jdphuff.c revision f5b94eebe742df1a9bb3941fc0a0ec0137e936ef
1/*
2 * jdphuff.c
3 *
4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines for progressive JPEG.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jdhuff.h"		/* Declarations shared with jdhuff.c */
21
22
23#ifdef D_PROGRESSIVE_SUPPORTED
24
25/*
26 * Expanded entropy decoder object for progressive Huffman decoding.
27 *
28 * The savable_state subrecord contains fields that change within an MCU,
29 * but must not be updated permanently until we complete the MCU.
30 */
31
32typedef struct {
33  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
34  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
35} savable_state;
36
37/* This macro is to work around compilers with missing or broken
38 * structure assignment.  You'll need to fix this code if you have
39 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 */
41
42#ifndef NO_STRUCT_ASSIGN
43#define ASSIGN_STATE(dest,src)  ((dest) = (src))
44#else
45#if MAX_COMPS_IN_SCAN == 4
46#define ASSIGN_STATE(dest,src)  \
47	((dest).EOBRUN = (src).EOBRUN, \
48	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
49	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51	 (dest).last_dc_val[3] = (src).last_dc_val[3])
52#endif
53#endif
54
55
56typedef struct {
57  struct jpeg_entropy_decoder pub; /* public fields */
58
59  /* These fields are loaded into local variables at start of each MCU.
60   * In case of suspension, we exit WITHOUT updating them.
61   */
62  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
63  savable_state saved;		/* Other state at start of MCU */
64
65  /* These fields are NOT loaded into local working state. */
66  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
67
68  /* Pointers to derived tables (these workspaces have image lifespan) */
69  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
70
71  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
72} phuff_entropy_decoder;
73
74typedef phuff_entropy_decoder * phuff_entropy_ptr;
75
76/* Forward declarations */
77METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
78					    JBLOCKROW *MCU_data));
79METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
80					    JBLOCKROW *MCU_data));
81METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
82					     JBLOCKROW *MCU_data));
83METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
84					     JBLOCKROW *MCU_data));
85
86/*
87 * Initialize for a Huffman-compressed scan.
88 */
89
90METHODDEF(void)
91start_pass_phuff_decoder (j_decompress_ptr cinfo)
92{
93  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
94  boolean is_DC_band, bad;
95  int ci, coefi, tbl;
96  int *coef_bit_ptr;
97  jpeg_component_info * compptr;
98
99  is_DC_band = (cinfo->Ss == 0);
100
101  /* Validate scan parameters */
102  bad = FALSE;
103  if (is_DC_band) {
104    if (cinfo->Se != 0)
105      bad = TRUE;
106  } else {
107    /* need not check Ss/Se < 0 since they came from unsigned bytes */
108    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
109      bad = TRUE;
110    /* AC scans may have only one component */
111    if (cinfo->comps_in_scan != 1)
112      bad = TRUE;
113  }
114  if (cinfo->Ah != 0) {
115    /* Successive approximation refinement scan: must have Al = Ah-1. */
116    if (cinfo->Al != cinfo->Ah-1)
117      bad = TRUE;
118  }
119  if (cinfo->Al > 13)		/* need not check for < 0 */
120    bad = TRUE;
121  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
122   * but the spec doesn't say so, and we try to be liberal about what we
123   * accept.  Note: large Al values could result in out-of-range DC
124   * coefficients during early scans, leading to bizarre displays due to
125   * overflows in the IDCT math.  But we won't crash.
126   */
127  if (bad)
128    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
129	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
130  /* Update progression status, and verify that scan order is legal.
131   * Note that inter-scan inconsistencies are treated as warnings
132   * not fatal errors ... not clear if this is right way to behave.
133   */
134  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
135    int cindex = cinfo->cur_comp_info[ci]->component_index;
136    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
137    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
138      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
139    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
140      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
141      if (cinfo->Ah != expected)
142	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
143      coef_bit_ptr[coefi] = cinfo->Al;
144    }
145  }
146
147  /* Select MCU decoding routine */
148  if (cinfo->Ah == 0) {
149    if (is_DC_band)
150      entropy->pub.decode_mcu = decode_mcu_DC_first;
151    else
152      entropy->pub.decode_mcu = decode_mcu_AC_first;
153  } else {
154    if (is_DC_band)
155      entropy->pub.decode_mcu = decode_mcu_DC_refine;
156    else
157      entropy->pub.decode_mcu = decode_mcu_AC_refine;
158  }
159
160  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
161    compptr = cinfo->cur_comp_info[ci];
162    /* Make sure requested tables are present, and compute derived tables.
163     * We may build same derived table more than once, but it's not expensive.
164     */
165    if (is_DC_band) {
166      if (cinfo->Ah == 0) {	/* DC refinement needs no table */
167	tbl = compptr->dc_tbl_no;
168	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
169				& entropy->derived_tbls[tbl]);
170      }
171    } else {
172      tbl = compptr->ac_tbl_no;
173      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
174			      & entropy->derived_tbls[tbl]);
175      /* remember the single active table */
176      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
177    }
178    /* Initialize DC predictions to 0 */
179    entropy->saved.last_dc_val[ci] = 0;
180  }
181
182  /* Initialize bitread state variables */
183  entropy->bitstate.bits_left = 0;
184  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
185  entropy->pub.insufficient_data = FALSE;
186
187  /* Initialize private state variables */
188  entropy->saved.EOBRUN = 0;
189
190  /* Initialize restart counter */
191  entropy->restarts_to_go = cinfo->restart_interval;
192}
193
194
195/*
196 * Figure F.12: extend sign bit.
197 * On some machines, a shift and add will be faster than a table lookup.
198 */
199
200#ifdef AVOID_TABLES
201
202#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
203
204#else
205
206#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
207
208static const int extend_test[16] =   /* entry n is 2**(n-1) */
209  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
210    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
211
212static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
213  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
214    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
215    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
216    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
217
218#endif /* AVOID_TABLES */
219
220
221/*
222 * Check for a restart marker & resynchronize decoder.
223 * Returns FALSE if must suspend.
224 */
225
226LOCAL(boolean)
227process_restart (j_decompress_ptr cinfo)
228{
229  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
230  int ci;
231
232  /* Throw away any unused bits remaining in bit buffer; */
233  /* include any full bytes in next_marker's count of discarded bytes */
234  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
235  entropy->bitstate.bits_left = 0;
236
237  /* Advance past the RSTn marker */
238  if (! (*cinfo->marker->read_restart_marker) (cinfo))
239    return FALSE;
240
241  /* Re-initialize DC predictions to 0 */
242  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
243    entropy->saved.last_dc_val[ci] = 0;
244  /* Re-init EOB run count, too */
245  entropy->saved.EOBRUN = 0;
246
247  /* Reset restart counter */
248  entropy->restarts_to_go = cinfo->restart_interval;
249
250  /* Reset out-of-data flag, unless read_restart_marker left us smack up
251   * against a marker.  In that case we will end up treating the next data
252   * segment as empty, and we can avoid producing bogus output pixels by
253   * leaving the flag set.
254   */
255  if (cinfo->unread_marker == 0)
256    entropy->pub.insufficient_data = FALSE;
257
258  return TRUE;
259}
260
261
262/*
263 * Huffman MCU decoding.
264 * Each of these routines decodes and returns one MCU's worth of
265 * Huffman-compressed coefficients.
266 * The coefficients are reordered from zigzag order into natural array order,
267 * but are not dequantized.
268 *
269 * The i'th block of the MCU is stored into the block pointed to by
270 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
271 *
272 * We return FALSE if data source requested suspension.  In that case no
273 * changes have been made to permanent state.  (Exception: some output
274 * coefficients may already have been assigned.  This is harmless for
275 * spectral selection, since we'll just re-assign them on the next call.
276 * Successive approximation AC refinement has to be more careful, however.)
277 */
278
279/*
280 * MCU decoding for DC initial scan (either spectral selection,
281 * or first pass of successive approximation).
282 */
283
284METHODDEF(boolean)
285decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
286{
287  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
288  int Al = cinfo->Al;
289  register int s, r;
290  int blkn, ci;
291  JBLOCKROW block;
292  BITREAD_STATE_VARS;
293  savable_state state;
294  d_derived_tbl * tbl;
295  jpeg_component_info * compptr;
296
297  /* Process restart marker if needed; may have to suspend */
298  if (cinfo->restart_interval) {
299    if (entropy->restarts_to_go == 0)
300      if (! process_restart(cinfo))
301	return FALSE;
302  }
303
304  /* If we've run out of data, just leave the MCU set to zeroes.
305   * This way, we return uniform gray for the remainder of the segment.
306   */
307  if (! entropy->pub.insufficient_data) {
308
309    /* Load up working state */
310    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
311    ASSIGN_STATE(state, entropy->saved);
312
313    /* Outer loop handles each block in the MCU */
314
315    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
316      block = MCU_data[blkn];
317      ci = cinfo->MCU_membership[blkn];
318      compptr = cinfo->cur_comp_info[ci];
319      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
320
321      /* Decode a single block's worth of coefficients */
322
323      /* Section F.2.2.1: decode the DC coefficient difference */
324      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
325      if (s) {
326	CHECK_BIT_BUFFER(br_state, s, return FALSE);
327	r = GET_BITS(s);
328	s = HUFF_EXTEND(r, s);
329      }
330
331      /* Convert DC difference to actual value, update last_dc_val */
332      s += state.last_dc_val[ci];
333      state.last_dc_val[ci] = s;
334      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
335      (*block)[0] = (JCOEF) (s << Al);
336    }
337
338    /* Completed MCU, so update state */
339    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
340    ASSIGN_STATE(entropy->saved, state);
341  }
342
343  /* Account for restart interval (no-op if not using restarts) */
344  entropy->restarts_to_go--;
345
346  return TRUE;
347}
348
349
350/*
351 * MCU decoding for AC initial scan (either spectral selection,
352 * or first pass of successive approximation).
353 */
354
355METHODDEF(boolean)
356decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
357{
358  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
359  int Se = cinfo->Se;
360  int Al = cinfo->Al;
361  register int s, k, r;
362  unsigned int EOBRUN;
363  JBLOCKROW block;
364  BITREAD_STATE_VARS;
365  d_derived_tbl * tbl;
366
367  /* Process restart marker if needed; may have to suspend */
368  if (cinfo->restart_interval) {
369    if (entropy->restarts_to_go == 0)
370      if (! process_restart(cinfo))
371	return FALSE;
372  }
373
374  /* If we've run out of data, just leave the MCU set to zeroes.
375   * This way, we return uniform gray for the remainder of the segment.
376   */
377  if (! entropy->pub.insufficient_data) {
378
379    /* Load up working state.
380     * We can avoid loading/saving bitread state if in an EOB run.
381     */
382    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
383
384    /* There is always only one block per MCU */
385
386    if (EOBRUN > 0)		/* if it's a band of zeroes... */
387      EOBRUN--;			/* ...process it now (we do nothing) */
388    else {
389      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
390      block = MCU_data[0];
391      tbl = entropy->ac_derived_tbl;
392
393      for (k = cinfo->Ss; k <= Se; k++) {
394	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
395	r = s >> 4;
396	s &= 15;
397	if (s) {
398	  k += r;
399	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
400	  r = GET_BITS(s);
401	  s = HUFF_EXTEND(r, s);
402	  /* Scale and output coefficient in natural (dezigzagged) order */
403	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
404	} else {
405	  if (r == 15) {	/* ZRL */
406	    k += 15;		/* skip 15 zeroes in band */
407	  } else {		/* EOBr, run length is 2^r + appended bits */
408	    EOBRUN = 1 << r;
409	    if (r) {		/* EOBr, r > 0 */
410	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
411	      r = GET_BITS(r);
412	      EOBRUN += r;
413	    }
414	    EOBRUN--;		/* this band is processed at this moment */
415	    break;		/* force end-of-band */
416	  }
417	}
418      }
419
420      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
421    }
422
423    /* Completed MCU, so update state */
424    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
425  }
426
427  /* Account for restart interval (no-op if not using restarts) */
428  entropy->restarts_to_go--;
429
430  return TRUE;
431}
432
433
434/*
435 * MCU decoding for DC successive approximation refinement scan.
436 * Note: we assume such scans can be multi-component, although the spec
437 * is not very clear on the point.
438 */
439
440METHODDEF(boolean)
441decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
442{
443  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
444  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
445  int blkn;
446  JBLOCKROW block;
447  BITREAD_STATE_VARS;
448
449  /* Process restart marker if needed; may have to suspend */
450  if (cinfo->restart_interval) {
451    if (entropy->restarts_to_go == 0)
452      if (! process_restart(cinfo))
453	return FALSE;
454  }
455
456  /* Not worth the cycles to check insufficient_data here,
457   * since we will not change the data anyway if we read zeroes.
458   */
459
460  /* Load up working state */
461  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
462
463  /* Outer loop handles each block in the MCU */
464
465  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
466    block = MCU_data[blkn];
467
468    /* Encoded data is simply the next bit of the two's-complement DC value */
469    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
470    if (GET_BITS(1))
471      (*block)[0] |= p1;
472    /* Note: since we use |=, repeating the assignment later is safe */
473  }
474
475  /* Completed MCU, so update state */
476  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
477
478  /* Account for restart interval (no-op if not using restarts) */
479  entropy->restarts_to_go--;
480
481  return TRUE;
482}
483
484
485/*
486 * MCU decoding for AC successive approximation refinement scan.
487 */
488
489METHODDEF(boolean)
490decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
491{
492  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
493  int Se = cinfo->Se;
494  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
495  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
496  register int s, k, r;
497  unsigned int EOBRUN;
498  JBLOCKROW block;
499  JCOEFPTR thiscoef;
500  BITREAD_STATE_VARS;
501  d_derived_tbl * tbl;
502  int num_newnz;
503  int newnz_pos[DCTSIZE2];
504
505  /* Process restart marker if needed; may have to suspend */
506  if (cinfo->restart_interval) {
507    if (entropy->restarts_to_go == 0)
508      if (! process_restart(cinfo))
509	return FALSE;
510  }
511
512  /* If we've run out of data, don't modify the MCU.
513   */
514  if (! entropy->pub.insufficient_data) {
515
516    /* Load up working state */
517    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
518    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
519
520    /* There is always only one block per MCU */
521    block = MCU_data[0];
522    tbl = entropy->ac_derived_tbl;
523
524    /* If we are forced to suspend, we must undo the assignments to any newly
525     * nonzero coefficients in the block, because otherwise we'd get confused
526     * next time about which coefficients were already nonzero.
527     * But we need not undo addition of bits to already-nonzero coefficients;
528     * instead, we can test the current bit to see if we already did it.
529     */
530    num_newnz = 0;
531
532    /* initialize coefficient loop counter to start of band */
533    k = cinfo->Ss;
534
535    if (EOBRUN == 0) {
536      for (; k <= Se; k++) {
537	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
538	r = s >> 4;
539	s &= 15;
540	if (s) {
541	  if (s != 1)		/* size of new coef should always be 1 */
542	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
543	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
544	  if (GET_BITS(1))
545	    s = p1;		/* newly nonzero coef is positive */
546	  else
547	    s = m1;		/* newly nonzero coef is negative */
548	} else {
549	  if (r != 15) {
550	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
551	    if (r) {
552	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
553	      r = GET_BITS(r);
554	      EOBRUN += r;
555	    }
556	    break;		/* rest of block is handled by EOB logic */
557	  }
558	  /* note s = 0 for processing ZRL */
559	}
560	/* Advance over already-nonzero coefs and r still-zero coefs,
561	 * appending correction bits to the nonzeroes.  A correction bit is 1
562	 * if the absolute value of the coefficient must be increased.
563	 */
564	do {
565	  thiscoef = *block + jpeg_natural_order[k];
566	  if (*thiscoef != 0) {
567	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
568	    if (GET_BITS(1)) {
569	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
570		if (*thiscoef >= 0)
571		  *thiscoef += p1;
572		else
573		  *thiscoef += m1;
574	      }
575	    }
576	  } else {
577	    if (--r < 0)
578	      break;		/* reached target zero coefficient */
579	  }
580	  k++;
581	} while (k <= Se);
582	if (s) {
583	  int pos = jpeg_natural_order[k];
584	  /* Output newly nonzero coefficient */
585	  (*block)[pos] = (JCOEF) s;
586	  /* Remember its position in case we have to suspend */
587	  newnz_pos[num_newnz++] = pos;
588	}
589      }
590    }
591
592    if (EOBRUN > 0) {
593      /* Scan any remaining coefficient positions after the end-of-band
594       * (the last newly nonzero coefficient, if any).  Append a correction
595       * bit to each already-nonzero coefficient.  A correction bit is 1
596       * if the absolute value of the coefficient must be increased.
597       */
598      for (; k <= Se; k++) {
599	thiscoef = *block + jpeg_natural_order[k];
600	if (*thiscoef != 0) {
601	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
602	  if (GET_BITS(1)) {
603	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
604	      if (*thiscoef >= 0)
605		*thiscoef += p1;
606	      else
607		*thiscoef += m1;
608	    }
609	  }
610	}
611      }
612      /* Count one block completed in EOB run */
613      EOBRUN--;
614    }
615
616    /* Completed MCU, so update state */
617    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
618    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
619  }
620
621  /* Account for restart interval (no-op if not using restarts) */
622  entropy->restarts_to_go--;
623
624  return TRUE;
625
626undoit:
627  /* Re-zero any output coefficients that we made newly nonzero */
628  while (num_newnz > 0)
629    (*block)[newnz_pos[--num_newnz]] = 0;
630
631  return FALSE;
632}
633
634/*
635 * Configure the Huffman decoder to decode the image
636 * starting from (iMCU_row_offset, iMCU_col_offset).
637 */
638METHODDEF(void)
639configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
640{
641  int i;
642  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
643  jpeg_configure_huffman_decoder(cinfo, offset);
644  entropy->saved.EOBRUN = offset.EOBRUN;
645  for (i = 0; i < cinfo->comps_in_scan; i++)
646    entropy->saved.last_dc_val[i] = offset.prev_dc[i];
647}
648
649/*
650 * Save the current Huffman deocde position and the DC coefficients
651 * for each component into bitstream_offset and dc_info[], respectively.
652 */
653METHODDEF(void)
654get_huffman_decoder_configuration(j_decompress_ptr cinfo,
655        huffman_offset_data *offset)
656{
657  int i;
658  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
659  jpeg_get_huffman_decoder_configuration(cinfo, offset);
660  offset->EOBRUN = entropy->saved.EOBRUN;
661  for (i = 0; i < cinfo->comps_in_scan; i++)
662    offset->prev_dc[i] = entropy->saved.last_dc_val[i];
663}
664
665/*
666 * Module initialization routine for progressive Huffman entropy decoding.
667 */
668
669GLOBAL(void)
670jinit_phuff_decoder (j_decompress_ptr cinfo)
671{
672  phuff_entropy_ptr entropy;
673  int *coef_bit_ptr;
674  int ci, i;
675
676  entropy = (phuff_entropy_ptr)
677    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
678				SIZEOF(phuff_entropy_decoder));
679  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
680  entropy->pub.start_pass = start_pass_phuff_decoder;
681  entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
682  entropy->pub.get_huffman_decoder_configuration =
683        get_huffman_decoder_configuration;
684
685  /* Mark derived tables unallocated */
686  for (i = 0; i < NUM_HUFF_TBLS; i++) {
687    entropy->derived_tbls[i] = NULL;
688  }
689
690  /* Create progression status table */
691  cinfo->coef_bits = (int (*)[DCTSIZE2])
692    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
693				cinfo->num_components*DCTSIZE2*SIZEOF(int));
694  coef_bit_ptr = & cinfo->coef_bits[0][0];
695  for (ci = 0; ci < cinfo->num_components; ci++)
696    for (i = 0; i < DCTSIZE2; i++)
697      *coef_bit_ptr++ = -1;
698}
699
700GLOBAL(void)
701jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
702        huffman_index *index, int scan_no, int offset)
703{
704  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
705  if (scan_no >= index->scan_count) {
706    index->scan = realloc(index->scan,
707                    (scan_no + 1) * sizeof(huffman_scan_header));
708    index->mem_used += (scan_no - index->scan_count + 1)
709      * (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
710      * sizeof(huffman_offset_data*));
711    index->scan_count = scan_no + 1;
712  }
713  index->scan[scan_no].offset = (huffman_offset_data**)malloc(
714          cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
715  index->scan[scan_no].bitstream_offset = offset;
716}
717
718#endif /* D_PROGRESSIVE_SUPPORTED */
719