLine != ContaineeBegLine ||
1052           SM.getExpansionColumnNumber(ContainerRBeg) <=
1053           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1054          (ContainerEndLine != ContaineeEndLine ||
1055           SM.getExpansionColumnNumber(ContainerREnd) >=
1056           SM.getExpansionColumnNumber(ContaineeREnd)));
1057}
1058
1059void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1060  if (!PrevLoc.isValid()) {
1061    PrevLoc = NewLoc;
1062    return;
1063  }
1064
1065  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1066  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1067
1068  if (PrevLocClean.asLocation().isInvalid()) {
1069    PrevLoc = NewLoc;
1070    return;
1071  }
1072
1073  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1074    return;
1075
1076  // FIXME: Ignore intra-macro edges for now.
1077  if (NewLocClean.asLocation().getExpansionLoc() ==
1078      PrevLocClean.asLocation().getExpansionLoc())
1079    return;
1080
1081  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1082  PrevLoc = NewLoc;
1083}
1084
1085void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1086
1087  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1088    return;
1089
1090  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1091
1092  while (!CLocs.empty()) {
1093    ContextLocation &TopContextLoc = CLocs.back();
1094
1095    // Is the top location context the same as the one for the new location?
1096    if (TopContextLoc == CLoc) {
1097      if (alwaysAdd) {
1098        if (IsConsumedExpr(TopContextLoc) &&
1099            !IsControlFlowExpr(TopContextLoc.asStmt()))
1100            TopContextLoc.markDead();
1101
1102        rawAddEdge(NewLoc);
1103      }
1104
1105      return;
1106    }
1107
1108    if (containsLocation(TopContextLoc, CLoc)) {
1109      if (alwaysAdd) {
1110        rawAddEdge(NewLoc);
1111
1112        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1113          CLocs.push_back(ContextLocation(CLoc, true));
1114          return;
1115        }
1116      }
1117
1118      CLocs.push_back(CLoc);
1119      return;
1120    }
1121
1122    // Context does not contain the location.  Flush it.
1123    popLocation();
1124  }
1125
1126  // If we reach here, there is no enclosing context.  Just add the edge.
1127  rawAddEdge(NewLoc);
1128}
1129
1130bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1131  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1132    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1133
1134  return false;
1135}
1136
1137void EdgeBuilder::addExtendedContext(const Stmt *S) {
1138  if (!S)
1139    return;
1140
1141  const Stmt *Parent = PDB.getParent(S);
1142  while (Parent) {
1143    if (isa<CompoundStmt>(Parent))
1144      Parent = PDB.getParent(Parent);
1145    else
1146      break;
1147  }
1148
1149  if (Parent) {
1150    switch (Parent->getStmtClass()) {
1151      case Stmt::DoStmtClass:
1152      case Stmt::ObjCAtSynchronizedStmtClass:
1153        addContext(Parent);
1154      default:
1155        break;
1156    }
1157  }
1158
1159  addContext(S);
1160}
1161
1162void EdgeBuilder::addContext(const Stmt *S) {
1163  if (!S)
1164    return;
1165
1166  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1167  addContext(L);
1168}
1169
1170void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1171  while (!CLocs.empty()) {
1172    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1173
1174    // Is the top location context the same as the one for the new location?
1175    if (TopContextLoc == L)
1176      return;
1177
1178    if (containsLocation(TopContextLoc, L)) {
1179      CLocs.push_back(L);
1180      return;
1181    }
1182
1183    // Context does not contain the location.  Flush it.
1184    popLocation();
1185  }
1186
1187  CLocs.push_back(L);
1188}
1189
1190// Cone-of-influence: support the reverse propagation of "interesting" symbols
1191// and values by tracing interesting calculations backwards through evaluated
1192// expressions along a path.  This is probably overly complicated, but the idea
1193// is that if an expression computed an "interesting" value, the child
1194// expressions are are also likely to be "interesting" as well (which then
1195// propagates to the values they in turn compute).  This reverse propagation
1196// is needed to track interesting correlations across function call boundaries,
1197// where formal arguments bind to actual arguments, etc.  This is also needed
1198// because the constraint solver sometimes simplifies certain symbolic values
1199// into constants when appropriate, and this complicates reasoning about
1200// interesting values.
1201typedef llvm::DenseSet<const Expr *> InterestingExprs;
1202
1203static void reversePropagateIntererstingSymbols(BugReport &R,
1204                                                InterestingExprs &IE,
1205                                                const ProgramState *State,
1206                                                const Expr *Ex,
1207                                                const LocationContext *LCtx) {
1208  SVal V = State->getSVal(Ex, LCtx);
1209  if (!(R.isInteresting(V) || IE.count(Ex)))
1210    return;
1211
1212  switch (Ex->getStmtClass()) {
1213    default:
1214      if (!isa<CastExpr>(Ex))
1215        break;
1216      // Fall through.
1217    case Stmt::BinaryOperatorClass:
1218    case Stmt::UnaryOperatorClass: {
1219      for (Stmt::const_child_iterator CI = Ex->child_begin(),
1220            CE = Ex->child_end();
1221            CI != CE; ++CI) {
1222        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1223          IE.insert(child);
1224          SVal ChildV = State->getSVal(child, LCtx);
1225          R.markInteresting(ChildV);
1226        }
1227        break;
1228      }
1229    }
1230  }
1231
1232  R.markInteresting(V);
1233}
1234
1235static void reversePropagateInterestingSymbols(BugReport &R,
1236                                               InterestingExprs &IE,
1237                                               const ProgramState *State,
1238                                               const LocationContext *CalleeCtx,
1239                                               const LocationContext *CallerCtx)
1240{
1241  // FIXME: Handle non-CallExpr-based CallEvents.
1242  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1243  const Stmt *CallSite = Callee->getCallSite();
1244  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1245    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1246      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1247                                         PE = FD->param_end();
1248      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1249      for (; AI != AE && PI != PE; ++AI, ++PI) {
1250        if (const Expr *ArgE = *AI) {
1251          if (const ParmVarDecl *PD = *PI) {
1252            Loc LV = State->getLValue(PD, CalleeCtx);
1253            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1254              IE.insert(ArgE);
1255          }
1256        }
1257      }
1258    }
1259  }
1260}
1261
1262static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1263                                            PathDiagnosticBuilder &PDB,
1264                                            const ExplodedNode *N,
1265                                      ArrayRef<BugReporterVisitor *> visitors) {
1266  EdgeBuilder EB(PD, PDB);
1267  const SourceManager& SM = PDB.getSourceManager();
1268  StackDiagVector CallStack;
1269  InterestingExprs IE;
1270
1271  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1272  while (NextNode) {
1273    N = NextNode;
1274    NextNode = GetPredecessorNode(N);
1275    ProgramPoint P = N->getLocation();
1276
1277    do {
1278      if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1279        if (const Expr *Ex = PS->getStmtAs<Expr>())
1280          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1281                                              N->getState().getPtr(), Ex,
1282                                              N->getLocationContext());
1283      }
1284
1285      if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1286        const Stmt *S = CE->getCalleeContext()->getCallSite();
1287        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1288            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1289                                                N->getState().getPtr(), Ex,
1290                                                N->getLocationContext());
1291        }
1292
1293        PathDiagnosticCallPiece *C =
1294          PathDiagnosticCallPiece::construct(N, *CE, SM);
1295        GRBugReporter& BR = PDB.getBugReporter();
1296        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1297
1298        EB.addEdge(C->callReturn, true);
1299        EB.flushLocations();
1300
1301        PD.getActivePath().push_front(C);
1302        PD.pushActivePath(&C->path);
1303        CallStack.push_back(StackDiagPair(C, N));
1304        break;
1305      }
1306
1307      // Pop the call hierarchy if we are done walking the contents
1308      // of a function call.
1309      if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1310        // Add an edge to the start of the function.
1311        const Decl *D = CE->getCalleeContext()->getDecl();
1312        PathDiagnosticLocation pos =
1313          PathDiagnosticLocation::createBegin(D, SM);
1314        EB.addEdge(pos);
1315
1316        // Flush all locations, and pop the active path.
1317        bool VisitedEntireCall = PD.isWithinCall();
1318        EB.flushLocations();
1319        PD.popActivePath();
1320        PDB.LC = N->getLocationContext();
1321
1322        // Either we just added a bunch of stuff to the top-level path, or
1323        // we have a previous CallExitEnd.  If the former, it means that the
1324        // path terminated within a function call.  We must then take the
1325        // current contents of the active path and place it within
1326        // a new PathDiagnosticCallPiece.
1327        PathDiagnosticCallPiece *C;
1328        if (VisitedEntireCall) {
1329          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1330        } else {
1331          const Decl *Caller = CE->getLocationContext()->getDecl();
1332          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1333          GRBugReporter& BR = PDB.getBugReporter();
1334          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1335        }
1336
1337        C->setCallee(*CE, SM);
1338        EB.addContext(C->getLocation());
1339
1340        if (!CallStack.empty()) {
1341          assert(CallStack.back().first == C);
1342          CallStack.pop_back();
1343        }
1344        break;
1345      }
1346
1347      // Note that is important that we update the LocationContext
1348      // after looking at CallExits.  CallExit basically adds an
1349      // edge in the *caller*, so we don't want to update the LocationContext
1350      // too soon.
1351      PDB.LC = N->getLocationContext();
1352
1353      // Block edges.
1354      if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1355        // Does this represent entering a call?  If so, look at propagating
1356        // interesting symbols across call boundaries.
1357        if (NextNode) {
1358          const LocationContext *CallerCtx = NextNode->getLocationContext();
1359          const LocationContext *CalleeCtx = PDB.LC;
1360          if (CallerCtx != CalleeCtx) {
1361            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1362                                               N->getState().getPtr(),
1363                                               CalleeCtx, CallerCtx);
1364          }
1365        }
1366
1367        // Are we jumping to the head of a loop?  Add a special diagnostic.
1368        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1369          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1370          const CompoundStmt *CS = NULL;
1371
1372          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1373            CS = dyn_cast<CompoundStmt>(FS->getBody());
1374          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1375            CS = dyn_cast<CompoundStmt>(WS->getBody());
1376
1377          PathDiagnosticEventPiece *p =
1378            new PathDiagnosticEventPiece(L,
1379                                        "Looping back to the head of the loop");
1380          p->setPrunable(true);
1381
1382          EB.addEdge(p->getLocation(), true);
1383          PD.getActivePath().push_front(p);
1384
1385          if (CS) {
1386            PathDiagnosticLocation BL =
1387              PathDiagnosticLocation::createEndBrace(CS, SM);
1388            EB.addEdge(BL);
1389          }
1390        }
1391
1392        if (const Stmt *Term = BE->getSrc()->getTerminator())
1393          EB.addContext(Term);
1394
1395        break;
1396      }
1397
1398      if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1399        CFGElement First = BE->getFirstElement();
1400        if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1401          const Stmt *stmt = S->getStmt();
1402          if (IsControlFlowExpr(stmt)) {
1403            // Add the proper context for '&&', '||', and '?'.
1404            EB.addContext(stmt);
1405          }
1406          else
1407            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1408        }
1409
1410        break;
1411      }
1412
1413
1414    } while (0);
1415
1416    if (!NextNode)
1417      continue;
1418
1419    // Add pieces from custom visitors.
1420    BugReport *R = PDB.getBugReport();
1421    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1422                                                  E = visitors.end();
1423         I != E; ++I) {
1424      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1425        const PathDiagnosticLocation &Loc = p->getLocation();
1426        EB.addEdge(Loc, true);
1427        PD.getActivePath().push_front(p);
1428        updateStackPiecesWithMessage(p, CallStack);
1429
1430        if (const Stmt *S = Loc.asStmt())
1431          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1432      }
1433    }
1434  }
1435
1436  return PDB.getBugReport()->isValid();
1437}
1438
1439//===----------------------------------------------------------------------===//
1440// Methods for BugType and subclasses.
1441//===----------------------------------------------------------------------===//
1442BugType::~BugType() { }
1443
1444void BugType::FlushReports(BugReporter &BR) {}
1445
1446void BuiltinBug::anchor() {}
1447
1448//===----------------------------------------------------------------------===//
1449// Methods for BugReport and subclasses.
1450//===----------------------------------------------------------------------===//
1451
1452void BugReport::NodeResolver::anchor() {}
1453
1454void BugReport::addVisitor(BugReporterVisitor* visitor) {
1455  if (!visitor)
1456    return;
1457
1458  llvm::FoldingSetNodeID ID;
1459  visitor->Profile(ID);
1460  void *InsertPos;
1461
1462  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1463    delete visitor;
1464    return;
1465  }
1466
1467  CallbacksSet.InsertNode(visitor, InsertPos);
1468  Callbacks.push_back(visitor);
1469  ++ConfigurationChangeToken;
1470}
1471
1472BugReport::~BugReport() {
1473  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1474    delete *I;
1475  }
1476  while (!interestingSymbols.empty()) {
1477    popInterestingSymbolsAndRegions();
1478  }
1479}
1480
1481const Decl *BugReport::getDeclWithIssue() const {
1482  if (DeclWithIssue)
1483    return DeclWithIssue;
1484
1485  const ExplodedNode *N = getErrorNode();
1486  if (!N)
1487    return 0;
1488
1489  const LocationContext *LC = N->getLocationContext();
1490  return LC->getCurrentStackFrame()->getDecl();
1491}
1492
1493void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1494  hash.AddPointer(&BT);
1495  hash.AddString(Description);
1496  if (UniqueingLocation.isValid()) {
1497    UniqueingLocation.Profile(hash);
1498  } else if (Location.isValid()) {
1499    Location.Profile(hash);
1500  } else {
1501    assert(ErrorNode);
1502    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1503  }
1504
1505  for (SmallVectorImpl<SourceRange>::const_iterator I =
1506      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1507    const SourceRange range = *I;
1508    if (!range.isValid())
1509      continue;
1510    hash.AddInteger(range.getBegin().getRawEncoding());
1511    hash.AddInteger(range.getEnd().getRawEncoding());
1512  }
1513}
1514
1515void BugReport::markInteresting(SymbolRef sym) {
1516  if (!sym)
1517    return;
1518
1519  // If the symbol wasn't already in our set, note a configuration change.
1520  if (getInterestingSymbols().insert(sym).second)
1521    ++ConfigurationChangeToken;
1522
1523  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1524    getInterestingRegions().insert(meta->getRegion());
1525}
1526
1527void BugReport::markInteresting(const MemRegion *R) {
1528  if (!R)
1529    return;
1530
1531  // If the base region wasn't already in our set, note a configuration change.
1532  R = R->getBaseRegion();
1533  if (getInterestingRegions().insert(R).second)
1534    ++ConfigurationChangeToken;
1535
1536  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1537    getInterestingSymbols().insert(SR->getSymbol());
1538}
1539
1540void BugReport::markInteresting(SVal V) {
1541  markInteresting(V.getAsRegion());
1542  markInteresting(V.getAsSymbol());
1543}
1544
1545void BugReport::markInteresting(const LocationContext *LC) {
1546  if (!LC)
1547    return;
1548  InterestingLocationContexts.insert(LC);
1549}
1550
1551bool BugReport::isInteresting(SVal V) {
1552  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1553}
1554
1555bool BugReport::isInteresting(SymbolRef sym) {
1556  if (!sym)
1557    return false;
1558  // We don't currently consider metadata symbols to be interesting
1559  // even if we know their region is interesting. Is that correct behavior?
1560  return getInterestingSymbols().count(sym);
1561}
1562
1563bool BugReport::isInteresting(const MemRegion *R) {
1564  if (!R)
1565    return false;
1566  R = R->getBaseRegion();
1567  bool b = getInterestingRegions().count(R);
1568  if (b)
1569    return true;
1570  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1571    return getInterestingSymbols().count(SR->getSymbol());
1572  return false;
1573}
1574
1575bool BugReport::isInteresting(const LocationContext *LC) {
1576  if (!LC)
1577    return false;
1578  return InterestingLocationContexts.count(LC);
1579}
1580
1581void BugReport::lazyInitializeInterestingSets() {
1582  if (interestingSymbols.empty()) {
1583    interestingSymbols.push_back(new Symbols());
1584    interestingRegions.push_back(new Regions());
1585  }
1586}
1587
1588BugReport::Symbols &BugReport::getInterestingSymbols() {
1589  lazyInitializeInterestingSets();
1590  return *interestingSymbols.back();
1591}
1592
1593BugReport::Regions &BugReport::getInterestingRegions() {
1594  lazyInitializeInterestingSets();
1595  return *interestingRegions.back();
1596}
1597
1598void BugReport::pushInterestingSymbolsAndRegions() {
1599  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1600  interestingRegions.push_back(new Regions(getInterestingRegions()));
1601}
1602
1603void BugReport::popInterestingSymbolsAndRegions() {
1604  delete interestingSymbols.back();
1605  interestingSymbols.pop_back();
1606  delete interestingRegions.back();
1607  interestingRegions.pop_back();
1608}
1609
1610const Stmt *BugReport::getStmt() const {
1611  if (!ErrorNode)
1612    return 0;
1613
1614  ProgramPoint ProgP = ErrorNode->getLocation();
1615  const Stmt *S = NULL;
1616
1617  if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1618    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1619    if (BE->getBlock() == &Exit)
1620      S = GetPreviousStmt(ErrorNode);
1621  }
1622  if (!S)
1623    S = GetStmt(ProgP);
1624
1625  return S;
1626}
1627
1628std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1629BugReport::getRanges() {
1630    // If no custom ranges, add the range of the statement corresponding to
1631    // the error node.
1632    if (Ranges.empty()) {
1633      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1634        addRange(E->getSourceRange());
1635      else
1636        return std::make_pair(ranges_iterator(), ranges_iterator());
1637    }
1638
1639    // User-specified absence of range info.
1640    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1641      return std::make_pair(ranges_iterator(), ranges_iterator());
1642
1643    return std::make_pair(Ranges.begin(), Ranges.end());
1644}
1645
1646PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1647  if (ErrorNode) {
1648    assert(!Location.isValid() &&
1649     "Either Location or ErrorNode should be specified but not both.");
1650
1651    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1652      const LocationContext *LC = ErrorNode->getLocationContext();
1653
1654      // For member expressions, return the location of the '.' or '->'.
1655      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1656        return PathDiagnosticLocation::createMemberLoc(ME, SM);
1657      // For binary operators, return the location of the operator.
1658      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1659        return PathDiagnosticLocation::createOperatorLoc(B, SM);
1660
1661      return PathDiagnosticLocation::createBegin(S, SM, LC);
1662    }
1663  } else {
1664    assert(Location.isValid());
1665    return Location;
1666  }
1667
1668  return PathDiagnosticLocation();
1669}
1670
1671//===----------------------------------------------------------------------===//
1672// Methods for BugReporter and subclasses.
1673//===----------------------------------------------------------------------===//
1674
1675BugReportEquivClass::~BugReportEquivClass() { }
1676GRBugReporter::~GRBugReporter() { }
1677BugReporterData::~BugReporterData() {}
1678
1679ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1680
1681ProgramStateManager&
1682GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1683
1684BugReporter::~BugReporter() {
1685  FlushReports();
1686
1687  // Free the bug reports we are tracking.
1688  typedef std::vector<BugReportEquivClass *> ContTy;
1689  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1690       I != E; ++I) {
1691    delete *I;
1692  }
1693}
1694
1695void BugReporter::FlushReports() {
1696  if (BugTypes.isEmpty())
1697    return;
1698
1699  // First flush the warnings for each BugType.  This may end up creating new
1700  // warnings and new BugTypes.
1701  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1702  // Turn NSErrorChecker into a proper checker and remove this.
1703  SmallVector<const BugType*, 16> bugTypes;
1704  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1705    bugTypes.push_back(*I);
1706  for (SmallVector<const BugType*, 16>::iterator
1707         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1708    const_cast<BugType*>(*I)->FlushReports(*this);
1709
1710  // We need to flush reports in deterministic order to ensure the order
1711  // of the reports is consistent between runs.
1712  typedef std::vector<BugReportEquivClass *> ContVecTy;
1713  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1714       EI != EE; ++EI){
1715    BugReportEquivClass& EQ = **EI;
1716    FlushReport(EQ);
1717  }
1718
1719  // BugReporter owns and deletes only BugTypes created implicitly through
1720  // EmitBasicReport.
1721  // FIXME: There are leaks from checkers that assume that the BugTypes they
1722  // create will be destroyed by the BugReporter.
1723  for (llvm::StringMap<BugType*>::iterator
1724         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1725    delete I->second;
1726
1727  // Remove all references to the BugType objects.
1728  BugTypes = F.getEmptySet();
1729}
1730
1731//===----------------------------------------------------------------------===//
1732// PathDiagnostics generation.
1733//===----------------------------------------------------------------------===//
1734
1735static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1736                 std::pair<ExplodedNode*, unsigned> >
1737MakeReportGraph(const ExplodedGraph* G,
1738                SmallVectorImpl<const ExplodedNode*> &nodes) {
1739
1740  // Create the trimmed graph.  It will contain the shortest paths from the
1741  // error nodes to the root.  In the new graph we should only have one
1742  // error node unless there are two or more error nodes with the same minimum
1743  // path length.
1744  ExplodedGraph* GTrim;
1745  InterExplodedGraphMap* NMap;
1746
1747  llvm::DenseMap<const void*, const void*> InverseMap;
1748  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1749                                   &InverseMap);
1750
1751  // Create owning pointers for GTrim and NMap just to ensure that they are
1752  // released when this function exists.
1753  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1754  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1755
1756  // Find the (first) error node in the trimmed graph.  We just need to consult
1757  // the node map (NMap) which maps from nodes in the original graph to nodes
1758  // in the new graph.
1759
1760  std::queue<const ExplodedNode*> WS;
1761  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1762  IndexMapTy IndexMap;
1763
1764  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1765    const ExplodedNode *originalNode = nodes[nodeIndex];
1766    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1767      WS.push(N);
1768      IndexMap[originalNode] = nodeIndex;
1769    }
1770  }
1771
1772  assert(!WS.empty() && "No error node found in the trimmed graph.");
1773
1774  // Create a new (third!) graph with a single path.  This is the graph
1775  // that will be returned to the caller.
1776  ExplodedGraph *GNew = new ExplodedGraph();
1777
1778  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1779  // to the root node, and then construct a new graph that contains only
1780  // a single path.
1781  llvm::DenseMap<const void*,unsigned> Visited;
1782
1783  unsigned cnt = 0;
1784  const ExplodedNode *Root = 0;
1785
1786  while (!WS.empty()) {
1787    const ExplodedNode *Node = WS.front();
1788    WS.pop();
1789
1790    if (Visited.find(Node) != Visited.end())
1791      continue;
1792
1793    Visited[Node] = cnt++;
1794
1795    if (Node->pred_empty()) {
1796      Root = Node;
1797      break;
1798    }
1799
1800    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1801         E=Node->pred_end(); I!=E; ++I)
1802      WS.push(*I);
1803  }
1804
1805  assert(Root);
1806
1807  // Now walk from the root down the BFS path, always taking the successor
1808  // with the lowest number.
1809  ExplodedNode *Last = 0, *First = 0;
1810  NodeBackMap *BM = new NodeBackMap();
1811  unsigned NodeIndex = 0;
1812
1813  for ( const ExplodedNode *N = Root ;;) {
1814    // Lookup the number associated with the current node.
1815    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1816    assert(I != Visited.end());
1817
1818    // Create the equivalent node in the new graph with the same state
1819    // and location.
1820    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1821
1822    // Store the mapping to the original node.
1823    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1824    assert(IMitr != InverseMap.end() && "No mapping to original node.");
1825    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1826
1827    // Link up the new node with the previous node.
1828    if (Last)
1829      NewN->addPredecessor(Last, *GNew);
1830
1831    Last = NewN;
1832
1833    // Are we at the final node?
1834    IndexMapTy::iterator IMI =
1835      IndexMap.find((const ExplodedNode*)(IMitr->second));
1836    if (IMI != IndexMap.end()) {
1837      First = NewN;
1838      NodeIndex = IMI->second;
1839      break;
1840    }
1841
1842    // Find the next successor node.  We choose the node that is marked
1843    // with the lowest DFS number.
1844    ExplodedNode::const_succ_iterator SI = N->succ_begin();
1845    ExplodedNode::const_succ_iterator SE = N->succ_end();
1846    N = 0;
1847
1848    for (unsigned MinVal = 0; SI != SE; ++SI) {
1849
1850      I = Visited.find(*SI);
1851
1852      if (I == Visited.end())
1853        continue;
1854
1855      if (!N || I->second < MinVal) {
1856        N = *SI;
1857        MinVal = I->second;
1858      }
1859    }
1860
1861    assert(N);
1862  }
1863
1864  assert(First);
1865
1866  return std::make_pair(std::make_pair(GNew, BM),
1867                        std::make_pair(First, NodeIndex));
1868}
1869
1870/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1871///  and collapses PathDiagosticPieces that are expanded by macros.
1872static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1873  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1874                                SourceLocation> > MacroStackTy;
1875
1876  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1877          PiecesTy;
1878
1879  MacroStackTy MacroStack;
1880  PiecesTy Pieces;
1881
1882  for (PathPieces::const_iterator I = path.begin(), E = path.end();
1883       I!=E; ++I) {
1884
1885    PathDiagnosticPiece *piece = I->getPtr();
1886
1887    // Recursively compact calls.
1888    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1889      CompactPathDiagnostic(call->path, SM);
1890    }
1891
1892    // Get the location of the PathDiagnosticPiece.
1893    const FullSourceLoc Loc = piece->getLocation().asLocation();
1894
1895    // Determine the instantiation location, which is the location we group
1896    // related PathDiagnosticPieces.
1897    SourceLocation InstantiationLoc = Loc.isMacroID() ?
1898                                      SM.getExpansionLoc(Loc) :
1899                                      SourceLocation();
1900
1901    if (Loc.isFileID()) {
1902      MacroStack.clear();
1903      Pieces.push_back(piece);
1904      continue;
1905    }
1906
1907    assert(Loc.isMacroID());
1908
1909    // Is the PathDiagnosticPiece within the same macro group?
1910    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1911      MacroStack.back().first->subPieces.push_back(piece);
1912      continue;
1913    }
1914
1915    // We aren't in the same group.  Are we descending into a new macro
1916    // or are part of an old one?
1917    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1918
1919    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1920                                          SM.getExpansionLoc(Loc) :
1921                                          SourceLocation();
1922
1923    // Walk the entire macro stack.
1924    while (!MacroStack.empty()) {
1925      if (InstantiationLoc == MacroStack.back().second) {
1926        MacroGroup = MacroStack.back().first;
1927        break;
1928      }
1929
1930      if (ParentInstantiationLoc == MacroStack.back().second) {
1931        MacroGroup = MacroStack.back().first;
1932        break;
1933      }
1934
1935      MacroStack.pop_back();
1936    }
1937
1938    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1939      // Create a new macro group and add it to the stack.
1940      PathDiagnosticMacroPiece *NewGroup =
1941        new PathDiagnosticMacroPiece(
1942          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1943
1944      if (MacroGroup)
1945        MacroGroup->subPieces.push_back(NewGroup);
1946      else {
1947        assert(InstantiationLoc.isFileID());
1948        Pieces.push_back(NewGroup);
1949      }
1950
1951      MacroGroup = NewGroup;
1952      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1953    }
1954
1955    // Finally, add the PathDiagnosticPiece to the group.
1956    MacroGroup->subPieces.push_back(piece);
1957  }
1958
1959  // Now take the pieces and construct a new PathDiagnostic.
1960  path.clear();
1961
1962  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1963    path.push_back(*I);
1964}
1965
1966bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
1967                                           PathDiagnosticConsumer &PC,
1968                                           ArrayRef<BugReport *> &bugReports) {
1969  assert(!bugReports.empty());
1970
1971  bool HasValid = false;
1972  SmallVector<const ExplodedNode *, 10> errorNodes;
1973  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1974                                      E = bugReports.end(); I != E; ++I) {
1975    if ((*I)->isValid()) {
1976      HasValid = true;
1977      errorNodes.push_back((*I)->getErrorNode());
1978    } else {
1979      errorNodes.push_back(0);
1980    }
1981  }
1982
1983  // If all the reports have been marked invalid, we're done.
1984  if (!HasValid)
1985    return false;
1986
1987  // Construct a new graph that contains only a single path from the error
1988  // node to a root.
1989  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1990  std::pair<ExplodedNode*, unsigned> >&
1991    GPair = MakeReportGraph(&getGraph(), errorNodes);
1992
1993  // Find the BugReport with the original location.
1994  assert(GPair.second.second < bugReports.size());
1995  BugReport *R = bugReports[GPair.second.second];
1996  assert(R && "No original report found for sliced graph.");
1997  assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
1998
1999  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
2000  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
2001  const ExplodedNode *N = GPair.second.first;
2002
2003  // Start building the path diagnostic...
2004  PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
2005
2006  // Register additional node visitors.
2007  R->addVisitor(new NilReceiverBRVisitor());
2008  R->addVisitor(new ConditionBRVisitor());
2009
2010  BugReport::VisitorList visitors;
2011  unsigned originalReportConfigToken, finalReportConfigToken;
2012
2013  // While generating diagnostics, it's possible the visitors will decide
2014  // new symbols and regions are interesting, or add other visitors based on
2015  // the information they find. If they do, we need to regenerate the path
2016  // based on our new report configuration.
2017  do {
2018    // Get a clean copy of all the visitors.
2019    for (BugReport::visitor_iterator I = R->visitor_begin(),
2020                                     E = R->visitor_end(); I != E; ++I)
2021       visitors.push_back((*I)->clone());
2022
2023    // Clear out the active path from any previous work.
2024    PD.resetPath();
2025    originalReportConfigToken = R->getConfigurationChangeToken();
2026
2027    // Generate the very last diagnostic piece - the piece is visible before
2028    // the trace is expanded.
2029    if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
2030      PathDiagnosticPiece *LastPiece = 0;
2031      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
2032           I != E; ++I) {
2033        if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
2034          assert (!LastPiece &&
2035                  "There can only be one final piece in a diagnostic.");
2036          LastPiece = Piece;
2037        }
2038      }
2039      if (!LastPiece)
2040        LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
2041      if (LastPiece)
2042        PD.setEndOfPath(LastPiece);
2043      else
2044        return false;
2045    }
2046
2047    switch (PDB.getGenerationScheme()) {
2048    case PathDiagnosticConsumer::Extensive:
2049      if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
2050        assert(!R->isValid() && "Failed on valid report");
2051        // Try again. We'll filter out the bad report when we trim the graph.
2052        // FIXME: It would be more efficient to use the same intermediate
2053        // trimmed graph, and just repeat the shortest-path search.
2054        return generatePathDiagnostic(PD, PC, bugReports);
2055      }
2056      break;
2057    case PathDiagnosticConsumer::Minimal:
2058      if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
2059        assert(!R->isValid() && "Failed on valid report");
2060        // Try again. We'll filter out the bad report when we trim the graph.
2061        return generatePathDiagnostic(PD, PC, bugReports);
2062      }
2063      break;
2064    case PathDiagnosticConsumer::None:
2065      if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
2066        assert(!R->isValid() && "Failed on valid report");
2067        // Try again. We'll filter out the bad report when we trim the graph.
2068        return generatePathDiagnostic(PD, PC, bugReports);
2069      }
2070      break;
2071    }
2072
2073    // Clean up the visitors we used.
2074    llvm::DeleteContainerPointers(visitors);
2075
2076    // Did anything change while generating this path?
2077    finalReportConfigToken = R->getConfigurationChangeToken();
2078  } while(finalReportConfigToken != originalReportConfigToken);
2079
2080  // Finally, prune the diagnostic path of uninteresting stuff.
2081  if (!PD.path.empty()) {
2082    // Remove messages that are basically the same.
2083    RemoveRedundantMsgs(PD.getMutablePieces());
2084
2085    if (R->shouldPrunePath()) {
2086      bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(),
2087                                                        R);
2088      assert(hasSomethingInteresting);
2089      (void) hasSomethingInteresting;
2090    }
2091  }
2092
2093  return true;
2094}
2095
2096void BugReporter::Register(BugType *BT) {
2097  BugTypes = F.add(BugTypes, BT);
2098}
2099
2100void BugReporter::EmitReport(BugReport* R) {
2101  // Compute the bug report's hash to determine its equivalence class.
2102  llvm::FoldingSetNodeID ID;
2103  R->Profile(ID);
2104
2105  // Lookup the equivance class.  If there isn't one, create it.
2106  BugType& BT = R->getBugType();
2107  Register(&BT);
2108  void *InsertPos;
2109  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2110
2111  if (!EQ) {
2112    EQ = new BugReportEquivClass(R);
2113    EQClasses.InsertNode(EQ, InsertPos);
2114    EQClassesVector.push_back(EQ);
2115  }
2116  else
2117    EQ->AddReport(R);
2118}
2119
2120
2121//===----------------------------------------------------------------------===//
2122// Emitting reports in equivalence classes.
2123//===----------------------------------------------------------------------===//
2124
2125namespace {
2126struct FRIEC_WLItem {
2127  const ExplodedNode *N;
2128  ExplodedNode::const_succ_iterator I, E;
2129
2130  FRIEC_WLItem(const ExplodedNode *n)
2131  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2132};
2133}
2134
2135static BugReport *
2136FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2137                             SmallVectorImpl<BugReport*> &bugReports) {
2138
2139  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2140  assert(I != E);
2141  BugType& BT = I->getBugType();
2142
2143  // If we don't need to suppress any of the nodes because they are
2144  // post-dominated by a sink, simply add all the nodes in the equivalence class
2145  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2146  if (!BT.isSuppressOnSink()) {
2147    BugReport *R = I;
2148    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2149      const ExplodedNode *N = I->getErrorNode();
2150      if (N) {
2151        R = I;
2152        bugReports.push_back(R);
2153      }
2154    }
2155    return R;
2156  }
2157
2158  // For bug reports that should be suppressed when all paths are post-dominated
2159  // by a sink node, iterate through the reports in the equivalence class
2160  // until we find one that isn't post-dominated (if one exists).  We use a
2161  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2162  // this as a recursive function, but we don't want to risk blowing out the
2163  // stack for very long paths.
2164  BugReport *exampleReport = 0;
2165
2166  for (; I != E; ++I) {
2167    const ExplodedNode *errorNode = I->getErrorNode();
2168
2169    if (!errorNode)
2170      continue;
2171    if (errorNode->isSink()) {
2172      llvm_unreachable(
2173           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2174    }
2175    // No successors?  By definition this nodes isn't post-dominated by a sink.
2176    if (errorNode->succ_empty()) {
2177      bugReports.push_back(I);
2178      if (!exampleReport)
2179        exampleReport = I;
2180      continue;
2181    }
2182
2183    // At this point we know that 'N' is not a sink and it has at least one
2184    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2185    typedef FRIEC_WLItem WLItem;
2186    typedef SmallVector<WLItem, 10> DFSWorkList;
2187    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2188
2189    DFSWorkList WL;
2190    WL.push_back(errorNode);
2191    Visited[errorNode] = 1;
2192
2193    while (!WL.empty()) {
2194      WLItem &WI = WL.back();
2195      assert(!WI.N->succ_empty());
2196
2197      for (; WI.I != WI.E; ++WI.I) {
2198        const ExplodedNode *Succ = *WI.I;
2199        // End-of-path node?
2200        if (Succ->succ_empty()) {
2201          // If we found an end-of-path node that is not a sink.
2202          if (!Succ->isSink()) {
2203            bugReports.push_back(I);
2204            if (!exampleReport)
2205              exampleReport = I;
2206            WL.clear();
2207            break;
2208          }
2209          // Found a sink?  Continue on to the next successor.
2210          continue;
2211        }
2212        // Mark the successor as visited.  If it hasn't been explored,
2213        // enqueue it to the DFS worklist.
2214        unsigned &mark = Visited[Succ];
2215        if (!mark) {
2216          mark = 1;
2217          WL.push_back(Succ);
2218          break;
2219        }
2220      }
2221
2222      // The worklist may have been cleared at this point.  First
2223      // check if it is empty before checking the last item.
2224      if (!WL.empty() && &WL.back() == &WI)
2225        WL.pop_back();
2226    }
2227  }
2228
2229  // ExampleReport will be NULL if all the nodes in the equivalence class
2230  // were post-dominated by sinks.
2231  return exampleReport;
2232}
2233
2234void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2235  SmallVector<BugReport*, 10> bugReports;
2236  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2237  if (exampleReport) {
2238    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2239    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2240                                                 E=C.end(); I != E; ++I) {
2241      FlushReport(exampleReport, **I, bugReports);
2242    }
2243  }
2244}
2245
2246void BugReporter::FlushReport(BugReport *exampleReport,
2247                              PathDiagnosticConsumer &PD,
2248                              ArrayRef<BugReport*> bugReports) {
2249
2250  // FIXME: Make sure we use the 'R' for the path that was actually used.
2251  // Probably doesn't make a difference in practice.
2252  BugType& BT = exampleReport->getBugType();
2253
2254  OwningPtr<PathDiagnostic>
2255    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2256                         exampleReport->getBugType().getName(),
2257                         exampleReport->getDescription(),
2258                         exampleReport->getShortDescription(/*Fallback=*/false),
2259                         BT.getCategory()));
2260
2261  // Generate the full path diagnostic, using the generation scheme
2262  // specified by the PathDiagnosticConsumer. Note that we have to generate
2263  // path diagnostics even for consumers which do not support paths, because
2264  // the BugReporterVisitors may mark this bug as a false positive.
2265  if (!bugReports.empty())
2266    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2267      return;
2268
2269  // If the path is empty, generate a single step path with the location
2270  // of the issue.
2271  if (D->path.empty()) {
2272    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2273    PathDiagnosticPiece *piece =
2274      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2275    BugReport::ranges_iterator Beg, End;
2276    llvm::tie(Beg, End) = exampleReport->getRanges();
2277    for ( ; Beg != End; ++Beg)
2278      piece->addRange(*Beg);
2279    D->setEndOfPath(piece);
2280  }
2281
2282  // Get the meta data.
2283  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2284  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2285                                                e = Meta.end(); i != e; ++i) {
2286    D->addMeta(*i);
2287  }
2288
2289  PD.HandlePathDiagnostic(D.take());
2290}
2291
2292void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2293                                  StringRef name,
2294                                  StringRef category,
2295                                  StringRef str, PathDiagnosticLocation Loc,
2296                                  SourceRange* RBeg, unsigned NumRanges) {
2297
2298  // 'BT' is owned by BugReporter.
2299  BugType *BT = getBugTypeForName(name, category);
2300  BugReport *R = new BugReport(*BT, str, Loc);
2301  R->setDeclWithIssue(DeclWithIssue);
2302  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2303  EmitReport(R);
2304}
2305
2306BugType *BugReporter::getBugTypeForName(StringRef name,
2307                                        StringRef category) {
2308  SmallString<136> fullDesc;
2309  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2310  llvm::StringMapEntry<BugType *> &
2311      entry = StrBugTypes.GetOrCreateValue(fullDesc);
2312  BugType *BT = entry.getValue();
2313  if (!BT) {
2314    BT = new BugType(name, category);
2315    entry.setValue(BT);
2316  }
2317  return BT;
2318}
2319