1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
27faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen {
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Other,
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         int OtherRows=Other::RowsAtCompileTime,
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         int OtherCols=Other::ColsAtCompileTime>
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct ei_quaternion_assign_impl;
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \geometry_module \ingroup Geometry_Module
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \class Quaternion
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \brief The quaternion class used to represent 3D orientations and rotations
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param _Scalar the scalar type, i.e., the type of the coefficients
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * orientations and rotations of objects in three dimensions. Compared to other representations
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \li \b compact storage (4 scalars)
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \li \b efficient to compose (28 flops),
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \li \b stable spherical interpolation
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The following two typedefs are provided for convenience:
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \li \c Quaternionf for \c float
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \li \c Quaterniond for \c double
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa  class AngleAxis, class Transform
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef _Scalar Scalar;
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename _Scalar>
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathclass Quaternion : public RotationBase<Quaternion<_Scalar>,3>
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef RotationBase<Quaternion<_Scalar>,3> Base;
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathpublic:
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  using Base::operator*;
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** the scalar type of the coefficients */
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef _Scalar Scalar;
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** the type of the Coefficients 4-vector */
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, 4, 1> Coefficients;
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** the type of a 3D vector */
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar,3,1> Vector3;
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** the equivalent rotation matrix type */
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar,3,3> Matrix3;
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** the equivalent angle-axis type */
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef AngleAxis<Scalar> AngleAxisType;
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the \c x coefficient */
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar x() const { return m_coeffs.coeff(0); }
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the \c y coefficient */
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar y() const { return m_coeffs.coeff(1); }
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the \c z coefficient */
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar z() const { return m_coeffs.coeff(2); }
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the \c w coefficient */
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar w() const { return m_coeffs.coeff(3); }
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a reference to the \c x coefficient */
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar& x() { return m_coeffs.coeffRef(0); }
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a reference to the \c y coefficient */
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar& y() { return m_coeffs.coeffRef(1); }
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a reference to the \c z coefficient */
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar& z() { return m_coeffs.coeffRef(2); }
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a reference to the \c w coefficient */
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar& w() { return m_coeffs.coeffRef(3); }
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a vector expression of the imaginary part (x,y,z) */
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline const Coefficients& coeffs() const { return m_coeffs; }
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a vector expression of the coefficients (x,y,z,w) */
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Coefficients& coeffs() { return m_coeffs; }
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Default constructor leaving the quaternion uninitialized. */
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion() {}
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * its four coefficients \a w, \a x, \a y and \a z.
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    *
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \warning Note the order of the arguments: the real \a w coefficient first,
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * while internally the coefficients are stored in the following order:
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * [\c x, \c y, \c z, \c w]
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  { m_coeffs << x, y, z, w; }
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Copy constructor */
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Constructs and initializes a quaternion from the angle-axis \a aa */
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Constructs and initializes a quaternion from either:
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    *  - a rotation matrix expression,
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    *  - a 4D vector expression representing quaternion coefficients.
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa operator=(MatrixBase<Derived>)
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename Derived>
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion& operator=(const Quaternion& other);
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion& operator=(const AngleAxisType& aa);
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename Derived>
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion& operator=(const MatrixBase<Derived>& m);
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a quaternion representing an identity rotation
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa MatrixBase::Identity()
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the squared norm of the quaternion's coefficients
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa Quaternion::norm(), MatrixBase::squaredNorm()
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the norm of the quaternion's coefficients
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa Quaternion::squaredNorm(), MatrixBase::norm()
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar norm() const { return m_coeffs.norm(); }
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Normalizes the quaternion \c *this
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa normalized(), MatrixBase::normalize() */
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline void normalize() { m_coeffs.normalize(); }
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns a normalized version of \c *this
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa normalize(), MatrixBase::normalized() */
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns the dot product of \c *this and \a other
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * Geometrically speaking, the dot product of two unit quaternions
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * corresponds to the cosine of half the angle between the two rotations.
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa angularDistance()
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Scalar angularDistance(const Quaternion& other) const;
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Matrix3 toRotationMatrix(void) const;
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename Derived1, typename Derived2>
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion operator* (const Quaternion& q) const;
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline Quaternion& operator*= (const Quaternion& q);
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion inverse(void) const;
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion conjugate(void) const;
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Quaternion slerp(Scalar t, const Quaternion& other) const;
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename Derived>
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Vector3 operator* (const MatrixBase<Derived>& vec) const;
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns \c *this with scalar type casted to \a NewScalarType
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    *
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * then this function smartly returns a const reference to \c *this.
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    */
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename NewScalarType>
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** Copy constructor with scalar type conversion */
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename OtherScalarType>
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  { m_coeffs = other.coeffs().template cast<Scalar>(); }
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * determined by \a prec.
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    *
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    * \sa MatrixBase::isApprox() */
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  { return m_coeffs.isApprox(other.m_coeffs, prec); }
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathprotected:
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Coefficients m_coeffs;
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \ingroup Geometry_Module
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * single precision quaternion type */
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypedef Quaternion<float> Quaternionf;
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \ingroup Geometry_Module
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * double precision quaternion type */
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypedef Quaternion<double> Quaterniond;
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Generic Quaternion * Quaternion product
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar> inline Quaternion<Scalar>
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Quaternion<Scalar>
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  (
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  );
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \returns the concatenation of two rotations as a quaternion-quaternion product */
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return ei_quaternion_product(*this,other);
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \sa operator*(Quaternion) */
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return (*this = *this * other);
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** Rotation of a vector by a quaternion.
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \remarks If the quaternion is used to rotate several points (>1)
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * then it is much more efficient to first convert it to a 3x3 Matrix.
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Comparison of the operation cost for n transformations:
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *   - Quaternion:    30n
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *   - Via a Matrix3: 24 + 15n
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Derived>
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline typename Quaternion<Scalar>::Vector3
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathQuaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Note that this algorithm comes from the optimization by hand
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // of the conversion to a Matrix followed by a Matrix/Vector product.
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // It appears to be much faster than the common algorithm found
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // in the litterature (30 versus 39 flops). It also requires two
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Vector3 as temporaries.
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Vector3 uv;
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    uv = 2 * this->vec().cross(v);
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return v + this->w() * uv + this->vec().cross(uv);
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_coeffs = other.m_coeffs;
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  this->w() = ei_cos(ha);
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  this->vec() = ei_sin(ha) * aa.axis();
277c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
278c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
280c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** Set \c *this from the expression \a xpr:
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *     and \a xpr is converted to a quaternion
284c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Derived>
287c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
288c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
289c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
290c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
291c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
292c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
293c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** Convert the quaternion to a 3x3 rotation matrix */
294c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
295c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline typename Quaternion<Scalar>::Matrix3
296c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathQuaternion<Scalar>::toRotationMatrix(void) const
297c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
298c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
299c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // if not inlined then the cost of the return by value is huge ~ +35%,
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // however, not inlining this function is an order of magnitude slower, so
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // it has to be inlined, and so the return by value is not an issue
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Matrix3 res;
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
304c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar tx  = Scalar(2)*this->x();
305c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar ty  = Scalar(2)*this->y();
306c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar tz  = Scalar(2)*this->z();
307c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar twx = tx*this->w();
308c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar twy = ty*this->w();
309c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar twz = tz*this->w();
310c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar txx = tx*this->x();
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar txy = ty*this->x();
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar txz = tz*this->x();
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar tyy = ty*this->y();
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar tyz = tz*this->y();
315c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar tzz = tz*this->z();
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(0,1) = txy-twz;
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(0,2) = txz+twy;
320c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(1,0) = txy+twz;
321c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
322c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(1,2) = tyz-twx;
323c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(2,0) = txz-twy;
324c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(2,1) = tyz+twx;
325c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
326c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
327c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return res;
328c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
329c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
330c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
331c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
332c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \returns a reference to *this.
333c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
334c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Note that the two input vectors do \b not have to be normalized.
335c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
336c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
337c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Derived1, typename Derived2>
338c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
339c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
340c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Vector3 v0 = a.normalized();
341c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Vector3 v1 = b.normalized();
342c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar c = v0.eigen2_dot(v1);
343c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
344c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // if dot == 1, vectors are the same
345c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (ei_isApprox(c,Scalar(1)))
346c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
347c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // set to identity
348c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    this->w() = 1; this->vec().setZero();
349c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return *this;
350c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
351c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // if dot == -1, vectors are opposites
352c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (ei_isApprox(c,Scalar(-1)))
353c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
354c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    this->vec() = v0.unitOrthogonal();
355c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    this->w() = 0;
356c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return *this;
357c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
358c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
359c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Vector3 axis = v0.cross(v1);
360c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
361c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar invs = Scalar(1)/s;
362c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  this->vec() = axis * invs;
363c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  this->w() = s * Scalar(0.5);
364c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
365c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
366c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
367c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
368c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \returns the multiplicative inverse of \c *this
369c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Note that in most cases, i.e., if you simply want the opposite rotation,
370c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * and/or the quaternion is normalized, then it is enough to use the conjugate.
371c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
372c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa Quaternion::conjugate()
373c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
374c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
375c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
376c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
377c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
378c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar n2 = this->squaredNorm();
379c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (n2 > 0)
380c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return Quaternion(conjugate().coeffs() / n2);
381c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  else
382c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
383c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // return an invalid result to flag the error
384c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return Quaternion(Coefficients::Zero());
385c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
386c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
387c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
388c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
389c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * if the quaternion is normalized.
390c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The conjugate of a quaternion represents the opposite rotation.
391c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
392c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa Quaternion::inverse()
393c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
394c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
395c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
396c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
397c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
398c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
399c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
400c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \returns the angle (in radian) between two rotations
401c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa eigen2_dot()
402c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
403c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
404c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathinline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
405c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
406c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  double d = ei_abs(this->eigen2_dot(other));
407c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (d>=1.0)
408c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return 0;
409c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Scalar(2) * std::acos(d);
410c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
411c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
412c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \returns the spherical linear interpolation between the two quaternions
413c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \c *this and \a other at the parameter \a t
414c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
415c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Scalar>
416c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathQuaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
417c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
418c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
419c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar d = this->eigen2_dot(other);
420c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar absD = ei_abs(d);
421c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
422c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar scale0;
423c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar scale1;
424c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
425c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (absD>=one)
426c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
427c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    scale0 = Scalar(1) - t;
428c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    scale1 = t;
429c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
430c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  else
431c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
432c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // theta is the angle between the 2 quaternions
433c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar theta = std::acos(absD);
434c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar sinTheta = ei_sin(theta);
435c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
436c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
437c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    scale1 = ei_sin( ( t * theta) ) / sinTheta;
438c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (d<0)
439c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      scale1 = -scale1;
440c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
441c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
442c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
443c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
444c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
445c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// set from a rotation matrix
446c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Other>
447c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct ei_quaternion_assign_impl<Other,3,3>
448c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
449c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename Other::Scalar Scalar;
450c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static inline void run(Quaternion<Scalar>& q, const Other& mat)
451c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
452c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
453c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Ken Shoemake, 1987 SIGGRAPH course notes
454c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar t = mat.trace();
455c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (t > 0)
456c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
457c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      t = ei_sqrt(t + Scalar(1.0));
458c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.w() = Scalar(0.5)*t;
459c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      t = Scalar(0.5)/t;
460c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
461c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
462c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
463c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
464c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else
465c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
466c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      int i = 0;
467c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if (mat.coeff(1,1) > mat.coeff(0,0))
468c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        i = 1;
469c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if (mat.coeff(2,2) > mat.coeff(i,i))
470c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        i = 2;
471c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      int j = (i+1)%3;
472c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      int k = (j+1)%3;
473c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
474c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
475c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
476c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      t = Scalar(0.5)/t;
477c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
478c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
479c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
480c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
481c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
482c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
483c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
484c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// set from a vector of coefficients assumed to be a quaternion
485c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Other>
486c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct ei_quaternion_assign_impl<Other,4,1>
487c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
488c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename Other::Scalar Scalar;
489c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static inline void run(Quaternion<Scalar>& q, const Other& vec)
490c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
491c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    q.coeffs() = vec;
492c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
493c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
494c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
495c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen
496