spbenchsolver.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10
11#include <iostream>
12#include <fstream>
13#include "Eigen/SparseCore"
14#include <bench/BenchTimer.h>
15#include <cstdlib>
16#include <string>
17#include <Eigen/Cholesky>
18#include <Eigen/Jacobi>
19#include <Eigen/Householder>
20#include <Eigen/IterativeLinearSolvers>
21#include <unsupported/Eigen/IterativeSolvers>
22#include <Eigen/LU>
23#include <unsupported/Eigen/SparseExtra>
24
25#ifdef EIGEN_CHOLMOD_SUPPORT
26#include <Eigen/CholmodSupport>
27#endif
28
29#ifdef EIGEN_UMFPACK_SUPPORT
30#include <Eigen/UmfPackSupport>
31#endif
32
33#ifdef EIGEN_PARDISO_SUPPORT
34#include <Eigen/PardisoSupport>
35#endif
36
37#ifdef EIGEN_SUPERLU_SUPPORT
38#include <Eigen/SuperLUSupport>
39#endif
40
41#ifdef EIGEN_PASTIX_SUPPORT
42#include <Eigen/PaStiXSupport>
43#endif
44
45// CONSTANTS
46#define EIGEN_UMFPACK  0
47#define EIGEN_SUPERLU  1
48#define EIGEN_PASTIX  2
49#define EIGEN_PARDISO  3
50#define EIGEN_BICGSTAB  4
51#define EIGEN_BICGSTAB_ILUT  5
52#define EIGEN_GMRES 6
53#define EIGEN_GMRES_ILUT 7
54#define EIGEN_SIMPLICIAL_LDLT  8
55#define EIGEN_CHOLMOD_LDLT  9
56#define EIGEN_PASTIX_LDLT  10
57#define EIGEN_PARDISO_LDLT  11
58#define EIGEN_SIMPLICIAL_LLT  12
59#define EIGEN_CHOLMOD_SUPERNODAL_LLT  13
60#define EIGEN_CHOLMOD_SIMPLICIAL_LLT  14
61#define EIGEN_PASTIX_LLT  15
62#define EIGEN_PARDISO_LLT  16
63#define EIGEN_CG  17
64#define EIGEN_CG_PRECOND  18
65#define EIGEN_ALL_SOLVERS  19
66
67using namespace Eigen;
68using namespace std;
69
70struct Stats{
71  ComputationInfo info;
72  double total_time;
73  double compute_time;
74  double solve_time;
75  double rel_error;
76  int memory_used;
77  int iterations;
78  int isavail;
79  int isIterative;
80};
81
82// Global variables for input parameters
83int MaximumIters; // Maximum number of iterations
84double RelErr; // Relative error of the computed solution
85
86template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
87template<> inline float test_precision<float>() { return 1e-3f; }
88template<> inline double test_precision<double>() { return 1e-6; }
89template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
90template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
91
92void printStatheader(std::ofstream& out)
93{
94  int LUcnt = 0;
95  string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT ";
96
97#ifdef EIGEN_UMFPACK_SUPPORT
98  LUlist += "<TH > UMFPACK "; LUcnt++;
99#endif
100#ifdef EIGEN_SUPERLU_SUPPORT
101  LUlist += "<TH > SUPERLU "; LUcnt++;
102#endif
103#ifdef EIGEN_CHOLMOD_SUPPORT
104  LLTlist += "<TH > CHOLMOD SP LLT<TH > CHOLMOD LLT";
105  LDLTlist += "<TH>CHOLMOD LDLT";
106#endif
107#ifdef EIGEN_PARDISO_SUPPORT
108  LUlist += "<TH > PARDISO LU";  LUcnt++;
109  LLTlist += "<TH > PARDISO LLT";
110  LDLTlist += "<TH > PARDISO LDLT";
111#endif
112#ifdef EIGEN_PASTIX_SUPPORT
113  LUlist += "<TH > PASTIX LU";  LUcnt++;
114  LLTlist += "<TH > PASTIX LLT";
115  LDLTlist += "<TH > PASTIX LDLT";
116#endif
117
118  out << "<TABLE border=\"1\" >\n ";
119  out << "<TR><TH>Matrix <TH> N <TH> NNZ <TH> ";
120  if (LUcnt) out << LUlist;
121  out << " <TH >BiCGSTAB <TH >BiCGSTAB+ILUT"<< "<TH >GMRES+ILUT" <<LDLTlist << LLTlist <<  "<TH> CG "<< std::endl;
122}
123
124
125template<typename Solver, typename Scalar>
126Stats call_solver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
127{
128  Stats stat;
129  Matrix<Scalar, Dynamic, 1> x;
130  BenchTimer timer;
131  timer.reset();
132  timer.start();
133  solver.compute(A);
134  if (solver.info() != Success)
135  {
136    stat.info = NumericalIssue;
137    std::cerr << "Solver failed ... \n";
138    return stat;
139  }
140  timer.stop();
141  stat.compute_time = timer.value();
142
143  timer.reset();
144  timer.start();
145  x = solver.solve(b);
146  if (solver.info() == NumericalIssue)
147  {
148    stat.info = NumericalIssue;
149    std::cerr << "Solver failed ... \n";
150    return stat;
151  }
152
153  timer.stop();
154  stat.solve_time = timer.value();
155  stat.total_time = stat.solve_time + stat.compute_time;
156  stat.memory_used = 0;
157  // Verify the relative error
158  if(refX.size() != 0)
159    stat.rel_error = (refX - x).norm()/refX.norm();
160  else
161  {
162    // Compute the relative residual norm
163    Matrix<Scalar, Dynamic, 1> temp;
164    temp = A * x;
165    stat.rel_error = (b-temp).norm()/b.norm();
166  }
167  if ( stat.rel_error > RelErr )
168  {
169    stat.info = NoConvergence;
170    return stat;
171  }
172  else
173  {
174    stat.info = Success;
175    return stat;
176  }
177}
178
179template<typename Solver, typename Scalar>
180Stats call_directsolver(Solver& solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
181{
182    Stats stat;
183    stat = call_solver(solver, A, b, refX);
184    return stat;
185}
186
187template<typename Solver, typename Scalar>
188Stats call_itersolver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
189{
190  Stats stat;
191  solver.setTolerance(RelErr);
192  solver.setMaxIterations(MaximumIters);
193
194  stat = call_solver(solver, A, b, refX);
195  stat.iterations = solver.iterations();
196  return stat;
197}
198
199inline void printStatItem(Stats *stat, int solver_id, int& best_time_id, double& best_time_val)
200{
201  stat[solver_id].isavail = 1;
202
203  if (stat[solver_id].info == NumericalIssue)
204  {
205    cout << " SOLVER FAILED ... Probably a numerical issue \n";
206    return;
207  }
208  if (stat[solver_id].info == NoConvergence){
209    cout << "REL. ERROR " <<  stat[solver_id].rel_error;
210    if(stat[solver_id].isIterative == 1)
211      cout << " (" << stat[solver_id].iterations << ") \n";
212    return;
213  }
214
215  // Record the best CPU time
216  if (!best_time_val)
217  {
218    best_time_val = stat[solver_id].total_time;
219    best_time_id = solver_id;
220  }
221  else if (stat[solver_id].total_time < best_time_val)
222  {
223    best_time_val = stat[solver_id].total_time;
224    best_time_id = solver_id;
225  }
226  // Print statistics to standard output
227  if (stat[solver_id].info == Success){
228    cout<< "COMPUTE TIME : " << stat[solver_id].compute_time<< " \n";
229    cout<< "SOLVE TIME : " << stat[solver_id].solve_time<< " \n";
230    cout<< "TOTAL TIME : " << stat[solver_id].total_time<< " \n";
231    cout << "REL. ERROR : " << stat[solver_id].rel_error ;
232    if(stat[solver_id].isIterative == 1) {
233      cout << " (" << stat[solver_id].iterations << ") ";
234    }
235    cout << std::endl;
236  }
237
238}
239
240
241/* Print the results from all solvers corresponding to a particular matrix
242 * The best CPU time is printed in bold
243 */
244inline void printHtmlStatLine(Stats *stat, int best_time_id, string& statline)
245{
246
247  string markup;
248  ostringstream compute,solve,total,error;
249  for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)
250  {
251    if (stat[i].isavail == 0) continue;
252    if(i == best_time_id)
253      markup = "<TD style=\"background-color:red\">";
254    else
255      markup = "<TD>";
256
257    if (stat[i].info == Success){
258      compute << markup << stat[i].compute_time;
259      solve << markup << stat[i].solve_time;
260      total << markup << stat[i].total_time;
261      error << " <TD> " << stat[i].rel_error;
262      if(stat[i].isIterative == 1) {
263        error << " (" << stat[i].iterations << ") ";
264      }
265    }
266    else {
267      compute << " <TD> -" ;
268      solve << " <TD> -" ;
269      total << " <TD> -" ;
270      if(stat[i].info == NoConvergence){
271        error << " <TD> "<< stat[i].rel_error ;
272        if(stat[i].isIterative == 1)
273          error << " (" << stat[i].iterations << ") ";
274      }
275      else    error << " <TD> - ";
276    }
277  }
278
279  statline = "<TH>Compute Time " + compute.str() + "\n"
280                        +  "<TR><TH>Solve Time " + solve.str() + "\n"
281                        +  "<TR><TH>Total Time " + total.str() + "\n"
282                        +"<TR><TH>Error(Iter)" + error.str() + "\n";
283
284}
285
286template <typename Scalar>
287int SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, Stats *stat)
288{
289  typedef SparseMatrix<Scalar, ColMajor> SpMat;
290  // First, deal with Nonsymmetric and symmetric matrices
291  int best_time_id = 0;
292  double best_time_val = 0.0;
293  //UMFPACK
294  #ifdef EIGEN_UMFPACK_SUPPORT
295  {
296    cout << "Solving with UMFPACK LU ... \n";
297    UmfPackLU<SpMat> solver;
298    stat[EIGEN_UMFPACK] = call_directsolver(solver, A, b, refX);
299    printStatItem(stat, EIGEN_UMFPACK, best_time_id, best_time_val);
300  }
301  #endif
302    //SuperLU
303  #ifdef EIGEN_SUPERLU_SUPPORT
304  {
305    cout << "\nSolving with SUPERLU ... \n";
306    SuperLU<SpMat> solver;
307    stat[EIGEN_SUPERLU] = call_directsolver(solver, A, b, refX);
308    printStatItem(stat, EIGEN_SUPERLU, best_time_id, best_time_val);
309  }
310  #endif
311
312   // PaStix LU
313  #ifdef EIGEN_PASTIX_SUPPORT
314  {
315    cout << "\nSolving with PASTIX LU ... \n";
316    PastixLU<SpMat> solver;
317    stat[EIGEN_PASTIX] = call_directsolver(solver, A, b, refX) ;
318    printStatItem(stat, EIGEN_PASTIX, best_time_id, best_time_val);
319  }
320  #endif
321
322   //PARDISO LU
323  #ifdef EIGEN_PARDISO_SUPPORT
324  {
325    cout << "\nSolving with PARDISO LU ... \n";
326    PardisoLU<SpMat>  solver;
327    stat[EIGEN_PARDISO] = call_directsolver(solver, A, b, refX);
328    printStatItem(stat, EIGEN_PARDISO, best_time_id, best_time_val);
329  }
330  #endif
331
332
333
334  //BiCGSTAB
335  {
336    cout << "\nSolving with BiCGSTAB ... \n";
337    BiCGSTAB<SpMat> solver;
338    stat[EIGEN_BICGSTAB] = call_itersolver(solver, A, b, refX);
339    stat[EIGEN_BICGSTAB].isIterative = 1;
340    printStatItem(stat, EIGEN_BICGSTAB, best_time_id, best_time_val);
341  }
342  //BiCGSTAB+ILUT
343  {
344    cout << "\nSolving with BiCGSTAB and ILUT ... \n";
345    BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver;
346    stat[EIGEN_BICGSTAB_ILUT] = call_itersolver(solver, A, b, refX);
347    stat[EIGEN_BICGSTAB_ILUT].isIterative = 1;
348    printStatItem(stat, EIGEN_BICGSTAB_ILUT, best_time_id, best_time_val);
349  }
350
351
352  //GMRES
353//   {
354//     cout << "\nSolving with GMRES ... \n";
355//     GMRES<SpMat> solver;
356//     stat[EIGEN_GMRES] = call_itersolver(solver, A, b, refX);
357//     stat[EIGEN_GMRES].isIterative = 1;
358//     printStatItem(stat, EIGEN_GMRES, best_time_id, best_time_val);
359//   }
360  //GMRES+ILUT
361  {
362    cout << "\nSolving with GMRES and ILUT ... \n";
363    GMRES<SpMat, IncompleteLUT<Scalar> > solver;
364    stat[EIGEN_GMRES_ILUT] = call_itersolver(solver, A, b, refX);
365    stat[EIGEN_GMRES_ILUT].isIterative = 1;
366    printStatItem(stat, EIGEN_GMRES_ILUT, best_time_id, best_time_val);
367  }
368
369  // Hermitian and not necessarily positive-definites
370  if (sym != NonSymmetric)
371  {
372    // Internal Cholesky
373    {
374      cout << "\nSolving with Simplicial LDLT ... \n";
375      SimplicialLDLT<SpMat, Lower> solver;
376      stat[EIGEN_SIMPLICIAL_LDLT] = call_directsolver(solver, A, b, refX);
377      printStatItem(stat, EIGEN_SIMPLICIAL_LDLT, best_time_id, best_time_val);
378    }
379
380    // CHOLMOD
381    #ifdef EIGEN_CHOLMOD_SUPPORT
382    {
383      cout << "\nSolving with CHOLMOD LDLT ... \n";
384      CholmodDecomposition<SpMat, Lower> solver;
385      solver.setMode(CholmodLDLt);
386      stat[EIGEN_CHOLMOD_LDLT] =  call_directsolver(solver, A, b, refX);
387      printStatItem(stat,EIGEN_CHOLMOD_LDLT, best_time_id, best_time_val);
388    }
389    #endif
390
391    //PASTIX LLT
392    #ifdef EIGEN_PASTIX_SUPPORT
393    {
394      cout << "\nSolving with PASTIX LDLT ... \n";
395      PastixLDLT<SpMat, Lower> solver;
396      stat[EIGEN_PASTIX_LDLT] = call_directsolver(solver, A, b, refX);
397      printStatItem(stat,EIGEN_PASTIX_LDLT, best_time_id, best_time_val);
398    }
399    #endif
400
401    //PARDISO LLT
402    #ifdef EIGEN_PARDISO_SUPPORT
403    {
404      cout << "\nSolving with PARDISO LDLT ... \n";
405      PardisoLDLT<SpMat, Lower> solver;
406      stat[EIGEN_PARDISO_LDLT] = call_directsolver(solver, A, b, refX);
407      printStatItem(stat,EIGEN_PARDISO_LDLT, best_time_id, best_time_val);
408    }
409    #endif
410  }
411
412   // Now, symmetric POSITIVE DEFINITE matrices
413  if (sym == SPD)
414  {
415
416    //Internal Sparse Cholesky
417    {
418      cout << "\nSolving with SIMPLICIAL LLT ... \n";
419      SimplicialLLT<SpMat, Lower> solver;
420      stat[EIGEN_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);
421      printStatItem(stat,EIGEN_SIMPLICIAL_LLT, best_time_id, best_time_val);
422    }
423
424    // CHOLMOD
425    #ifdef EIGEN_CHOLMOD_SUPPORT
426    {
427      // CholMOD SuperNodal LLT
428      cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n";
429      CholmodDecomposition<SpMat, Lower> solver;
430      solver.setMode(CholmodSupernodalLLt);
431      stat[EIGEN_CHOLMOD_SUPERNODAL_LLT] = call_directsolver(solver, A, b, refX);
432      printStatItem(stat,EIGEN_CHOLMOD_SUPERNODAL_LLT, best_time_id, best_time_val);
433      // CholMod Simplicial LLT
434      cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n";
435      solver.setMode(CholmodSimplicialLLt);
436      stat[EIGEN_CHOLMOD_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);
437      printStatItem(stat,EIGEN_CHOLMOD_SIMPLICIAL_LLT, best_time_id, best_time_val);
438    }
439    #endif
440
441    //PASTIX LLT
442    #ifdef EIGEN_PASTIX_SUPPORT
443    {
444      cout << "\nSolving with PASTIX LLT ... \n";
445      PastixLLT<SpMat, Lower> solver;
446      stat[EIGEN_PASTIX_LLT] =  call_directsolver(solver, A, b, refX);
447      printStatItem(stat,EIGEN_PASTIX_LLT, best_time_id, best_time_val);
448    }
449    #endif
450
451    //PARDISO LLT
452    #ifdef EIGEN_PARDISO_SUPPORT
453    {
454      cout << "\nSolving with PARDISO LLT ... \n";
455      PardisoLLT<SpMat, Lower> solver;
456      stat[EIGEN_PARDISO_LLT] = call_directsolver(solver, A, b, refX);
457      printStatItem(stat,EIGEN_PARDISO_LLT, best_time_id, best_time_val);
458    }
459    #endif
460
461    // Internal CG
462    {
463      cout << "\nSolving with CG ... \n";
464      ConjugateGradient<SpMat, Lower> solver;
465      stat[EIGEN_CG] = call_itersolver(solver, A, b, refX);
466      stat[EIGEN_CG].isIterative = 1;
467      printStatItem(stat,EIGEN_CG, best_time_id, best_time_val);
468    }
469    //CG+IdentityPreconditioner
470//     {
471//       cout << "\nSolving with CG and IdentityPreconditioner ... \n";
472//       ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver;
473//       stat[EIGEN_CG_PRECOND] = call_itersolver(solver, A, b, refX);
474//       stat[EIGEN_CG_PRECOND].isIterative = 1;
475//       printStatItem(stat,EIGEN_CG_PRECOND, best_time_id, best_time_val);
476//     }
477  } // End SPD matrices
478
479  return best_time_id;
480}
481
482/* Browse all the matrices available in the specified folder
483 * and solve the associated linear system.
484 * The results of each solve are printed in the standard output
485 * and optionally in the provided html file
486 */
487template <typename Scalar>
488void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol)
489{
490  MaximumIters = maxiters; // Maximum number of iterations, global variable
491  RelErr = tol;  //Relative residual error  as stopping criterion for iterative solvers
492  MatrixMarketIterator<Scalar> it(folder);
493  Stats stat[EIGEN_ALL_SOLVERS];
494  for ( ; it; ++it)
495  {
496    for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)
497    {
498      stat[i].isavail = 0;
499      stat[i].isIterative = 0;
500    }
501
502    int best_time_id;
503    cout<< "\n\n===================================================== \n";
504    cout<< " ======  SOLVING WITH MATRIX " << it.matname() << " ====\n";
505    cout<< " =================================================== \n\n";
506    Matrix<Scalar, Dynamic, 1> refX;
507    if(it.hasrefX()) refX = it.refX();
508    best_time_id = SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, &stat[0]);
509
510    if(statFileExists)
511    {
512      string statline;
513      printHtmlStatLine(&stat[0], best_time_id, statline);
514      std::ofstream statbuf(statFile.c_str(), std::ios::app);
515      statbuf << "<TR><TH rowspan=\"4\">" << it.matname() << " <TD rowspan=\"4\"> "
516      << it.matrix().rows() << " <TD rowspan=\"4\"> " << it.matrix().nonZeros()<< " "<< statline ;
517      statbuf.close();
518    }
519  }
520}
521
522bool get_options(int argc, char **args, string option, string* value=0)
523{
524  int idx = 1, found=false;
525  while (idx<argc && !found){
526    if (option.compare(args[idx]) == 0){
527      found = true;
528      if(value) *value = args[idx+1];
529    }
530    idx+=2;
531  }
532  return found;
533}
534