SimpleConstraintManager.cpp revision 18c66fdc3c4008d335885695fe36fb5353c5f672
1//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SimpleConstraintManager, a class that holds code shared
11//  between BasicConstraintManager and RangeConstraintManager.
12//
13//===----------------------------------------------------------------------===//
14
15#include "SimpleConstraintManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18
19namespace clang {
20
21namespace ento {
22
23SimpleConstraintManager::~SimpleConstraintManager() {}
24
25bool SimpleConstraintManager::canReasonAbout(SVal X) const {
26  if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
27    const SymExpr *SE = SymVal->getSymbolicExpression();
28
29    if (isa<SymbolData>(SE))
30      return true;
31
32    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
33      switch (SIE->getOpcode()) {
34          // We don't reason yet about bitwise-constraints on symbolic values.
35        case BO_And:
36        case BO_Or:
37        case BO_Xor:
38          return false;
39        // We don't reason yet about these arithmetic constraints on
40        // symbolic values.
41        case BO_Mul:
42        case BO_Div:
43        case BO_Rem:
44        case BO_Shl:
45        case BO_Shr:
46          return false;
47        // All other cases.
48        default:
49          return true;
50      }
51    }
52
53    return false;
54  }
55
56  return true;
57}
58
59const ProgramState *SimpleConstraintManager::assume(const ProgramState *state,
60                                               DefinedSVal Cond,
61                                               bool Assumption) {
62  if (isa<NonLoc>(Cond))
63    return assume(state, cast<NonLoc>(Cond), Assumption);
64  else
65    return assume(state, cast<Loc>(Cond), Assumption);
66}
67
68const ProgramState *SimpleConstraintManager::assume(const ProgramState *state, Loc cond,
69                                               bool assumption) {
70  state = assumeAux(state, cond, assumption);
71  return SU.processAssume(state, cond, assumption);
72}
73
74const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state,
75                                                  Loc Cond, bool Assumption) {
76
77  BasicValueFactory &BasicVals = state->getBasicVals();
78
79  switch (Cond.getSubKind()) {
80  default:
81    assert (false && "'Assume' not implemented for this Loc.");
82    return state;
83
84  case loc::MemRegionKind: {
85    // FIXME: Should this go into the storemanager?
86
87    const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
88    const SubRegion *SubR = dyn_cast<SubRegion>(R);
89
90    while (SubR) {
91      // FIXME: now we only find the first symbolic region.
92      if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
93        const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
94        if (Assumption)
95          return assumeSymNE(state, SymR->getSymbol(), zero, zero);
96        else
97          return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
98      }
99      SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
100    }
101
102    // FALL-THROUGH.
103  }
104
105  case loc::GotoLabelKind:
106    return Assumption ? state : NULL;
107
108  case loc::ConcreteIntKind: {
109    bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
110    bool isFeasible = b ? Assumption : !Assumption;
111    return isFeasible ? state : NULL;
112  }
113  } // end switch
114}
115
116const ProgramState *SimpleConstraintManager::assume(const ProgramState *state,
117                                               NonLoc cond,
118                                               bool assumption) {
119  state = assumeAux(state, cond, assumption);
120  return SU.processAssume(state, cond, assumption);
121}
122
123static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
124  // FIXME: This should probably be part of BinaryOperator, since this isn't
125  // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.)
126  switch (op) {
127  default:
128    assert(false && "Invalid opcode.");
129  case BO_LT: return BO_GE;
130  case BO_GT: return BO_LE;
131  case BO_LE: return BO_GT;
132  case BO_GE: return BO_LT;
133  case BO_EQ: return BO_NE;
134  case BO_NE: return BO_EQ;
135  }
136}
137
138const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state,
139                                                  NonLoc Cond,
140                                                  bool Assumption) {
141
142  // We cannot reason about SymSymExprs,
143  // and can only reason about some SymIntExprs.
144  if (!canReasonAbout(Cond)) {
145    // Just return the current state indicating that the path is feasible.
146    // This may be an over-approximation of what is possible.
147    return state;
148  }
149
150  BasicValueFactory &BasicVals = state->getBasicVals();
151  SymbolManager &SymMgr = state->getSymbolManager();
152
153  switch (Cond.getSubKind()) {
154  default:
155    assert(false && "'Assume' not implemented for this NonLoc");
156
157  case nonloc::SymbolValKind: {
158    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
159    SymbolRef sym = SV.getSymbol();
160    QualType T =  SymMgr.getType(sym);
161    const llvm::APSInt &zero = BasicVals.getValue(0, T);
162    if (Assumption)
163      return assumeSymNE(state, sym, zero, zero);
164    else
165      return assumeSymEQ(state, sym, zero, zero);
166  }
167
168  case nonloc::SymExprValKind: {
169    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
170
171    // For now, we only handle expressions whose RHS is an integer.
172    // All other expressions are assumed to be feasible.
173    const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
174    if (!SE)
175      return state;
176
177    BinaryOperator::Opcode op = SE->getOpcode();
178    // Implicitly compare non-comparison expressions to 0.
179    if (!BinaryOperator::isComparisonOp(op)) {
180      QualType T = SymMgr.getType(SE);
181      const llvm::APSInt &zero = BasicVals.getValue(0, T);
182      op = (Assumption ? BO_NE : BO_EQ);
183      return assumeSymRel(state, SE, op, zero);
184    }
185
186    // From here on out, op is the real comparison we'll be testing.
187    if (!Assumption)
188      op = NegateComparison(op);
189
190    return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
191  }
192
193  case nonloc::ConcreteIntKind: {
194    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
195    bool isFeasible = b ? Assumption : !Assumption;
196    return isFeasible ? state : NULL;
197  }
198
199  case nonloc::LocAsIntegerKind:
200    return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
201                     Assumption);
202  } // end switch
203}
204
205const ProgramState *SimpleConstraintManager::assumeSymRel(const ProgramState *state,
206                                                     const SymExpr *LHS,
207                                                     BinaryOperator::Opcode op,
208                                                     const llvm::APSInt& Int) {
209  assert(BinaryOperator::isComparisonOp(op) &&
210         "Non-comparison ops should be rewritten as comparisons to zero.");
211
212   // We only handle simple comparisons of the form "$sym == constant"
213   // or "($sym+constant1) == constant2".
214   // The adjustment is "constant1" in the above expression. It's used to
215   // "slide" the solution range around for modular arithmetic. For example,
216   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
217   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
218   // the subclasses of SimpleConstraintManager to handle the adjustment.
219   llvm::APSInt Adjustment;
220
221  // First check if the LHS is a simple symbol reference.
222  SymbolRef Sym = dyn_cast<SymbolData>(LHS);
223  if (Sym) {
224    Adjustment = 0;
225  } else {
226    // Next, see if it's a "($sym+constant1)" expression.
227    const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
228
229    // We don't handle "($sym1+$sym2)".
230    // Give up and assume the constraint is feasible.
231    if (!SE)
232      return state;
233
234    // We don't handle "(<expr>+constant1)".
235    // Give up and assume the constraint is feasible.
236    Sym = dyn_cast<SymbolData>(SE->getLHS());
237    if (!Sym)
238      return state;
239
240    // Get the constant out of the expression "($sym+constant1)".
241    switch (SE->getOpcode()) {
242    case BO_Add:
243      Adjustment = SE->getRHS();
244      break;
245    case BO_Sub:
246      Adjustment = -SE->getRHS();
247      break;
248    default:
249      // We don't handle non-additive operators.
250      // Give up and assume the constraint is feasible.
251      return state;
252    }
253  }
254
255  // FIXME: This next section is a hack. It silently converts the integers to
256  // be of the same type as the symbol, which is not always correct. Really the
257  // comparisons should be performed using the Int's type, then mapped back to
258  // the symbol's range of values.
259  ProgramStateManager &StateMgr = state->getStateManager();
260  ASTContext &Ctx = StateMgr.getContext();
261
262  QualType T = Sym->getType(Ctx);
263  assert(T->isIntegerType() || Loc::isLocType(T));
264  unsigned bitwidth = Ctx.getTypeSize(T);
265  bool isSymUnsigned
266    = T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T);
267
268  // Convert the adjustment.
269  Adjustment.setIsUnsigned(isSymUnsigned);
270  Adjustment = Adjustment.extOrTrunc(bitwidth);
271
272  // Convert the right-hand side integer.
273  llvm::APSInt ConvertedInt(Int, isSymUnsigned);
274  ConvertedInt = ConvertedInt.extOrTrunc(bitwidth);
275
276  switch (op) {
277  default:
278    // No logic yet for other operators.  assume the constraint is feasible.
279    return state;
280
281  case BO_EQ:
282    return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
283
284  case BO_NE:
285    return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
286
287  case BO_GT:
288    return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
289
290  case BO_GE:
291    return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
292
293  case BO_LT:
294    return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
295
296  case BO_LE:
297    return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
298  } // end switch
299}
300
301} // end of namespace ento
302
303} // end of namespace clang
304