bstring.c revision cdc3a89d5de90b2299c56f4a46c3de590c5184d1
1// RUN: %clang_cc1 -analyze -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify %s
2// RUN: %clang_cc1 -analyze -DUSE_BUILTINS -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify %s
3// RUN: %clang_cc1 -analyze -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify %s
4// RUN: %clang_cc1 -analyze -DUSE_BUILTINS -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify %s
5
6//===----------------------------------------------------------------------===
7// Declarations
8//===----------------------------------------------------------------------===
9
10// Some functions are so similar to each other that they follow the same code
11// path, such as memcpy and __memcpy_chk, or memcmp and bcmp. If VARIANT is
12// defined, make sure to use the variants instead to make sure they are still
13// checked by the analyzer.
14
15// Some functions are implemented as builtins. These should be #defined as
16// BUILTIN(f), which will prepend "__builtin_" if USE_BUILTINS is defined.
17
18// Functions that have variants and are also available as builtins should be
19// declared carefully! See memcpy() for an example.
20
21#ifdef USE_BUILTINS
22# define BUILTIN(f) __builtin_ ## f
23#else /* USE_BUILTINS */
24# define BUILTIN(f) f
25#endif /* USE_BUILTINS */
26
27typedef typeof(sizeof(int)) size_t;
28
29void clang_analyzer_eval(int);
30
31//===----------------------------------------------------------------------===
32// memcpy()
33//===----------------------------------------------------------------------===
34
35#ifdef VARIANT
36
37#define __memcpy_chk BUILTIN(__memcpy_chk)
38void *__memcpy_chk(void *restrict s1, const void *restrict s2, size_t n,
39                   size_t destlen);
40
41#define memcpy(a,b,c) __memcpy_chk(a,b,c,(size_t)-1)
42
43#else /* VARIANT */
44
45#define memcpy BUILTIN(memcpy)
46void *memcpy(void *restrict s1, const void *restrict s2, size_t n);
47
48#endif /* VARIANT */
49
50
51void memcpy0 () {
52  char src[] = {1, 2, 3, 4};
53  char dst[4] = {0};
54
55  memcpy(dst, src, 4); // no-warning
56
57  clang_analyzer_eval(memcpy(dst, src, 4) == dst); // expected-warning{{TRUE}}
58
59  // If we actually model the copy, we can make this known.
60  // The important thing for now is that the old value has been invalidated.
61  clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}}
62}
63
64void memcpy1 () {
65  char src[] = {1, 2, 3, 4};
66  char dst[10];
67
68  memcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}}
69}
70
71void memcpy2 () {
72  char src[] = {1, 2, 3, 4};
73  char dst[1];
74
75  memcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}}
76}
77
78void memcpy3 () {
79  char src[] = {1, 2, 3, 4};
80  char dst[3];
81
82  memcpy(dst+1, src+2, 2); // no-warning
83}
84
85void memcpy4 () {
86  char src[] = {1, 2, 3, 4};
87  char dst[10];
88
89  memcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}}
90}
91
92void memcpy5() {
93  char src[] = {1, 2, 3, 4};
94  char dst[3];
95
96  memcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}}
97}
98
99void memcpy6() {
100  int a[4] = {0};
101  memcpy(a, a, 8); // expected-warning{{overlapping}}
102}
103
104void memcpy7() {
105  int a[4] = {0};
106  memcpy(a+2, a+1, 8); // expected-warning{{overlapping}}
107}
108
109void memcpy8() {
110  int a[4] = {0};
111  memcpy(a+1, a+2, 8); // expected-warning{{overlapping}}
112}
113
114void memcpy9() {
115  int a[4] = {0};
116  memcpy(a+2, a+1, 4); // no-warning
117  memcpy(a+1, a+2, 4); // no-warning
118}
119
120void memcpy10() {
121  char a[4] = {0};
122  memcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}}
123}
124
125void memcpy11() {
126  char a[4] = {0};
127  memcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}}
128}
129
130void memcpy12() {
131  char a[4] = {0};
132  memcpy(0, a, 0); // no-warning
133}
134
135void memcpy13() {
136  char a[4] = {0};
137  memcpy(a, 0, 0); // no-warning
138}
139
140void memcpy_unknown_size (size_t n) {
141  char a[4], b[4] = {1};
142  clang_analyzer_eval(memcpy(a, b, n) == a); // expected-warning{{TRUE}}
143}
144
145void memcpy_unknown_size_warn (size_t n) {
146  char a[4];
147  void *result = memcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}}
148  clang_analyzer_eval(result == a); // no-warning (above is fatal)
149}
150
151//===----------------------------------------------------------------------===
152// mempcpy()
153//===----------------------------------------------------------------------===
154
155#ifdef VARIANT
156
157#define __mempcpy_chk BUILTIN(__mempcpy_chk)
158void *__mempcpy_chk(void *restrict s1, const void *restrict s2, size_t n,
159                   size_t destlen);
160
161#define mempcpy(a,b,c) __mempcpy_chk(a,b,c,(size_t)-1)
162
163#else /* VARIANT */
164
165#define mempcpy BUILTIN(mempcpy)
166void *mempcpy(void *restrict s1, const void *restrict s2, size_t n);
167
168#endif /* VARIANT */
169
170
171void mempcpy0 () {
172  char src[] = {1, 2, 3, 4};
173  char dst[5] = {0};
174
175  mempcpy(dst, src, 4); // no-warning
176
177  clang_analyzer_eval(mempcpy(dst, src, 4) == &dst[4]); // expected-warning{{TRUE}}
178
179  // If we actually model the copy, we can make this known.
180  // The important thing for now is that the old value has been invalidated.
181  clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}}
182}
183
184void mempcpy1 () {
185  char src[] = {1, 2, 3, 4};
186  char dst[10];
187
188  mempcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}}
189}
190
191void mempcpy2 () {
192  char src[] = {1, 2, 3, 4};
193  char dst[1];
194
195  mempcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}}
196}
197
198void mempcpy3 () {
199  char src[] = {1, 2, 3, 4};
200  char dst[3];
201
202  mempcpy(dst+1, src+2, 2); // no-warning
203}
204
205void mempcpy4 () {
206  char src[] = {1, 2, 3, 4};
207  char dst[10];
208
209  mempcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}}
210}
211
212void mempcpy5() {
213  char src[] = {1, 2, 3, 4};
214  char dst[3];
215
216  mempcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}}
217}
218
219void mempcpy6() {
220  int a[4] = {0};
221  mempcpy(a, a, 8); // expected-warning{{overlapping}}
222}
223
224void mempcpy7() {
225  int a[4] = {0};
226  mempcpy(a+2, a+1, 8); // expected-warning{{overlapping}}
227}
228
229void mempcpy8() {
230  int a[4] = {0};
231  mempcpy(a+1, a+2, 8); // expected-warning{{overlapping}}
232}
233
234void mempcpy9() {
235  int a[4] = {0};
236  mempcpy(a+2, a+1, 4); // no-warning
237  mempcpy(a+1, a+2, 4); // no-warning
238}
239
240void mempcpy10() {
241  char a[4] = {0};
242  mempcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}}
243}
244
245void mempcpy11() {
246  char a[4] = {0};
247  mempcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}}
248}
249
250void mempcpy12() {
251  char a[4] = {0};
252  mempcpy(0, a, 0); // no-warning
253}
254
255void mempcpy13() {
256  char a[4] = {0};
257  mempcpy(a, 0, 0); // no-warning
258}
259
260void mempcpy_unknown_size_warn (size_t n) {
261  char a[4];
262  void *result = mempcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}}
263  clang_analyzer_eval(result == a); // no-warning (above is fatal)
264}
265
266void mempcpy_unknownable_size (char *src, float n) {
267  char a[4];
268  // This used to crash because we don't model floats.
269  mempcpy(a, src, (size_t)n);
270}
271
272//===----------------------------------------------------------------------===
273// memmove()
274//===----------------------------------------------------------------------===
275
276#ifdef VARIANT
277
278#define __memmove_chk BUILTIN(__memmove_chk)
279void *__memmove_chk(void *s1, const void *s2, size_t n, size_t destlen);
280
281#define memmove(a,b,c) __memmove_chk(a,b,c,(size_t)-1)
282
283#else /* VARIANT */
284
285#define memmove BUILTIN(memmove)
286void *memmove(void *s1, const void *s2, size_t n);
287
288#endif /* VARIANT */
289
290
291void memmove0 () {
292  char src[] = {1, 2, 3, 4};
293  char dst[4] = {0};
294
295  memmove(dst, src, 4); // no-warning
296
297  clang_analyzer_eval(memmove(dst, src, 4) == dst); // expected-warning{{TRUE}}
298
299  // If we actually model the copy, we can make this known.
300  // The important thing for now is that the old value has been invalidated.
301  clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}}
302}
303
304void memmove1 () {
305  char src[] = {1, 2, 3, 4};
306  char dst[10];
307
308  memmove(dst, src, 5); // expected-warning{{out-of-bound}}
309}
310
311void memmove2 () {
312  char src[] = {1, 2, 3, 4};
313  char dst[1];
314
315  memmove(dst, src, 4); // expected-warning{{overflow}}
316}
317
318//===----------------------------------------------------------------------===
319// memcmp()
320//===----------------------------------------------------------------------===
321
322#ifdef VARIANT
323
324#define bcmp BUILTIN(bcmp)
325// __builtin_bcmp is not defined with const in Builtins.def.
326int bcmp(/*const*/ void *s1, /*const*/ void *s2, size_t n);
327#define memcmp bcmp
328//
329#else /* VARIANT */
330
331#define memcmp BUILTIN(memcmp)
332int memcmp(const void *s1, const void *s2, size_t n);
333
334#endif /* VARIANT */
335
336
337void memcmp0 () {
338  char a[] = {1, 2, 3, 4};
339  char b[4] = { 0 };
340
341  memcmp(a, b, 4); // no-warning
342}
343
344void memcmp1 () {
345  char a[] = {1, 2, 3, 4};
346  char b[10] = { 0 };
347
348  memcmp(a, b, 5); // expected-warning{{out-of-bound}}
349}
350
351void memcmp2 () {
352  char a[] = {1, 2, 3, 4};
353  char b[1] = { 0 };
354
355  memcmp(a, b, 4); // expected-warning{{out-of-bound}}
356}
357
358void memcmp3 () {
359  char a[] = {1, 2, 3, 4};
360
361  clang_analyzer_eval(memcmp(a, a, 4) == 0); // expected-warning{{TRUE}}
362}
363
364void memcmp4 (char *input) {
365  char a[] = {1, 2, 3, 4};
366
367  clang_analyzer_eval(memcmp(a, input, 4) == 0); // expected-warning{{UNKNOWN}}
368}
369
370void memcmp5 (char *input) {
371  char a[] = {1, 2, 3, 4};
372
373  clang_analyzer_eval(memcmp(a, 0, 0) == 0); // expected-warning{{TRUE}}
374  clang_analyzer_eval(memcmp(0, a, 0) == 0); // expected-warning{{TRUE}}
375  clang_analyzer_eval(memcmp(a, input, 0) == 0); // expected-warning{{TRUE}}
376}
377
378void memcmp6 (char *a, char *b, size_t n) {
379  int result = memcmp(a, b, n);
380  if (result != 0)
381    clang_analyzer_eval(n != 0); // expected-warning{{TRUE}}
382  // else
383  //   analyzer_assert_unknown(n == 0);
384
385  // We can't do the above comparison because n has already been constrained.
386  // On one path n == 0, on the other n != 0.
387}
388
389int memcmp7 (char *a, size_t x, size_t y, size_t n) {
390  // We used to crash when either of the arguments was unknown.
391  return memcmp(a, &a[x*y], n) +
392         memcmp(&a[x*y], a, n);
393}
394
395//===----------------------------------------------------------------------===
396// bcopy()
397//===----------------------------------------------------------------------===
398
399#define bcopy BUILTIN(bcopy)
400// __builtin_bcopy is not defined with const in Builtins.def.
401void bcopy(/*const*/ void *s1, void *s2, size_t n);
402
403
404void bcopy0 () {
405  char src[] = {1, 2, 3, 4};
406  char dst[4] = {0};
407
408  bcopy(src, dst, 4); // no-warning
409
410  // If we actually model the copy, we can make this known.
411  // The important thing for now is that the old value has been invalidated.
412  clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}}
413}
414
415void bcopy1 () {
416  char src[] = {1, 2, 3, 4};
417  char dst[10];
418
419  bcopy(src, dst, 5); // expected-warning{{out-of-bound}}
420}
421
422void bcopy2 () {
423  char src[] = {1, 2, 3, 4};
424  char dst[1];
425
426  bcopy(src, dst, 4); // expected-warning{{overflow}}
427}
428
429void *malloc(size_t);
430void free(void *);
431char radar_11125445_memcopythenlogfirstbyte(const char *input, size_t length) {
432  char *bytes = malloc(sizeof(char) * (length + 1));
433  memcpy(bytes, input, length);
434  char x = bytes[0]; // no warning
435  free(bytes);
436  return x;
437}
438