jdhuff.c revision 3147fbe7688fc353e6ae03825a37cf101a4ee01d
1/*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
21
22
23/*
24 * Expanded entropy decoder object for Huffman decoding.
25 *
26 * The savable_state subrecord contains fields that change within an MCU,
27 * but must not be updated permanently until we complete the MCU.
28 */
29
30typedef struct {
31  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32} savable_state;
33
34/* This macro is to work around compilers with missing or broken
35 * structure assignment.  You'll need to fix this code if you have
36 * such a compiler and you change MAX_COMPS_IN_SCAN.
37 */
38
39#ifndef NO_STRUCT_ASSIGN
40#define ASSIGN_STATE(dest,src)  ((dest) = (src))
41#else
42#if MAX_COMPS_IN_SCAN == 4
43#define ASSIGN_STATE(dest,src)  \
44	((dest).last_dc_val[0] = (src).last_dc_val[0], \
45	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
46	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
47	 (dest).last_dc_val[3] = (src).last_dc_val[3])
48#endif
49#endif
50
51
52typedef struct {
53  struct jpeg_entropy_decoder pub; /* public fields */
54
55  /* These fields are loaded into local variables at start of each MCU.
56   * In case of suspension, we exit WITHOUT updating them.
57   */
58  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
59  savable_state saved;		/* Other state at start of MCU */
60
61  /* These fields are NOT loaded into local working state. */
62  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
63
64  /* Pointers to derived tables (these workspaces have image lifespan) */
65  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67
68  /* Precalculated info set up by start_pass for use in decode_mcu: */
69
70  /* Pointers to derived tables to be used for each block within an MCU */
71  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
73  /* Whether we care about the DC and AC coefficient values for each block */
74  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
75  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
76} huff_entropy_decoder;
77
78typedef huff_entropy_decoder * huff_entropy_ptr;
79
80/*
81 * Initialize for a Huffman-compressed scan.
82 */
83
84METHODDEF(void)
85start_pass_huff_decoder (j_decompress_ptr cinfo)
86{
87  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
88  int ci, blkn, dctbl, actbl;
89  jpeg_component_info * compptr;
90
91  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
92   * This ought to be an error condition, but we make it a warning because
93   * there are some baseline files out there with all zeroes in these bytes.
94   */
95  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
96      cinfo->Ah != 0 || cinfo->Al != 0)
97    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
98
99  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
100    compptr = cinfo->cur_comp_info[ci];
101    dctbl = compptr->dc_tbl_no;
102    actbl = compptr->ac_tbl_no;
103    /* Compute derived values for Huffman tables */
104    /* We may do this more than once for a table, but it's not expensive */
105    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
106			    & entropy->dc_derived_tbls[dctbl]);
107    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
108			    & entropy->ac_derived_tbls[actbl]);
109    /* Initialize DC predictions to 0 */
110    entropy->saved.last_dc_val[ci] = 0;
111  }
112
113  /* Precalculate decoding info for each block in an MCU of this scan */
114  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
115    ci = cinfo->MCU_membership[blkn];
116    compptr = cinfo->cur_comp_info[ci];
117    /* Precalculate which table to use for each block */
118    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
119    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
120    /* Decide whether we really care about the coefficient values */
121    if (compptr->component_needed) {
122      entropy->dc_needed[blkn] = TRUE;
123      /* we don't need the ACs if producing a 1/8th-size image */
124      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
125    } else {
126      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
127    }
128  }
129
130  /* Initialize bitread state variables */
131  entropy->bitstate.bits_left = 0;
132  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
133  entropy->pub.insufficient_data = FALSE;
134
135  /* Initialize restart counter */
136  entropy->restarts_to_go = cinfo->restart_interval;
137}
138
139
140/*
141 * Compute the derived values for a Huffman table.
142 * This routine also performs some validation checks on the table.
143 *
144 * Note this is also used by jdphuff.c.
145 */
146
147GLOBAL(void)
148jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
149			 d_derived_tbl ** pdtbl)
150{
151  JHUFF_TBL *htbl;
152  d_derived_tbl *dtbl;
153  int p, i, l, si, numsymbols;
154  int lookbits, ctr;
155  char huffsize[257];
156  unsigned int huffcode[257];
157  unsigned int code;
158
159  /* Note that huffsize[] and huffcode[] are filled in code-length order,
160   * paralleling the order of the symbols themselves in htbl->huffval[].
161   */
162
163  /* Find the input Huffman table */
164  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
165    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
166  htbl =
167    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
168  if (htbl == NULL)
169    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
170
171  /* Allocate a workspace if we haven't already done so. */
172  if (*pdtbl == NULL)
173    *pdtbl = (d_derived_tbl *)
174      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
175				  SIZEOF(d_derived_tbl));
176  dtbl = *pdtbl;
177  dtbl->pub = htbl;		/* fill in back link */
178
179  /* Figure C.1: make table of Huffman code length for each symbol */
180
181  p = 0;
182  for (l = 1; l <= 16; l++) {
183    i = (int) htbl->bits[l];
184    if (i < 0 || p + i > 256)	/* protect against table overrun */
185      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
186    while (i--)
187      huffsize[p++] = (char) l;
188  }
189  huffsize[p] = 0;
190  numsymbols = p;
191
192  /* Figure C.2: generate the codes themselves */
193  /* We also validate that the counts represent a legal Huffman code tree. */
194
195  code = 0;
196  si = huffsize[0];
197  p = 0;
198  while (huffsize[p]) {
199    while (((int) huffsize[p]) == si) {
200      huffcode[p++] = code;
201      code++;
202    }
203    /* code is now 1 more than the last code used for codelength si; but
204     * it must still fit in si bits, since no code is allowed to be all ones.
205     */
206    if (((INT32) code) >= (((INT32) 1) << si))
207      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
208    code <<= 1;
209    si++;
210  }
211
212  /* Figure F.15: generate decoding tables for bit-sequential decoding */
213
214  p = 0;
215  for (l = 1; l <= 16; l++) {
216    if (htbl->bits[l]) {
217      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
218       * minus the minimum code of length l
219       */
220      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
221      p += htbl->bits[l];
222      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
223    } else {
224      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
225    }
226  }
227  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
228
229  /* Compute lookahead tables to speed up decoding.
230   * First we set all the table entries to 0, indicating "too long";
231   * then we iterate through the Huffman codes that are short enough and
232   * fill in all the entries that correspond to bit sequences starting
233   * with that code.
234   */
235
236  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
237
238  p = 0;
239  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
240    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
241      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
242      /* Generate left-justified code followed by all possible bit sequences */
243      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
244      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
245	dtbl->look_nbits[lookbits] = l;
246	dtbl->look_sym[lookbits] = htbl->huffval[p];
247	lookbits++;
248      }
249    }
250  }
251
252  /* Validate symbols as being reasonable.
253   * For AC tables, we make no check, but accept all byte values 0..255.
254   * For DC tables, we require the symbols to be in range 0..15.
255   * (Tighter bounds could be applied depending on the data depth and mode,
256   * but this is sufficient to ensure safe decoding.)
257   */
258  if (isDC) {
259    for (i = 0; i < numsymbols; i++) {
260      int sym = htbl->huffval[i];
261      if (sym < 0 || sym > 15)
262	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
263    }
264  }
265}
266
267
268/*
269 * Out-of-line code for bit fetching (shared with jdphuff.c).
270 * See jdhuff.h for info about usage.
271 * Note: current values of get_buffer and bits_left are passed as parameters,
272 * but are returned in the corresponding fields of the state struct.
273 *
274 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
275 * of get_buffer to be used.  (On machines with wider words, an even larger
276 * buffer could be used.)  However, on some machines 32-bit shifts are
277 * quite slow and take time proportional to the number of places shifted.
278 * (This is true with most PC compilers, for instance.)  In this case it may
279 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
280 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
281 */
282
283#ifdef SLOW_SHIFT_32
284#define MIN_GET_BITS  15	/* minimum allowable value */
285#else
286#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
287#endif
288
289
290GLOBAL(boolean)
291jpeg_fill_bit_buffer (bitread_working_state * state,
292		      register bit_buf_type get_buffer, register int bits_left,
293		      int nbits)
294/* Load up the bit buffer to a depth of at least nbits */
295{
296  /* Copy heavily used state fields into locals (hopefully registers) */
297  register const JOCTET * next_input_byte = state->next_input_byte;
298  register size_t bytes_in_buffer = state->bytes_in_buffer;
299  j_decompress_ptr cinfo = state->cinfo;
300
301  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
302  /* (It is assumed that no request will be for more than that many bits.) */
303  /* We fail to do so only if we hit a marker or are forced to suspend. */
304
305  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
306    while (bits_left < MIN_GET_BITS) {
307      register int c;
308
309      /* Attempt to read a byte */
310      if (bytes_in_buffer == 0) {
311	if (! (*cinfo->src->fill_input_buffer) (cinfo))
312	  return FALSE;
313	next_input_byte = cinfo->src->next_input_byte;
314	bytes_in_buffer = cinfo->src->bytes_in_buffer;
315      }
316      bytes_in_buffer--;
317      c = GETJOCTET(*next_input_byte++);
318
319      /* If it's 0xFF, check and discard stuffed zero byte */
320      if (c == 0xFF) {
321	/* Loop here to discard any padding FF's on terminating marker,
322	 * so that we can save a valid unread_marker value.  NOTE: we will
323	 * accept multiple FF's followed by a 0 as meaning a single FF data
324	 * byte.  This data pattern is not valid according to the standard.
325	 */
326	do {
327	  if (bytes_in_buffer == 0) {
328	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
329	      return FALSE;
330	    next_input_byte = cinfo->src->next_input_byte;
331	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
332	  }
333	  bytes_in_buffer--;
334	  c = GETJOCTET(*next_input_byte++);
335	} while (c == 0xFF);
336
337	if (c == 0) {
338	  /* Found FF/00, which represents an FF data byte */
339	  c = 0xFF;
340	} else {
341	  /* Oops, it's actually a marker indicating end of compressed data.
342	   * Save the marker code for later use.
343	   * Fine point: it might appear that we should save the marker into
344	   * bitread working state, not straight into permanent state.  But
345	   * once we have hit a marker, we cannot need to suspend within the
346	   * current MCU, because we will read no more bytes from the data
347	   * source.  So it is OK to update permanent state right away.
348	   */
349	  cinfo->unread_marker = c;
350	  /* See if we need to insert some fake zero bits. */
351	  goto no_more_bytes;
352	}
353      }
354
355      /* OK, load c into get_buffer */
356      get_buffer = (get_buffer << 8) | c;
357      bits_left += 8;
358    } /* end while */
359  } else {
360  no_more_bytes:
361    /* We get here if we've read the marker that terminates the compressed
362     * data segment.  There should be enough bits in the buffer register
363     * to satisfy the request; if so, no problem.
364     */
365    if (nbits > bits_left) {
366      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
367       * the data stream, so that we can produce some kind of image.
368       * We use a nonvolatile flag to ensure that only one warning message
369       * appears per data segment.
370       */
371      if (! cinfo->entropy->insufficient_data) {
372	WARNMS(cinfo, JWRN_HIT_MARKER);
373	cinfo->entropy->insufficient_data = TRUE;
374      }
375      /* Fill the buffer with zero bits */
376      get_buffer <<= MIN_GET_BITS - bits_left;
377      bits_left = MIN_GET_BITS;
378    }
379  }
380
381  /* Unload the local registers */
382  state->next_input_byte = next_input_byte;
383  state->bytes_in_buffer = bytes_in_buffer;
384  state->get_buffer = get_buffer;
385  state->bits_left = bits_left;
386
387  return TRUE;
388}
389
390
391/*
392 * Out-of-line code for Huffman code decoding.
393 * See jdhuff.h for info about usage.
394 */
395
396GLOBAL(int)
397jpeg_huff_decode (bitread_working_state * state,
398		  register bit_buf_type get_buffer, register int bits_left,
399		  d_derived_tbl * htbl, int min_bits)
400{
401  register int l = min_bits;
402  register INT32 code;
403
404  /* HUFF_DECODE has determined that the code is at least min_bits */
405  /* bits long, so fetch that many bits in one swoop. */
406
407  CHECK_BIT_BUFFER(*state, l, return -1);
408  code = GET_BITS(l);
409
410  /* Collect the rest of the Huffman code one bit at a time. */
411  /* This is per Figure F.16 in the JPEG spec. */
412
413  while (code > htbl->maxcode[l]) {
414    code <<= 1;
415    CHECK_BIT_BUFFER(*state, 1, return -1);
416    code |= GET_BITS(1);
417    l++;
418  }
419
420  /* Unload the local registers */
421  state->get_buffer = get_buffer;
422  state->bits_left = bits_left;
423
424  /* With garbage input we may reach the sentinel value l = 17. */
425
426  if (l > 16) {
427    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
428    return 0;			/* fake a zero as the safest result */
429  }
430
431  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
432}
433
434
435/*
436 * Figure F.12: extend sign bit.
437 * On some machines, a shift and add will be faster than a table lookup.
438 */
439
440#ifdef AVOID_TABLES
441
442#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
443
444#else
445
446#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
447
448static const int extend_test[16] =   /* entry n is 2**(n-1) */
449  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
450    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
451
452static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
453  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
454    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
455    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
456    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
457
458#endif /* AVOID_TABLES */
459
460
461/*
462 * Check for a restart marker & resynchronize decoder.
463 * Returns FALSE if must suspend.
464 */
465
466LOCAL(boolean)
467process_restart (j_decompress_ptr cinfo)
468{
469  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
470  int ci;
471
472  /* Throw away any unused bits remaining in bit buffer; */
473  /* include any full bytes in next_marker's count of discarded bytes */
474  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
475  entropy->bitstate.bits_left = 0;
476
477  /* Advance past the RSTn marker */
478  if (! (*cinfo->marker->read_restart_marker) (cinfo))
479    return FALSE;
480
481  /* Re-initialize DC predictions to 0 */
482  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
483    entropy->saved.last_dc_val[ci] = 0;
484
485  /* Reset restart counter */
486  entropy->restarts_to_go = cinfo->restart_interval;
487
488  /* Reset out-of-data flag, unless read_restart_marker left us smack up
489   * against a marker.  In that case we will end up treating the next data
490   * segment as empty, and we can avoid producing bogus output pixels by
491   * leaving the flag set.
492   */
493  if (cinfo->unread_marker == 0)
494    entropy->pub.insufficient_data = FALSE;
495
496  return TRUE;
497}
498
499/*
500 * Configure the Huffman decoder to decode the image
501 * starting from (iMCU_row_offset, iMCU_col_offset).
502 */
503
504GLOBAL(void)
505jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,
506              unsigned int bitstream_offset, short int *dc_info)
507{
508  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
509  int blkn, i;
510
511  BITREAD_STATE_VARS;
512  savable_state state;
513
514  unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
515  unsigned int bit_in_bit_buffer =
516      bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
517
518  cinfo->src->next_input_byte = cinfo->src->start_input_byte + byte_offset;
519  cinfo->src->bytes_in_buffer = cinfo->src->total_byte - byte_offset;
520
521  entropy->bitstate.bits_left = 0;
522
523  /*
524   * When byte_offset points to the middle of a JPEG marker (2-bytes data
525   * starting with 0xFF), we need to shift the byte_offset backward so that
526   * CHECK_BIT_BUFFER can handle it properly.
527   */
528  for (i = 0; i < 5 || *(cinfo->src->next_input_byte - 1) == 0xFF; i++) {
529    if (cinfo->src->next_input_byte <= cinfo->src->start_input_byte)
530      break;
531    cinfo->src->next_input_byte--;
532    cinfo->src->bytes_in_buffer++;
533  }
534
535  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
536  CHECK_BIT_BUFFER(br_state, BIT_BUF_SIZE, return);
537  while (cinfo->src->total_byte - br_state.bytes_in_buffer < byte_offset) {
538    DROP_BITS(8);
539    CHECK_BIT_BUFFER(br_state, BIT_BUF_SIZE, return);
540  }
541  DROP_BITS(bits_left - bit_in_bit_buffer);
542  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
543
544  for (i = 0; i < cinfo->comps_in_scan; i++) {
545    entropy->saved.last_dc_val[i] = dc_info[i];
546  }
547}
548
549/*
550 * Save the current Huffman deocde position and the DC coefficients
551 * for each component into bitstream_offset and dc_info[], respectively.
552 */
553
554GLOBAL(void)
555jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,
556              unsigned int *bitstream_offset, short int *dc_info)
557{
558  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
559
560  BITREAD_STATE_VARS;
561  savable_state state;
562  int i;
563
564  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
565  ASSIGN_STATE(state, entropy->saved);
566
567  *bitstream_offset = ((cinfo->src->total_byte - cinfo->src->bytes_in_buffer)
568          << LOG_TWO_BIT_BUF_SIZE) + bits_left;
569  for (i = 0; i < cinfo->comps_in_scan; i++) {
570    dc_info[i] =  state.last_dc_val[i];
571  }
572}
573
574/*
575 * Decode and return one MCU's worth of Huffman-compressed coefficients.
576 * The coefficients are reordered from zigzag order into natural array order,
577 * but are not dequantized.
578 *
579 * The i'th block of the MCU is stored into the block pointed to by
580 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
581 * (Wholesale zeroing is usually a little faster than retail...)
582 *
583 * Returns FALSE if data source requested suspension.  In that case no
584 * changes have been made to permanent state.  (Exception: some output
585 * coefficients may already have been assigned.  This is harmless for
586 * this module, since we'll just re-assign them on the next call.)
587 */
588
589METHODDEF(boolean)
590decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
591{
592  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
593  int blkn;
594  BITREAD_STATE_VARS;
595  savable_state state;
596
597  /* Process restart marker if needed; may have to suspend */
598  if (cinfo->restart_interval) {
599    if (entropy->restarts_to_go == 0)
600      if (! process_restart(cinfo))
601	return FALSE;
602  }
603
604  /* If we've run out of data, just leave the MCU set to zeroes.
605   * This way, we return uniform gray for the remainder of the segment.
606   */
607  if (! entropy->pub.insufficient_data) {
608    /* Load up working state */
609    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
610    ASSIGN_STATE(state, entropy->saved);
611
612    /* Outer loop handles each block in the MCU */
613
614    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
615      JBLOCKROW block = MCU_data[blkn];
616      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
617      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
618      register int s, k, r;
619
620      /* Decode a single block's worth of coefficients */
621
622      /* Section F.2.2.1: decode the DC coefficient difference */
623      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
624      if (s) {
625	CHECK_BIT_BUFFER(br_state, s, return FALSE);
626	r = GET_BITS(s);
627	s = HUFF_EXTEND(r, s);
628      }
629
630      if (entropy->dc_needed[blkn]) {
631	/* Convert DC difference to actual value, update last_dc_val */
632	int ci = cinfo->MCU_membership[blkn];
633	s += state.last_dc_val[ci];
634	state.last_dc_val[ci] = s;
635	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
636	(*block)[0] = (JCOEF) s;
637      }
638
639      if (entropy->ac_needed[blkn]) {
640
641	/* Section F.2.2.2: decode the AC coefficients */
642	/* Since zeroes are skipped, output area must be cleared beforehand */
643	for (k = 1; k < DCTSIZE2; k++) {
644	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
645
646	  r = s >> 4;
647	  s &= 15;
648
649	  if (s) {
650	    k += r;
651	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
652	    r = GET_BITS(s);
653	    s = HUFF_EXTEND(r, s);
654	    /* Output coefficient in natural (dezigzagged) order.
655	     * Note: the extra entries in jpeg_natural_order[] will save us
656	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
657	     */
658	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
659	  } else {
660	    if (r != 15)
661	      break;
662	    k += 15;
663	  }
664	}
665
666      } else {
667
668	/* Section F.2.2.2: decode the AC coefficients */
669	/* In this path we just discard the values */
670	for (k = 1; k < DCTSIZE2; k++) {
671	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
672
673	  r = s >> 4;
674	  s &= 15;
675
676	  if (s) {
677	    k += r;
678	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
679	    DROP_BITS(s);
680	  } else {
681	    if (r != 15)
682	      break;
683	    k += 15;
684	  }
685	}
686
687      }
688    }
689
690    /* Completed MCU, so update state */
691    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
692    ASSIGN_STATE(entropy->saved, state);
693  }
694
695  /* Account for restart interval (no-op if not using restarts) */
696  entropy->restarts_to_go--;
697
698  return TRUE;
699}
700
701/*
702 * Decode one MCU's worth of Huffman-compressed coefficients.
703 * The propose of this method is to calculate the
704 * data length of one MCU in Huffman-coded format.
705 * Therefore, all coefficients are discarded.
706 */
707
708METHODDEF(boolean)
709decode_mcu_discard_coef (j_decompress_ptr cinfo)
710{
711  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
712  int blkn;
713  BITREAD_STATE_VARS;
714  savable_state state;
715
716  /* Process restart marker if needed; may have to suspend */
717  if (cinfo->restart_interval) {
718    if (entropy->restarts_to_go == 0)
719      if (! process_restart(cinfo))
720	return FALSE;
721  }
722
723  if (! entropy->pub.insufficient_data) {
724
725    /* Load up working state */
726    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
727    ASSIGN_STATE(state, entropy->saved);
728
729    /* Outer loop handles each block in the MCU */
730
731    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
732      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
733      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
734      register int s, k, r;
735
736      /* Decode a single block's worth of coefficients */
737
738      /* Section F.2.2.1: decode the DC coefficient difference */
739      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
740      if (s) {
741	CHECK_BIT_BUFFER(br_state, s, return FALSE);
742	r = GET_BITS(s);
743	s = HUFF_EXTEND(r, s);
744      }
745
746      /* discard all coefficients */
747      if (entropy->dc_needed[blkn]) {
748	/* Convert DC difference to actual value, update last_dc_val */
749	int ci = cinfo->MCU_membership[blkn];
750	s += state.last_dc_val[ci];
751	state.last_dc_val[ci] = s;
752      }
753      for (k = 1; k < DCTSIZE2; k++) {
754        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
755
756        r = s >> 4;
757        s &= 15;
758
759        if (s) {
760          k += r;
761          CHECK_BIT_BUFFER(br_state, s, return FALSE);
762          DROP_BITS(s);
763        } else {
764          if (r != 15)
765            break;
766          k += 15;
767        }
768      }
769    }
770
771    /* Completed MCU, so update state */
772    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
773    ASSIGN_STATE(entropy->saved, state);
774  }
775
776  /* Account for restart interval (no-op if not using restarts) */
777  entropy->restarts_to_go--;
778
779  return TRUE;
780}
781
782
783/*
784 * Module initialization routine for Huffman entropy decoding.
785 */
786
787GLOBAL(void)
788jinit_huff_decoder (j_decompress_ptr cinfo)
789{
790  huff_entropy_ptr entropy;
791  int i;
792
793  entropy = (huff_entropy_ptr)
794    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
795				SIZEOF(huff_entropy_decoder));
796  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
797  entropy->pub.start_pass = start_pass_huff_decoder;
798  entropy->pub.decode_mcu = decode_mcu;
799
800  /* Mark tables unallocated */
801  for (i = 0; i < NUM_HUFF_TBLS; i++) {
802    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
803  }
804}
805
806GLOBAL(void)
807jinit_huff_decoder_no_data (j_decompress_ptr cinfo)
808{
809  huff_entropy_ptr entropy;
810  int i;
811
812  entropy = (huff_entropy_ptr)
813    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
814				SIZEOF(huff_entropy_decoder));
815  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
816  entropy->pub.start_pass = start_pass_huff_decoder;
817  entropy->pub.decode_mcu = decode_mcu;
818  entropy->pub.decode_mcu_discard_coef = decode_mcu_discard_coef;
819
820  /* Mark tables unallocated */
821  for (i = 0; i < NUM_HUFF_TBLS; i++) {
822    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
823  }
824}
825
826/*
827 * Call after jpeg_read_header
828 */
829GLOBAL(void)
830jpeg_create_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
831{
832  int i, s;
833  index->scan_count = 1;
834  index->scan = (huffman_scan_header*)malloc(index->scan_count
835          * sizeof(huffman_scan_header));
836  index->total_iMCU_rows = cinfo->total_iMCU_rows;
837  index->scan[0].offset = (huffman_offset_data**)malloc(cinfo->total_iMCU_rows
838          * sizeof(huffman_offset_data*));
839  index->MCU_sample_size = DEFAULT_MCU_SAMPLE_SIZE;
840
841  index->mem_used = sizeof(huffman_scan_header)
842      + cinfo->total_iMCU_rows*sizeof(huffman_offset_data*);
843}
844
845GLOBAL(void)
846jpeg_destroy_huffman_index(huffman_index *index)
847{
848    int i, j;
849    for (i = 0; i < index->scan_count; i++) {
850        for(j = 0; j < index->total_iMCU_rows; j++) {
851            free(index->scan[i].offset[j]);
852        }
853        free(index->scan[i].offset);
854    }
855    free(index->scan);
856}
857