glsTextureTestUtil.cpp revision 8852c82a1ffa4760985c17cc6875d5d521daf343
1/*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL (ES) Module
3 * -----------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Texture test utilities.
22 *//*--------------------------------------------------------------------*/
23
24#include "glsTextureTestUtil.hpp"
25#include "gluDefs.hpp"
26#include "gluDrawUtil.hpp"
27#include "gluRenderContext.hpp"
28#include "deRandom.hpp"
29#include "tcuTestLog.hpp"
30#include "tcuVectorUtil.hpp"
31#include "tcuTextureUtil.hpp"
32#include "tcuImageCompare.hpp"
33#include "tcuStringTemplate.hpp"
34#include "tcuTexLookupVerifier.hpp"
35#include "tcuTexCompareVerifier.hpp"
36#include "glwEnums.hpp"
37#include "glwFunctions.hpp"
38#include "qpWatchDog.h"
39#include "deStringUtil.hpp"
40
41using tcu::TestLog;
42using std::vector;
43using std::string;
44using std::map;
45
46namespace deqp
47{
48namespace gls
49{
50namespace TextureTestUtil
51{
52
53SamplerType getSamplerType (tcu::TextureFormat format)
54{
55	using tcu::TextureFormat;
56
57	switch (format.type)
58	{
59		case TextureFormat::SIGNED_INT8:
60		case TextureFormat::SIGNED_INT16:
61		case TextureFormat::SIGNED_INT32:
62			return SAMPLERTYPE_INT;
63
64		case TextureFormat::UNSIGNED_INT8:
65		case TextureFormat::UNSIGNED_INT32:
66		case TextureFormat::UNSIGNED_INT_1010102_REV:
67			return SAMPLERTYPE_UINT;
68
69		// Texture formats used in depth/stencil textures.
70		case TextureFormat::UNSIGNED_INT16:
71		case TextureFormat::UNSIGNED_INT_24_8:
72			return (format.order == TextureFormat::D || format.order == TextureFormat::DS) ? SAMPLERTYPE_FLOAT : SAMPLERTYPE_UINT;
73
74		default:
75			return SAMPLERTYPE_FLOAT;
76	}
77}
78
79SamplerType getFetchSamplerType (tcu::TextureFormat format)
80{
81	using tcu::TextureFormat;
82
83	switch (format.type)
84	{
85		case TextureFormat::SIGNED_INT8:
86		case TextureFormat::SIGNED_INT16:
87		case TextureFormat::SIGNED_INT32:
88			return SAMPLERTYPE_FETCH_INT;
89
90		case TextureFormat::UNSIGNED_INT8:
91		case TextureFormat::UNSIGNED_INT32:
92		case TextureFormat::UNSIGNED_INT_1010102_REV:
93			return SAMPLERTYPE_FETCH_UINT;
94
95		// Texture formats used in depth/stencil textures.
96		case TextureFormat::UNSIGNED_INT16:
97		case TextureFormat::UNSIGNED_INT_24_8:
98			return (format.order == TextureFormat::D || format.order == TextureFormat::DS) ? SAMPLERTYPE_FETCH_FLOAT : SAMPLERTYPE_FETCH_UINT;
99
100		default:
101			return SAMPLERTYPE_FETCH_FLOAT;
102	}
103}
104
105static tcu::Texture1DView getSubView (const tcu::Texture1DView& view, int baseLevel, int maxLevel)
106{
107	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
108	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
109	const int	numLevels	= clampedMax-clampedBase+1;
110	return tcu::Texture1DView(numLevels, view.getLevels()+clampedBase);
111}
112
113static tcu::Texture2DView getSubView (const tcu::Texture2DView& view, int baseLevel, int maxLevel)
114{
115	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
116	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
117	const int	numLevels	= clampedMax-clampedBase+1;
118	return tcu::Texture2DView(numLevels, view.getLevels()+clampedBase);
119}
120
121static tcu::TextureCubeView getSubView (const tcu::TextureCubeView& view, int baseLevel, int maxLevel)
122{
123	const int							clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
124	const int							clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
125	const int							numLevels	= clampedMax-clampedBase+1;
126	const tcu::ConstPixelBufferAccess*	levels[tcu::CUBEFACE_LAST];
127
128	for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
129		levels[face] = view.getFaceLevels((tcu::CubeFace)face) + clampedBase;
130
131	return tcu::TextureCubeView(numLevels, levels);
132}
133
134static tcu::Texture3DView getSubView (const tcu::Texture3DView& view, int baseLevel, int maxLevel)
135{
136	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
137	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
138	const int	numLevels	= clampedMax-clampedBase+1;
139	return tcu::Texture3DView(numLevels, view.getLevels()+clampedBase);
140}
141
142static tcu::TextureCubeArrayView getSubView (const tcu::TextureCubeArrayView& view, int baseLevel, int maxLevel)
143{
144	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
145	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
146	const int	numLevels	= clampedMax-clampedBase+1;
147	return tcu::TextureCubeArrayView(numLevels, view.getLevels()+clampedBase);
148}
149
150inline float linearInterpolate (float t, float minVal, float maxVal)
151{
152	return minVal + (maxVal - minVal) * t;
153}
154
155inline tcu::Vec4 linearInterpolate (float t, const tcu::Vec4& a, const tcu::Vec4& b)
156{
157	return a + (b - a) * t;
158}
159
160inline float bilinearInterpolate (float x, float y, const tcu::Vec4& quad)
161{
162	float w00 = (1.0f-x)*(1.0f-y);
163	float w01 = (1.0f-x)*y;
164	float w10 = x*(1.0f-y);
165	float w11 = x*y;
166	return quad.x()*w00 + quad.y()*w10 + quad.z()*w01 + quad.w()*w11;
167}
168
169inline float triangleInterpolate (float v0, float v1, float v2, float x, float y)
170{
171	return v0 + (v2-v0)*x + (v1-v0)*y;
172}
173
174inline float triangleInterpolate (const tcu::Vec3& v, float x, float y)
175{
176	return triangleInterpolate(v.x(), v.y(), v.z(), x, y);
177}
178
179inline float triQuadInterpolate (float x, float y, const tcu::Vec4& quad)
180{
181	// \note Top left fill rule.
182	if (x + y < 1.0f)
183		return triangleInterpolate(quad.x(), quad.y(), quad.z(), x, y);
184	else
185		return triangleInterpolate(quad.w(), quad.z(), quad.y(), 1.0f-x, 1.0f-y);
186}
187
188SurfaceAccess::SurfaceAccess (tcu::Surface& surface, const tcu::PixelFormat& colorFmt, int x, int y, int width, int height)
189	: m_surface		(&surface)
190	, m_colorMask	(getColorMask(colorFmt))
191	, m_x			(x)
192	, m_y			(y)
193	, m_width		(width)
194	, m_height		(height)
195{
196}
197
198SurfaceAccess::SurfaceAccess (tcu::Surface& surface, const tcu::PixelFormat& colorFmt)
199	: m_surface		(&surface)
200	, m_colorMask	(getColorMask(colorFmt))
201	, m_x			(0)
202	, m_y			(0)
203	, m_width		(surface.getWidth())
204	, m_height		(surface.getHeight())
205{
206}
207
208SurfaceAccess::SurfaceAccess (const SurfaceAccess& parent, int x, int y, int width, int height)
209	: m_surface			(parent.m_surface)
210	, m_colorMask		(parent.m_colorMask)
211	, m_x				(parent.m_x + x)
212	, m_y				(parent.m_y + y)
213	, m_width			(width)
214	, m_height			(height)
215{
216}
217
218// 1D lookup LOD computation.
219
220inline float computeLodFromDerivates (LodMode mode, float dudx, float dudy)
221{
222	float p = 0.0f;
223	switch (mode)
224	{
225		// \note [mika] Min and max bounds equal to exact with 1D textures
226		case LODMODE_EXACT:
227		case LODMODE_MIN_BOUND:
228		case LODMODE_MAX_BOUND:
229			p = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
230			break;
231
232		default:
233			DE_ASSERT(DE_FALSE);
234	}
235
236	return deFloatLog2(p);
237}
238
239static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, deInt32 srcSize, const tcu::Vec3& sq)
240{
241	float dux	= (sq.z() - sq.x()) * (float)srcSize;
242	float duy	= (sq.y() - sq.x()) * (float)srcSize;
243	float dx	= (float)dstSize.x();
244	float dy	= (float)dstSize.y();
245
246	return computeLodFromDerivates(mode, dux/dx, duy/dy);
247}
248
249// 2D lookup LOD computation.
250
251inline float computeLodFromDerivates (LodMode mode, float dudx, float dvdx, float dudy, float dvdy)
252{
253	float p = 0.0f;
254	switch (mode)
255	{
256		case LODMODE_EXACT:
257			p = de::max(deFloatSqrt(dudx*dudx + dvdx*dvdx), deFloatSqrt(dudy*dudy + dvdy*dvdy));
258			break;
259
260		case LODMODE_MIN_BOUND:
261		case LODMODE_MAX_BOUND:
262		{
263			float mu = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
264			float mv = de::max(deFloatAbs(dvdx), deFloatAbs(dvdy));
265
266			p = mode == LODMODE_MIN_BOUND ? de::max(mu, mv) : mu + mv;
267			break;
268		}
269
270		default:
271			DE_ASSERT(DE_FALSE);
272	}
273
274	return deFloatLog2(p);
275}
276
277static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, const tcu::IVec2& srcSize, const tcu::Vec3& sq, const tcu::Vec3& tq)
278{
279	float dux	= (sq.z() - sq.x()) * (float)srcSize.x();
280	float duy	= (sq.y() - sq.x()) * (float)srcSize.x();
281	float dvx	= (tq.z() - tq.x()) * (float)srcSize.y();
282	float dvy	= (tq.y() - tq.x()) * (float)srcSize.y();
283	float dx	= (float)dstSize.x();
284	float dy	= (float)dstSize.y();
285
286	return computeLodFromDerivates(mode, dux/dx, dvx/dx, duy/dy, dvy/dy);
287}
288
289// 3D lookup LOD computation.
290
291inline float computeLodFromDerivates (LodMode mode, float dudx, float dvdx, float dwdx, float dudy, float dvdy, float dwdy)
292{
293	float p = 0.0f;
294	switch (mode)
295	{
296		case LODMODE_EXACT:
297			p = de::max(deFloatSqrt(dudx*dudx + dvdx*dvdx + dwdx*dwdx), deFloatSqrt(dudy*dudy + dvdy*dvdy + dwdy*dwdy));
298			break;
299
300		case LODMODE_MIN_BOUND:
301		case LODMODE_MAX_BOUND:
302		{
303			float mu = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
304			float mv = de::max(deFloatAbs(dvdx), deFloatAbs(dvdy));
305			float mw = de::max(deFloatAbs(dwdx), deFloatAbs(dwdy));
306
307			p = mode == LODMODE_MIN_BOUND ? de::max(de::max(mu, mv), mw) : (mu + mv + mw);
308			break;
309		}
310
311		default:
312			DE_ASSERT(DE_FALSE);
313	}
314
315	return deFloatLog2(p);
316}
317
318static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, const tcu::IVec3& srcSize, const tcu::Vec3& sq, const tcu::Vec3& tq, const tcu::Vec3& rq)
319{
320	float dux	= (sq.z() - sq.x()) * (float)srcSize.x();
321	float duy	= (sq.y() - sq.x()) * (float)srcSize.x();
322	float dvx	= (tq.z() - tq.x()) * (float)srcSize.y();
323	float dvy	= (tq.y() - tq.x()) * (float)srcSize.y();
324	float dwx	= (rq.z() - rq.x()) * (float)srcSize.z();
325	float dwy	= (rq.y() - rq.x()) * (float)srcSize.z();
326	float dx	= (float)dstSize.x();
327	float dy	= (float)dstSize.y();
328
329	return computeLodFromDerivates(mode, dux/dx, dvx/dx, dwx/dx, duy/dy, dvy/dy, dwy/dy);
330}
331
332static inline float projectedTriInterpolate (const tcu::Vec3& s, const tcu::Vec3& w, float nx, float ny)
333{
334	return (s[0]*(1.0f-nx-ny)/w[0] + s[1]*ny/w[1] + s[2]*nx/w[2]) / ((1.0f-nx-ny)/w[0] + ny/w[1] + nx/w[2]);
335}
336
337static inline float triDerivateX (const tcu::Vec3& s, const tcu::Vec3& w, float wx, float width, float ny)
338{
339	float d = w[1]*w[2]*(width*(ny - 1.0f) + wx) - w[0]*(w[2]*width*ny + w[1]*wx);
340	return (w[0]*w[1]*w[2]*width * (w[1]*(s[0] - s[2])*(ny - 1.0f) + ny*(w[2]*(s[1] - s[0]) + w[0]*(s[2] - s[1])))) / (d*d);
341}
342
343static inline float triDerivateY (const tcu::Vec3& s, const tcu::Vec3& w, float wy, float height, float nx)
344{
345	float d = w[1]*w[2]*(height*(nx - 1.0f) + wy) - w[0]*(w[1]*height*nx + w[2]*wy);
346	return (w[0]*w[1]*w[2]*height * (w[2]*(s[0] - s[1])*(nx - 1.0f) + nx*(w[0]*(s[1] - s[2]) + w[1]*(s[2] - s[0])))) / (d*d);
347}
348
349// 1D lookup LOD.
350static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& projection, float wx, float wy, float width, float height)
351{
352	// Exact derivatives.
353	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
354	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
355
356	return computeLodFromDerivates(mode, dudx, dudy);
357}
358
359// 2D lookup LOD.
360static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& v, const tcu::Vec3& projection, float wx, float wy, float width, float height)
361{
362	// Exact derivatives.
363	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
364	float dvdx	= triDerivateX(v, projection, wx, width, wy/height);
365	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
366	float dvdy	= triDerivateY(v, projection, wy, height, wx/width);
367
368	return computeLodFromDerivates(mode, dudx, dvdx, dudy, dvdy);
369}
370
371// 3D lookup LOD.
372static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& v, const tcu::Vec3& w, const tcu::Vec3& projection, float wx, float wy, float width, float height)
373{
374	// Exact derivatives.
375	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
376	float dvdx	= triDerivateX(v, projection, wx, width, wy/height);
377	float dwdx	= triDerivateX(w, projection, wx, width, wy/height);
378	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
379	float dvdy	= triDerivateY(v, projection, wy, height, wx/width);
380	float dwdy	= triDerivateY(w, projection, wy, height, wx/width);
381
382	return computeLodFromDerivates(mode, dudx, dvdx, dwdx, dudy, dvdy, dwdy);
383}
384
385static inline tcu::Vec4 execSample (const tcu::Texture1DView& src, const ReferenceParams& params, float s, float lod)
386{
387	if (params.samplerType == SAMPLERTYPE_SHADOW)
388		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, lod), 0.0, 0.0, 1.0f);
389	else
390		return src.sample(params.sampler, s, lod);
391}
392
393static inline tcu::Vec4 execSample (const tcu::Texture2DView& src, const ReferenceParams& params, float s, float t, float lod)
394{
395	if (params.samplerType == SAMPLERTYPE_SHADOW)
396		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, lod), 0.0, 0.0, 1.0f);
397	else
398		return src.sample(params.sampler, s, t, lod);
399}
400
401static inline tcu::Vec4 execSample (const tcu::TextureCubeView& src, const ReferenceParams& params, float s, float t, float r, float lod)
402{
403	if (params.samplerType == SAMPLERTYPE_SHADOW)
404		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, lod), 0.0, 0.0, 1.0f);
405	else
406		return src.sample(params.sampler, s, t, r, lod);
407}
408
409static inline tcu::Vec4 execSample (const tcu::Texture2DArrayView& src, const ReferenceParams& params, float s, float t, float r, float lod)
410{
411	if (params.samplerType == SAMPLERTYPE_SHADOW)
412		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, lod), 0.0, 0.0, 1.0f);
413	else
414		return src.sample(params.sampler, s, t, r, lod);
415}
416
417static inline tcu::Vec4 execSample (const tcu::TextureCubeArrayView& src, const ReferenceParams& params, float s, float t, float r, float q, float lod)
418{
419	if (params.samplerType == SAMPLERTYPE_SHADOW)
420		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, q, lod), 0.0, 0.0, 1.0f);
421	else
422		return src.sample(params.sampler, s, t, r, q, lod);
423}
424
425static inline tcu::Vec4 execSample (const tcu::Texture1DArrayView& src, const ReferenceParams& params, float s, float t, float lod)
426{
427	if (params.samplerType == SAMPLERTYPE_SHADOW)
428		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, lod), 0.0, 0.0, 1.0f);
429	else
430		return src.sample(params.sampler, s, t, lod);
431}
432
433static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture1DView& src, const tcu::Vec4& sq, const ReferenceParams& params)
434{
435	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
436
437	tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
438	int			srcSize		= src.getWidth();
439
440	// Coordinates and lod per triangle.
441	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
442	float		triLod[2]	= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0]) + lodBias, params.minLod, params.maxLod),
443								de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1]) + lodBias, params.minLod, params.maxLod) };
444
445	for (int y = 0; y < dst.getHeight(); y++)
446	{
447		for (int x = 0; x < dst.getWidth(); x++)
448		{
449			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
450			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
451
452			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
453			float	triX	= triNdx ? 1.0f-xf : xf;
454			float	triY	= triNdx ? 1.0f-yf : yf;
455
456			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
457			float	lod		= triLod[triNdx];
458
459			dst.setPixel(execSample(src, params, s, lod) * params.colorScale + params.colorBias, x, y);
460		}
461	}
462}
463
464static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture2DView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
465{
466	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
467
468	tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
469	tcu::IVec2	srcSize		= tcu::IVec2(src.getWidth(), src.getHeight());
470
471	// Coordinates and lod per triangle.
472	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
473	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
474	float		triLod[2]	= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0]) + lodBias, params.minLod, params.maxLod),
475								de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1]) + lodBias, params.minLod, params.maxLod) };
476
477	for (int y = 0; y < dst.getHeight(); y++)
478	{
479		for (int x = 0; x < dst.getWidth(); x++)
480		{
481			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
482			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
483
484			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
485			float	triX	= triNdx ? 1.0f-xf : xf;
486			float	triY	= triNdx ? 1.0f-yf : yf;
487
488			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
489			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
490			float	lod		= triLod[triNdx];
491
492			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, x, y);
493		}
494	}
495}
496
497static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture1DView& src, const tcu::Vec4& sq, const ReferenceParams& params)
498{
499	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
500	float		dstW		= (float)dst.getWidth();
501	float		dstH		= (float)dst.getHeight();
502
503	tcu::Vec4	uq			= sq * (float)src.getWidth();
504
505	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
506	tcu::Vec3	triU[2]		= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
507	tcu::Vec3	triW[2]		= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
508
509	for (int py = 0; py < dst.getHeight(); py++)
510	{
511		for (int px = 0; px < dst.getWidth(); px++)
512		{
513			float	wx		= (float)px + 0.5f;
514			float	wy		= (float)py + 0.5f;
515			float	nx		= wx / dstW;
516			float	ny		= wy / dstH;
517
518			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
519			float	triWx	= triNdx ? dstW - wx : wx;
520			float	triWy	= triNdx ? dstH - wy : wy;
521			float	triNx	= triNdx ? 1.0f - nx : nx;
522			float	triNy	= triNdx ? 1.0f - ny : ny;
523
524			float	s		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
525			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triW[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
526							+ lodBias;
527
528			dst.setPixel(execSample(src, params, s, lod) * params.colorScale + params.colorBias, px, py);
529		}
530	}
531}
532
533static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture2DView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
534{
535	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
536	float		dstW		= (float)dst.getWidth();
537	float		dstH		= (float)dst.getHeight();
538
539	tcu::Vec4	uq			= sq * (float)src.getWidth();
540	tcu::Vec4	vq			= tq * (float)src.getHeight();
541
542	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
543	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
544	tcu::Vec3	triU[2]		= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
545	tcu::Vec3	triV[2]		= { vq.swizzle(0, 1, 2), vq.swizzle(3, 2, 1) };
546	tcu::Vec3	triW[2]		= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
547
548	for (int py = 0; py < dst.getHeight(); py++)
549	{
550		for (int px = 0; px < dst.getWidth(); px++)
551		{
552			float	wx		= (float)px + 0.5f;
553			float	wy		= (float)py + 0.5f;
554			float	nx		= wx / dstW;
555			float	ny		= wy / dstH;
556
557			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
558			float	triWx	= triNdx ? dstW - wx : wx;
559			float	triWy	= triNdx ? dstH - wy : wy;
560			float	triNx	= triNdx ? 1.0f - nx : nx;
561			float	triNy	= triNdx ? 1.0f - ny : ny;
562
563			float	s		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
564			float	t		= projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy);
565			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triV[triNdx], triW[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
566							+ lodBias;
567
568			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, px, py);
569		}
570	}
571}
572
573void sampleTexture (const SurfaceAccess& dst, const tcu::Texture2DView& src, const float* texCoord, const ReferenceParams& params)
574{
575	const tcu::Texture2DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
576	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
577	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
578
579	if (params.flags & ReferenceParams::PROJECTED)
580		sampleTextureProjected(dst, view, sq, tq, params);
581	else
582		sampleTextureNonProjected(dst, view, sq, tq, params);
583}
584
585void sampleTexture (const SurfaceAccess& dst, const tcu::Texture1DView& src, const float* texCoord, const ReferenceParams& params)
586{
587	const tcu::Texture1DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
588	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
589
590	if (params.flags & ReferenceParams::PROJECTED)
591		sampleTextureProjected(dst, view, sq, params);
592	else
593		sampleTextureNonProjected(dst, view, sq, params);
594}
595
596static float computeCubeLodFromDerivates (LodMode lodMode, const tcu::Vec3& coord, const tcu::Vec3& coordDx, const tcu::Vec3& coordDy, const int faceSize)
597{
598	const tcu::CubeFace	face	= tcu::selectCubeFace(coord);
599	int					maNdx	= 0;
600	int					sNdx	= 0;
601	int					tNdx	= 0;
602
603	// \note Derivate signs don't matter when computing lod
604	switch (face)
605	{
606		case tcu::CUBEFACE_NEGATIVE_X:
607		case tcu::CUBEFACE_POSITIVE_X: maNdx = 0; sNdx = 2; tNdx = 1; break;
608		case tcu::CUBEFACE_NEGATIVE_Y:
609		case tcu::CUBEFACE_POSITIVE_Y: maNdx = 1; sNdx = 0; tNdx = 2; break;
610		case tcu::CUBEFACE_NEGATIVE_Z:
611		case tcu::CUBEFACE_POSITIVE_Z: maNdx = 2; sNdx = 0; tNdx = 1; break;
612		default:
613			DE_ASSERT(DE_FALSE);
614	}
615
616	{
617		const float		sc		= coord[sNdx];
618		const float		tc		= coord[tNdx];
619		const float		ma		= de::abs(coord[maNdx]);
620		const float		scdx	= coordDx[sNdx];
621		const float		tcdx	= coordDx[tNdx];
622		const float		madx	= de::abs(coordDx[maNdx]);
623		const float		scdy	= coordDy[sNdx];
624		const float		tcdy	= coordDy[tNdx];
625		const float		mady	= de::abs(coordDy[maNdx]);
626		const float		dudx	= float(faceSize) * 0.5f * (scdx*ma - sc*madx) / (ma*ma);
627		const float		dvdx	= float(faceSize) * 0.5f * (tcdx*ma - tc*madx) / (ma*ma);
628		const float		dudy	= float(faceSize) * 0.5f * (scdy*ma - sc*mady) / (ma*ma);
629		const float		dvdy	= float(faceSize) * 0.5f * (tcdy*ma - tc*mady) / (ma*ma);
630
631		return computeLodFromDerivates(lodMode, dudx, dvdx, dudy, dvdy);
632	}
633}
634
635static void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
636{
637	const tcu::IVec2	dstSize			= tcu::IVec2(dst.getWidth(), dst.getHeight());
638	const float			dstW			= float(dstSize.x());
639	const float			dstH			= float(dstSize.y());
640	const int			srcSize			= src.getSize();
641
642	// Coordinates per triangle.
643	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
644	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
645	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
646	const tcu::Vec3		triW[2]			= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
647
648	const float			lodBias			((params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f);
649
650	for (int py = 0; py < dst.getHeight(); py++)
651	{
652		for (int px = 0; px < dst.getWidth(); px++)
653		{
654			const float		wx		= (float)px + 0.5f;
655			const float		wy		= (float)py + 0.5f;
656			const float		nx		= wx / dstW;
657			const float		ny		= wy / dstH;
658
659			const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
660			const float		triNx	= triNdx ? 1.0f - nx : nx;
661			const float		triNy	= triNdx ? 1.0f - ny : ny;
662
663			const tcu::Vec3	coord		(triangleInterpolate(triS[triNdx], triNx, triNy),
664										 triangleInterpolate(triT[triNdx], triNx, triNy),
665										 triangleInterpolate(triR[triNdx], triNx, triNy));
666			const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
667										 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
668										 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
669			const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
670										 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
671										 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
672
673			const float		lod			= de::clamp(computeCubeLodFromDerivates(params.lodMode, coord, coordDx, coordDy, srcSize) + lodBias, params.minLod, params.maxLod);
674
675			dst.setPixel(execSample(src, params, coord.x(), coord.y(), coord.z(), lod) * params.colorScale + params.colorBias, px, py);
676		}
677	}
678}
679
680void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeView& src, const float* texCoord, const ReferenceParams& params)
681{
682	const tcu::TextureCubeView	view	= getSubView(src, params.baseLevel, params.maxLevel);
683	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
684	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
685	const tcu::Vec4				rq		= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
686
687	return sampleTexture(dst, view, sq, tq, rq, params);
688}
689
690// \todo [2013-07-17 pyry] Remove this!
691void sampleTextureMultiFace (const SurfaceAccess& dst, const tcu::TextureCubeView& src, const float* texCoord, const ReferenceParams& params)
692{
693	return sampleTexture(dst, src, texCoord, params);
694}
695
696static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture2DArrayView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
697{
698	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
699
700	tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
701	tcu::IVec2	srcSize		= tcu::IVec2(src.getWidth(), src.getHeight());
702
703	// Coordinates and lod per triangle.
704	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
705	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
706	tcu::Vec3	triR[2]		= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
707	float		triLod[2]	= { computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0]) + lodBias,
708								computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1]) + lodBias};
709
710	for (int y = 0; y < dst.getHeight(); y++)
711	{
712		for (int x = 0; x < dst.getWidth(); x++)
713		{
714			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
715			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
716
717			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
718			float	triX	= triNdx ? 1.0f-xf : xf;
719			float	triY	= triNdx ? 1.0f-yf : yf;
720
721			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
722			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
723			float	r		= triangleInterpolate(triR[triNdx].x(), triR[triNdx].y(), triR[triNdx].z(), triX, triY);
724			float	lod		= triLod[triNdx];
725
726			dst.setPixel(execSample(src, params, s, t, r, lod) * params.colorScale + params.colorBias, x, y);
727		}
728	}
729}
730
731void sampleTexture (const SurfaceAccess& dst, const tcu::Texture2DArrayView& src, const float* texCoord, const ReferenceParams& params)
732{
733	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
734	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
735	tcu::Vec4 rq = tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
736
737	DE_ASSERT(!(params.flags & ReferenceParams::PROJECTED)); // \todo [2012-02-17 pyry] Support projected lookups.
738	sampleTextureNonProjected(dst, src, sq, tq, rq, params);
739}
740
741static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture1DArrayView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
742{
743	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
744
745	tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
746	deInt32		srcSize		= src.getWidth();
747
748	// Coordinates and lod per triangle.
749	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
750	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
751	float		triLod[2]	= { computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0]) + lodBias,
752								computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1]) + lodBias};
753
754	for (int y = 0; y < dst.getHeight(); y++)
755	{
756		for (int x = 0; x < dst.getWidth(); x++)
757		{
758			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
759			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
760
761			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
762			float	triX	= triNdx ? 1.0f-xf : xf;
763			float	triY	= triNdx ? 1.0f-yf : yf;
764
765			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
766			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
767			float	lod		= triLod[triNdx];
768
769			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, x, y);
770		}
771	}
772}
773
774void sampleTexture (const SurfaceAccess& dst, const tcu::Texture1DArrayView& src, const float* texCoord, const ReferenceParams& params)
775{
776	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
777	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
778
779	DE_ASSERT(!(params.flags & ReferenceParams::PROJECTED)); // \todo [2014-06-09 mika] Support projected lookups.
780	sampleTextureNonProjected(dst, src, sq, tq, params);
781}
782
783static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture3DView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
784{
785	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
786
787	tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
788	tcu::IVec3	srcSize		= tcu::IVec3(src.getWidth(), src.getHeight(), src.getDepth());
789
790	// Coordinates and lod per triangle.
791	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
792	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
793	tcu::Vec3	triR[2]		= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
794	float		triLod[2]	= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0], triR[0]) + lodBias, params.minLod, params.maxLod),
795								de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1], triR[1]) + lodBias, params.minLod, params.maxLod) };
796
797	for (int y = 0; y < dst.getHeight(); y++)
798	{
799		for (int x = 0; x < dst.getWidth(); x++)
800		{
801			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
802			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
803
804			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
805			float	triX	= triNdx ? 1.0f-xf : xf;
806			float	triY	= triNdx ? 1.0f-yf : yf;
807
808			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
809			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
810			float	r		= triangleInterpolate(triR[triNdx].x(), triR[triNdx].y(), triR[triNdx].z(), triX, triY);
811			float	lod		= triLod[triNdx];
812
813			dst.setPixel(src.sample(params.sampler, s, t, r, lod) * params.colorScale + params.colorBias, x, y);
814		}
815	}
816}
817
818static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture3DView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
819{
820	float		lodBias		= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
821	float		dstW		= (float)dst.getWidth();
822	float		dstH		= (float)dst.getHeight();
823
824	tcu::Vec4	uq			= sq * (float)src.getWidth();
825	tcu::Vec4	vq			= tq * (float)src.getHeight();
826	tcu::Vec4	wq			= rq * (float)src.getDepth();
827
828	tcu::Vec3	triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
829	tcu::Vec3	triT[2]		= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
830	tcu::Vec3	triR[2]		= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
831	tcu::Vec3	triU[2]		= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
832	tcu::Vec3	triV[2]		= { vq.swizzle(0, 1, 2), vq.swizzle(3, 2, 1) };
833	tcu::Vec3	triW[2]		= { wq.swizzle(0, 1, 2), wq.swizzle(3, 2, 1) };
834	tcu::Vec3	triP[2]		= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
835
836	for (int py = 0; py < dst.getHeight(); py++)
837	{
838		for (int px = 0; px < dst.getWidth(); px++)
839		{
840			float	wx		= (float)px + 0.5f;
841			float	wy		= (float)py + 0.5f;
842			float	nx		= wx / dstW;
843			float	ny		= wy / dstH;
844
845			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
846			float	triWx	= triNdx ? dstW - wx : wx;
847			float	triWy	= triNdx ? dstH - wy : wy;
848			float	triNx	= triNdx ? 1.0f - nx : nx;
849			float	triNy	= triNdx ? 1.0f - ny : ny;
850
851			float	s		= projectedTriInterpolate(triS[triNdx], triP[triNdx], triNx, triNy);
852			float	t		= projectedTriInterpolate(triT[triNdx], triP[triNdx], triNx, triNy);
853			float	r		= projectedTriInterpolate(triR[triNdx], triP[triNdx], triNx, triNy);
854			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triV[triNdx], triW[triNdx], triP[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
855							+ lodBias;
856
857			dst.setPixel(src.sample(params.sampler, s, t, r, lod) * params.colorScale + params.colorBias, px, py);
858		}
859	}
860}
861
862void sampleTexture (const SurfaceAccess& dst, const tcu::Texture3DView& src, const float* texCoord, const ReferenceParams& params)
863{
864	const tcu::Texture3DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
865	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
866	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
867	const tcu::Vec4				rq		= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
868
869	if (params.flags & ReferenceParams::PROJECTED)
870		sampleTextureProjected(dst, view, sq, tq, rq, params);
871	else
872		sampleTextureNonProjected(dst, view, sq, tq, rq, params);
873}
874
875static void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeArrayView& src, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const tcu::Vec4& qq, const ReferenceParams& params)
876{
877	const float		dstW	= (float)dst.getWidth();
878	const float		dstH	= (float)dst.getHeight();
879
880	// Coordinates per triangle.
881	tcu::Vec3		triS[2]	= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
882	tcu::Vec3		triT[2]	= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
883	tcu::Vec3		triR[2]	= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
884	tcu::Vec3		triQ[2]	= { qq.swizzle(0, 1, 2), qq.swizzle(3, 2, 1) };
885	const tcu::Vec3	triW[2]	= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
886
887	const float		lodBias	= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
888
889	for (int py = 0; py < dst.getHeight(); py++)
890	{
891		for (int px = 0; px < dst.getWidth(); px++)
892		{
893			const float		wx		= (float)px + 0.5f;
894			const float		wy		= (float)py + 0.5f;
895			const float		nx		= wx / dstW;
896			const float		ny		= wy / dstH;
897
898			const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
899			const float		triNx	= triNdx ? 1.0f - nx : nx;
900			const float		triNy	= triNdx ? 1.0f - ny : ny;
901
902			const tcu::Vec3	coord	(triangleInterpolate(triS[triNdx], triNx, triNy),
903									 triangleInterpolate(triT[triNdx], triNx, triNy),
904									 triangleInterpolate(triR[triNdx], triNx, triNy));
905
906			const float		coordQ	= triangleInterpolate(triQ[triNdx], triNx, triNy);
907
908			const tcu::Vec3	coordDx	(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
909									 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
910									 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
911			const tcu::Vec3	coordDy	(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
912									 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
913									 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
914
915			const float		lod		= de::clamp(computeCubeLodFromDerivates(params.lodMode, coord, coordDx, coordDy, src.getSize()) + lodBias, params.minLod, params.maxLod);
916
917			dst.setPixel(execSample(src, params, coord.x(), coord.y(), coord.z(), coordQ, lod) * params.colorScale + params.colorBias, px, py);
918		}
919	}
920}
921
922void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeArrayView& src, const float* texCoord, const ReferenceParams& params)
923{
924	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[4+0], texCoord[8+0], texCoord[12+0]);
925	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[4+1], texCoord[8+1], texCoord[12+1]);
926	tcu::Vec4 rq = tcu::Vec4(texCoord[0+2], texCoord[4+2], texCoord[8+2], texCoord[12+2]);
927	tcu::Vec4 qq = tcu::Vec4(texCoord[0+3], texCoord[4+3], texCoord[8+3], texCoord[12+3]);
928
929	sampleTexture(dst, src, sq, tq, rq, qq, params);
930}
931
932void fetchTexture (const SurfaceAccess& dst, const tcu::ConstPixelBufferAccess& src, const float* texCoord, const tcu::Vec4& colorScale, const tcu::Vec4& colorBias)
933{
934	const tcu::Vec4		sq			= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
935	const tcu::IVec2	dstSize		= tcu::IVec2(dst.getWidth(), dst.getHeight());
936	const tcu::Vec3		triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
937
938	for (int y = 0; y < dst.getHeight(); y++)
939	{
940		for (int x = 0; x < dst.getWidth(); x++)
941		{
942			const float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
943			const float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
944
945			const int	triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
946			const float	triX	= triNdx ? 1.0f-xf : xf;
947			const float	triY	= triNdx ? 1.0f-yf : yf;
948
949			const float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
950
951			dst.setPixel(src.getPixel((int)s, 0) * colorScale + colorBias, x, y);
952		}
953	}
954}
955
956void clear (const SurfaceAccess& dst, const tcu::Vec4& color)
957{
958	for (int y = 0; y < dst.getHeight(); y++)
959		for (int x = 0; x < dst.getWidth(); x++)
960			dst.setPixel(color, x, y);
961}
962
963bool compareImages (TestLog& log, const tcu::Surface& reference, const tcu::Surface& rendered, tcu::RGBA threshold)
964{
965	return tcu::pixelThresholdCompare(log, "Result", "Image comparison result", reference, rendered, threshold, tcu::COMPARE_LOG_RESULT);
966}
967
968bool compareImages (TestLog& log, const char* name, const char* desc, const tcu::Surface& reference, const tcu::Surface& rendered, tcu::RGBA threshold)
969{
970	return tcu::pixelThresholdCompare(log, name, desc, reference, rendered, threshold, tcu::COMPARE_LOG_RESULT);
971}
972
973int measureAccuracy (tcu::TestLog& log, const tcu::Surface& reference, const tcu::Surface& rendered, int bestScoreDiff, int worstScoreDiff)
974{
975	return tcu::measurePixelDiffAccuracy(log, "Result", "Image comparison result", reference, rendered, bestScoreDiff, worstScoreDiff, tcu::COMPARE_LOG_EVERYTHING);
976}
977
978inline int rangeDiff (int x, int a, int b)
979{
980	if (x < a)
981		return a-x;
982	else if (x > b)
983		return x-b;
984	else
985		return 0;
986}
987
988inline tcu::RGBA rangeDiff (tcu::RGBA p, tcu::RGBA a, tcu::RGBA b)
989{
990	int rMin = de::min(a.getRed(),		b.getRed());
991	int rMax = de::max(a.getRed(),		b.getRed());
992	int gMin = de::min(a.getGreen(),	b.getGreen());
993	int gMax = de::max(a.getGreen(),	b.getGreen());
994	int bMin = de::min(a.getBlue(),		b.getBlue());
995	int bMax = de::max(a.getBlue(),		b.getBlue());
996	int aMin = de::min(a.getAlpha(),	b.getAlpha());
997	int aMax = de::max(a.getAlpha(),	b.getAlpha());
998
999	return tcu::RGBA(rangeDiff(p.getRed(),		rMin, rMax),
1000					 rangeDiff(p.getGreen(),	gMin, gMax),
1001					 rangeDiff(p.getBlue(),		bMin, bMax),
1002					 rangeDiff(p.getAlpha(),	aMin, aMax));
1003}
1004
1005inline bool rangeCompare (tcu::RGBA p, tcu::RGBA a, tcu::RGBA b, tcu::RGBA threshold)
1006{
1007	tcu::RGBA diff = rangeDiff(p, a, b);
1008	return diff.getRed()	<= threshold.getRed() &&
1009		   diff.getGreen()	<= threshold.getGreen() &&
1010		   diff.getBlue()	<= threshold.getBlue() &&
1011		   diff.getAlpha()	<= threshold.getAlpha();
1012}
1013
1014RandomViewport::RandomViewport (const tcu::RenderTarget& renderTarget, int preferredWidth, int preferredHeight, deUint32 seed)
1015	: x			(0)
1016	, y			(0)
1017	, width		(deMin32(preferredWidth, renderTarget.getWidth()))
1018	, height	(deMin32(preferredHeight, renderTarget.getHeight()))
1019{
1020	de::Random rnd(seed);
1021	x = rnd.getInt(0, renderTarget.getWidth()	- width);
1022	y = rnd.getInt(0, renderTarget.getHeight()	- height);
1023}
1024
1025ProgramLibrary::ProgramLibrary (const glu::RenderContext& context, tcu::TestContext& testCtx, glu::GLSLVersion glslVersion, glu::Precision texCoordPrecision)
1026	: m_context				(context)
1027	, m_testCtx				(testCtx)
1028	, m_glslVersion			(glslVersion)
1029	, m_texCoordPrecision	(texCoordPrecision)
1030{
1031}
1032
1033ProgramLibrary::~ProgramLibrary (void)
1034{
1035	clear();
1036}
1037
1038void ProgramLibrary::clear (void)
1039{
1040	for (map<Program, glu::ShaderProgram*>::iterator i = m_programs.begin(); i != m_programs.end(); i++)
1041	{
1042		delete i->second;
1043		i->second = DE_NULL;
1044	}
1045	m_programs.clear();
1046}
1047
1048glu::ShaderProgram* ProgramLibrary::getProgram (Program program)
1049{
1050	TestLog& log = m_testCtx.getLog();
1051
1052	if (m_programs.find(program) != m_programs.end())
1053		return m_programs[program]; // Return from cache.
1054
1055	static const char* vertShaderTemplate =
1056		"${VTX_HEADER}"
1057		"${VTX_IN} highp vec4 a_position;\n"
1058		"${VTX_IN} ${PRECISION} ${TEXCOORD_TYPE} a_texCoord;\n"
1059		"${VTX_OUT} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
1060		"\n"
1061		"void main (void)\n"
1062		"{\n"
1063		"	gl_Position = a_position;\n"
1064		"	v_texCoord = a_texCoord;\n"
1065		"}\n";
1066	static const char* fragShaderTemplate =
1067		"${FRAG_HEADER}"
1068		"${FRAG_IN} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
1069		"uniform ${PRECISION} float u_bias;\n"
1070		"uniform ${PRECISION} float u_ref;\n"
1071		"uniform ${PRECISION} vec4 u_colorScale;\n"
1072		"uniform ${PRECISION} vec4 u_colorBias;\n"
1073		"uniform ${PRECISION} ${SAMPLER_TYPE} u_sampler;\n"
1074		"\n"
1075		"void main (void)\n"
1076		"{\n"
1077		"	${FRAG_COLOR} = ${LOOKUP} * u_colorScale + u_colorBias;\n"
1078		"}\n";
1079
1080	map<string, string> params;
1081
1082	bool	isCube		= de::inRange<int>(program, PROGRAM_CUBE_FLOAT, PROGRAM_CUBE_SHADOW_BIAS);
1083	bool	isArray		= de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW)
1084							|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW);
1085
1086	bool	is1D		= de::inRange<int>(program, PROGRAM_1D_FLOAT, PROGRAM_1D_UINT_BIAS)
1087							|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW)
1088							|| de::inRange<int>(program, PROGRAM_BUFFER_FLOAT, PROGRAM_BUFFER_UINT);
1089
1090	bool	is2D		= de::inRange<int>(program, PROGRAM_2D_FLOAT, PROGRAM_2D_UINT_BIAS)
1091							|| de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW);
1092
1093	bool	is3D		= de::inRange<int>(program, PROGRAM_3D_FLOAT, PROGRAM_3D_UINT_BIAS);
1094	bool	isCubeArray	= de::inRange<int>(program, PROGRAM_CUBE_ARRAY_FLOAT, PROGRAM_CUBE_ARRAY_SHADOW);
1095	bool	isBuffer	= de::inRange<int>(program, PROGRAM_BUFFER_FLOAT, PROGRAM_BUFFER_UINT);
1096
1097	if (m_glslVersion == glu::GLSL_VERSION_100_ES)
1098	{
1099		params["FRAG_HEADER"]	= "";
1100		params["VTX_HEADER"]	= "";
1101		params["VTX_IN"]		= "attribute";
1102		params["VTX_OUT"]		= "varying";
1103		params["FRAG_IN"]		= "varying";
1104		params["FRAG_COLOR"]	= "gl_FragColor";
1105	}
1106	else if (m_glslVersion == glu::GLSL_VERSION_300_ES || m_glslVersion == glu::GLSL_VERSION_310_ES || m_glslVersion == glu::GLSL_VERSION_330)
1107	{
1108		const string	version	= glu::getGLSLVersionDeclaration(m_glslVersion);
1109		const char*		ext		= DE_NULL;
1110
1111		if (isCubeArray && glu::glslVersionIsES(m_glslVersion))
1112			ext = "GL_EXT_texture_cube_map_array";
1113		else if (isBuffer && glu::glslVersionIsES(m_glslVersion))
1114			ext = "GL_EXT_texture_buffer";
1115
1116		params["FRAG_HEADER"]	= version + (ext ? string("\n#extension ") + ext + " : require" : string()) + "\nlayout(location = 0) out mediump vec4 dEQP_FragColor;\n";
1117		params["VTX_HEADER"]	= version + "\n";
1118		params["VTX_IN"]		= "in";
1119		params["VTX_OUT"]		= "out";
1120		params["FRAG_IN"]		= "in";
1121		params["FRAG_COLOR"]	= "dEQP_FragColor";
1122	}
1123	else
1124		DE_ASSERT(!"Unsupported version");
1125
1126	params["PRECISION"]		= glu::getPrecisionName(m_texCoordPrecision);
1127
1128	if (isCubeArray)
1129		params["TEXCOORD_TYPE"]	= "vec4";
1130	else if (isCube || (is2D && isArray) || is3D)
1131		params["TEXCOORD_TYPE"]	= "vec3";
1132	else if ((is1D && isArray) || is2D)
1133		params["TEXCOORD_TYPE"]	= "vec2";
1134	else if (is1D)
1135		params["TEXCOORD_TYPE"]	= "float";
1136	else
1137		DE_ASSERT(DE_FALSE);
1138
1139	const char*	sampler	= DE_NULL;
1140	const char*	lookup	= DE_NULL;
1141
1142	if (m_glslVersion == glu::GLSL_VERSION_300_ES || m_glslVersion == glu::GLSL_VERSION_310_ES || m_glslVersion == glu::GLSL_VERSION_330)
1143	{
1144		switch (program)
1145		{
1146			case PROGRAM_2D_FLOAT:			sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord)";												break;
1147			case PROGRAM_2D_INT:			sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1148			case PROGRAM_2D_UINT:			sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1149			case PROGRAM_2D_SHADOW:			sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1150			case PROGRAM_2D_FLOAT_BIAS:		sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
1151			case PROGRAM_2D_INT_BIAS:		sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1152			case PROGRAM_2D_UINT_BIAS:		sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1153			case PROGRAM_2D_SHADOW_BIAS:	sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
1154			case PROGRAM_1D_FLOAT:			sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord)";												break;
1155			case PROGRAM_1D_INT:			sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1156			case PROGRAM_1D_UINT:			sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1157			case PROGRAM_1D_SHADOW:			sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1158			case PROGRAM_1D_FLOAT_BIAS:		sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
1159			case PROGRAM_1D_INT_BIAS:		sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1160			case PROGRAM_1D_UINT_BIAS:		sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1161			case PROGRAM_1D_SHADOW_BIAS:	sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
1162			case PROGRAM_CUBE_FLOAT:		sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord)";												break;
1163			case PROGRAM_CUBE_INT:			sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1164			case PROGRAM_CUBE_UINT:			sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1165			case PROGRAM_CUBE_SHADOW:		sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1166			case PROGRAM_CUBE_FLOAT_BIAS:	sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
1167			case PROGRAM_CUBE_INT_BIAS:		sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1168			case PROGRAM_CUBE_UINT_BIAS:	sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1169			case PROGRAM_CUBE_SHADOW_BIAS:	sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
1170			case PROGRAM_2D_ARRAY_FLOAT:	sampler = "sampler2DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
1171			case PROGRAM_2D_ARRAY_INT:		sampler = "isampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1172			case PROGRAM_2D_ARRAY_UINT:		sampler = "usampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1173			case PROGRAM_2D_ARRAY_SHADOW:	sampler = "sampler2DArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1174			case PROGRAM_3D_FLOAT:			sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord)";												break;
1175			case PROGRAM_3D_INT:			sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1176			case PROGRAM_3D_UINT:			sampler =" usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1177			case PROGRAM_3D_FLOAT_BIAS:		sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
1178			case PROGRAM_3D_INT_BIAS:		sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1179			case PROGRAM_3D_UINT_BIAS:		sampler =" usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
1180			case PROGRAM_CUBE_ARRAY_FLOAT:	sampler = "samplerCubeArray";		lookup = "texture(u_sampler, v_texCoord)";												break;
1181			case PROGRAM_CUBE_ARRAY_INT:	sampler = "isamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1182			case PROGRAM_CUBE_ARRAY_UINT:	sampler = "usamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1183			case PROGRAM_CUBE_ARRAY_SHADOW:	sampler = "samplerCubeArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1184			case PROGRAM_1D_ARRAY_FLOAT:	sampler = "sampler1DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
1185			case PROGRAM_1D_ARRAY_INT:		sampler = "isampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1186			case PROGRAM_1D_ARRAY_UINT:		sampler = "usampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
1187			case PROGRAM_1D_ARRAY_SHADOW:	sampler = "sampler1DArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
1188			case PROGRAM_BUFFER_FLOAT:		sampler = "samplerBuffer";			lookup = "texelFetch(u_sampler, int(v_texCoord))";										break;
1189			case PROGRAM_BUFFER_INT:		sampler = "isamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
1190			case PROGRAM_BUFFER_UINT:		sampler = "usamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
1191			default:
1192				DE_ASSERT(false);
1193		}
1194	}
1195	else if (m_glslVersion == glu::GLSL_VERSION_100_ES)
1196	{
1197		sampler = isCube ? "samplerCube" : "sampler2D";
1198
1199		switch (program)
1200		{
1201			case PROGRAM_2D_FLOAT:			lookup = "texture2D(u_sampler, v_texCoord)";			break;
1202			case PROGRAM_2D_FLOAT_BIAS:		lookup = "texture2D(u_sampler, v_texCoord, u_bias)";	break;
1203			case PROGRAM_CUBE_FLOAT:		lookup = "textureCube(u_sampler, v_texCoord)";			break;
1204			case PROGRAM_CUBE_FLOAT_BIAS:	lookup = "textureCube(u_sampler, v_texCoord, u_bias)";	break;
1205			default:
1206				DE_ASSERT(false);
1207		}
1208	}
1209	else
1210		DE_ASSERT(!"Unsupported version");
1211
1212	params["SAMPLER_TYPE"]	= sampler;
1213	params["LOOKUP"]		= lookup;
1214
1215	std::string vertSrc = tcu::StringTemplate(vertShaderTemplate).specialize(params);
1216	std::string fragSrc = tcu::StringTemplate(fragShaderTemplate).specialize(params);
1217
1218	glu::ShaderProgram* progObj = new glu::ShaderProgram(m_context, glu::makeVtxFragSources(vertSrc, fragSrc));
1219	if (!progObj->isOk())
1220	{
1221		log << *progObj;
1222		delete progObj;
1223		TCU_FAIL("Failed to compile shader program");
1224	}
1225
1226	try
1227	{
1228		m_programs[program] = progObj;
1229	}
1230	catch (...)
1231	{
1232		delete progObj;
1233		throw;
1234	}
1235
1236	return progObj;
1237}
1238
1239TextureRenderer::TextureRenderer (const glu::RenderContext& context, tcu::TestContext& testCtx, glu::GLSLVersion glslVersion, glu::Precision texCoordPrecision)
1240	: m_renderCtx		(context)
1241	, m_testCtx			(testCtx)
1242	, m_programLibrary	(context, testCtx, glslVersion, texCoordPrecision)
1243{
1244}
1245
1246TextureRenderer::~TextureRenderer (void)
1247{
1248	clear();
1249}
1250
1251void TextureRenderer::clear (void)
1252{
1253	m_programLibrary.clear();
1254}
1255
1256void TextureRenderer::renderQuad (int texUnit, const float* texCoord, TextureType texType)
1257{
1258	renderQuad(texUnit, texCoord, RenderParams(texType));
1259}
1260
1261void TextureRenderer::renderQuad (int texUnit, const float* texCoord, const RenderParams& params)
1262{
1263	const glw::Functions&	gl			= m_renderCtx.getFunctions();
1264	tcu::Vec4				wCoord		= params.flags & RenderParams::PROJECTED ? params.w : tcu::Vec4(1.0f);
1265	bool					useBias		= !!(params.flags & RenderParams::USE_BIAS);
1266	TestLog&				log			= m_testCtx.getLog();
1267	bool					logUniforms	= !!(params.flags & RenderParams::LOG_UNIFORMS);
1268
1269	// Render quad with texture.
1270	float position[] =
1271	{
1272		-1.0f*wCoord.x(), -1.0f*wCoord.x(), 0.0f, wCoord.x(),
1273		-1.0f*wCoord.y(), +1.0f*wCoord.y(), 0.0f, wCoord.y(),
1274		+1.0f*wCoord.z(), -1.0f*wCoord.z(), 0.0f, wCoord.z(),
1275		+1.0f*wCoord.w(), +1.0f*wCoord.w(), 0.0f, wCoord.w()
1276	};
1277	static const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
1278
1279	Program progSpec	= PROGRAM_LAST;
1280	int		numComps	= 0;
1281	if (params.texType == TEXTURETYPE_2D)
1282	{
1283		numComps = 2;
1284
1285		switch (params.samplerType)
1286		{
1287			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_2D_FLOAT_BIAS	: PROGRAM_2D_FLOAT;		break;
1288			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_2D_INT_BIAS	: PROGRAM_2D_INT;		break;
1289			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_2D_UINT_BIAS	: PROGRAM_2D_UINT;		break;
1290			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_2D_SHADOW_BIAS	: PROGRAM_2D_SHADOW;	break;
1291			default:					DE_ASSERT(false);
1292		}
1293	}
1294	else if (params.texType == TEXTURETYPE_1D)
1295	{
1296		numComps = 1;
1297
1298		switch (params.samplerType)
1299		{
1300			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_1D_FLOAT_BIAS	: PROGRAM_1D_FLOAT;		break;
1301			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_1D_INT_BIAS	: PROGRAM_1D_INT;		break;
1302			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_1D_UINT_BIAS	: PROGRAM_1D_UINT;		break;
1303			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_1D_SHADOW_BIAS	: PROGRAM_1D_SHADOW;	break;
1304			default:					DE_ASSERT(false);
1305		}
1306	}
1307	else if (params.texType == TEXTURETYPE_CUBE)
1308	{
1309		numComps = 3;
1310
1311		switch (params.samplerType)
1312		{
1313			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_CUBE_FLOAT_BIAS	: PROGRAM_CUBE_FLOAT;	break;
1314			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_CUBE_INT_BIAS		: PROGRAM_CUBE_INT;		break;
1315			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_CUBE_UINT_BIAS		: PROGRAM_CUBE_UINT;	break;
1316			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_CUBE_SHADOW_BIAS	: PROGRAM_CUBE_SHADOW;	break;
1317			default:					DE_ASSERT(false);
1318		}
1319	}
1320	else if (params.texType == TEXTURETYPE_3D)
1321	{
1322		numComps = 3;
1323
1324		switch (params.samplerType)
1325		{
1326			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_3D_FLOAT_BIAS	: PROGRAM_3D_FLOAT;		break;
1327			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_3D_INT_BIAS	: PROGRAM_3D_INT;		break;
1328			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_3D_UINT_BIAS	: PROGRAM_3D_UINT;		break;
1329			default:					DE_ASSERT(false);
1330		}
1331	}
1332	else if (params.texType == TEXTURETYPE_2D_ARRAY)
1333	{
1334		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
1335
1336		numComps = 3;
1337
1338		switch (params.samplerType)
1339		{
1340			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_2D_ARRAY_FLOAT;	break;
1341			case SAMPLERTYPE_INT:		progSpec = PROGRAM_2D_ARRAY_INT;	break;
1342			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_2D_ARRAY_UINT;	break;
1343			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_2D_ARRAY_SHADOW;	break;
1344			default:					DE_ASSERT(false);
1345		}
1346	}
1347	else if (params.texType == TEXTURETYPE_CUBE_ARRAY)
1348	{
1349		DE_ASSERT(!useBias);
1350
1351		numComps = 4;
1352
1353		switch (params.samplerType)
1354		{
1355			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_CUBE_ARRAY_FLOAT;	break;
1356			case SAMPLERTYPE_INT:		progSpec = PROGRAM_CUBE_ARRAY_INT;		break;
1357			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_CUBE_ARRAY_UINT;		break;
1358			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_CUBE_ARRAY_SHADOW;	break;
1359			default:					DE_ASSERT(false);
1360		}
1361	}
1362	else if (params.texType == TEXTURETYPE_1D_ARRAY)
1363	{
1364		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
1365
1366		numComps = 2;
1367
1368		switch (params.samplerType)
1369		{
1370			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_1D_ARRAY_FLOAT;	break;
1371			case SAMPLERTYPE_INT:		progSpec = PROGRAM_1D_ARRAY_INT;	break;
1372			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_1D_ARRAY_UINT;	break;
1373			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_1D_ARRAY_SHADOW;	break;
1374			default:					DE_ASSERT(false);
1375		}
1376	}
1377	else if (params.texType == TEXTURETYPE_BUFFER)
1378	{
1379		numComps = 1;
1380
1381		switch (params.samplerType)
1382		{
1383			case SAMPLERTYPE_FETCH_FLOAT:	progSpec = PROGRAM_BUFFER_FLOAT;	break;
1384			case SAMPLERTYPE_FETCH_INT:		progSpec = PROGRAM_BUFFER_INT;		break;
1385			case SAMPLERTYPE_FETCH_UINT:	progSpec = PROGRAM_BUFFER_UINT;		break;
1386			default:						DE_ASSERT(false);
1387		}
1388	}
1389	else
1390		DE_ASSERT(DE_FALSE);
1391
1392	glu::ShaderProgram* program = m_programLibrary.getProgram(progSpec);
1393
1394	// \todo [2012-09-26 pyry] Move to ProgramLibrary and log unique programs only(?)
1395	if (params.flags & RenderParams::LOG_PROGRAMS)
1396		log << *program;
1397
1398	GLU_EXPECT_NO_ERROR(gl.getError(), "Set vertex attributes");
1399
1400	// Program and uniforms.
1401	deUint32 prog = program->getProgram();
1402	gl.useProgram(prog);
1403
1404	gl.uniform1i(gl.getUniformLocation(prog, "u_sampler"), texUnit);
1405	if (logUniforms)
1406		log << TestLog::Message << "u_sampler = " << texUnit << TestLog::EndMessage;
1407
1408	if (useBias)
1409	{
1410		gl.uniform1f(gl.getUniformLocation(prog, "u_bias"), params.bias);
1411		if (logUniforms)
1412			log << TestLog::Message << "u_bias = " << params.bias << TestLog::EndMessage;
1413	}
1414
1415	if (params.samplerType == SAMPLERTYPE_SHADOW)
1416	{
1417		gl.uniform1f(gl.getUniformLocation(prog, "u_ref"), params.ref);
1418		if (logUniforms)
1419			log << TestLog::Message << "u_ref = " << params.ref << TestLog::EndMessage;
1420	}
1421
1422	gl.uniform4fv(gl.getUniformLocation(prog, "u_colorScale"),	1, params.colorScale.getPtr());
1423	gl.uniform4fv(gl.getUniformLocation(prog, "u_colorBias"),	1, params.colorBias.getPtr());
1424
1425	if (logUniforms)
1426	{
1427		log << TestLog::Message << "u_colorScale = " << params.colorScale << TestLog::EndMessage;
1428		log << TestLog::Message << "u_colorBias = " << params.colorBias << TestLog::EndMessage;
1429	}
1430
1431	GLU_EXPECT_NO_ERROR(gl.getError(), "Set program state");
1432
1433	{
1434		const glu::VertexArrayBinding vertexArrays[] =
1435		{
1436			glu::va::Float("a_position",	4,			4, 0, &position[0]),
1437			glu::va::Float("a_texCoord",	numComps,	4, 0, texCoord)
1438		};
1439		glu::draw(m_renderCtx, prog, DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0],
1440				  glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
1441	}
1442}
1443
1444void computeQuadTexCoord1D (std::vector<float>& dst, float left, float right)
1445{
1446	dst.resize(4);
1447
1448	dst[0] = left;
1449	dst[1] = left;
1450	dst[2] = right;
1451	dst[3] = right;
1452}
1453
1454void computeQuadTexCoord1DArray (std::vector<float>& dst, int layerNdx, float left, float right)
1455{
1456	dst.resize(4*2);
1457
1458	dst[0] = left;	dst[1] = (float)layerNdx;
1459	dst[2] = left;	dst[3] = (float)layerNdx;
1460	dst[4] = right;	dst[5] = (float)layerNdx;
1461	dst[6] = right;	dst[7] = (float)layerNdx;
1462}
1463
1464void computeQuadTexCoord2D (std::vector<float>& dst, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
1465{
1466	dst.resize(4*2);
1467
1468	dst[0] = bottomLeft.x();	dst[1] = bottomLeft.y();
1469	dst[2] = bottomLeft.x();	dst[3] = topRight.y();
1470	dst[4] = topRight.x();		dst[5] = bottomLeft.y();
1471	dst[6] = topRight.x();		dst[7] = topRight.y();
1472}
1473
1474void computeQuadTexCoord2DArray (std::vector<float>& dst, int layerNdx, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
1475{
1476	dst.resize(4*3);
1477
1478	dst[0] = bottomLeft.x();	dst[ 1] = bottomLeft.y();	dst[ 2] = (float)layerNdx;
1479	dst[3] = bottomLeft.x();	dst[ 4] = topRight.y();		dst[ 5] = (float)layerNdx;
1480	dst[6] = topRight.x();		dst[ 7] = bottomLeft.y();	dst[ 8] = (float)layerNdx;
1481	dst[9] = topRight.x();		dst[10] = topRight.y();		dst[11] = (float)layerNdx;
1482}
1483
1484void computeQuadTexCoord3D (std::vector<float>& dst, const tcu::Vec3& p0, const tcu::Vec3& p1, const tcu::IVec3& dirSwz)
1485{
1486	tcu::Vec3 f0 = tcu::Vec3(0.0f, 0.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
1487	tcu::Vec3 f1 = tcu::Vec3(0.0f, 1.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
1488	tcu::Vec3 f2 = tcu::Vec3(1.0f, 0.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
1489	tcu::Vec3 f3 = tcu::Vec3(1.0f, 1.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
1490
1491	tcu::Vec3 v0 = p0 + (p1-p0)*f0;
1492	tcu::Vec3 v1 = p0 + (p1-p0)*f1;
1493	tcu::Vec3 v2 = p0 + (p1-p0)*f2;
1494	tcu::Vec3 v3 = p0 + (p1-p0)*f3;
1495
1496	dst.resize(4*3);
1497
1498	dst[0] = v0.x(); dst[ 1] = v0.y(); dst[ 2] = v0.z();
1499	dst[3] = v1.x(); dst[ 4] = v1.y(); dst[ 5] = v1.z();
1500	dst[6] = v2.x(); dst[ 7] = v2.y(); dst[ 8] = v2.z();
1501	dst[9] = v3.x(); dst[10] = v3.y(); dst[11] = v3.z();
1502}
1503
1504void computeQuadTexCoordCube (std::vector<float>& dst, tcu::CubeFace face)
1505{
1506	static const float texCoordNegX[] =
1507	{
1508		-1.0f,  1.0f, -1.0f,
1509		-1.0f, -1.0f, -1.0f,
1510		-1.0f,  1.0f,  1.0f,
1511		-1.0f, -1.0f,  1.0f
1512	};
1513	static const float texCoordPosX[] =
1514	{
1515		+1.0f,  1.0f,  1.0f,
1516		+1.0f, -1.0f,  1.0f,
1517		+1.0f,  1.0f, -1.0f,
1518		+1.0f, -1.0f, -1.0f
1519	};
1520	static const float texCoordNegY[] =
1521	{
1522		-1.0f, -1.0f,  1.0f,
1523		-1.0f, -1.0f, -1.0f,
1524		 1.0f, -1.0f,  1.0f,
1525		 1.0f, -1.0f, -1.0f
1526	};
1527	static const float texCoordPosY[] =
1528	{
1529		-1.0f, +1.0f, -1.0f,
1530		-1.0f, +1.0f,  1.0f,
1531		 1.0f, +1.0f, -1.0f,
1532		 1.0f, +1.0f,  1.0f
1533	};
1534	static const float texCoordNegZ[] =
1535	{
1536		 1.0f,  1.0f, -1.0f,
1537		 1.0f, -1.0f, -1.0f,
1538		-1.0f,  1.0f, -1.0f,
1539		-1.0f, -1.0f, -1.0f
1540	};
1541	static const float texCoordPosZ[] =
1542	{
1543		-1.0f,  1.0f, +1.0f,
1544		-1.0f, -1.0f, +1.0f,
1545		 1.0f,  1.0f, +1.0f,
1546		 1.0f, -1.0f, +1.0f
1547	};
1548
1549	const float*	texCoord		= DE_NULL;
1550	int				texCoordSize	= DE_LENGTH_OF_ARRAY(texCoordNegX);
1551
1552	switch (face)
1553	{
1554		case tcu::CUBEFACE_NEGATIVE_X: texCoord = texCoordNegX; break;
1555		case tcu::CUBEFACE_POSITIVE_X: texCoord = texCoordPosX; break;
1556		case tcu::CUBEFACE_NEGATIVE_Y: texCoord = texCoordNegY; break;
1557		case tcu::CUBEFACE_POSITIVE_Y: texCoord = texCoordPosY; break;
1558		case tcu::CUBEFACE_NEGATIVE_Z: texCoord = texCoordNegZ; break;
1559		case tcu::CUBEFACE_POSITIVE_Z: texCoord = texCoordPosZ; break;
1560		default:
1561			DE_ASSERT(DE_FALSE);
1562			return;
1563	}
1564
1565	dst.resize(texCoordSize);
1566	std::copy(texCoord, texCoord+texCoordSize, dst.begin());
1567}
1568
1569void computeQuadTexCoordCube (std::vector<float>& dst, tcu::CubeFace face, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
1570{
1571	int		sRow		= 0;
1572	int		tRow		= 0;
1573	int		mRow		= 0;
1574	float	sSign		= 1.0f;
1575	float	tSign		= 1.0f;
1576	float	mSign		= 1.0f;
1577
1578	switch (face)
1579	{
1580		case tcu::CUBEFACE_NEGATIVE_X: mRow = 0; sRow = 2; tRow = 1; mSign = -1.0f;				   tSign = -1.0f;	break;
1581		case tcu::CUBEFACE_POSITIVE_X: mRow = 0; sRow = 2; tRow = 1;				sSign = -1.0f; tSign = -1.0f;	break;
1582		case tcu::CUBEFACE_NEGATIVE_Y: mRow = 1; sRow = 0; tRow = 2; mSign = -1.0f;				   tSign = -1.0f;	break;
1583		case tcu::CUBEFACE_POSITIVE_Y: mRow = 1; sRow = 0; tRow = 2;												break;
1584		case tcu::CUBEFACE_NEGATIVE_Z: mRow = 2; sRow = 0; tRow = 1; mSign = -1.0f; sSign = -1.0f; tSign = -1.0f;	break;
1585		case tcu::CUBEFACE_POSITIVE_Z: mRow = 2; sRow = 0; tRow = 1;							   tSign = -1.0f;	break;
1586		default:
1587			DE_ASSERT(DE_FALSE);
1588			return;
1589	}
1590
1591	dst.resize(3*4);
1592
1593	dst[0+mRow] = mSign;
1594	dst[3+mRow] = mSign;
1595	dst[6+mRow] = mSign;
1596	dst[9+mRow] = mSign;
1597
1598	dst[0+sRow] = sSign * bottomLeft.x();
1599	dst[3+sRow] = sSign * bottomLeft.x();
1600	dst[6+sRow] = sSign * topRight.x();
1601	dst[9+sRow] = sSign * topRight.x();
1602
1603	dst[0+tRow] = tSign * bottomLeft.y();
1604	dst[3+tRow] = tSign * topRight.y();
1605	dst[6+tRow] = tSign * bottomLeft.y();
1606	dst[9+tRow] = tSign * topRight.y();
1607}
1608
1609void computeQuadTexCoordCubeArray (std::vector<float>& dst, tcu::CubeFace face, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight, const tcu::Vec2& layerRange)
1610{
1611	int			sRow	= 0;
1612	int			tRow	= 0;
1613	int			mRow	= 0;
1614	const int	qRow	= 3;
1615	float		sSign	= 1.0f;
1616	float		tSign	= 1.0f;
1617	float		mSign	= 1.0f;
1618	const float	l0		= layerRange.x();
1619	const float	l1		= layerRange.y();
1620
1621	switch (face)
1622	{
1623		case tcu::CUBEFACE_NEGATIVE_X: mRow = 0; sRow = 2; tRow = 1; mSign = -1.0f;				   tSign = -1.0f;	break;
1624		case tcu::CUBEFACE_POSITIVE_X: mRow = 0; sRow = 2; tRow = 1;				sSign = -1.0f; tSign = -1.0f;	break;
1625		case tcu::CUBEFACE_NEGATIVE_Y: mRow = 1; sRow = 0; tRow = 2; mSign = -1.0f;				   tSign = -1.0f;	break;
1626		case tcu::CUBEFACE_POSITIVE_Y: mRow = 1; sRow = 0; tRow = 2;												break;
1627		case tcu::CUBEFACE_NEGATIVE_Z: mRow = 2; sRow = 0; tRow = 1; mSign = -1.0f; sSign = -1.0f; tSign = -1.0f;	break;
1628		case tcu::CUBEFACE_POSITIVE_Z: mRow = 2; sRow = 0; tRow = 1;							   tSign = -1.0f;	break;
1629		default:
1630			DE_ASSERT(DE_FALSE);
1631			return;
1632	}
1633
1634	dst.resize(4*4);
1635
1636	dst[ 0+mRow] = mSign;
1637	dst[ 4+mRow] = mSign;
1638	dst[ 8+mRow] = mSign;
1639	dst[12+mRow] = mSign;
1640
1641	dst[ 0+sRow] = sSign * bottomLeft.x();
1642	dst[ 4+sRow] = sSign * bottomLeft.x();
1643	dst[ 8+sRow] = sSign * topRight.x();
1644	dst[12+sRow] = sSign * topRight.x();
1645
1646	dst[ 0+tRow] = tSign * bottomLeft.y();
1647	dst[ 4+tRow] = tSign * topRight.y();
1648	dst[ 8+tRow] = tSign * bottomLeft.y();
1649	dst[12+tRow] = tSign * topRight.y();
1650
1651	if (l0 != l1)
1652	{
1653		dst[ 0+qRow] = l0;
1654		dst[ 4+qRow] = l0*0.5f + l1*0.5f;
1655		dst[ 8+qRow] = l0*0.5f + l1*0.5f;
1656		dst[12+qRow] = l1;
1657	}
1658	else
1659	{
1660		dst[ 0+qRow] = l0;
1661		dst[ 4+qRow] = l0;
1662		dst[ 8+qRow] = l0;
1663		dst[12+qRow] = l0;
1664	}
1665}
1666
1667// Texture result verification
1668
1669//! Verifies texture lookup results and returns number of failed pixels.
1670int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
1671							  const tcu::ConstPixelBufferAccess&	reference,
1672							  const tcu::PixelBufferAccess&			errorMask,
1673							  const tcu::Texture1DView&				baseView,
1674							  const float*							texCoord,
1675							  const ReferenceParams&				sampleParams,
1676							  const tcu::LookupPrecision&			lookupPrec,
1677							  const tcu::LodPrecision&				lodPrec,
1678							  qpWatchDog*							watchDog)
1679{
1680	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
1681	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
1682
1683	const tcu::Texture1DView	src		= getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel);
1684
1685	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
1686
1687	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
1688	const float			dstW			= float(dstSize.x());
1689	const float			dstH			= float(dstSize.y());
1690	const int			srcSize			= src.getWidth();
1691
1692	// Coordinates and lod per triangle.
1693	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
1694	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
1695
1696	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
1697
1698	int					numFailed		= 0;
1699
1700	const tcu::Vec2 lodOffsets[] =
1701	{
1702		tcu::Vec2(-1,  0),
1703		tcu::Vec2(+1,  0),
1704		tcu::Vec2( 0, -1),
1705		tcu::Vec2( 0, +1),
1706	};
1707
1708	tcu::clear(errorMask, tcu::RGBA::green.toVec());
1709
1710	for (int py = 0; py < result.getHeight(); py++)
1711	{
1712		// Ugly hack, validation can take way too long at the moment.
1713		if (watchDog)
1714			qpWatchDog_touch(watchDog);
1715
1716		for (int px = 0; px < result.getWidth(); px++)
1717		{
1718			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
1719			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
1720
1721			// Try comparison to ideal reference first, and if that fails use slower verificator.
1722			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
1723			{
1724				const float		wx		= (float)px + 0.5f;
1725				const float		wy		= (float)py + 0.5f;
1726				const float		nx		= wx / dstW;
1727				const float		ny		= wy / dstH;
1728
1729				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
1730				const float		triWx	= triNdx ? dstW - wx : wx;
1731				const float		triWy	= triNdx ? dstH - wy : wy;
1732				const float		triNx	= triNdx ? 1.0f - nx : nx;
1733				const float		triNy	= triNdx ? 1.0f - ny : ny;
1734
1735				const float		coord		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
1736				const float		coordDx		= triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy) * float(srcSize);
1737				const float 	coordDy		= triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx) * float(srcSize);
1738
1739				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx, coordDy, lodPrec);
1740
1741				// Compute lod bounds across lodOffsets range.
1742				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
1743				{
1744					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
1745					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
1746					const float		nxo		= wxo/dstW;
1747					const float		nyo		= wyo/dstH;
1748
1749					const float	coordDxo	= triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo) * float(srcSize);
1750					const float	coordDyo	= triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo) * float(srcSize);
1751					const tcu::Vec2	lodO	= tcu::computeLodBoundsFromDerivates(coordDxo, coordDyo, lodPrec);
1752
1753					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
1754					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
1755				}
1756
1757				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
1758				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
1759
1760				if (!isOk)
1761				{
1762					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
1763					numFailed += 1;
1764				}
1765			}
1766		}
1767	}
1768
1769	return numFailed;
1770}
1771
1772int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
1773							  const tcu::ConstPixelBufferAccess&	reference,
1774							  const tcu::PixelBufferAccess&			errorMask,
1775							  const tcu::Texture2DView&				baseView,
1776							  const float*							texCoord,
1777							  const ReferenceParams&					sampleParams,
1778							  const tcu::LookupPrecision&			lookupPrec,
1779							  const tcu::LodPrecision&				lodPrec,
1780							  qpWatchDog*							watchDog)
1781{
1782	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
1783	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
1784
1785	const tcu::Texture2DView	src		= getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel);
1786
1787	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
1788	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
1789
1790	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
1791	const float			dstW			= float(dstSize.x());
1792	const float			dstH			= float(dstSize.y());
1793	const tcu::IVec2	srcSize			= tcu::IVec2(src.getWidth(), src.getHeight());
1794
1795	// Coordinates and lod per triangle.
1796	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
1797	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
1798	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
1799
1800	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
1801
1802	int					numFailed		= 0;
1803
1804	const tcu::Vec2 lodOffsets[] =
1805	{
1806		tcu::Vec2(-1,  0),
1807		tcu::Vec2(+1,  0),
1808		tcu::Vec2( 0, -1),
1809		tcu::Vec2( 0, +1),
1810	};
1811
1812	tcu::clear(errorMask, tcu::RGBA::green.toVec());
1813
1814	for (int py = 0; py < result.getHeight(); py++)
1815	{
1816		// Ugly hack, validation can take way too long at the moment.
1817		if (watchDog)
1818			qpWatchDog_touch(watchDog);
1819
1820		for (int px = 0; px < result.getWidth(); px++)
1821		{
1822			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
1823			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
1824
1825			// Try comparison to ideal reference first, and if that fails use slower verificator.
1826			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
1827			{
1828				const float		wx		= (float)px + 0.5f;
1829				const float		wy		= (float)py + 0.5f;
1830				const float		nx		= wx / dstW;
1831				const float		ny		= wy / dstH;
1832
1833				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
1834				const float		triWx	= triNdx ? dstW - wx : wx;
1835				const float		triWy	= triNdx ? dstH - wy : wy;
1836				const float		triNx	= triNdx ? 1.0f - nx : nx;
1837				const float		triNy	= triNdx ? 1.0f - ny : ny;
1838
1839				const tcu::Vec2	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
1840											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
1841				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
1842														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
1843				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
1844														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
1845
1846				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
1847
1848				// Compute lod bounds across lodOffsets range.
1849				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
1850				{
1851					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
1852					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
1853					const float		nxo		= wxo/dstW;
1854					const float		nyo		= wyo/dstH;
1855
1856					const tcu::Vec2	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
1857												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo));
1858					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
1859															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
1860					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
1861															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
1862					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
1863
1864					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
1865					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
1866				}
1867
1868				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
1869				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
1870
1871				if (!isOk)
1872				{
1873					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
1874					numFailed += 1;
1875				}
1876			}
1877		}
1878	}
1879
1880	return numFailed;
1881}
1882
1883bool verifyTextureResult (tcu::TestContext&						testCtx,
1884						  const tcu::ConstPixelBufferAccess&	result,
1885						  const tcu::Texture1DView&				src,
1886						  const float*							texCoord,
1887						  const ReferenceParams&				sampleParams,
1888						  const tcu::LookupPrecision&			lookupPrec,
1889						  const tcu::LodPrecision&				lodPrec,
1890						  const tcu::PixelFormat&				pixelFormat)
1891{
1892	tcu::TestLog&	log				= testCtx.getLog();
1893	tcu::Surface	reference		(result.getWidth(), result.getHeight());
1894	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
1895	int				numFailedPixels;
1896
1897	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
1898
1899	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
1900	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
1901
1902	if (numFailedPixels > 0)
1903		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
1904
1905	log << TestLog::ImageSet("VerifyResult", "Verification result")
1906		<< TestLog::Image("Rendered", "Rendered image", result);
1907
1908	if (numFailedPixels > 0)
1909	{
1910		log << TestLog::Image("Reference", "Ideal reference image", reference)
1911			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
1912	}
1913
1914	log << TestLog::EndImageSet;
1915
1916	return numFailedPixels == 0;
1917}
1918
1919bool verifyTextureResult (tcu::TestContext&						testCtx,
1920						  const tcu::ConstPixelBufferAccess&	result,
1921						  const tcu::Texture2DView&				src,
1922						  const float*							texCoord,
1923						  const ReferenceParams&				sampleParams,
1924						  const tcu::LookupPrecision&			lookupPrec,
1925						  const tcu::LodPrecision&				lodPrec,
1926						  const tcu::PixelFormat&				pixelFormat)
1927{
1928	tcu::TestLog&	log				= testCtx.getLog();
1929	tcu::Surface	reference		(result.getWidth(), result.getHeight());
1930	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
1931	int				numFailedPixels;
1932
1933	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
1934
1935	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
1936	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
1937
1938	if (numFailedPixels > 0)
1939		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
1940
1941	log << TestLog::ImageSet("VerifyResult", "Verification result")
1942		<< TestLog::Image("Rendered", "Rendered image", result);
1943
1944	if (numFailedPixels > 0)
1945	{
1946		log << TestLog::Image("Reference", "Ideal reference image", reference)
1947			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
1948	}
1949
1950	log << TestLog::EndImageSet;
1951
1952	return numFailedPixels == 0;
1953}
1954
1955//! Verifies texture lookup results and returns number of failed pixels.
1956int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
1957							  const tcu::ConstPixelBufferAccess&	reference,
1958							  const tcu::PixelBufferAccess&			errorMask,
1959							  const tcu::TextureCubeView&			baseView,
1960							  const float*							texCoord,
1961							  const ReferenceParams&				sampleParams,
1962							  const tcu::LookupPrecision&			lookupPrec,
1963							  const tcu::LodPrecision&				lodPrec,
1964							  qpWatchDog*							watchDog)
1965{
1966	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
1967	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
1968
1969	const tcu::TextureCubeView	src		= getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel);
1970
1971	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
1972	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
1973	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
1974
1975	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
1976	const float			dstW			= float(dstSize.x());
1977	const float			dstH			= float(dstSize.y());
1978	const int			srcSize			= src.getSize();
1979
1980	// Coordinates per triangle.
1981	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
1982	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
1983	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
1984	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
1985
1986	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
1987
1988	const float			posEps			= 1.0f / float((1<<4) + 1); // ES3 requires at least 4 subpixel bits.
1989
1990	int					numFailed		= 0;
1991
1992	const tcu::Vec2 lodOffsets[] =
1993	{
1994		tcu::Vec2(-1,  0),
1995		tcu::Vec2(+1,  0),
1996		tcu::Vec2( 0, -1),
1997		tcu::Vec2( 0, +1),
1998
1999		// \note Not strictly allowed by spec, but implementations do this in practice.
2000		tcu::Vec2(-1, -1),
2001		tcu::Vec2(-1, +1),
2002		tcu::Vec2(+1, -1),
2003		tcu::Vec2(+1, -1),
2004	};
2005
2006	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2007
2008	for (int py = 0; py < result.getHeight(); py++)
2009	{
2010		// Ugly hack, validation can take way too long at the moment.
2011		if (watchDog)
2012			qpWatchDog_touch(watchDog);
2013
2014		for (int px = 0; px < result.getWidth(); px++)
2015		{
2016			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
2017			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
2018
2019			// Try comparison to ideal reference first, and if that fails use slower verificator.
2020			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
2021			{
2022				const float		wx		= (float)px + 0.5f;
2023				const float		wy		= (float)py + 0.5f;
2024				const float		nx		= wx / dstW;
2025				const float		ny		= wy / dstH;
2026
2027				const bool		tri0	= nx + ny - posEps <= 1.0f;
2028				const bool		tri1	= nx + ny + posEps >= 1.0f;
2029
2030				bool			isOk	= false;
2031
2032				DE_ASSERT(tri0 || tri1);
2033
2034				// Pixel can belong to either of the triangles if it lies close enough to the edge.
2035				for (int triNdx = (tri0?0:1); triNdx <= (tri1?1:0); triNdx++)
2036				{
2037					const float		triWx	= triNdx ? dstW - wx : wx;
2038					const float		triWy	= triNdx ? dstH - wy : wy;
2039					const float		triNx	= triNdx ? 1.0f - nx : nx;
2040					const float		triNy	= triNdx ? 1.0f - ny : ny;
2041
2042					const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2043												 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
2044												 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
2045					const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2046												 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
2047												 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
2048					const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2049												 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
2050												 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
2051
2052					tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord, coordDx, coordDy, srcSize, lodPrec);
2053
2054					// Compute lod bounds across lodOffsets range.
2055					for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2056					{
2057						const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2058						const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2059						const float		nxo		= wxo/dstW;
2060						const float		nyo		= wyo/dstH;
2061
2062						const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2063													 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
2064													 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
2065						const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2066													 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
2067													 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
2068						const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2069													 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
2070													 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
2071						const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
2072
2073						lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2074						lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2075					}
2076
2077					const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2078
2079					if (tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix))
2080					{
2081						isOk = true;
2082						break;
2083					}
2084				}
2085
2086				if (!isOk)
2087				{
2088					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2089					numFailed += 1;
2090				}
2091			}
2092		}
2093	}
2094
2095	return numFailed;
2096}
2097
2098bool verifyTextureResult (tcu::TestContext&						testCtx,
2099						  const tcu::ConstPixelBufferAccess&	result,
2100						  const tcu::TextureCubeView&			src,
2101						  const float*							texCoord,
2102						  const ReferenceParams&				sampleParams,
2103						  const tcu::LookupPrecision&			lookupPrec,
2104						  const tcu::LodPrecision&				lodPrec,
2105						  const tcu::PixelFormat&				pixelFormat)
2106{
2107	tcu::TestLog&	log				= testCtx.getLog();
2108	tcu::Surface	reference		(result.getWidth(), result.getHeight());
2109	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
2110	int				numFailedPixels;
2111
2112	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
2113
2114	sampleTextureMultiFace(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
2115	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
2116
2117	if (numFailedPixels > 0)
2118		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
2119
2120	log << TestLog::ImageSet("VerifyResult", "Verification result")
2121		<< TestLog::Image("Rendered", "Rendered image", result);
2122
2123	if (numFailedPixels > 0)
2124	{
2125		log << TestLog::Image("Reference", "Ideal reference image", reference)
2126			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
2127	}
2128
2129	log << TestLog::EndImageSet;
2130
2131	return numFailedPixels == 0;
2132}
2133
2134//! Verifies texture lookup results and returns number of failed pixels.
2135int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
2136							  const tcu::ConstPixelBufferAccess&	reference,
2137							  const tcu::PixelBufferAccess&			errorMask,
2138							  const tcu::Texture3DView&				baseView,
2139							  const float*							texCoord,
2140							  const ReferenceParams&				sampleParams,
2141							  const tcu::LookupPrecision&			lookupPrec,
2142							  const tcu::LodPrecision&				lodPrec,
2143							  qpWatchDog*							watchDog)
2144{
2145	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2146	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2147
2148	const tcu::Texture3DView	src		= getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel);
2149
2150	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
2151	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
2152	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
2153
2154	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2155	const float			dstW			= float(dstSize.x());
2156	const float			dstH			= float(dstSize.y());
2157	const tcu::IVec3	srcSize			= tcu::IVec3(src.getWidth(), src.getHeight(), src.getDepth());
2158
2159	// Coordinates and lod per triangle.
2160	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2161	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2162	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
2163	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2164
2165	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2166
2167	int					numFailed		= 0;
2168
2169	const tcu::Vec2 lodOffsets[] =
2170	{
2171		tcu::Vec2(-1,  0),
2172		tcu::Vec2(+1,  0),
2173		tcu::Vec2( 0, -1),
2174		tcu::Vec2( 0, +1),
2175	};
2176
2177	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2178
2179	for (int py = 0; py < result.getHeight(); py++)
2180	{
2181		// Ugly hack, validation can take way too long at the moment.
2182		if (watchDog)
2183			qpWatchDog_touch(watchDog);
2184
2185		for (int px = 0; px < result.getWidth(); px++)
2186		{
2187			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
2188			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
2189
2190			// Try comparison to ideal reference first, and if that fails use slower verificator.
2191			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
2192			{
2193				const float		wx		= (float)px + 0.5f;
2194				const float		wy		= (float)py + 0.5f;
2195				const float		nx		= wx / dstW;
2196				const float		ny		= wy / dstH;
2197
2198				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
2199				const float		triWx	= triNdx ? dstW - wx : wx;
2200				const float		triWy	= triNdx ? dstH - wy : wy;
2201				const float		triNx	= triNdx ? 1.0f - nx : nx;
2202				const float		triNy	= triNdx ? 1.0f - ny : ny;
2203
2204				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2205											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
2206											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
2207				const tcu::Vec3	coordDx		= tcu::Vec3(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2208														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
2209														triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
2210				const tcu::Vec3	coordDy		= tcu::Vec3(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2211														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
2212														triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
2213
2214				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDx.z(), coordDy.x(), coordDy.y(), coordDy.z(), lodPrec);
2215
2216				// Compute lod bounds across lodOffsets range.
2217				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2218				{
2219					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2220					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2221					const float		nxo		= wxo/dstW;
2222					const float		nyo		= wyo/dstH;
2223
2224					const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2225												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
2226												 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
2227					const tcu::Vec3	coordDxo	= tcu::Vec3(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2228															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
2229															triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
2230					const tcu::Vec3	coordDyo	= tcu::Vec3(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2231															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
2232															triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
2233					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDxo.z(), coordDyo.x(), coordDyo.y(), coordDyo.z(), lodPrec);
2234
2235					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2236					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2237				}
2238
2239				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2240				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
2241
2242				if (!isOk)
2243				{
2244					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2245					numFailed += 1;
2246				}
2247			}
2248		}
2249	}
2250
2251	return numFailed;
2252}
2253
2254bool verifyTextureResult (tcu::TestContext&						testCtx,
2255						  const tcu::ConstPixelBufferAccess&	result,
2256						  const tcu::Texture3DView&				src,
2257						  const float*							texCoord,
2258						  const ReferenceParams&				sampleParams,
2259						  const tcu::LookupPrecision&			lookupPrec,
2260						  const tcu::LodPrecision&				lodPrec,
2261						  const tcu::PixelFormat&				pixelFormat)
2262{
2263	tcu::TestLog&	log				= testCtx.getLog();
2264	tcu::Surface	reference		(result.getWidth(), result.getHeight());
2265	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
2266	int				numFailedPixels;
2267
2268	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
2269
2270	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
2271	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
2272
2273	if (numFailedPixels > 0)
2274		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
2275
2276	log << TestLog::ImageSet("VerifyResult", "Verification result")
2277		<< TestLog::Image("Rendered", "Rendered image", result);
2278
2279	if (numFailedPixels > 0)
2280	{
2281		log << TestLog::Image("Reference", "Ideal reference image", reference)
2282			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
2283	}
2284
2285	log << TestLog::EndImageSet;
2286
2287	return numFailedPixels == 0;
2288}
2289
2290//! Verifies texture lookup results and returns number of failed pixels.
2291int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
2292							  const tcu::ConstPixelBufferAccess&	reference,
2293							  const tcu::PixelBufferAccess&			errorMask,
2294							  const tcu::Texture1DArrayView&		src,
2295							  const float*							texCoord,
2296							  const ReferenceParams&				sampleParams,
2297							  const tcu::LookupPrecision&			lookupPrec,
2298							  const tcu::LodPrecision&				lodPrec,
2299							  qpWatchDog*							watchDog)
2300{
2301	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2302	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2303
2304	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
2305	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
2306
2307	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2308	const float			dstW			= float(dstSize.x());
2309	const float			dstH			= float(dstSize.y());
2310	const float			srcSize			= float(src.getWidth()); // For lod computation, thus #layers is ignored.
2311
2312	// Coordinates and lod per triangle.
2313	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2314	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2315	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2316
2317	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2318
2319	int					numFailed		= 0;
2320
2321	const tcu::Vec2 lodOffsets[] =
2322	{
2323		tcu::Vec2(-1,  0),
2324		tcu::Vec2(+1,  0),
2325		tcu::Vec2( 0, -1),
2326		tcu::Vec2( 0, +1),
2327	};
2328
2329	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2330
2331	for (int py = 0; py < result.getHeight(); py++)
2332	{
2333		// Ugly hack, validation can take way too long at the moment.
2334		if (watchDog)
2335			qpWatchDog_touch(watchDog);
2336
2337		for (int px = 0; px < result.getWidth(); px++)
2338		{
2339			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
2340			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
2341
2342			// Try comparison to ideal reference first, and if that fails use slower verificator.
2343			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
2344			{
2345				const float		wx		= (float)px + 0.5f;
2346				const float		wy		= (float)py + 0.5f;
2347				const float		nx		= wx / dstW;
2348				const float		ny		= wy / dstH;
2349
2350				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
2351				const float		triWx	= triNdx ? dstW - wx : wx;
2352				const float		triWy	= triNdx ? dstH - wy : wy;
2353				const float		triNx	= triNdx ? 1.0f - nx : nx;
2354				const float		triNy	= triNdx ? 1.0f - ny : ny;
2355
2356				const tcu::Vec2	coord	(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2357										 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
2358				const float	coordDx		= triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy) * srcSize;
2359				const float	coordDy		= triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx) * srcSize;
2360
2361				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx, coordDy, lodPrec);
2362
2363				// Compute lod bounds across lodOffsets range.
2364				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2365				{
2366					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2367					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2368					const float		nxo		= wxo/dstW;
2369					const float		nyo		= wyo/dstH;
2370
2371					const tcu::Vec2	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2372												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo));
2373					const float	coordDxo		= triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo) * srcSize;
2374					const float	coordDyo		= triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo) * srcSize;
2375					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo, coordDyo, lodPrec);
2376
2377					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2378					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2379				}
2380
2381				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2382				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
2383
2384				if (!isOk)
2385				{
2386					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2387					numFailed += 1;
2388				}
2389			}
2390		}
2391	}
2392
2393	return numFailed;
2394}
2395
2396//! Verifies texture lookup results and returns number of failed pixels.
2397int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
2398							  const tcu::ConstPixelBufferAccess&	reference,
2399							  const tcu::PixelBufferAccess&			errorMask,
2400							  const tcu::Texture2DArrayView&		src,
2401							  const float*							texCoord,
2402							  const ReferenceParams&				sampleParams,
2403							  const tcu::LookupPrecision&			lookupPrec,
2404							  const tcu::LodPrecision&				lodPrec,
2405							  qpWatchDog*							watchDog)
2406{
2407	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2408	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2409
2410	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
2411	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
2412	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
2413
2414	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2415	const float			dstW			= float(dstSize.x());
2416	const float			dstH			= float(dstSize.y());
2417	const tcu::Vec2		srcSize			= tcu::IVec2(src.getWidth(), src.getHeight()).asFloat(); // For lod computation, thus #layers is ignored.
2418
2419	// Coordinates and lod per triangle.
2420	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2421	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2422	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
2423	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2424
2425	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2426
2427	int					numFailed		= 0;
2428
2429	const tcu::Vec2 lodOffsets[] =
2430	{
2431		tcu::Vec2(-1,  0),
2432		tcu::Vec2(+1,  0),
2433		tcu::Vec2( 0, -1),
2434		tcu::Vec2( 0, +1),
2435	};
2436
2437	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2438
2439	for (int py = 0; py < result.getHeight(); py++)
2440	{
2441		// Ugly hack, validation can take way too long at the moment.
2442		if (watchDog)
2443			qpWatchDog_touch(watchDog);
2444
2445		for (int px = 0; px < result.getWidth(); px++)
2446		{
2447			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
2448			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
2449
2450			// Try comparison to ideal reference first, and if that fails use slower verificator.
2451			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
2452			{
2453				const float		wx		= (float)px + 0.5f;
2454				const float		wy		= (float)py + 0.5f;
2455				const float		nx		= wx / dstW;
2456				const float		ny		= wy / dstH;
2457
2458				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
2459				const float		triWx	= triNdx ? dstW - wx : wx;
2460				const float		triWy	= triNdx ? dstH - wy : wy;
2461				const float		triNx	= triNdx ? 1.0f - nx : nx;
2462				const float		triNy	= triNdx ? 1.0f - ny : ny;
2463
2464				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2465											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
2466											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
2467				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2468														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize;
2469				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2470														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize;
2471
2472				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
2473
2474				// Compute lod bounds across lodOffsets range.
2475				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2476				{
2477					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2478					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2479					const float		nxo		= wxo/dstW;
2480					const float		nyo		= wyo/dstH;
2481
2482					const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2483												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
2484												 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
2485					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2486															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize;
2487					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2488															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize;
2489					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
2490
2491					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2492					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2493				}
2494
2495				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2496				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
2497
2498				if (!isOk)
2499				{
2500					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2501					numFailed += 1;
2502				}
2503			}
2504		}
2505	}
2506
2507	return numFailed;
2508}
2509
2510bool verifyTextureResult (tcu::TestContext&						testCtx,
2511						  const tcu::ConstPixelBufferAccess&	result,
2512						  const tcu::Texture1DArrayView&		src,
2513						  const float*							texCoord,
2514						  const ReferenceParams&				sampleParams,
2515						  const tcu::LookupPrecision&			lookupPrec,
2516						  const tcu::LodPrecision&				lodPrec,
2517						  const tcu::PixelFormat&				pixelFormat)
2518{
2519	tcu::TestLog&	log				= testCtx.getLog();
2520	tcu::Surface	reference		(result.getWidth(), result.getHeight());
2521	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
2522	int				numFailedPixels;
2523
2524	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
2525
2526	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
2527	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
2528
2529	if (numFailedPixels > 0)
2530		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
2531
2532	log << TestLog::ImageSet("VerifyResult", "Verification result")
2533		<< TestLog::Image("Rendered", "Rendered image", result);
2534
2535	if (numFailedPixels > 0)
2536	{
2537		log << TestLog::Image("Reference", "Ideal reference image", reference)
2538			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
2539	}
2540
2541	log << TestLog::EndImageSet;
2542
2543	return numFailedPixels == 0;
2544}
2545
2546bool verifyTextureResult (tcu::TestContext&						testCtx,
2547						  const tcu::ConstPixelBufferAccess&	result,
2548						  const tcu::Texture2DArrayView&		src,
2549						  const float*							texCoord,
2550						  const ReferenceParams&				sampleParams,
2551						  const tcu::LookupPrecision&			lookupPrec,
2552						  const tcu::LodPrecision&				lodPrec,
2553						  const tcu::PixelFormat&				pixelFormat)
2554{
2555	tcu::TestLog&	log				= testCtx.getLog();
2556	tcu::Surface	reference		(result.getWidth(), result.getHeight());
2557	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
2558	int				numFailedPixels;
2559
2560	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
2561
2562	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
2563	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
2564
2565	if (numFailedPixels > 0)
2566		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
2567
2568	log << TestLog::ImageSet("VerifyResult", "Verification result")
2569		<< TestLog::Image("Rendered", "Rendered image", result);
2570
2571	if (numFailedPixels > 0)
2572	{
2573		log << TestLog::Image("Reference", "Ideal reference image", reference)
2574			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
2575	}
2576
2577	log << TestLog::EndImageSet;
2578
2579	return numFailedPixels == 0;
2580}
2581
2582//! Verifies texture lookup results and returns number of failed pixels.
2583int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
2584							  const tcu::ConstPixelBufferAccess&	reference,
2585							  const tcu::PixelBufferAccess&			errorMask,
2586							  const tcu::TextureCubeArrayView&		baseView,
2587							  const float*							texCoord,
2588							  const ReferenceParams&				sampleParams,
2589							  const tcu::LookupPrecision&			lookupPrec,
2590							  const tcu::IVec4&						coordBits,
2591							  const tcu::LodPrecision&				lodPrec,
2592							  qpWatchDog*							watchDog)
2593{
2594	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2595	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2596
2597	const tcu::TextureCubeArrayView	src	= getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel);
2598
2599	// What is the 'q' in all these names? Also a two char name for something that is in scope for ~120 lines and only used twice each seems excessive
2600	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[4+0], texCoord[8+0], texCoord[12+0]);
2601	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[4+1], texCoord[8+1], texCoord[12+1]);
2602	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[4+2], texCoord[8+2], texCoord[12+2]);
2603	const tcu::Vec4		qq				= tcu::Vec4(texCoord[0+3], texCoord[4+3], texCoord[8+3], texCoord[12+3]);
2604
2605	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2606	const float			dstW			= float(dstSize.x());
2607	const float			dstH			= float(dstSize.y());
2608	const int			srcSize			= src.getSize();
2609
2610	// Coordinates per triangle.
2611	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2612	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2613	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
2614	const tcu::Vec3		triQ[2]			= { qq.swizzle(0, 1, 2), qq.swizzle(3, 2, 1) };
2615	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2616
2617	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2618
2619	const float			posEps			= 1.0f / float((1<<4) + 1); // ES3 requires at least 4 subpixel bits.
2620
2621	int					numFailed		= 0;
2622
2623	const tcu::Vec2 lodOffsets[] =
2624	{
2625		tcu::Vec2(-1,  0),
2626		tcu::Vec2(+1,  0),
2627		tcu::Vec2( 0, -1),
2628		tcu::Vec2( 0, +1),
2629
2630		// \note Not strictly allowed by spec, but implementations do this in practice.
2631		tcu::Vec2(-1, -1),
2632		tcu::Vec2(-1, +1),
2633		tcu::Vec2(+1, -1),
2634		tcu::Vec2(+1, -1),
2635	};
2636
2637	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2638
2639	for (int py = 0; py < result.getHeight(); py++)
2640	{
2641		// Ugly hack, validation can take way too long at the moment.
2642		if (watchDog)
2643			qpWatchDog_touch(watchDog);
2644
2645		for (int px = 0; px < result.getWidth(); px++)
2646		{
2647			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
2648			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
2649
2650			// Try comparison to ideal reference first, and if that fails use slower verificator.
2651			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
2652			{
2653				const float		wx		= (float)px + 0.5f;
2654				const float		wy		= (float)py + 0.5f;
2655				const float		nx		= wx / dstW;
2656				const float		ny		= wy / dstH;
2657
2658				const bool		tri0	= nx + ny - posEps <= 1.0f;
2659				const bool		tri1	= nx + ny + posEps >= 1.0f;
2660
2661				bool			isOk	= false;
2662
2663				DE_ASSERT(tri0 || tri1);
2664
2665				// Pixel can belong to either of the triangles if it lies close enough to the edge.
2666				for (int triNdx = (tri0?0:1); triNdx <= (tri1?1:0); triNdx++)
2667				{
2668					const float		triWx		= triNdx ? dstW - wx : wx;
2669					const float		triWy		= triNdx ? dstH - wy : wy;
2670					const float		triNx		= triNdx ? 1.0f - nx : nx;
2671					const float		triNy		= triNdx ? 1.0f - ny : ny;
2672
2673					const tcu::Vec4	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2674												 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
2675												 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy),
2676												 projectedTriInterpolate(triQ[triNdx], triW[triNdx], triNx, triNy));
2677					const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2678												 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
2679												 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
2680					const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2681												 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
2682												 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
2683
2684					tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord.toWidth<3>(), coordDx, coordDy, srcSize, lodPrec);
2685
2686					// Compute lod bounds across lodOffsets range.
2687					for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2688					{
2689						const float		wxo			= triWx + lodOffsets[lodOffsNdx].x();
2690						const float		wyo			= triWy + lodOffsets[lodOffsNdx].y();
2691						const float		nxo			= wxo/dstW;
2692						const float		nyo			= wyo/dstH;
2693
2694						const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2695													 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
2696													 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
2697						const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2698													 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
2699													 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
2700						const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2701													 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
2702													 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
2703						const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
2704
2705						lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2706						lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2707					}
2708
2709					const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2710
2711					if (tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coordBits, coord, clampedLod, resPix))
2712					{
2713						isOk = true;
2714						break;
2715					}
2716				}
2717
2718				if (!isOk)
2719				{
2720					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2721					numFailed += 1;
2722				}
2723			}
2724		}
2725	}
2726
2727	return numFailed;
2728}
2729
2730bool verifyTextureResult (tcu::TestContext&						testCtx,
2731						  const tcu::ConstPixelBufferAccess&	result,
2732						  const tcu::TextureCubeArrayView&		src,
2733						  const float*							texCoord,
2734						  const ReferenceParams&				sampleParams,
2735						  const tcu::LookupPrecision&			lookupPrec,
2736						  const tcu::IVec4&						coordBits,
2737						  const tcu::LodPrecision&				lodPrec,
2738						  const tcu::PixelFormat&				pixelFormat)
2739{
2740	tcu::TestLog&	log				= testCtx.getLog();
2741	tcu::Surface	reference		(result.getWidth(), result.getHeight());
2742	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
2743	int				numFailedPixels;
2744
2745	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
2746
2747	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
2748	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, coordBits, lodPrec, testCtx.getWatchDog());
2749
2750	if (numFailedPixels > 0)
2751		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
2752
2753	log << TestLog::ImageSet("VerifyResult", "Verification result")
2754		<< TestLog::Image("Rendered", "Rendered image", result);
2755
2756	if (numFailedPixels > 0)
2757	{
2758		log << TestLog::Image("Reference", "Ideal reference image", reference)
2759			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
2760	}
2761
2762	log << TestLog::EndImageSet;
2763
2764	return numFailedPixels == 0;
2765}
2766
2767// Shadow lookup verification
2768
2769int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
2770							   const tcu::ConstPixelBufferAccess&	reference,
2771							   const tcu::PixelBufferAccess&		errorMask,
2772							   const tcu::Texture2DView&			src,
2773							   const float*							texCoord,
2774							   const ReferenceParams&				sampleParams,
2775							   const tcu::TexComparePrecision&		comparePrec,
2776							   const tcu::LodPrecision&				lodPrec,
2777							   const tcu::Vec3&						nonShadowThreshold)
2778{
2779	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2780	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2781
2782	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
2783	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
2784
2785	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2786	const float			dstW			= float(dstSize.x());
2787	const float			dstH			= float(dstSize.y());
2788	const tcu::IVec2	srcSize			= tcu::IVec2(src.getWidth(), src.getHeight());
2789
2790	// Coordinates and lod per triangle.
2791	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2792	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2793	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2794
2795	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2796
2797	int					numFailed		= 0;
2798
2799	const tcu::Vec2 lodOffsets[] =
2800	{
2801		tcu::Vec2(-1,  0),
2802		tcu::Vec2(+1,  0),
2803		tcu::Vec2( 0, -1),
2804		tcu::Vec2( 0, +1),
2805	};
2806
2807	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2808
2809	for (int py = 0; py < result.getHeight(); py++)
2810	{
2811		for (int px = 0; px < result.getWidth(); px++)
2812		{
2813			const tcu::Vec4	resPix	= result.getPixel(px, py);
2814			const tcu::Vec4	refPix	= reference.getPixel(px, py);
2815
2816			// Other channels should trivially match to reference.
2817			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
2818			{
2819				errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2820				numFailed += 1;
2821				continue;
2822			}
2823
2824			{
2825				const float		wx		= (float)px + 0.5f;
2826				const float		wy		= (float)py + 0.5f;
2827				const float		nx		= wx / dstW;
2828				const float		ny		= wy / dstH;
2829
2830				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
2831				const float		triWx	= triNdx ? dstW - wx : wx;
2832				const float		triWy	= triNdx ? dstH - wy : wy;
2833				const float		triNx	= triNdx ? 1.0f - nx : nx;
2834				const float		triNy	= triNdx ? 1.0f - ny : ny;
2835
2836				const tcu::Vec2	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2837											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
2838				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2839														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
2840				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2841														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
2842
2843				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
2844
2845				// Compute lod bounds across lodOffsets range.
2846				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2847				{
2848					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2849					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2850					const float		nxo		= wxo/dstW;
2851					const float		nyo		= wyo/dstH;
2852
2853					const tcu::Vec2	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2854												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo));
2855					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2856															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
2857					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2858															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
2859					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
2860
2861					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2862					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2863				}
2864
2865				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2866				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
2867
2868				if (!isOk)
2869				{
2870					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2871					numFailed += 1;
2872				}
2873			}
2874		}
2875	}
2876
2877	return numFailed;
2878}
2879
2880int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
2881							   const tcu::ConstPixelBufferAccess&	reference,
2882							   const tcu::PixelBufferAccess&		errorMask,
2883							   const tcu::TextureCubeView&			src,
2884							   const float*							texCoord,
2885							   const ReferenceParams&				sampleParams,
2886							   const tcu::TexComparePrecision&		comparePrec,
2887							   const tcu::LodPrecision&				lodPrec,
2888							   const tcu::Vec3&						nonShadowThreshold)
2889{
2890	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
2891	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
2892
2893	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
2894	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
2895	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
2896
2897	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
2898	const float			dstW			= float(dstSize.x());
2899	const float			dstH			= float(dstSize.y());
2900	const int			srcSize			= src.getSize();
2901
2902	// Coordinates per triangle.
2903	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
2904	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
2905	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
2906	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
2907
2908	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
2909
2910	int					numFailed		= 0;
2911
2912	const tcu::Vec2 lodOffsets[] =
2913	{
2914		tcu::Vec2(-1,  0),
2915		tcu::Vec2(+1,  0),
2916		tcu::Vec2( 0, -1),
2917		tcu::Vec2( 0, +1),
2918	};
2919
2920	tcu::clear(errorMask, tcu::RGBA::green.toVec());
2921
2922	for (int py = 0; py < result.getHeight(); py++)
2923	{
2924		for (int px = 0; px < result.getWidth(); px++)
2925		{
2926			const tcu::Vec4	resPix	= result.getPixel(px, py);
2927			const tcu::Vec4	refPix	= reference.getPixel(px, py);
2928
2929			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
2930			{
2931				errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2932				numFailed += 1;
2933				continue;
2934			}
2935
2936			{
2937				const float		wx		= (float)px + 0.5f;
2938				const float		wy		= (float)py + 0.5f;
2939				const float		nx		= wx / dstW;
2940				const float		ny		= wy / dstH;
2941
2942				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
2943				const float		triWx	= triNdx ? dstW - wx : wx;
2944				const float		triWy	= triNdx ? dstH - wy : wy;
2945				const float		triNx	= triNdx ? 1.0f - nx : nx;
2946				const float		triNy	= triNdx ? 1.0f - ny : ny;
2947
2948				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
2949											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
2950											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
2951				const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
2952											 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
2953											 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
2954				const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
2955											 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
2956											 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
2957
2958				tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord, coordDx, coordDy, srcSize, lodPrec);
2959
2960				// Compute lod bounds across lodOffsets range.
2961				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
2962				{
2963					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
2964					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
2965					const float		nxo		= wxo/dstW;
2966					const float		nyo		= wyo/dstH;
2967
2968					const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
2969												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
2970												 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
2971					const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
2972												 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
2973												 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
2974					const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
2975												 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
2976												 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
2977					const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
2978
2979					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
2980					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
2981				}
2982
2983				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
2984				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
2985
2986				if (!isOk)
2987				{
2988					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
2989					numFailed += 1;
2990				}
2991			}
2992		}
2993	}
2994
2995	return numFailed;
2996}
2997
2998int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
2999							   const tcu::ConstPixelBufferAccess&	reference,
3000							   const tcu::PixelBufferAccess&		errorMask,
3001							   const tcu::Texture2DArrayView&		src,
3002							   const float*							texCoord,
3003							   const ReferenceParams&				sampleParams,
3004							   const tcu::TexComparePrecision&		comparePrec,
3005							   const tcu::LodPrecision&				lodPrec,
3006							   const tcu::Vec3&						nonShadowThreshold)
3007{
3008	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
3009	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
3010
3011	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
3012	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
3013	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
3014
3015	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
3016	const float			dstW			= float(dstSize.x());
3017	const float			dstH			= float(dstSize.y());
3018	const tcu::IVec2	srcSize			= tcu::IVec2(src.getWidth(), src.getHeight());
3019
3020	// Coordinates and lod per triangle.
3021	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
3022	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
3023	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
3024	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
3025
3026	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
3027
3028	int					numFailed		= 0;
3029
3030	const tcu::Vec2 lodOffsets[] =
3031	{
3032		tcu::Vec2(-1,  0),
3033		tcu::Vec2(+1,  0),
3034		tcu::Vec2( 0, -1),
3035		tcu::Vec2( 0, +1),
3036	};
3037
3038	tcu::clear(errorMask, tcu::RGBA::green.toVec());
3039
3040	for (int py = 0; py < result.getHeight(); py++)
3041	{
3042		for (int px = 0; px < result.getWidth(); px++)
3043		{
3044			const tcu::Vec4	resPix	= result.getPixel(px, py);
3045			const tcu::Vec4	refPix	= reference.getPixel(px, py);
3046
3047			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
3048			{
3049				errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
3050				numFailed += 1;
3051				continue;
3052			}
3053
3054			{
3055				const float		wx		= (float)px + 0.5f;
3056				const float		wy		= (float)py + 0.5f;
3057				const float		nx		= wx / dstW;
3058				const float		ny		= wy / dstH;
3059
3060				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
3061				const float		triWx	= triNdx ? dstW - wx : wx;
3062				const float		triWy	= triNdx ? dstH - wy : wy;
3063				const float		triNx	= triNdx ? 1.0f - nx : nx;
3064				const float		triNy	= triNdx ? 1.0f - ny : ny;
3065
3066				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
3067											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
3068											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
3069				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
3070														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
3071				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
3072														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
3073
3074				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
3075
3076				// Compute lod bounds across lodOffsets range.
3077				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
3078				{
3079					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
3080					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
3081					const float		nxo		= wxo/dstW;
3082					const float		nyo		= wyo/dstH;
3083
3084					const tcu::Vec2	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
3085												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo));
3086					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
3087															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
3088					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
3089															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
3090					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
3091
3092					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
3093					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
3094				}
3095
3096				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
3097				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
3098
3099				if (!isOk)
3100				{
3101					errorMask.setPixel(tcu::RGBA::red.toVec(), px, py);
3102					numFailed += 1;
3103				}
3104			}
3105		}
3106	}
3107
3108	return numFailed;
3109}
3110
3111// Mipmap generation comparison.
3112
3113static int compareGenMipmapBilinear (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
3114{
3115	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
3116
3117	const float		dstW		= float(dst.getWidth());
3118	const float		dstH		= float(dst.getHeight());
3119	const float		srcW		= float(src.getWidth());
3120	const float		srcH		= float(src.getHeight());
3121	int				numFailed	= 0;
3122
3123	// Translation to lookup verification parameters.
3124	const tcu::Sampler		sampler		(tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE,
3125										 tcu::Sampler::LINEAR, tcu::Sampler::LINEAR, 0.0f, false /* non-normalized coords */);
3126	tcu::LookupPrecision	lookupPrec;
3127
3128	lookupPrec.colorThreshold	= precision.colorThreshold;
3129	lookupPrec.colorMask		= precision.colorMask;
3130	lookupPrec.coordBits		= tcu::IVec3(22);
3131	lookupPrec.uvwBits			= precision.filterBits;
3132
3133	for (int y = 0; y < dst.getHeight(); y++)
3134	for (int x = 0; x < dst.getWidth(); x++)
3135	{
3136		const tcu::Vec4	result	= dst.getPixel(x, y);
3137		const float		cx		= (float(x)+0.5f) / dstW * srcW;
3138		const float		cy		= (float(y)+0.5f) / dstH * srcH;
3139		const bool		isOk	= tcu::isLinearSampleResultValid(src, sampler, lookupPrec, tcu::Vec2(cx, cy), 0, result);
3140
3141		errorMask.setPixel(isOk ? tcu::RGBA::green.toVec() : tcu::RGBA::red.toVec(), x, y);
3142		if (!isOk)
3143			numFailed += 1;
3144	}
3145
3146	return numFailed;
3147}
3148
3149static int compareGenMipmapBox (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
3150{
3151	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
3152
3153	const float		dstW		= float(dst.getWidth());
3154	const float		dstH		= float(dst.getHeight());
3155	const float		srcW		= float(src.getWidth());
3156	const float		srcH		= float(src.getHeight());
3157	int				numFailed	= 0;
3158
3159	// Translation to lookup verification parameters.
3160	const tcu::Sampler		sampler		(tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE,
3161										 tcu::Sampler::LINEAR, tcu::Sampler::LINEAR, 0.0f, false /* non-normalized coords */);
3162	tcu::LookupPrecision	lookupPrec;
3163
3164	lookupPrec.colorThreshold	= precision.colorThreshold;
3165	lookupPrec.colorMask		= precision.colorMask;
3166	lookupPrec.coordBits		= tcu::IVec3(22);
3167	lookupPrec.uvwBits			= precision.filterBits;
3168
3169	for (int y = 0; y < dst.getHeight(); y++)
3170	for (int x = 0; x < dst.getWidth(); x++)
3171	{
3172		const tcu::Vec4	result	= dst.getPixel(x, y);
3173		const float		cx		= deFloatFloor(float(x) / dstW * srcW) + 1.0f;
3174		const float		cy		= deFloatFloor(float(y) / dstH * srcH) + 1.0f;
3175		const bool		isOk	= tcu::isLinearSampleResultValid(src, sampler, lookupPrec, tcu::Vec2(cx, cy), 0, result);
3176
3177		errorMask.setPixel(isOk ? tcu::RGBA::green.toVec() : tcu::RGBA::red.toVec(), x, y);
3178		if (!isOk)
3179			numFailed += 1;
3180	}
3181
3182	return numFailed;
3183}
3184
3185static int compareGenMipmapVeryLenient (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
3186{
3187	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
3188	DE_UNREF(precision);
3189
3190	const float		dstW		= float(dst.getWidth());
3191	const float		dstH		= float(dst.getHeight());
3192	const float		srcW		= float(src.getWidth());
3193	const float		srcH		= float(src.getHeight());
3194	int				numFailed	= 0;
3195
3196	for (int y = 0; y < dst.getHeight(); y++)
3197	for (int x = 0; x < dst.getWidth(); x++)
3198	{
3199		const tcu::Vec4	result	= dst.getPixel(x, y);
3200		const int		minX		= deFloorFloatToInt32(float(x-0.5f) / dstW * srcW);
3201		const int		minY		= deFloorFloatToInt32(float(y-0.5f) / dstH * srcH);
3202		const int		maxX		= deCeilFloatToInt32(float(x+1.5f) / dstW * srcW);
3203		const int		maxY		= deCeilFloatToInt32(float(y+1.5f) / dstH * srcH);
3204		tcu::Vec4		minVal, maxVal;
3205		bool			isOk;
3206
3207		DE_ASSERT(minX < maxX && minY < maxY);
3208
3209		for (int ky = minY; ky <= maxY; ky++)
3210		{
3211			for (int kx = minX; kx <= maxX; kx++)
3212			{
3213				const int		sx		= de::clamp(kx, 0, src.getWidth()-1);
3214				const int		sy		= de::clamp(ky, 0, src.getHeight()-1);
3215				const tcu::Vec4	sample	= src.getPixel(sx, sy);
3216
3217				if (ky == minY && kx == minX)
3218				{
3219					minVal = sample;
3220					maxVal = sample;
3221				}
3222				else
3223				{
3224					minVal = min(sample, minVal);
3225					maxVal = max(sample, maxVal);
3226				}
3227			}
3228		}
3229
3230		isOk = boolAll(logicalAnd(lessThanEqual(minVal, result), lessThanEqual(result, maxVal)));
3231
3232		errorMask.setPixel(isOk ? tcu::RGBA::green.toVec() : tcu::RGBA::red.toVec(), x, y);
3233		if (!isOk)
3234			numFailed += 1;
3235	}
3236
3237	return numFailed;
3238}
3239
3240qpTestResult compareGenMipmapResult (tcu::TestLog& log, const tcu::Texture2D& resultTexture, const tcu::Texture2D& level0Reference, const GenMipmapPrecision& precision)
3241{
3242	qpTestResult result = QP_TEST_RESULT_PASS;
3243
3244	// Special comparison for level 0.
3245	{
3246		const tcu::Vec4		threshold	= select(precision.colorThreshold, tcu::Vec4(1.0f), precision.colorMask);
3247		const bool			level0Ok	= tcu::floatThresholdCompare(log, "Level0", "Level 0", level0Reference.getLevel(0), resultTexture.getLevel(0), threshold, tcu::COMPARE_LOG_RESULT);
3248
3249		if (!level0Ok)
3250		{
3251			log << TestLog::Message << "ERROR: Level 0 comparison failed!" << TestLog::EndMessage;
3252			result = QP_TEST_RESULT_FAIL;
3253		}
3254	}
3255
3256	for (int levelNdx = 1; levelNdx < resultTexture.getNumLevels(); levelNdx++)
3257	{
3258		const tcu::ConstPixelBufferAccess	src			= resultTexture.getLevel(levelNdx-1);
3259		const tcu::ConstPixelBufferAccess	dst			= resultTexture.getLevel(levelNdx);
3260		tcu::Surface						errorMask	(dst.getWidth(), dst.getHeight());
3261		bool								levelOk		= false;
3262
3263		// Try different comparisons in quality order.
3264
3265		if (!levelOk)
3266		{
3267			const int numFailed = compareGenMipmapBilinear(dst, src, errorMask.getAccess(), precision);
3268			if (numFailed == 0)
3269				levelOk = true;
3270			else
3271				log << TestLog::Message << "WARNING: Level " << levelNdx << " comparison to bilinear method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
3272		}
3273
3274		if (!levelOk)
3275		{
3276			const int numFailed = compareGenMipmapBox(dst, src, errorMask.getAccess(), precision);
3277			if (numFailed == 0)
3278				levelOk = true;
3279			else
3280				log << TestLog::Message << "WARNING: Level " << levelNdx << " comparison to box method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
3281		}
3282
3283		// At this point all high-quality methods have been used.
3284		if (!levelOk && result == QP_TEST_RESULT_PASS)
3285			result = QP_TEST_RESULT_QUALITY_WARNING;
3286
3287		if (!levelOk)
3288		{
3289			const int numFailed = compareGenMipmapVeryLenient(dst, src, errorMask.getAccess(), precision);
3290			if (numFailed == 0)
3291				levelOk = true;
3292			else
3293				log << TestLog::Message << "ERROR: Level " << levelNdx << " appears to contain " << numFailed << " completely wrong pixels, failing case!" << TestLog::EndMessage;
3294		}
3295
3296		if (!levelOk)
3297			result = QP_TEST_RESULT_FAIL;
3298
3299		log << TestLog::ImageSet(string("Level") + de::toString(levelNdx), string("Level ") + de::toString(levelNdx) + " result")
3300			<< TestLog::Image("Result", "Result", dst);
3301
3302		if (!levelOk)
3303			log << TestLog::Image("ErrorMask", "Error mask", errorMask);
3304
3305		log << TestLog::EndImageSet;
3306	}
3307
3308	return result;
3309}
3310
3311qpTestResult compareGenMipmapResult (tcu::TestLog& log, const tcu::TextureCube& resultTexture, const tcu::TextureCube& level0Reference, const GenMipmapPrecision& precision)
3312{
3313	qpTestResult result = QP_TEST_RESULT_PASS;
3314
3315	static const char* s_faceNames[] = { "-X", "+X", "-Y", "+Y", "-Z", "+Z" };
3316	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_faceNames) == tcu::CUBEFACE_LAST);
3317
3318	// Special comparison for level 0.
3319	for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
3320	{
3321		const tcu::CubeFace	face		= tcu::CubeFace(faceNdx);
3322		const tcu::Vec4		threshold	= select(precision.colorThreshold, tcu::Vec4(1.0f), precision.colorMask);
3323		const bool			level0Ok	= tcu::floatThresholdCompare(log,
3324																	 ("Level0Face" + de::toString(faceNdx)).c_str(),
3325																	 (string("Level 0, face ") + s_faceNames[face]).c_str(),
3326																	 level0Reference.getLevelFace(0, face),
3327																	 resultTexture.getLevelFace(0, face),
3328																	 threshold, tcu::COMPARE_LOG_RESULT);
3329
3330		if (!level0Ok)
3331		{
3332			log << TestLog::Message << "ERROR: Level 0, face " << s_faceNames[face] << " comparison failed!" << TestLog::EndMessage;
3333			result = QP_TEST_RESULT_FAIL;
3334		}
3335	}
3336
3337	for (int levelNdx = 1; levelNdx < resultTexture.getNumLevels(); levelNdx++)
3338	{
3339		for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
3340		{
3341			const tcu::CubeFace					face		= tcu::CubeFace(faceNdx);
3342			const char*							faceName	= s_faceNames[face];
3343			const tcu::ConstPixelBufferAccess	src			= resultTexture.getLevelFace(levelNdx-1,	face);
3344			const tcu::ConstPixelBufferAccess	dst			= resultTexture.getLevelFace(levelNdx,		face);
3345			tcu::Surface						errorMask	(dst.getWidth(), dst.getHeight());
3346			bool								levelOk		= false;
3347
3348			// Try different comparisons in quality order.
3349
3350			if (!levelOk)
3351			{
3352				const int numFailed = compareGenMipmapBilinear(dst, src, errorMask.getAccess(), precision);
3353				if (numFailed == 0)
3354					levelOk = true;
3355				else
3356					log << TestLog::Message << "WARNING: Level " << levelNdx << ", face " << faceName << " comparison to bilinear method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
3357			}
3358
3359			if (!levelOk)
3360			{
3361				const int numFailed = compareGenMipmapBox(dst, src, errorMask.getAccess(), precision);
3362				if (numFailed == 0)
3363					levelOk = true;
3364				else
3365					log << TestLog::Message << "WARNING: Level " << levelNdx << ", face " << faceName <<" comparison to box method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
3366			}
3367
3368			// At this point all high-quality methods have been used.
3369			if (!levelOk && result == QP_TEST_RESULT_PASS)
3370				result = QP_TEST_RESULT_QUALITY_WARNING;
3371
3372			if (!levelOk)
3373			{
3374				const int numFailed = compareGenMipmapVeryLenient(dst, src, errorMask.getAccess(), precision);
3375				if (numFailed == 0)
3376					levelOk = true;
3377				else
3378					log << TestLog::Message << "ERROR: Level " << levelNdx << ", face " << faceName << " appears to contain " << numFailed << " completely wrong pixels, failing case!" << TestLog::EndMessage;
3379			}
3380
3381			if (!levelOk)
3382				result = QP_TEST_RESULT_FAIL;
3383
3384			log << TestLog::ImageSet(string("Level") + de::toString(levelNdx) + "Face" + de::toString(faceNdx), string("Level ") + de::toString(levelNdx) + ", face " + string(faceName) + " result")
3385				<< TestLog::Image("Result", "Result", dst);
3386
3387			if (!levelOk)
3388				log << TestLog::Image("ErrorMask", "Error mask", errorMask);
3389
3390			log << TestLog::EndImageSet;
3391		}
3392	}
3393
3394	return result;
3395}
3396
3397// Logging utilities.
3398
3399std::ostream& operator<< (std::ostream& str, const LogGradientFmt& fmt)
3400{
3401	return str << "(R: " << fmt.valueMin->x() << " -> " << fmt.valueMax->x() << ", "
3402			   <<  "G: " << fmt.valueMin->y() << " -> " << fmt.valueMax->y() << ", "
3403			   <<  "B: " << fmt.valueMin->z() << " -> " << fmt.valueMax->z() << ", "
3404			   <<  "A: " << fmt.valueMin->w() << " -> " << fmt.valueMax->w() << ")";
3405}
3406
3407} // TextureTestUtil
3408} // gls
3409} // deqp
3410