ValueObject.cpp revision 9b90e87380cfafd7e746252588c314bcfefa4fe4
1//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Core/ValueObject.h"
11
12// C Includes
13#include <stdlib.h>
14
15// C++ Includes
16// Other libraries and framework includes
17#include "llvm/Support/raw_ostream.h"
18#include "clang/AST/Type.h"
19
20// Project includes
21#include "lldb/Core/DataBufferHeap.h"
22#include "lldb/Core/DataVisualization.h"
23#include "lldb/Core/Debugger.h"
24#include "lldb/Core/Log.h"
25#include "lldb/Core/Module.h"
26#include "lldb/Core/StreamString.h"
27#include "lldb/Core/ValueObjectChild.h"
28#include "lldb/Core/ValueObjectConstResult.h"
29#include "lldb/Core/ValueObjectDynamicValue.h"
30#include "lldb/Core/ValueObjectList.h"
31#include "lldb/Core/ValueObjectMemory.h"
32#include "lldb/Core/ValueObjectSyntheticFilter.h"
33
34#include "lldb/Host/Endian.h"
35
36#include "lldb/Interpreter/CommandInterpreter.h"
37#include "lldb/Interpreter/ScriptInterpreterPython.h"
38
39#include "lldb/Symbol/ClangASTType.h"
40#include "lldb/Symbol/ClangASTContext.h"
41#include "lldb/Symbol/Type.h"
42
43#include "lldb/Target/ExecutionContext.h"
44#include "lldb/Target/LanguageRuntime.h"
45#include "lldb/Target/ObjCLanguageRuntime.h"
46#include "lldb/Target/Process.h"
47#include "lldb/Target/RegisterContext.h"
48#include "lldb/Target/Target.h"
49#include "lldb/Target/Thread.h"
50
51#include "lldb/Utility/RefCounter.h"
52
53using namespace lldb;
54using namespace lldb_private;
55using namespace lldb_utility;
56
57static user_id_t g_value_obj_uid = 0;
58
59//----------------------------------------------------------------------
60// ValueObject constructor
61//----------------------------------------------------------------------
62ValueObject::ValueObject (ValueObject &parent) :
63    UserID (++g_value_obj_uid), // Unique identifier for every value object
64    m_parent (&parent),
65    m_update_point (parent.GetUpdatePoint ()),
66    m_name (),
67    m_data (),
68    m_value (),
69    m_error (),
70    m_value_str (),
71    m_old_value_str (),
72    m_location_str (),
73    m_summary_str (),
74    m_object_desc_str (),
75    m_manager(parent.GetManager()),
76    m_children (),
77    m_synthetic_children (),
78    m_dynamic_value (NULL),
79    m_synthetic_value(NULL),
80    m_deref_valobj(NULL),
81    m_format (eFormatDefault),
82    m_last_format_mgr_revision(0),
83    m_last_format_mgr_dynamic(parent.m_last_format_mgr_dynamic),
84    m_type_summary_sp(),
85    m_type_format_sp(),
86    m_synthetic_children_sp(),
87    m_user_id_of_forced_summary(),
88    m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid),
89    m_value_is_valid (false),
90    m_value_did_change (false),
91    m_children_count_valid (false),
92    m_old_value_valid (false),
93    m_is_deref_of_parent (false),
94    m_is_array_item_for_pointer(false),
95    m_is_bitfield_for_scalar(false),
96    m_is_expression_path_child(false),
97    m_is_child_at_offset(false),
98    m_is_getting_summary(false),
99    m_did_calculate_complete_objc_class_type(false)
100{
101    m_manager->ManageObject(this);
102}
103
104//----------------------------------------------------------------------
105// ValueObject constructor
106//----------------------------------------------------------------------
107ValueObject::ValueObject (ExecutionContextScope *exe_scope,
108                          AddressType child_ptr_or_ref_addr_type) :
109    UserID (++g_value_obj_uid), // Unique identifier for every value object
110    m_parent (NULL),
111    m_update_point (exe_scope),
112    m_name (),
113    m_data (),
114    m_value (),
115    m_error (),
116    m_value_str (),
117    m_old_value_str (),
118    m_location_str (),
119    m_summary_str (),
120    m_object_desc_str (),
121    m_manager(),
122    m_children (),
123    m_synthetic_children (),
124    m_dynamic_value (NULL),
125    m_synthetic_value(NULL),
126    m_deref_valobj(NULL),
127    m_format (eFormatDefault),
128    m_last_format_mgr_revision(0),
129    m_last_format_mgr_dynamic(eNoDynamicValues),
130    m_type_summary_sp(),
131    m_type_format_sp(),
132    m_synthetic_children_sp(),
133    m_user_id_of_forced_summary(),
134    m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
135    m_value_is_valid (false),
136    m_value_did_change (false),
137    m_children_count_valid (false),
138    m_old_value_valid (false),
139    m_is_deref_of_parent (false),
140    m_is_array_item_for_pointer(false),
141    m_is_bitfield_for_scalar(false),
142    m_is_expression_path_child(false),
143    m_is_child_at_offset(false),
144    m_is_getting_summary(false),
145    m_did_calculate_complete_objc_class_type(false)
146{
147    m_manager = new ValueObjectManager();
148    m_manager->ManageObject (this);
149}
150
151//----------------------------------------------------------------------
152// Destructor
153//----------------------------------------------------------------------
154ValueObject::~ValueObject ()
155{
156}
157
158bool
159ValueObject::UpdateValueIfNeeded (bool update_format)
160{
161    return UpdateValueIfNeeded(m_last_format_mgr_dynamic, update_format);
162}
163
164bool
165ValueObject::UpdateValueIfNeeded (DynamicValueType use_dynamic, bool update_format)
166{
167
168    bool did_change_formats = false;
169
170    if (update_format)
171        did_change_formats = UpdateFormatsIfNeeded(use_dynamic);
172
173    // If this is a constant value, then our success is predicated on whether
174    // we have an error or not
175    if (GetIsConstant())
176    {
177        // if you were asked to update your formatters, but did not get a chance to do it
178        // clear your own values (this serves the purpose of faking a stop-id for frozen
179        // objects (which are regarded as constant, but could have changes behind their backs
180        // because of the frozen-pointer depth limit)
181		// TODO: decouple summary from value and then remove this code and only force-clear the summary
182        if (update_format && !did_change_formats)
183            ClearUserVisibleData(eClearUserVisibleDataItemsSummary);
184        return m_error.Success();
185    }
186
187    bool first_update = m_update_point.IsFirstEvaluation();
188
189    if (m_update_point.NeedsUpdating())
190    {
191        m_update_point.SetUpdated();
192
193        // Save the old value using swap to avoid a string copy which
194        // also will clear our m_value_str
195        if (m_value_str.empty())
196        {
197            m_old_value_valid = false;
198        }
199        else
200        {
201            m_old_value_valid = true;
202            m_old_value_str.swap (m_value_str);
203            ClearUserVisibleData(eClearUserVisibleDataItemsValue);
204        }
205
206        ClearUserVisibleData();
207
208        if (IsInScope())
209        {
210            const bool value_was_valid = GetValueIsValid();
211            SetValueDidChange (false);
212
213            m_error.Clear();
214
215            // Call the pure virtual function to update the value
216            bool success = UpdateValue ();
217
218            SetValueIsValid (success);
219
220            if (first_update)
221                SetValueDidChange (false);
222            else if (!m_value_did_change && success == false)
223            {
224                // The value wasn't gotten successfully, so we mark this
225                // as changed if the value used to be valid and now isn't
226                SetValueDidChange (value_was_valid);
227            }
228        }
229        else
230        {
231            m_error.SetErrorString("out of scope");
232        }
233    }
234    return m_error.Success();
235}
236
237bool
238ValueObject::UpdateFormatsIfNeeded(DynamicValueType use_dynamic)
239{
240    LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_TYPES));
241    if (log)
242        log->Printf("checking for FormatManager revisions. VO named %s is at revision %d, while the format manager is at revision %d",
243           GetName().GetCString(),
244           m_last_format_mgr_revision,
245           DataVisualization::GetCurrentRevision());
246
247    bool any_change = false;
248
249    if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision()) ||
250          m_last_format_mgr_dynamic != use_dynamic)
251    {
252        SetValueFormat(DataVisualization::ValueFormats::GetFormat (*this, eNoDynamicValues));
253        SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, use_dynamic));
254#ifndef LLDB_DISABLE_PYTHON
255        SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, use_dynamic));
256#endif
257
258        m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
259        m_last_format_mgr_dynamic = use_dynamic;
260
261        any_change = true;
262    }
263
264    return any_change;
265
266}
267
268void
269ValueObject::SetNeedsUpdate ()
270{
271    m_update_point.SetNeedsUpdate();
272    // We have to clear the value string here so ConstResult children will notice if their values are
273    // changed by hand (i.e. with SetValueAsCString).
274    ClearUserVisibleData(eClearUserVisibleDataItemsValue);
275}
276
277ClangASTType
278ValueObject::MaybeCalculateCompleteType ()
279{
280    ClangASTType ret(GetClangASTImpl(), GetClangTypeImpl());
281
282    if (m_did_calculate_complete_objc_class_type)
283    {
284        if (m_override_type.IsValid())
285            return m_override_type;
286        else
287            return ret;
288    }
289
290    clang_type_t ast_type(GetClangTypeImpl());
291    clang_type_t class_type;
292    bool is_pointer_type;
293
294    if (ClangASTContext::IsObjCObjectPointerType(ast_type, &class_type))
295    {
296        is_pointer_type = true;
297    }
298    else if (ClangASTContext::IsObjCClassType(ast_type))
299    {
300        is_pointer_type = false;
301        class_type = ast_type;
302    }
303    else
304    {
305        return ret;
306    }
307
308    m_did_calculate_complete_objc_class_type = true;
309
310    if (!class_type)
311        return ret;
312
313    std::string class_name;
314
315    if (!ClangASTContext::GetObjCClassName(class_type, class_name))
316        return ret;
317
318    ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
319
320    if (!process_sp)
321        return ret;
322
323    ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime());
324
325    if (!objc_language_runtime)
326        return ret;
327
328    ConstString class_name_cs(class_name.c_str());
329
330    TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name_cs);
331
332    if (!complete_objc_class_type_sp)
333        return ret;
334
335    ClangASTType complete_class(complete_objc_class_type_sp->GetClangAST(),
336                                complete_objc_class_type_sp->GetClangFullType());
337
338    if (!ClangASTContext::GetCompleteType(complete_class.GetASTContext(),
339                                          complete_class.GetOpaqueQualType()))
340        return ret;
341
342    if (is_pointer_type)
343    {
344        clang_type_t pointer_type = ClangASTContext::CreatePointerType(complete_class.GetASTContext(),
345                                                                       complete_class.GetOpaqueQualType());
346
347        m_override_type = ClangASTType(complete_class.GetASTContext(),
348                                       pointer_type);
349    }
350    else
351    {
352        m_override_type = complete_class;
353    }
354
355    if (m_override_type.IsValid())
356        return m_override_type;
357    else
358        return ret;
359}
360
361clang::ASTContext *
362ValueObject::GetClangAST ()
363{
364    ClangASTType type = MaybeCalculateCompleteType();
365
366    return type.GetASTContext();
367}
368
369lldb::clang_type_t
370ValueObject::GetClangType ()
371{
372    ClangASTType type = MaybeCalculateCompleteType();
373
374    return type.GetOpaqueQualType();
375}
376
377DataExtractor &
378ValueObject::GetDataExtractor ()
379{
380    UpdateValueIfNeeded(false);
381    return m_data;
382}
383
384const Error &
385ValueObject::GetError()
386{
387    UpdateValueIfNeeded(false);
388    return m_error;
389}
390
391const ConstString &
392ValueObject::GetName() const
393{
394    return m_name;
395}
396
397const char *
398ValueObject::GetLocationAsCString ()
399{
400    if (UpdateValueIfNeeded(false))
401    {
402        if (m_location_str.empty())
403        {
404            StreamString sstr;
405
406            switch (m_value.GetValueType())
407            {
408            default:
409                break;
410
411            case Value::eValueTypeScalar:
412                if (m_value.GetContextType() == Value::eContextTypeRegisterInfo)
413                {
414                    RegisterInfo *reg_info = m_value.GetRegisterInfo();
415                    if (reg_info)
416                    {
417                        if (reg_info->name)
418                            m_location_str = reg_info->name;
419                        else if (reg_info->alt_name)
420                            m_location_str = reg_info->alt_name;
421                        break;
422                    }
423                }
424                m_location_str = "scalar";
425                break;
426
427            case Value::eValueTypeLoadAddress:
428            case Value::eValueTypeFileAddress:
429            case Value::eValueTypeHostAddress:
430                {
431                    uint32_t addr_nibble_size = m_data.GetAddressByteSize() * 2;
432                    sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
433                    m_location_str.swap(sstr.GetString());
434                }
435                break;
436            }
437        }
438    }
439    return m_location_str.c_str();
440}
441
442Value &
443ValueObject::GetValue()
444{
445    return m_value;
446}
447
448const Value &
449ValueObject::GetValue() const
450{
451    return m_value;
452}
453
454bool
455ValueObject::ResolveValue (Scalar &scalar)
456{
457    if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything
458    {
459        ExecutionContext exe_ctx (GetExecutionContextRef());
460        Value tmp_value(m_value);
461        scalar = tmp_value.ResolveValue(&exe_ctx, GetClangAST ());
462        if (scalar.IsValid())
463        {
464            const uint32_t bitfield_bit_size = GetBitfieldBitSize();
465            if (bitfield_bit_size)
466                return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset());
467            return true;
468        }
469    }
470    return false;
471}
472
473bool
474ValueObject::GetValueIsValid () const
475{
476    return m_value_is_valid;
477}
478
479
480void
481ValueObject::SetValueIsValid (bool b)
482{
483    m_value_is_valid = b;
484}
485
486bool
487ValueObject::GetValueDidChange ()
488{
489    GetValueAsCString ();
490    return m_value_did_change;
491}
492
493void
494ValueObject::SetValueDidChange (bool value_changed)
495{
496    m_value_did_change = value_changed;
497}
498
499ValueObjectSP
500ValueObject::GetChildAtIndex (uint32_t idx, bool can_create)
501{
502    ValueObjectSP child_sp;
503    // We may need to update our value if we are dynamic
504    if (IsPossibleDynamicType ())
505        UpdateValueIfNeeded(false);
506    if (idx < GetNumChildren())
507    {
508        // Check if we have already made the child value object?
509        if (can_create && !m_children.HasChildAtIndex(idx))
510        {
511            // No we haven't created the child at this index, so lets have our
512            // subclass do it and cache the result for quick future access.
513            m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0));
514        }
515
516        ValueObject* child = m_children.GetChildAtIndex(idx);
517        if (child != NULL)
518            return child->GetSP();
519    }
520    return child_sp;
521}
522
523uint32_t
524ValueObject::GetIndexOfChildWithName (const ConstString &name)
525{
526    bool omit_empty_base_classes = true;
527    return ClangASTContext::GetIndexOfChildWithName (GetClangAST(),
528                                                     GetClangType(),
529                                                     name.GetCString(),
530                                                     omit_empty_base_classes);
531}
532
533ValueObjectSP
534ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create)
535{
536    // when getting a child by name, it could be buried inside some base
537    // classes (which really aren't part of the expression path), so we
538    // need a vector of indexes that can get us down to the correct child
539    ValueObjectSP child_sp;
540
541    // We may need to update our value if we are dynamic
542    if (IsPossibleDynamicType ())
543        UpdateValueIfNeeded(false);
544
545    std::vector<uint32_t> child_indexes;
546    clang::ASTContext *clang_ast = GetClangAST();
547    void *clang_type = GetClangType();
548    bool omit_empty_base_classes = true;
549    const size_t num_child_indexes =  ClangASTContext::GetIndexOfChildMemberWithName (clang_ast,
550                                                                                      clang_type,
551                                                                                      name.GetCString(),
552                                                                                      omit_empty_base_classes,
553                                                                                      child_indexes);
554    if (num_child_indexes > 0)
555    {
556        std::vector<uint32_t>::const_iterator pos = child_indexes.begin ();
557        std::vector<uint32_t>::const_iterator end = child_indexes.end ();
558
559        child_sp = GetChildAtIndex(*pos, can_create);
560        for (++pos; pos != end; ++pos)
561        {
562            if (child_sp)
563            {
564                ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create));
565                child_sp = new_child_sp;
566            }
567            else
568            {
569                child_sp.reset();
570            }
571
572        }
573    }
574    return child_sp;
575}
576
577
578uint32_t
579ValueObject::GetNumChildren ()
580{
581    UpdateValueIfNeeded();
582    if (!m_children_count_valid)
583    {
584        SetNumChildren (CalculateNumChildren());
585    }
586    return m_children.GetChildrenCount();
587}
588void
589ValueObject::SetNumChildren (uint32_t num_children)
590{
591    m_children_count_valid = true;
592    m_children.SetChildrenCount(num_children);
593}
594
595void
596ValueObject::SetName (const ConstString &name)
597{
598    m_name = name;
599}
600
601ValueObject *
602ValueObject::CreateChildAtIndex (uint32_t idx, bool synthetic_array_member, int32_t synthetic_index)
603{
604    ValueObject *valobj = NULL;
605
606    bool omit_empty_base_classes = true;
607    bool ignore_array_bounds = synthetic_array_member;
608    std::string child_name_str;
609    uint32_t child_byte_size = 0;
610    int32_t child_byte_offset = 0;
611    uint32_t child_bitfield_bit_size = 0;
612    uint32_t child_bitfield_bit_offset = 0;
613    bool child_is_base_class = false;
614    bool child_is_deref_of_parent = false;
615
616    const bool transparent_pointers = synthetic_array_member == false;
617    clang::ASTContext *clang_ast = GetClangAST();
618    clang_type_t clang_type = GetClangType();
619    clang_type_t child_clang_type;
620
621    ExecutionContext exe_ctx (GetExecutionContextRef());
622
623    child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (&exe_ctx,
624                                                                  clang_ast,
625                                                                  GetName().GetCString(),
626                                                                  clang_type,
627                                                                  idx,
628                                                                  transparent_pointers,
629                                                                  omit_empty_base_classes,
630                                                                  ignore_array_bounds,
631                                                                  child_name_str,
632                                                                  child_byte_size,
633                                                                  child_byte_offset,
634                                                                  child_bitfield_bit_size,
635                                                                  child_bitfield_bit_offset,
636                                                                  child_is_base_class,
637                                                                  child_is_deref_of_parent);
638    if (child_clang_type && child_byte_size)
639    {
640        if (synthetic_index)
641            child_byte_offset += child_byte_size * synthetic_index;
642
643        ConstString child_name;
644        if (!child_name_str.empty())
645            child_name.SetCString (child_name_str.c_str());
646
647        valobj = new ValueObjectChild (*this,
648                                       clang_ast,
649                                       child_clang_type,
650                                       child_name,
651                                       child_byte_size,
652                                       child_byte_offset,
653                                       child_bitfield_bit_size,
654                                       child_bitfield_bit_offset,
655                                       child_is_base_class,
656                                       child_is_deref_of_parent,
657                                       eAddressTypeInvalid);
658        //if (valobj)
659        //    valobj->SetAddressTypeOfChildren(eAddressTypeInvalid);
660   }
661
662    return valobj;
663}
664
665bool
666ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr,
667                                  std::string& destination)
668{
669    destination.clear();
670
671    // ideally we would like to bail out if passing NULL, but if we do so
672    // we end up not providing the summary for function pointers anymore
673    if (/*summary_ptr == NULL ||*/ m_is_getting_summary)
674        return false;
675
676    m_is_getting_summary = true;
677
678    // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other
679    // information that we might care to see in a crash log. might be useful in very specific situations though.
680    /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s",
681                                        GetTypeName().GetCString(),
682                                        GetName().GetCString(),
683                                        summary_ptr->GetDescription().c_str());*/
684
685    if (UpdateValueIfNeeded (false))
686    {
687        if (summary_ptr)
688        {
689            if (HasSyntheticValue())
690                m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#})
691            summary_ptr->FormatObject(this, destination);
692        }
693        else
694        {
695            clang_type_t clang_type = GetClangType();
696
697            // Do some default printout for function pointers
698            if (clang_type)
699            {
700                StreamString sstr;
701                clang_type_t elem_or_pointee_clang_type;
702                const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type,
703                                                                      GetClangAST(),
704                                                                      &elem_or_pointee_clang_type));
705
706                if (ClangASTContext::IsFunctionPointerType (clang_type))
707                {
708                    AddressType func_ptr_address_type = eAddressTypeInvalid;
709                    addr_t func_ptr_address = GetPointerValue (&func_ptr_address_type);
710                    if (func_ptr_address != 0 && func_ptr_address != LLDB_INVALID_ADDRESS)
711                    {
712                        switch (func_ptr_address_type)
713                        {
714                            case eAddressTypeInvalid:
715                            case eAddressTypeFile:
716                                break;
717
718                            case eAddressTypeLoad:
719                            {
720                                ExecutionContext exe_ctx (GetExecutionContextRef());
721
722                                Address so_addr;
723                                Target *target = exe_ctx.GetTargetPtr();
724                                if (target && target->GetSectionLoadList().IsEmpty() == false)
725                                {
726                                    if (target->GetSectionLoadList().ResolveLoadAddress(func_ptr_address, so_addr))
727                                    {
728                                        so_addr.Dump (&sstr,
729                                                      exe_ctx.GetBestExecutionContextScope(),
730                                                      Address::DumpStyleResolvedDescription,
731                                                      Address::DumpStyleSectionNameOffset);
732                                    }
733                                }
734                            }
735                                break;
736
737                            case eAddressTypeHost:
738                                break;
739                        }
740                    }
741                    if (sstr.GetSize() > 0)
742                    {
743                        destination.assign (1, '(');
744                        destination.append (sstr.GetData(), sstr.GetSize());
745                        destination.append (1, ')');
746                    }
747                }
748            }
749        }
750    }
751    m_is_getting_summary = false;
752    return !destination.empty();
753}
754
755const char *
756ValueObject::GetSummaryAsCString ()
757{
758    if (UpdateValueIfNeeded(true) && m_summary_str.empty())
759    {
760        GetSummaryAsCString(GetSummaryFormat().get(),
761                            m_summary_str);
762    }
763    if (m_summary_str.empty())
764        return NULL;
765    return m_summary_str.c_str();
766}
767
768bool
769ValueObject::IsCStringContainer(bool check_pointer)
770{
771    clang_type_t elem_or_pointee_clang_type;
772    const Flags type_flags (ClangASTContext::GetTypeInfo (GetClangType(),
773                                                          GetClangAST(),
774                                                          &elem_or_pointee_clang_type));
775    bool is_char_arr_ptr (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) &&
776            ClangASTContext::IsCharType (elem_or_pointee_clang_type));
777    if (!is_char_arr_ptr)
778        return false;
779    if (!check_pointer)
780        return true;
781    if (type_flags.Test(ClangASTContext::eTypeIsArray))
782        return true;
783    addr_t cstr_address = LLDB_INVALID_ADDRESS;
784    AddressType cstr_address_type = eAddressTypeInvalid;
785    cstr_address = GetAddressOf (true, &cstr_address_type);
786    return (cstr_address != LLDB_INVALID_ADDRESS);
787}
788
789size_t
790ValueObject::GetPointeeData (DataExtractor& data,
791                             uint32_t item_idx,
792                             uint32_t item_count)
793{
794    if (!IsPointerType() && !IsArrayType())
795        return 0;
796
797    if (item_count == 0)
798        return 0;
799
800    uint32_t stride = 0;
801
802    ClangASTType type(GetClangAST(),
803                      GetClangType());
804
805    const uint64_t item_type_size = (IsPointerType() ? ClangASTType::GetTypeByteSize(GetClangAST(), type.GetPointeeType()) :
806                                     ClangASTType::GetTypeByteSize(GetClangAST(), type.GetArrayElementType(stride)));
807
808    const uint64_t bytes = item_count * item_type_size;
809
810    const uint64_t offset = item_idx * item_type_size;
811
812    if (item_idx == 0 && item_count == 1) // simply a deref
813    {
814        if (IsPointerType())
815        {
816            Error error;
817            ValueObjectSP pointee_sp = Dereference(error);
818            if (error.Fail() || pointee_sp.get() == NULL)
819                return 0;
820            return pointee_sp->GetDataExtractor().Copy(data);
821        }
822        else
823        {
824            ValueObjectSP child_sp = GetChildAtIndex(0, true);
825            if (child_sp.get() == NULL)
826                return 0;
827            return child_sp->GetDataExtractor().Copy(data);
828        }
829        return true;
830    }
831    else /* (items > 1) */
832    {
833        Error error;
834        lldb_private::DataBufferHeap* heap_buf_ptr = NULL;
835        lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap());
836
837        AddressType addr_type;
838        lldb::addr_t addr = IsPointerType() ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type);
839
840        switch (addr_type)
841        {
842            case eAddressTypeFile:
843                {
844                    ModuleSP module_sp (GetModule());
845                    if (module_sp)
846                    {
847                        addr = addr + offset;
848                        Address so_addr;
849                        module_sp->ResolveFileAddress(addr, so_addr);
850                        ExecutionContext exe_ctx (GetExecutionContextRef());
851                        Target* target = exe_ctx.GetTargetPtr();
852                        if (target)
853                        {
854                            heap_buf_ptr->SetByteSize(bytes);
855                            size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error);
856                            if (error.Success())
857                            {
858                                data.SetData(data_sp);
859                                return bytes_read;
860                            }
861                        }
862                    }
863                }
864                break;
865            case eAddressTypeLoad:
866                {
867                    ExecutionContext exe_ctx (GetExecutionContextRef());
868                    Process *process = exe_ctx.GetProcessPtr();
869                    if (process)
870                    {
871                        heap_buf_ptr->SetByteSize(bytes);
872                        size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
873                        if (error.Success())
874                        {
875                            data.SetData(data_sp);
876                            return bytes_read;
877                        }
878                    }
879                }
880                break;
881            case eAddressTypeHost:
882                {
883                    heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes);
884                    data.SetData(data_sp);
885                    return bytes;
886                }
887                break;
888            case eAddressTypeInvalid:
889            default:
890                break;
891        }
892    }
893    return 0;
894}
895
896size_t
897ValueObject::GetData (DataExtractor& data)
898{
899    UpdateValueIfNeeded(false);
900    ExecutionContext exe_ctx (GetExecutionContextRef());
901    Error error = m_value.GetValueAsData(&exe_ctx, GetClangAST(), data, 0, GetModule().get());
902    if (error.Fail())
903        return 0;
904    data.SetAddressByteSize(m_data.GetAddressByteSize());
905    data.SetByteOrder(m_data.GetByteOrder());
906    return data.GetByteSize();
907}
908
909// will compute strlen(str), but without consuming more than
910// maxlen bytes out of str (this serves the purpose of reading
911// chunks of a string without having to worry about
912// missing NULL terminators in the chunk)
913// of course, if strlen(str) > maxlen, the function will return
914// maxlen_value (which should be != maxlen, because that allows you
915// to know whether strlen(str) == maxlen or strlen(str) > maxlen)
916static uint32_t
917strlen_or_inf (const char* str,
918               uint32_t maxlen,
919               uint32_t maxlen_value)
920{
921    uint32_t len = 0;
922    if (str)
923    {
924        while(*str)
925        {
926            len++;str++;
927            if (len > maxlen)
928                return maxlen_value;
929        }
930    }
931    return len;
932}
933
934void
935ValueObject::ReadPointedString (Stream& s,
936                                Error& error,
937                                uint32_t max_length,
938                                bool honor_array,
939                                Format item_format)
940{
941    ExecutionContext exe_ctx (GetExecutionContextRef());
942    Target* target = exe_ctx.GetTargetPtr();
943
944    if (target && max_length == 0)
945        max_length = target->GetMaximumSizeOfStringSummary();
946
947    clang_type_t clang_type = GetClangType();
948    clang_type_t elem_or_pointee_clang_type;
949    const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type,
950                                                          GetClangAST(),
951                                                          &elem_or_pointee_clang_type));
952    if (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) &&
953        ClangASTContext::IsCharType (elem_or_pointee_clang_type))
954    {
955        if (target == NULL)
956        {
957            s << "<no target to read from>";
958        }
959        else
960        {
961            addr_t cstr_address = LLDB_INVALID_ADDRESS;
962            AddressType cstr_address_type = eAddressTypeInvalid;
963
964            size_t cstr_len = 0;
965            bool capped_data = false;
966            if (type_flags.Test (ClangASTContext::eTypeIsArray))
967            {
968                // We have an array
969                cstr_len = ClangASTContext::GetArraySize (clang_type);
970                if (cstr_len > max_length)
971                {
972                    capped_data = true;
973                    cstr_len = max_length;
974                }
975                cstr_address = GetAddressOf (true, &cstr_address_type);
976            }
977            else
978            {
979                // We have a pointer
980                cstr_address = GetPointerValue (&cstr_address_type);
981            }
982            if (cstr_address != 0 && cstr_address != LLDB_INVALID_ADDRESS)
983            {
984                Address cstr_so_addr (cstr_address);
985                DataExtractor data;
986                size_t bytes_read = 0;
987                if (cstr_len > 0 && honor_array)
988                {
989                    // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
990                    // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
991                    GetPointeeData(data, 0, cstr_len);
992
993                    if ((bytes_read = data.GetByteSize()) > 0)
994                    {
995                        s << '"';
996                        data.Dump (&s,
997                                   0,                 // Start offset in "data"
998                                   item_format,
999                                   1,                 // Size of item (1 byte for a char!)
1000                                   bytes_read,        // How many bytes to print?
1001                                   UINT32_MAX,        // num per line
1002                                   LLDB_INVALID_ADDRESS,// base address
1003                                   0,                 // bitfield bit size
1004                                   0);                // bitfield bit offset
1005                        if (capped_data)
1006                            s << "...";
1007                        s << '"';
1008                    }
1009                }
1010                else
1011                {
1012                    cstr_len = max_length;
1013                    const size_t k_max_buf_size = 64;
1014
1015                    size_t offset = 0;
1016
1017                    int cstr_len_displayed = -1;
1018                    bool capped_cstr = false;
1019                    // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
1020                    // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
1021                    while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0)
1022                    {
1023                        const char *cstr = data.PeekCStr(0);
1024                        size_t len = strlen_or_inf (cstr, k_max_buf_size, k_max_buf_size+1);
1025                        if (len > k_max_buf_size)
1026                            len = k_max_buf_size;
1027                        if (cstr && cstr_len_displayed < 0)
1028                            s << '"';
1029
1030                        if (cstr_len_displayed < 0)
1031                            cstr_len_displayed = len;
1032
1033                        if (len == 0)
1034                            break;
1035                        cstr_len_displayed += len;
1036                        if (len > bytes_read)
1037                            len = bytes_read;
1038                        if (len > cstr_len)
1039                            len = cstr_len;
1040
1041                        data.Dump (&s,
1042                                   0,                 // Start offset in "data"
1043                                   item_format,
1044                                   1,                 // Size of item (1 byte for a char!)
1045                                   len,               // How many bytes to print?
1046                                   UINT32_MAX,        // num per line
1047                                   LLDB_INVALID_ADDRESS,// base address
1048                                   0,                 // bitfield bit size
1049                                   0);                // bitfield bit offset
1050
1051                        if (len < k_max_buf_size)
1052                            break;
1053
1054                        if (len >= cstr_len)
1055                        {
1056                            capped_cstr = true;
1057                            break;
1058                        }
1059
1060                        cstr_len -= len;
1061                        offset += len;
1062                    }
1063
1064                    if (cstr_len_displayed >= 0)
1065                    {
1066                        s << '"';
1067                        if (capped_cstr)
1068                            s << "...";
1069                    }
1070                }
1071            }
1072        }
1073    }
1074    else
1075    {
1076        error.SetErrorString("impossible to read a string from this object");
1077        s << "<not a string object>";
1078    }
1079}
1080
1081const char *
1082ValueObject::GetObjectDescription ()
1083{
1084
1085    if (!UpdateValueIfNeeded (true))
1086        return NULL;
1087
1088    if (!m_object_desc_str.empty())
1089        return m_object_desc_str.c_str();
1090
1091    ExecutionContext exe_ctx (GetExecutionContextRef());
1092    Process *process = exe_ctx.GetProcessPtr();
1093    if (process == NULL)
1094        return NULL;
1095
1096    StreamString s;
1097
1098    LanguageType language = GetObjectRuntimeLanguage();
1099    LanguageRuntime *runtime = process->GetLanguageRuntime(language);
1100
1101    if (runtime == NULL)
1102    {
1103        // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway...
1104        clang_type_t opaque_qual_type = GetClangType();
1105        if (opaque_qual_type != NULL)
1106        {
1107            bool is_signed;
1108            if (ClangASTContext::IsIntegerType (opaque_qual_type, is_signed)
1109                || ClangASTContext::IsPointerType (opaque_qual_type))
1110            {
1111                runtime = process->GetLanguageRuntime(eLanguageTypeObjC);
1112            }
1113        }
1114    }
1115
1116    if (runtime && runtime->GetObjectDescription(s, *this))
1117    {
1118        m_object_desc_str.append (s.GetData());
1119    }
1120
1121    if (m_object_desc_str.empty())
1122        return NULL;
1123    else
1124        return m_object_desc_str.c_str();
1125}
1126
1127bool
1128ValueObject::GetValueAsCString (lldb::Format format,
1129                                std::string& destination)
1130{
1131    if (ClangASTContext::IsAggregateType (GetClangType()) == false &&
1132        UpdateValueIfNeeded(false))
1133    {
1134        const Value::ContextType context_type = m_value.GetContextType();
1135
1136        switch (context_type)
1137        {
1138            case Value::eContextTypeClangType:
1139            case Value::eContextTypeLLDBType:
1140            case Value::eContextTypeVariable:
1141            {
1142                clang_type_t clang_type = GetClangType ();
1143                if (clang_type)
1144                {
1145                    StreamString sstr;
1146                    ExecutionContext exe_ctx (GetExecutionContextRef());
1147                    ClangASTType::DumpTypeValue (GetClangAST(),             // The clang AST
1148                                                 clang_type,                // The clang type to display
1149                                                 &sstr,
1150                                                 format,                    // Format to display this type with
1151                                                 m_data,                    // Data to extract from
1152                                                 0,                         // Byte offset into "m_data"
1153                                                 GetByteSize(),             // Byte size of item in "m_data"
1154                                                 GetBitfieldBitSize(),      // Bitfield bit size
1155                                                 GetBitfieldBitOffset(),    // Bitfield bit offset
1156                                                 exe_ctx.GetBestExecutionContextScope());
1157                    // Don't set the m_error to anything here otherwise
1158                    // we won't be able to re-format as anything else. The
1159                    // code for ClangASTType::DumpTypeValue() should always
1160                    // return something, even if that something contains
1161                    // an error messsage. "m_error" is used to detect errors
1162                    // when reading the valid object, not for formatting errors.
1163                    if (sstr.GetString().empty())
1164                        destination.clear();
1165                    else
1166                        destination.swap(sstr.GetString());
1167                }
1168            }
1169                break;
1170
1171            case Value::eContextTypeRegisterInfo:
1172            {
1173                const RegisterInfo *reg_info = m_value.GetRegisterInfo();
1174                if (reg_info)
1175                {
1176                    ExecutionContext exe_ctx (GetExecutionContextRef());
1177
1178                    StreamString reg_sstr;
1179                    m_data.Dump (&reg_sstr,
1180                                 0,
1181                                 format,
1182                                 reg_info->byte_size,
1183                                 1,
1184                                 UINT32_MAX,
1185                                 LLDB_INVALID_ADDRESS,
1186                                 0,
1187                                 0,
1188                                 exe_ctx.GetBestExecutionContextScope());
1189                    destination.swap(reg_sstr.GetString());
1190                }
1191            }
1192                break;
1193
1194            default:
1195                break;
1196        }
1197        return !destination.empty();
1198    }
1199    else
1200        return false;
1201}
1202
1203const char *
1204ValueObject::GetValueAsCString ()
1205{
1206    if (UpdateValueIfNeeded(true) && m_value_str.empty())
1207    {
1208        lldb::Format my_format = GetFormat();
1209        if (m_format == lldb::eFormatDefault)
1210        {
1211            if (m_type_format_sp)
1212                my_format = m_type_format_sp->GetFormat();
1213            else
1214            {
1215                if (m_is_bitfield_for_scalar)
1216                    my_format = eFormatUnsigned;
1217                else
1218                {
1219                    if (m_value.GetContextType() == Value::eContextTypeRegisterInfo)
1220                    {
1221                        const RegisterInfo *reg_info = m_value.GetRegisterInfo();
1222                        if (reg_info)
1223                            my_format = reg_info->format;
1224                    }
1225                    else
1226                    {
1227                        clang_type_t clang_type = GetClangType ();
1228                        my_format = ClangASTType::GetFormat(clang_type);
1229                    }
1230                }
1231            }
1232        }
1233        if (GetValueAsCString(my_format, m_value_str))
1234        {
1235            if (!m_value_did_change && m_old_value_valid)
1236            {
1237                // The value was gotten successfully, so we consider the
1238                // value as changed if the value string differs
1239                SetValueDidChange (m_old_value_str != m_value_str);
1240            }
1241        }
1242    }
1243    if (m_value_str.empty())
1244        return NULL;
1245    return m_value_str.c_str();
1246}
1247
1248// if > 8bytes, 0 is returned. this method should mostly be used
1249// to read address values out of pointers
1250uint64_t
1251ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success)
1252{
1253    // If our byte size is zero this is an aggregate type that has children
1254    if (ClangASTContext::IsAggregateType (GetClangType()) == false)
1255    {
1256        Scalar scalar;
1257        if (ResolveValue (scalar))
1258        {
1259            if (success)
1260                *success = true;
1261            return scalar.GetRawBits64(fail_value);
1262        }
1263        // fallthrough, otherwise...
1264    }
1265
1266    if (success)
1267        *success = false;
1268    return fail_value;
1269}
1270
1271// if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep
1272// this call up to date by returning true for your new special cases. We will eventually move
1273// to checking this call result before trying to display special cases
1274bool
1275ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display,
1276                                               Format custom_format)
1277{
1278    clang_type_t elem_or_pointee_type;
1279    Flags flags(ClangASTContext::GetTypeInfo(GetClangType(), GetClangAST(), &elem_or_pointee_type));
1280
1281    if (flags.AnySet(ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer)
1282        && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue)
1283    {
1284        if (IsCStringContainer(true) &&
1285            (custom_format == eFormatCString ||
1286             custom_format == eFormatCharArray ||
1287             custom_format == eFormatChar ||
1288             custom_format == eFormatVectorOfChar))
1289            return true;
1290
1291        if (flags.Test(ClangASTContext::eTypeIsArray))
1292        {
1293            if ((custom_format == eFormatBytes) ||
1294                (custom_format == eFormatBytesWithASCII))
1295                return true;
1296
1297            if ((custom_format == eFormatVectorOfChar) ||
1298                (custom_format == eFormatVectorOfFloat32) ||
1299                (custom_format == eFormatVectorOfFloat64) ||
1300                (custom_format == eFormatVectorOfSInt16) ||
1301                (custom_format == eFormatVectorOfSInt32) ||
1302                (custom_format == eFormatVectorOfSInt64) ||
1303                (custom_format == eFormatVectorOfSInt8) ||
1304                (custom_format == eFormatVectorOfUInt128) ||
1305                (custom_format == eFormatVectorOfUInt16) ||
1306                (custom_format == eFormatVectorOfUInt32) ||
1307                (custom_format == eFormatVectorOfUInt64) ||
1308                (custom_format == eFormatVectorOfUInt8))
1309                return true;
1310        }
1311    }
1312    return false;
1313}
1314
1315bool
1316ValueObject::DumpPrintableRepresentation(Stream& s,
1317                                         ValueObjectRepresentationStyle val_obj_display,
1318                                         Format custom_format,
1319                                         PrintableRepresentationSpecialCases special)
1320{
1321
1322    clang_type_t elem_or_pointee_type;
1323    Flags flags(ClangASTContext::GetTypeInfo(GetClangType(), GetClangAST(), &elem_or_pointee_type));
1324
1325    bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow);
1326    bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly);
1327
1328    if (allow_special)
1329    {
1330        if (flags.AnySet(ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer)
1331             && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue)
1332        {
1333            // when being asked to get a printable display an array or pointer type directly,
1334            // try to "do the right thing"
1335
1336            if (IsCStringContainer(true) &&
1337                (custom_format == eFormatCString ||
1338                 custom_format == eFormatCharArray ||
1339                 custom_format == eFormatChar ||
1340                 custom_format == eFormatVectorOfChar)) // print char[] & char* directly
1341            {
1342                Error error;
1343                ReadPointedString(s,
1344                                  error,
1345                                  0,
1346                                  (custom_format == eFormatVectorOfChar) ||
1347                                  (custom_format == eFormatCharArray));
1348                return !error.Fail();
1349            }
1350
1351            if (custom_format == eFormatEnum)
1352                return false;
1353
1354            // this only works for arrays, because I have no way to know when
1355            // the pointed memory ends, and no special \0 end of data marker
1356            if (flags.Test(ClangASTContext::eTypeIsArray))
1357            {
1358                if ((custom_format == eFormatBytes) ||
1359                    (custom_format == eFormatBytesWithASCII))
1360                {
1361                    uint32_t count = GetNumChildren();
1362
1363                    s << '[';
1364                    for (uint32_t low = 0; low < count; low++)
1365                    {
1366
1367                        if (low)
1368                            s << ',';
1369
1370                        ValueObjectSP child = GetChildAtIndex(low,true);
1371                        if (!child.get())
1372                        {
1373                            s << "<invalid child>";
1374                            continue;
1375                        }
1376                        child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format);
1377                    }
1378
1379                    s << ']';
1380
1381                    return true;
1382                }
1383
1384                if ((custom_format == eFormatVectorOfChar) ||
1385                    (custom_format == eFormatVectorOfFloat32) ||
1386                    (custom_format == eFormatVectorOfFloat64) ||
1387                    (custom_format == eFormatVectorOfSInt16) ||
1388                    (custom_format == eFormatVectorOfSInt32) ||
1389                    (custom_format == eFormatVectorOfSInt64) ||
1390                    (custom_format == eFormatVectorOfSInt8) ||
1391                    (custom_format == eFormatVectorOfUInt128) ||
1392                    (custom_format == eFormatVectorOfUInt16) ||
1393                    (custom_format == eFormatVectorOfUInt32) ||
1394                    (custom_format == eFormatVectorOfUInt64) ||
1395                    (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly
1396                {
1397                    uint32_t count = GetNumChildren();
1398
1399                    Format format = FormatManager::GetSingleItemFormat(custom_format);
1400
1401                    s << '[';
1402                    for (uint32_t low = 0; low < count; low++)
1403                    {
1404
1405                        if (low)
1406                            s << ',';
1407
1408                        ValueObjectSP child = GetChildAtIndex(low,true);
1409                        if (!child.get())
1410                        {
1411                            s << "<invalid child>";
1412                            continue;
1413                        }
1414                        child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format);
1415                    }
1416
1417                    s << ']';
1418
1419                    return true;
1420                }
1421            }
1422
1423            if ((custom_format == eFormatBoolean) ||
1424                (custom_format == eFormatBinary) ||
1425                (custom_format == eFormatChar) ||
1426                (custom_format == eFormatCharPrintable) ||
1427                (custom_format == eFormatComplexFloat) ||
1428                (custom_format == eFormatDecimal) ||
1429                (custom_format == eFormatHex) ||
1430                (custom_format == eFormatHexUppercase) ||
1431                (custom_format == eFormatFloat) ||
1432                (custom_format == eFormatOctal) ||
1433                (custom_format == eFormatOSType) ||
1434                (custom_format == eFormatUnicode16) ||
1435                (custom_format == eFormatUnicode32) ||
1436                (custom_format == eFormatUnsigned) ||
1437                (custom_format == eFormatPointer) ||
1438                (custom_format == eFormatComplexInteger) ||
1439                (custom_format == eFormatComplex) ||
1440                (custom_format == eFormatDefault)) // use the [] operator
1441                return false;
1442        }
1443    }
1444
1445    if (only_special)
1446        return false;
1447
1448    bool var_success = false;
1449
1450    {
1451        const char * return_value;
1452        std::string alloc_mem;
1453
1454        if (custom_format != eFormatInvalid)
1455            SetFormat(custom_format);
1456
1457        switch(val_obj_display)
1458        {
1459            case eValueObjectRepresentationStyleValue:
1460                return_value = GetValueAsCString();
1461                break;
1462
1463            case eValueObjectRepresentationStyleSummary:
1464                return_value = GetSummaryAsCString();
1465                break;
1466
1467            case eValueObjectRepresentationStyleLanguageSpecific:
1468                return_value = GetObjectDescription();
1469                break;
1470
1471            case eValueObjectRepresentationStyleLocation:
1472                return_value = GetLocationAsCString();
1473                break;
1474
1475            case eValueObjectRepresentationStyleChildrenCount:
1476            {
1477                alloc_mem.resize(512);
1478                return_value = &alloc_mem[0];
1479                int count = GetNumChildren();
1480                snprintf((char*)return_value, 512, "%d", count);
1481            }
1482                break;
1483
1484            case eValueObjectRepresentationStyleType:
1485                return_value = GetTypeName().AsCString();
1486                break;
1487
1488            default:
1489                break;
1490        }
1491
1492        if (!return_value)
1493        {
1494            if (val_obj_display == eValueObjectRepresentationStyleValue)
1495                return_value = GetSummaryAsCString();
1496            else if (val_obj_display == eValueObjectRepresentationStyleSummary)
1497            {
1498                if (ClangASTContext::IsAggregateType (GetClangType()) == true)
1499                {
1500                    // this thing has no value, and it seems to have no summary
1501                    // some combination of unitialized data and other factors can also
1502                    // raise this condition, so let's print a nice generic description
1503                    {
1504                        alloc_mem.resize(684);
1505                        return_value = &alloc_mem[0];
1506                        snprintf((char*)return_value, 684, "%s @ %s", GetTypeName().AsCString(), GetLocationAsCString());
1507                    }
1508                }
1509                else
1510                    return_value = GetValueAsCString();
1511            }
1512        }
1513
1514        if (return_value)
1515            s.PutCString(return_value);
1516        else
1517        {
1518            if (m_error.Fail())
1519                s.Printf("<%s>", m_error.AsCString());
1520            else if (val_obj_display == eValueObjectRepresentationStyleSummary)
1521                s.PutCString("<no summary available>");
1522            else if (val_obj_display == eValueObjectRepresentationStyleValue)
1523                s.PutCString("<no value available>");
1524            else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific)
1525                s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description
1526            else
1527                s.PutCString("<no printable representation>");
1528        }
1529
1530        // we should only return false here if we could not do *anything*
1531        // even if we have an error message as output, that's a success
1532        // from our callers' perspective, so return true
1533        var_success = true;
1534
1535        if (custom_format != eFormatInvalid)
1536            SetFormat(eFormatDefault);
1537    }
1538
1539    return var_success;
1540}
1541
1542addr_t
1543ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type)
1544{
1545    if (!UpdateValueIfNeeded(false))
1546        return LLDB_INVALID_ADDRESS;
1547
1548    switch (m_value.GetValueType())
1549    {
1550    case Value::eValueTypeScalar:
1551        if (scalar_is_load_address)
1552        {
1553            if(address_type)
1554                *address_type = eAddressTypeLoad;
1555            return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1556        }
1557        break;
1558
1559    case Value::eValueTypeLoadAddress:
1560    case Value::eValueTypeFileAddress:
1561    case Value::eValueTypeHostAddress:
1562        {
1563            if(address_type)
1564                *address_type = m_value.GetValueAddressType ();
1565            return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1566        }
1567        break;
1568    }
1569    if (address_type)
1570        *address_type = eAddressTypeInvalid;
1571    return LLDB_INVALID_ADDRESS;
1572}
1573
1574addr_t
1575ValueObject::GetPointerValue (AddressType *address_type)
1576{
1577    addr_t address = LLDB_INVALID_ADDRESS;
1578    if(address_type)
1579        *address_type = eAddressTypeInvalid;
1580
1581    if (!UpdateValueIfNeeded(false))
1582        return address;
1583
1584    switch (m_value.GetValueType())
1585    {
1586    case Value::eValueTypeScalar:
1587        address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1588        break;
1589
1590    case Value::eValueTypeHostAddress:
1591    case Value::eValueTypeLoadAddress:
1592    case Value::eValueTypeFileAddress:
1593        {
1594            uint32_t data_offset = 0;
1595            address = m_data.GetPointer(&data_offset);
1596        }
1597        break;
1598    }
1599
1600    if (address_type)
1601        *address_type = GetAddressTypeOfChildren();
1602
1603    return address;
1604}
1605
1606bool
1607ValueObject::SetValueFromCString (const char *value_str, Error& error)
1608{
1609    error.Clear();
1610    // Make sure our value is up to date first so that our location and location
1611    // type is valid.
1612    if (!UpdateValueIfNeeded(false))
1613    {
1614        error.SetErrorString("unable to read value");
1615        return false;
1616    }
1617
1618    uint32_t count = 0;
1619    Encoding encoding = ClangASTType::GetEncoding (GetClangType(), count);
1620
1621    const size_t byte_size = GetByteSize();
1622
1623    Value::ValueType value_type = m_value.GetValueType();
1624
1625    if (value_type == Value::eValueTypeScalar)
1626    {
1627        // If the value is already a scalar, then let the scalar change itself:
1628        m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size);
1629    }
1630    else if (byte_size <= Scalar::GetMaxByteSize())
1631    {
1632        // If the value fits in a scalar, then make a new scalar and again let the
1633        // scalar code do the conversion, then figure out where to put the new value.
1634        Scalar new_scalar;
1635        error = new_scalar.SetValueFromCString (value_str, encoding, byte_size);
1636        if (error.Success())
1637        {
1638            switch (value_type)
1639            {
1640            case Value::eValueTypeLoadAddress:
1641                {
1642                    // If it is a load address, then the scalar value is the storage location
1643                    // of the data, and we have to shove this value down to that load location.
1644                    ExecutionContext exe_ctx (GetExecutionContextRef());
1645                    Process *process = exe_ctx.GetProcessPtr();
1646                    if (process)
1647                    {
1648                        addr_t target_addr = m_value.GetScalar().GetRawBits64(LLDB_INVALID_ADDRESS);
1649                        size_t bytes_written = process->WriteScalarToMemory (target_addr,
1650                                                                             new_scalar,
1651                                                                             byte_size,
1652                                                                             error);
1653                        if (!error.Success())
1654                            return false;
1655                        if (bytes_written != byte_size)
1656                        {
1657                            error.SetErrorString("unable to write value to memory");
1658                            return false;
1659                        }
1660                    }
1661                }
1662                break;
1663            case Value::eValueTypeHostAddress:
1664                {
1665                    // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data.
1666                    DataExtractor new_data;
1667                    new_data.SetByteOrder (m_data.GetByteOrder());
1668
1669                    DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0));
1670                    m_data.SetData(buffer_sp, 0);
1671                    bool success = new_scalar.GetData(new_data);
1672                    if (success)
1673                    {
1674                        new_data.CopyByteOrderedData (0,
1675                                                      byte_size,
1676                                                      const_cast<uint8_t *>(m_data.GetDataStart()),
1677                                                      byte_size,
1678                                                      m_data.GetByteOrder());
1679                    }
1680                    m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
1681
1682                }
1683                break;
1684            case Value::eValueTypeFileAddress:
1685            case Value::eValueTypeScalar:
1686                break;
1687            }
1688        }
1689        else
1690        {
1691            return false;
1692        }
1693    }
1694    else
1695    {
1696        // We don't support setting things bigger than a scalar at present.
1697        error.SetErrorString("unable to write aggregate data type");
1698        return false;
1699    }
1700
1701    // If we have reached this point, then we have successfully changed the value.
1702    SetNeedsUpdate();
1703    return true;
1704}
1705
1706bool
1707ValueObject::GetDeclaration (Declaration &decl)
1708{
1709    decl.Clear();
1710    return false;
1711}
1712
1713ConstString
1714ValueObject::GetTypeName()
1715{
1716    return ClangASTType::GetConstTypeName (GetClangAST(), GetClangType());
1717}
1718
1719ConstString
1720ValueObject::GetQualifiedTypeName()
1721{
1722    return ClangASTType::GetConstQualifiedTypeName (GetClangAST(), GetClangType());
1723}
1724
1725
1726LanguageType
1727ValueObject::GetObjectRuntimeLanguage ()
1728{
1729    return ClangASTType::GetMinimumLanguage (GetClangAST(),
1730                                             GetClangType());
1731}
1732
1733void
1734ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj)
1735{
1736    m_synthetic_children[key] = valobj;
1737}
1738
1739ValueObjectSP
1740ValueObject::GetSyntheticChild (const ConstString &key) const
1741{
1742    ValueObjectSP synthetic_child_sp;
1743    std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key);
1744    if (pos != m_synthetic_children.end())
1745        synthetic_child_sp = pos->second->GetSP();
1746    return synthetic_child_sp;
1747}
1748
1749bool
1750ValueObject::IsPointerType ()
1751{
1752    return ClangASTContext::IsPointerType (GetClangType());
1753}
1754
1755bool
1756ValueObject::IsArrayType ()
1757{
1758    return ClangASTContext::IsArrayType (GetClangType());
1759}
1760
1761bool
1762ValueObject::IsScalarType ()
1763{
1764    return ClangASTContext::IsScalarType (GetClangType());
1765}
1766
1767bool
1768ValueObject::IsIntegerType (bool &is_signed)
1769{
1770    return ClangASTContext::IsIntegerType (GetClangType(), is_signed);
1771}
1772
1773bool
1774ValueObject::IsPointerOrReferenceType ()
1775{
1776    return ClangASTContext::IsPointerOrReferenceType (GetClangType());
1777}
1778
1779bool
1780ValueObject::IsPossibleDynamicType ()
1781{
1782    ExecutionContext exe_ctx (GetExecutionContextRef());
1783    Process *process = exe_ctx.GetProcessPtr();
1784    if (process)
1785        return process->IsPossibleDynamicValue(*this);
1786    else
1787        return ClangASTContext::IsPossibleDynamicType (GetClangAST (), GetClangType(), NULL, true, true);
1788}
1789
1790ValueObjectSP
1791ValueObject::GetSyntheticArrayMember (int32_t index, bool can_create)
1792{
1793    if (IsArrayType())
1794        return GetSyntheticArrayMemberFromArray(index, can_create);
1795
1796    if (IsPointerType())
1797        return GetSyntheticArrayMemberFromPointer(index, can_create);
1798
1799    return ValueObjectSP();
1800
1801}
1802
1803ValueObjectSP
1804ValueObject::GetSyntheticArrayMemberFromPointer (int32_t index, bool can_create)
1805{
1806    ValueObjectSP synthetic_child_sp;
1807    if (IsPointerType ())
1808    {
1809        char index_str[64];
1810        snprintf(index_str, sizeof(index_str), "[%i]", index);
1811        ConstString index_const_str(index_str);
1812        // Check if we have already created a synthetic array member in this
1813        // valid object. If we have we will re-use it.
1814        synthetic_child_sp = GetSyntheticChild (index_const_str);
1815        if (!synthetic_child_sp)
1816        {
1817            ValueObject *synthetic_child;
1818            // We haven't made a synthetic array member for INDEX yet, so
1819            // lets make one and cache it for any future reference.
1820            synthetic_child = CreateChildAtIndex(0, true, index);
1821
1822            // Cache the value if we got one back...
1823            if (synthetic_child)
1824            {
1825                AddSyntheticChild(index_const_str, synthetic_child);
1826                synthetic_child_sp = synthetic_child->GetSP();
1827                synthetic_child_sp->SetName(ConstString(index_str));
1828                synthetic_child_sp->m_is_array_item_for_pointer = true;
1829            }
1830        }
1831    }
1832    return synthetic_child_sp;
1833}
1834
1835// This allows you to create an array member using and index
1836// that doesn't not fall in the normal bounds of the array.
1837// Many times structure can be defined as:
1838// struct Collection
1839// {
1840//     uint32_t item_count;
1841//     Item item_array[0];
1842// };
1843// The size of the "item_array" is 1, but many times in practice
1844// there are more items in "item_array".
1845
1846ValueObjectSP
1847ValueObject::GetSyntheticArrayMemberFromArray (int32_t index, bool can_create)
1848{
1849    ValueObjectSP synthetic_child_sp;
1850    if (IsArrayType ())
1851    {
1852        char index_str[64];
1853        snprintf(index_str, sizeof(index_str), "[%i]", index);
1854        ConstString index_const_str(index_str);
1855        // Check if we have already created a synthetic array member in this
1856        // valid object. If we have we will re-use it.
1857        synthetic_child_sp = GetSyntheticChild (index_const_str);
1858        if (!synthetic_child_sp)
1859        {
1860            ValueObject *synthetic_child;
1861            // We haven't made a synthetic array member for INDEX yet, so
1862            // lets make one and cache it for any future reference.
1863            synthetic_child = CreateChildAtIndex(0, true, index);
1864
1865            // Cache the value if we got one back...
1866            if (synthetic_child)
1867            {
1868                AddSyntheticChild(index_const_str, synthetic_child);
1869                synthetic_child_sp = synthetic_child->GetSP();
1870                synthetic_child_sp->SetName(ConstString(index_str));
1871                synthetic_child_sp->m_is_array_item_for_pointer = true;
1872            }
1873        }
1874    }
1875    return synthetic_child_sp;
1876}
1877
1878ValueObjectSP
1879ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create)
1880{
1881    ValueObjectSP synthetic_child_sp;
1882    if (IsScalarType ())
1883    {
1884        char index_str[64];
1885        snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to);
1886        ConstString index_const_str(index_str);
1887        // Check if we have already created a synthetic array member in this
1888        // valid object. If we have we will re-use it.
1889        synthetic_child_sp = GetSyntheticChild (index_const_str);
1890        if (!synthetic_child_sp)
1891        {
1892            ValueObjectChild *synthetic_child;
1893            // We haven't made a synthetic array member for INDEX yet, so
1894            // lets make one and cache it for any future reference.
1895            synthetic_child = new ValueObjectChild(*this,
1896                                                      GetClangAST(),
1897                                                      GetClangType(),
1898                                                      index_const_str,
1899                                                      GetByteSize(),
1900                                                      0,
1901                                                      to-from+1,
1902                                                      from,
1903                                                      false,
1904                                                      false,
1905                                                      eAddressTypeInvalid);
1906
1907            // Cache the value if we got one back...
1908            if (synthetic_child)
1909            {
1910                AddSyntheticChild(index_const_str, synthetic_child);
1911                synthetic_child_sp = synthetic_child->GetSP();
1912                synthetic_child_sp->SetName(ConstString(index_str));
1913                synthetic_child_sp->m_is_bitfield_for_scalar = true;
1914            }
1915        }
1916    }
1917    return synthetic_child_sp;
1918}
1919
1920ValueObjectSP
1921ValueObject::GetSyntheticArrayRangeChild (uint32_t from, uint32_t to, bool can_create)
1922{
1923    ValueObjectSP synthetic_child_sp;
1924    if (IsArrayType () || IsPointerType ())
1925    {
1926        char index_str[64];
1927        snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to);
1928        ConstString index_const_str(index_str);
1929        // Check if we have already created a synthetic array member in this
1930        // valid object. If we have we will re-use it.
1931        synthetic_child_sp = GetSyntheticChild (index_const_str);
1932        if (!synthetic_child_sp)
1933        {
1934            ValueObjectSynthetic *synthetic_child;
1935
1936            // We haven't made a synthetic array member for INDEX yet, so
1937            // lets make one and cache it for any future reference.
1938            SyntheticArrayView *view = new SyntheticArrayView(SyntheticChildren::Flags());
1939            view->AddRange(from,to);
1940            SyntheticChildrenSP view_sp(view);
1941            synthetic_child = new ValueObjectSynthetic(*this, view_sp);
1942
1943            // Cache the value if we got one back...
1944            if (synthetic_child)
1945            {
1946                AddSyntheticChild(index_const_str, synthetic_child);
1947                synthetic_child_sp = synthetic_child->GetSP();
1948                synthetic_child_sp->SetName(ConstString(index_str));
1949                synthetic_child_sp->m_is_bitfield_for_scalar = true;
1950            }
1951        }
1952    }
1953    return synthetic_child_sp;
1954}
1955
1956ValueObjectSP
1957ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const ClangASTType& type, bool can_create)
1958{
1959
1960    ValueObjectSP synthetic_child_sp;
1961
1962    char name_str[64];
1963    snprintf(name_str, sizeof(name_str), "@%i", offset);
1964    ConstString name_const_str(name_str);
1965
1966    // Check if we have already created a synthetic array member in this
1967    // valid object. If we have we will re-use it.
1968    synthetic_child_sp = GetSyntheticChild (name_const_str);
1969
1970    if (synthetic_child_sp.get())
1971        return synthetic_child_sp;
1972
1973    if (!can_create)
1974        return ValueObjectSP();
1975
1976    ValueObjectChild *synthetic_child = new ValueObjectChild(*this,
1977                                                             type.GetASTContext(),
1978                                                             type.GetOpaqueQualType(),
1979                                                             name_const_str,
1980                                                             type.GetTypeByteSize(),
1981                                                             offset,
1982                                                             0,
1983                                                             0,
1984                                                             false,
1985                                                             false,
1986                                                             eAddressTypeInvalid);
1987    if (synthetic_child)
1988    {
1989        AddSyntheticChild(name_const_str, synthetic_child);
1990        synthetic_child_sp = synthetic_child->GetSP();
1991        synthetic_child_sp->SetName(name_const_str);
1992        synthetic_child_sp->m_is_child_at_offset = true;
1993    }
1994    return synthetic_child_sp;
1995}
1996
1997// your expression path needs to have a leading . or ->
1998// (unless it somehow "looks like" an array, in which case it has
1999// a leading [ symbol). while the [ is meaningful and should be shown
2000// to the user, . and -> are just parser design, but by no means
2001// added information for the user.. strip them off
2002static const char*
2003SkipLeadingExpressionPathSeparators(const char* expression)
2004{
2005    if (!expression || !expression[0])
2006        return expression;
2007    if (expression[0] == '.')
2008        return expression+1;
2009    if (expression[0] == '-' && expression[1] == '>')
2010        return expression+2;
2011    return expression;
2012}
2013
2014ValueObjectSP
2015ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create)
2016{
2017    ValueObjectSP synthetic_child_sp;
2018    ConstString name_const_string(expression);
2019    // Check if we have already created a synthetic array member in this
2020    // valid object. If we have we will re-use it.
2021    synthetic_child_sp = GetSyntheticChild (name_const_string);
2022    if (!synthetic_child_sp)
2023    {
2024        // We haven't made a synthetic array member for expression yet, so
2025        // lets make one and cache it for any future reference.
2026        synthetic_child_sp = GetValueForExpressionPath(expression,
2027                                                       NULL, NULL, NULL,
2028                                                       GetValueForExpressionPathOptions().DontAllowSyntheticChildren());
2029
2030        // Cache the value if we got one back...
2031        if (synthetic_child_sp.get())
2032        {
2033            AddSyntheticChild(name_const_string, synthetic_child_sp.get());
2034            synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression)));
2035            synthetic_child_sp->m_is_expression_path_child = true;
2036        }
2037    }
2038    return synthetic_child_sp;
2039}
2040
2041void
2042ValueObject::CalculateSyntheticValue (bool use_synthetic)
2043{
2044    if (use_synthetic == false)
2045        return;
2046
2047    TargetSP target_sp(GetTargetSP());
2048    if (target_sp && (target_sp->GetEnableSyntheticValue() == false || target_sp->GetSuppressSyntheticValue() == true))
2049    {
2050        m_synthetic_value = NULL;
2051        return;
2052    }
2053
2054    if (!UpdateFormatsIfNeeded(m_last_format_mgr_dynamic) && m_synthetic_value)
2055        return;
2056
2057    if (m_synthetic_children_sp.get() == NULL)
2058        return;
2059
2060    m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
2061}
2062
2063void
2064ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic)
2065{
2066    if (use_dynamic == eNoDynamicValues)
2067        return;
2068
2069    if (!m_dynamic_value && !IsDynamic())
2070    {
2071        ExecutionContext exe_ctx (GetExecutionContextRef());
2072        Process *process = exe_ctx.GetProcessPtr();
2073        if (process && process->IsPossibleDynamicValue(*this))
2074            m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic);
2075    }
2076}
2077
2078ValueObjectSP
2079ValueObject::GetDynamicValue (DynamicValueType use_dynamic)
2080{
2081    if (use_dynamic == eNoDynamicValues)
2082        return ValueObjectSP();
2083
2084    if (!IsDynamic() && m_dynamic_value == NULL)
2085    {
2086        CalculateDynamicValue(use_dynamic);
2087    }
2088    if (m_dynamic_value)
2089        return m_dynamic_value->GetSP();
2090    else
2091        return ValueObjectSP();
2092}
2093
2094ValueObjectSP
2095ValueObject::GetStaticValue()
2096{
2097    return GetSP();
2098}
2099
2100lldb::ValueObjectSP
2101ValueObject::GetNonSyntheticValue ()
2102{
2103    return GetSP();
2104}
2105
2106ValueObjectSP
2107ValueObject::GetSyntheticValue (bool use_synthetic)
2108{
2109    if (use_synthetic == false)
2110        return ValueObjectSP();
2111
2112    CalculateSyntheticValue(use_synthetic);
2113
2114    if (m_synthetic_value)
2115        return m_synthetic_value->GetSP();
2116    else
2117        return ValueObjectSP();
2118}
2119
2120bool
2121ValueObject::HasSyntheticValue()
2122{
2123    UpdateFormatsIfNeeded(m_last_format_mgr_dynamic);
2124
2125    if (m_synthetic_children_sp.get() == NULL)
2126        return false;
2127
2128    CalculateSyntheticValue(true);
2129
2130    if (m_synthetic_value)
2131        return true;
2132    else
2133        return false;
2134}
2135
2136bool
2137ValueObject::GetBaseClassPath (Stream &s)
2138{
2139    if (IsBaseClass())
2140    {
2141        bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s);
2142        clang_type_t clang_type = GetClangType();
2143        std::string cxx_class_name;
2144        bool this_had_base_class = ClangASTContext::GetCXXClassName (clang_type, cxx_class_name);
2145        if (this_had_base_class)
2146        {
2147            if (parent_had_base_class)
2148                s.PutCString("::");
2149            s.PutCString(cxx_class_name.c_str());
2150        }
2151        return parent_had_base_class || this_had_base_class;
2152    }
2153    return false;
2154}
2155
2156
2157ValueObject *
2158ValueObject::GetNonBaseClassParent()
2159{
2160    if (GetParent())
2161    {
2162        if (GetParent()->IsBaseClass())
2163            return GetParent()->GetNonBaseClassParent();
2164        else
2165            return GetParent();
2166    }
2167    return NULL;
2168}
2169
2170void
2171ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat)
2172{
2173    const bool is_deref_of_parent = IsDereferenceOfParent ();
2174
2175    if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers)
2176    {
2177        // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely
2178        // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName.
2179        // the eHonorPointers mode is meant to produce strings in this latter format
2180        s.PutCString("*(");
2181    }
2182
2183    ValueObject* parent = GetParent();
2184
2185    if (parent)
2186        parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat);
2187
2188    // if we are a deref_of_parent just because we are synthetic array
2189    // members made up to allow ptr[%d] syntax to work in variable
2190    // printing, then add our name ([%d]) to the expression path
2191    if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers)
2192        s.PutCString(m_name.AsCString());
2193
2194    if (!IsBaseClass())
2195    {
2196        if (!is_deref_of_parent)
2197        {
2198            ValueObject *non_base_class_parent = GetNonBaseClassParent();
2199            if (non_base_class_parent)
2200            {
2201                clang_type_t non_base_class_parent_clang_type = non_base_class_parent->GetClangType();
2202                if (non_base_class_parent_clang_type)
2203                {
2204                    const uint32_t non_base_class_parent_type_info = ClangASTContext::GetTypeInfo (non_base_class_parent_clang_type, NULL, NULL);
2205
2206                    if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers)
2207                    {
2208                        s.PutCString("->");
2209                    }
2210                    else
2211                    {
2212                        if (non_base_class_parent_type_info & ClangASTContext::eTypeIsPointer)
2213                        {
2214                            s.PutCString("->");
2215                        }
2216                        else if ((non_base_class_parent_type_info & ClangASTContext::eTypeHasChildren) &&
2217                                 !(non_base_class_parent_type_info & ClangASTContext::eTypeIsArray))
2218                        {
2219                            s.PutChar('.');
2220                        }
2221                    }
2222                }
2223            }
2224
2225            const char *name = GetName().GetCString();
2226            if (name)
2227            {
2228                if (qualify_cxx_base_classes)
2229                {
2230                    if (GetBaseClassPath (s))
2231                        s.PutCString("::");
2232                }
2233                s.PutCString(name);
2234            }
2235        }
2236    }
2237
2238    if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers)
2239    {
2240        s.PutChar(')');
2241    }
2242}
2243
2244ValueObjectSP
2245ValueObject::GetValueForExpressionPath(const char* expression,
2246                                       const char** first_unparsed,
2247                                       ExpressionPathScanEndReason* reason_to_stop,
2248                                       ExpressionPathEndResultType* final_value_type,
2249                                       const GetValueForExpressionPathOptions& options,
2250                                       ExpressionPathAftermath* final_task_on_target)
2251{
2252
2253    const char* dummy_first_unparsed;
2254    ExpressionPathScanEndReason dummy_reason_to_stop;
2255    ExpressionPathEndResultType dummy_final_value_type;
2256    ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2257
2258    ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
2259                                                           first_unparsed ? first_unparsed : &dummy_first_unparsed,
2260                                                           reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
2261                                                           final_value_type ? final_value_type : &dummy_final_value_type,
2262                                                           options,
2263                                                           final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
2264
2265    if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
2266        return ret_val;
2267
2268    if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects
2269    {
2270        if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference)
2271        {
2272            Error error;
2273            ValueObjectSP final_value = ret_val->Dereference(error);
2274            if (error.Fail() || !final_value.get())
2275            {
2276                if (reason_to_stop)
2277                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2278                if (final_value_type)
2279                    *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2280                return ValueObjectSP();
2281            }
2282            else
2283            {
2284                if (final_task_on_target)
2285                    *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2286                return final_value;
2287            }
2288        }
2289        if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress)
2290        {
2291            Error error;
2292            ValueObjectSP final_value = ret_val->AddressOf(error);
2293            if (error.Fail() || !final_value.get())
2294            {
2295                if (reason_to_stop)
2296                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
2297                if (final_value_type)
2298                    *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2299                return ValueObjectSP();
2300            }
2301            else
2302            {
2303                if (final_task_on_target)
2304                    *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2305                return final_value;
2306            }
2307        }
2308    }
2309    return ret_val; // final_task_on_target will still have its original value, so you know I did not do it
2310}
2311
2312int
2313ValueObject::GetValuesForExpressionPath(const char* expression,
2314                                        ValueObjectListSP& list,
2315                                        const char** first_unparsed,
2316                                        ExpressionPathScanEndReason* reason_to_stop,
2317                                        ExpressionPathEndResultType* final_value_type,
2318                                        const GetValueForExpressionPathOptions& options,
2319                                        ExpressionPathAftermath* final_task_on_target)
2320{
2321    const char* dummy_first_unparsed;
2322    ExpressionPathScanEndReason dummy_reason_to_stop;
2323    ExpressionPathEndResultType dummy_final_value_type;
2324    ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2325
2326    ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
2327                                                           first_unparsed ? first_unparsed : &dummy_first_unparsed,
2328                                                           reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
2329                                                           final_value_type ? final_value_type : &dummy_final_value_type,
2330                                                           options,
2331                                                           final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
2332
2333    if (!ret_val.get()) // if there are errors, I add nothing to the list
2334        return 0;
2335
2336    if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet)
2337    {
2338        // I need not expand a range, just post-process the final value and return
2339        if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
2340        {
2341            list->Append(ret_val);
2342            return 1;
2343        }
2344        if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects
2345        {
2346            if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference)
2347            {
2348                Error error;
2349                ValueObjectSP final_value = ret_val->Dereference(error);
2350                if (error.Fail() || !final_value.get())
2351                {
2352                    if (reason_to_stop)
2353                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2354                    if (final_value_type)
2355                        *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2356                    return 0;
2357                }
2358                else
2359                {
2360                    *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2361                    list->Append(final_value);
2362                    return 1;
2363                }
2364            }
2365            if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress)
2366            {
2367                Error error;
2368                ValueObjectSP final_value = ret_val->AddressOf(error);
2369                if (error.Fail() || !final_value.get())
2370                {
2371                    if (reason_to_stop)
2372                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
2373                    if (final_value_type)
2374                        *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
2375                    return 0;
2376                }
2377                else
2378                {
2379                    *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2380                    list->Append(final_value);
2381                    return 1;
2382                }
2383            }
2384        }
2385    }
2386    else
2387    {
2388        return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed,
2389                                          first_unparsed ? first_unparsed : &dummy_first_unparsed,
2390                                          ret_val,
2391                                          list,
2392                                          reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
2393                                          final_value_type ? final_value_type : &dummy_final_value_type,
2394                                          options,
2395                                          final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
2396    }
2397    // in any non-covered case, just do the obviously right thing
2398    list->Append(ret_val);
2399    return 1;
2400}
2401
2402ValueObjectSP
2403ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr,
2404                                            const char** first_unparsed,
2405                                            ExpressionPathScanEndReason* reason_to_stop,
2406                                            ExpressionPathEndResultType* final_result,
2407                                            const GetValueForExpressionPathOptions& options,
2408                                            ExpressionPathAftermath* what_next)
2409{
2410    ValueObjectSP root = GetSP();
2411
2412    if (!root.get())
2413        return ValueObjectSP();
2414
2415    *first_unparsed = expression_cstr;
2416
2417    while (true)
2418    {
2419
2420        const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
2421
2422        clang_type_t root_clang_type = root->GetClangType();
2423        clang_type_t pointee_clang_type;
2424        Flags root_clang_type_info,pointee_clang_type_info;
2425
2426        root_clang_type_info = Flags(ClangASTContext::GetTypeInfo(root_clang_type, GetClangAST(), &pointee_clang_type));
2427        if (pointee_clang_type)
2428            pointee_clang_type_info = Flags(ClangASTContext::GetTypeInfo(pointee_clang_type, GetClangAST(), NULL));
2429
2430        if (!expression_cstr || *expression_cstr == '\0')
2431        {
2432            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2433            return root;
2434        }
2435
2436        switch (*expression_cstr)
2437        {
2438            case '-':
2439            {
2440                if (options.m_check_dot_vs_arrow_syntax &&
2441                    root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error
2442                {
2443                    *first_unparsed = expression_cstr;
2444                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
2445                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2446                    return ValueObjectSP();
2447                }
2448                if (root_clang_type_info.Test(ClangASTContext::eTypeIsObjC) &&  // if yo are trying to extract an ObjC IVar when this is forbidden
2449                    root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) &&
2450                    options.m_no_fragile_ivar)
2451                {
2452                    *first_unparsed = expression_cstr;
2453                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
2454                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2455                    return ValueObjectSP();
2456                }
2457                if (expression_cstr[1] != '>')
2458                {
2459                    *first_unparsed = expression_cstr;
2460                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2461                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2462                    return ValueObjectSP();
2463                }
2464                expression_cstr++; // skip the -
2465            }
2466            case '.': // or fallthrough from ->
2467            {
2468                if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' &&
2469                    root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error
2470                {
2471                    *first_unparsed = expression_cstr;
2472                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
2473                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2474                    return ValueObjectSP();
2475                }
2476                expression_cstr++; // skip .
2477                const char *next_separator = strpbrk(expression_cstr+1,"-.[");
2478                ConstString child_name;
2479                if (!next_separator) // if no other separator just expand this last layer
2480                {
2481                    child_name.SetCString (expression_cstr);
2482                    ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true);
2483
2484                    if (child_valobj_sp.get()) // we know we are done, so just return
2485                    {
2486                        *first_unparsed = '\0';
2487                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2488                        *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2489                        return child_valobj_sp;
2490                    }
2491                    else if (options.m_no_synthetic_children == false) // let's try with synthetic children
2492                    {
2493                        if (root->IsSynthetic())
2494                        {
2495                            *first_unparsed = expression_cstr;
2496                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2497                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2498                            return ValueObjectSP();
2499                        }
2500
2501                        child_valobj_sp = root->GetSyntheticValue();
2502                        if (child_valobj_sp.get())
2503                            child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
2504                    }
2505
2506                    // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
2507                    // so we hit the "else" branch, and return an error
2508                    if(child_valobj_sp.get()) // if it worked, just return
2509                    {
2510                        *first_unparsed = '\0';
2511                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2512                        *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2513                        return child_valobj_sp;
2514                    }
2515                    else
2516                    {
2517                        *first_unparsed = expression_cstr;
2518                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2519                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2520                        return ValueObjectSP();
2521                    }
2522                }
2523                else // other layers do expand
2524                {
2525                    child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr);
2526                    ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true);
2527                    if (child_valobj_sp.get()) // store the new root and move on
2528                    {
2529                        root = child_valobj_sp;
2530                        *first_unparsed = next_separator;
2531                        *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2532                        continue;
2533                    }
2534                    else if (options.m_no_synthetic_children == false) // let's try with synthetic children
2535                    {
2536                        if (root->IsSynthetic())
2537                        {
2538                            *first_unparsed = expression_cstr;
2539                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2540                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2541                            return ValueObjectSP();
2542                        }
2543
2544                        child_valobj_sp = root->GetSyntheticValue(true);
2545                        if (child_valobj_sp)
2546                            child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
2547                    }
2548
2549                    // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
2550                    // so we hit the "else" branch, and return an error
2551                    if(child_valobj_sp.get()) // if it worked, move on
2552                    {
2553                        root = child_valobj_sp;
2554                        *first_unparsed = next_separator;
2555                        *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2556                        continue;
2557                    }
2558                    else
2559                    {
2560                        *first_unparsed = expression_cstr;
2561                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2562                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2563                        return ValueObjectSP();
2564                    }
2565                }
2566                break;
2567            }
2568            case '[':
2569            {
2570                if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray) && !root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if this is not a T[] nor a T*
2571                {
2572                    if (!root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // if this is not even a scalar...
2573                    {
2574                        if (options.m_no_synthetic_children) // ...only chance left is synthetic
2575                        {
2576                            *first_unparsed = expression_cstr;
2577                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
2578                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2579                            return ValueObjectSP();
2580                        }
2581                    }
2582                    else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
2583                    {
2584                        *first_unparsed = expression_cstr;
2585                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
2586                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2587                        return ValueObjectSP();
2588                    }
2589                }
2590                if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
2591                {
2592                    if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2593                    {
2594                        *first_unparsed = expression_cstr;
2595                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2596                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2597                        return ValueObjectSP();
2598                    }
2599                    else // even if something follows, we cannot expand unbounded ranges, just let the caller do it
2600                    {
2601                        *first_unparsed = expression_cstr+2;
2602                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2603                        *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange;
2604                        return root;
2605                    }
2606                }
2607                const char *separator_position = ::strchr(expression_cstr+1,'-');
2608                const char *close_bracket_position = ::strchr(expression_cstr+1,']');
2609                if (!close_bracket_position) // if there is no ], this is a syntax error
2610                {
2611                    *first_unparsed = expression_cstr;
2612                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2613                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2614                    return ValueObjectSP();
2615                }
2616                if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
2617                {
2618                    char *end = NULL;
2619                    unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
2620                    if (!end || end != close_bracket_position) // if something weird is in our way return an error
2621                    {
2622                        *first_unparsed = expression_cstr;
2623                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2624                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2625                        return ValueObjectSP();
2626                    }
2627                    if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
2628                    {
2629                        if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2630                        {
2631                            *first_unparsed = expression_cstr+2;
2632                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2633                            *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange;
2634                            return root;
2635                        }
2636                        else
2637                        {
2638                            *first_unparsed = expression_cstr;
2639                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2640                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2641                            return ValueObjectSP();
2642                        }
2643                    }
2644                    // from here on we do have a valid index
2645                    if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2646                    {
2647                        ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true);
2648                        if (!child_valobj_sp)
2649                            child_valobj_sp = root->GetSyntheticArrayMemberFromArray(index, true);
2650                        if (!child_valobj_sp)
2651                            if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index)
2652                                child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true);
2653                        if (child_valobj_sp)
2654                        {
2655                            root = child_valobj_sp;
2656                            *first_unparsed = end+1; // skip ]
2657                            *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2658                            continue;
2659                        }
2660                        else
2661                        {
2662                            *first_unparsed = expression_cstr;
2663                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2664                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2665                            return ValueObjectSP();
2666                        }
2667                    }
2668                    else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer))
2669                    {
2670                        if (*what_next == ValueObject::eExpressionPathAftermathDereference &&  // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
2671                            pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
2672                        {
2673                            Error error;
2674                            root = root->Dereference(error);
2675                            if (error.Fail() || !root.get())
2676                            {
2677                                *first_unparsed = expression_cstr;
2678                                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2679                                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2680                                return ValueObjectSP();
2681                            }
2682                            else
2683                            {
2684                                *what_next = eExpressionPathAftermathNothing;
2685                                continue;
2686                            }
2687                        }
2688                        else
2689                        {
2690                            if (ClangASTType::GetMinimumLanguage(root->GetClangAST(),
2691                                                                 root->GetClangType()) == eLanguageTypeObjC
2692                                && ClangASTContext::IsPointerType(ClangASTType::GetPointeeType(root->GetClangType())) == false
2693                                && root->HasSyntheticValue()
2694                                && options.m_no_synthetic_children == false)
2695                            {
2696                                root = root->GetSyntheticValue()->GetChildAtIndex(index, true);
2697                            }
2698                            else
2699                                root = root->GetSyntheticArrayMemberFromPointer(index, true);
2700                            if (!root.get())
2701                            {
2702                                *first_unparsed = expression_cstr;
2703                                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2704                                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2705                                return ValueObjectSP();
2706                            }
2707                            else
2708                            {
2709                                *first_unparsed = end+1; // skip ]
2710                                *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2711                                continue;
2712                            }
2713                        }
2714                    }
2715                    else if (ClangASTContext::IsScalarType(root_clang_type))
2716                    {
2717                        root = root->GetSyntheticBitFieldChild(index, index, true);
2718                        if (!root.get())
2719                        {
2720                            *first_unparsed = expression_cstr;
2721                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2722                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2723                            return ValueObjectSP();
2724                        }
2725                        else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
2726                        {
2727                            *first_unparsed = end+1; // skip ]
2728                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2729                            *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2730                            return root;
2731                        }
2732                    }
2733                    else if (options.m_no_synthetic_children == false)
2734                    {
2735                        if (root->HasSyntheticValue())
2736                            root = root->GetSyntheticValue();
2737                        else if (!root->IsSynthetic())
2738                        {
2739                            *first_unparsed = expression_cstr;
2740                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2741                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2742                            return ValueObjectSP();
2743                        }
2744                        // if we are here, then root itself is a synthetic VO.. should be good to go
2745
2746                        if (!root.get())
2747                        {
2748                            *first_unparsed = expression_cstr;
2749                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2750                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2751                            return ValueObjectSP();
2752                        }
2753                        root = root->GetChildAtIndex(index, true);
2754                        if (!root.get())
2755                        {
2756                            *first_unparsed = expression_cstr;
2757                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2758                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2759                            return ValueObjectSP();
2760                        }
2761                        else
2762                        {
2763                            *first_unparsed = end+1; // skip ]
2764                            *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2765                            continue;
2766                        }
2767                    }
2768                    else
2769                    {
2770                        *first_unparsed = expression_cstr;
2771                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2772                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2773                        return ValueObjectSP();
2774                    }
2775                }
2776                else // we have a low and a high index
2777                {
2778                    char *end = NULL;
2779                    unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
2780                    if (!end || end != separator_position) // if something weird is in our way return an error
2781                    {
2782                        *first_unparsed = expression_cstr;
2783                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2784                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2785                        return ValueObjectSP();
2786                    }
2787                    unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
2788                    if (!end || end != close_bracket_position) // if something weird is in our way return an error
2789                    {
2790                        *first_unparsed = expression_cstr;
2791                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2792                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2793                        return ValueObjectSP();
2794                    }
2795                    if (index_lower > index_higher) // swap indices if required
2796                    {
2797                        unsigned long temp = index_lower;
2798                        index_lower = index_higher;
2799                        index_higher = temp;
2800                    }
2801                    if (root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // expansion only works for scalars
2802                    {
2803                        root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
2804                        if (!root.get())
2805                        {
2806                            *first_unparsed = expression_cstr;
2807                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2808                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2809                            return ValueObjectSP();
2810                        }
2811                        else
2812                        {
2813                            *first_unparsed = end+1; // skip ]
2814                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2815                            *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2816                            return root;
2817                        }
2818                    }
2819                    else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
2820                             *what_next == ValueObject::eExpressionPathAftermathDereference &&
2821                             pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
2822                    {
2823                        Error error;
2824                        root = root->Dereference(error);
2825                        if (error.Fail() || !root.get())
2826                        {
2827                            *first_unparsed = expression_cstr;
2828                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2829                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2830                            return ValueObjectSP();
2831                        }
2832                        else
2833                        {
2834                            *what_next = ValueObject::eExpressionPathAftermathNothing;
2835                            continue;
2836                        }
2837                    }
2838                    else
2839                    {
2840                        *first_unparsed = expression_cstr;
2841                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2842                        *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
2843                        return root;
2844                    }
2845                }
2846                break;
2847            }
2848            default: // some non-separator is in the way
2849            {
2850                *first_unparsed = expression_cstr;
2851                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2852                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2853                return ValueObjectSP();
2854                break;
2855            }
2856        }
2857    }
2858}
2859
2860int
2861ValueObject::ExpandArraySliceExpression(const char* expression_cstr,
2862                                        const char** first_unparsed,
2863                                        ValueObjectSP root,
2864                                        ValueObjectListSP& list,
2865                                        ExpressionPathScanEndReason* reason_to_stop,
2866                                        ExpressionPathEndResultType* final_result,
2867                                        const GetValueForExpressionPathOptions& options,
2868                                        ExpressionPathAftermath* what_next)
2869{
2870    if (!root.get())
2871        return 0;
2872
2873    *first_unparsed = expression_cstr;
2874
2875    while (true)
2876    {
2877
2878        const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
2879
2880        clang_type_t root_clang_type = root->GetClangType();
2881        clang_type_t pointee_clang_type;
2882        Flags root_clang_type_info,pointee_clang_type_info;
2883
2884        root_clang_type_info = Flags(ClangASTContext::GetTypeInfo(root_clang_type, GetClangAST(), &pointee_clang_type));
2885        if (pointee_clang_type)
2886            pointee_clang_type_info = Flags(ClangASTContext::GetTypeInfo(pointee_clang_type, GetClangAST(), NULL));
2887
2888        if (!expression_cstr || *expression_cstr == '\0')
2889        {
2890            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2891            list->Append(root);
2892            return 1;
2893        }
2894
2895        switch (*expression_cstr)
2896        {
2897            case '[':
2898            {
2899                if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray) && !root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if this is not a T[] nor a T*
2900                {
2901                    if (!root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong!
2902                    {
2903                        *first_unparsed = expression_cstr;
2904                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
2905                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2906                        return 0;
2907                    }
2908                    else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
2909                    {
2910                        *first_unparsed = expression_cstr;
2911                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
2912                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2913                        return 0;
2914                    }
2915                }
2916                if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
2917                {
2918                    if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2919                    {
2920                        *first_unparsed = expression_cstr;
2921                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2922                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2923                        return 0;
2924                    }
2925                    else // expand this into list
2926                    {
2927                        int max_index = root->GetNumChildren() - 1;
2928                        for (int index = 0; index < max_index; index++)
2929                        {
2930                            ValueObjectSP child =
2931                                root->GetChildAtIndex(index, true);
2932                            list->Append(child);
2933                        }
2934                        *first_unparsed = expression_cstr+2;
2935                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
2936                        *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
2937                        return max_index; // tell me number of items I added to the VOList
2938                    }
2939                }
2940                const char *separator_position = ::strchr(expression_cstr+1,'-');
2941                const char *close_bracket_position = ::strchr(expression_cstr+1,']');
2942                if (!close_bracket_position) // if there is no ], this is a syntax error
2943                {
2944                    *first_unparsed = expression_cstr;
2945                    *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2946                    *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2947                    return 0;
2948                }
2949                if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
2950                {
2951                    char *end = NULL;
2952                    unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
2953                    if (!end || end != close_bracket_position) // if something weird is in our way return an error
2954                    {
2955                        *first_unparsed = expression_cstr;
2956                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2957                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2958                        return 0;
2959                    }
2960                    if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
2961                    {
2962                        if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2963                        {
2964                            int max_index = root->GetNumChildren() - 1;
2965                            for (int index = 0; index < max_index; index++)
2966                            {
2967                                ValueObjectSP child =
2968                                root->GetChildAtIndex(index, true);
2969                                list->Append(child);
2970                            }
2971                            *first_unparsed = expression_cstr+2;
2972                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
2973                            *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
2974                            return max_index; // tell me number of items I added to the VOList
2975                        }
2976                        else
2977                        {
2978                            *first_unparsed = expression_cstr;
2979                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2980                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2981                            return 0;
2982                        }
2983                    }
2984                    // from here on we do have a valid index
2985                    if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
2986                    {
2987                        root = root->GetChildAtIndex(index, true);
2988                        if (!root.get())
2989                        {
2990                            *first_unparsed = expression_cstr;
2991                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2992                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2993                            return 0;
2994                        }
2995                        else
2996                        {
2997                            list->Append(root);
2998                            *first_unparsed = end+1; // skip ]
2999                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
3000                            *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
3001                            return 1;
3002                        }
3003                    }
3004                    else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer))
3005                    {
3006                        if (*what_next == ValueObject::eExpressionPathAftermathDereference &&  // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
3007                            pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
3008                        {
3009                            Error error;
3010                            root = root->Dereference(error);
3011                            if (error.Fail() || !root.get())
3012                            {
3013                                *first_unparsed = expression_cstr;
3014                                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
3015                                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3016                                return 0;
3017                            }
3018                            else
3019                            {
3020                                *what_next = eExpressionPathAftermathNothing;
3021                                continue;
3022                            }
3023                        }
3024                        else
3025                        {
3026                            root = root->GetSyntheticArrayMemberFromPointer(index, true);
3027                            if (!root.get())
3028                            {
3029                                *first_unparsed = expression_cstr;
3030                                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
3031                                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3032                                return 0;
3033                            }
3034                            else
3035                            {
3036                                list->Append(root);
3037                                *first_unparsed = end+1; // skip ]
3038                                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
3039                                *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
3040                                return 1;
3041                            }
3042                        }
3043                    }
3044                    else /*if (ClangASTContext::IsScalarType(root_clang_type))*/
3045                    {
3046                        root = root->GetSyntheticBitFieldChild(index, index, true);
3047                        if (!root.get())
3048                        {
3049                            *first_unparsed = expression_cstr;
3050                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
3051                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3052                            return 0;
3053                        }
3054                        else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
3055                        {
3056                            list->Append(root);
3057                            *first_unparsed = end+1; // skip ]
3058                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
3059                            *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
3060                            return 1;
3061                        }
3062                    }
3063                }
3064                else // we have a low and a high index
3065                {
3066                    char *end = NULL;
3067                    unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
3068                    if (!end || end != separator_position) // if something weird is in our way return an error
3069                    {
3070                        *first_unparsed = expression_cstr;
3071                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
3072                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3073                        return 0;
3074                    }
3075                    unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
3076                    if (!end || end != close_bracket_position) // if something weird is in our way return an error
3077                    {
3078                        *first_unparsed = expression_cstr;
3079                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
3080                        *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3081                        return 0;
3082                    }
3083                    if (index_lower > index_higher) // swap indices if required
3084                    {
3085                        unsigned long temp = index_lower;
3086                        index_lower = index_higher;
3087                        index_higher = temp;
3088                    }
3089                    if (root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // expansion only works for scalars
3090                    {
3091                        root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
3092                        if (!root.get())
3093                        {
3094                            *first_unparsed = expression_cstr;
3095                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
3096                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3097                            return 0;
3098                        }
3099                        else
3100                        {
3101                            list->Append(root);
3102                            *first_unparsed = end+1; // skip ]
3103                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
3104                            *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
3105                            return 1;
3106                        }
3107                    }
3108                    else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
3109                             *what_next == ValueObject::eExpressionPathAftermathDereference &&
3110                             pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
3111                    {
3112                        Error error;
3113                        root = root->Dereference(error);
3114                        if (error.Fail() || !root.get())
3115                        {
3116                            *first_unparsed = expression_cstr;
3117                            *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
3118                            *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3119                            return 0;
3120                        }
3121                        else
3122                        {
3123                            *what_next = ValueObject::eExpressionPathAftermathNothing;
3124                            continue;
3125                        }
3126                    }
3127                    else
3128                    {
3129                        for (unsigned long index = index_lower;
3130                             index <= index_higher; index++)
3131                        {
3132                            ValueObjectSP child =
3133                                root->GetChildAtIndex(index, true);
3134                            list->Append(child);
3135                        }
3136                        *first_unparsed = end+1;
3137                        *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
3138                        *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
3139                        return index_higher-index_lower+1; // tell me number of items I added to the VOList
3140                    }
3141                }
3142                break;
3143            }
3144            default: // some non-[ separator, or something entirely wrong, is in the way
3145            {
3146                *first_unparsed = expression_cstr;
3147                *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
3148                *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
3149                return 0;
3150                break;
3151            }
3152        }
3153    }
3154}
3155
3156static void
3157DumpValueObject_Impl (Stream &s,
3158                      ValueObject *valobj,
3159                      const ValueObject::DumpValueObjectOptions& options,
3160                      uint32_t ptr_depth,
3161                      uint32_t curr_depth)
3162{
3163    if (valobj)
3164    {
3165        bool update_success = valobj->UpdateValueIfNeeded (options.m_use_dynamic, true);
3166
3167        const char *root_valobj_name =
3168            options.m_root_valobj_name.empty() ?
3169                valobj->GetName().AsCString() :
3170                options.m_root_valobj_name.c_str();
3171
3172        if (update_success && options.m_use_dynamic != eNoDynamicValues)
3173        {
3174            ValueObject *dynamic_value = valobj->GetDynamicValue(options.m_use_dynamic).get();
3175            if (dynamic_value)
3176                valobj = dynamic_value;
3177        }
3178
3179        clang_type_t clang_type = valobj->GetClangType();
3180
3181        const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, NULL, NULL));
3182        const char *err_cstr = NULL;
3183        const bool has_children = type_flags.Test (ClangASTContext::eTypeHasChildren);
3184        const bool has_value = type_flags.Test (ClangASTContext::eTypeHasValue);
3185
3186        const bool print_valobj = options.m_flat_output == false || has_value;
3187
3188        if (print_valobj)
3189        {
3190            if (options.m_show_location)
3191            {
3192                s.Printf("%s: ", valobj->GetLocationAsCString());
3193            }
3194
3195            s.Indent();
3196
3197            bool show_type = true;
3198            // if we are at the root-level and been asked to hide the root's type, then hide it
3199            if (curr_depth == 0 && options.m_hide_root_type)
3200                show_type = false;
3201            else
3202            // otherwise decide according to the usual rules (asked to show types - always at the root level)
3203                show_type = options.m_show_types || (curr_depth == 0 && !options.m_flat_output);
3204
3205            if (show_type)
3206            {
3207                const char* typeName = valobj->GetQualifiedTypeName().AsCString("<invalid type>");
3208                //const char* typeName = valobj->GetTypeName().AsCString("<invalid type>");
3209                s.Printf("(%s", typeName);
3210                // only show dynamic types if the user really wants to see types
3211                if (options.m_show_types && options.m_use_dynamic != eNoDynamicValues &&
3212                    (/*strstr(typeName, "id") == typeName ||*/
3213                     ClangASTType::GetMinimumLanguage(valobj->GetClangAST(), valobj->GetClangType()) == eLanguageTypeObjC))
3214                {
3215                    ExecutionContext exe_ctx (valobj->GetExecutionContextRef());
3216                    Process *process = exe_ctx.GetProcessPtr();
3217                    if (process == NULL)
3218                        s.Printf(", dynamic type: unknown) ");
3219                    else
3220                    {
3221                        ObjCLanguageRuntime *runtime = process->GetObjCLanguageRuntime();
3222                        if (runtime == NULL)
3223                            s.Printf(", dynamic type: unknown) ");
3224                        else
3225                        {
3226                            ObjCLanguageRuntime::ObjCISA isa = runtime->GetISA(*valobj);
3227                            if (!runtime->IsValidISA(isa))
3228                                s.Printf(", dynamic type: unknown) ");
3229                            else
3230                                s.Printf(", dynamic type: %s) ",
3231                                         runtime->GetActualTypeName(isa).GetCString());
3232                        }
3233                    }
3234                }
3235                else
3236                    s.Printf(") ");
3237            }
3238
3239
3240            if (options.m_flat_output)
3241            {
3242                // If we are showing types, also qualify the C++ base classes
3243                const bool qualify_cxx_base_classes = options.m_show_types;
3244                valobj->GetExpressionPath(s, qualify_cxx_base_classes);
3245                s.PutCString(" =");
3246            }
3247            else
3248            {
3249                const char *name_cstr = root_valobj_name ? root_valobj_name : valobj->GetName().AsCString("");
3250                s.Printf ("%s =", name_cstr);
3251            }
3252
3253            if (!options.m_scope_already_checked && !valobj->IsInScope())
3254            {
3255                err_cstr = "out of scope";
3256            }
3257        }
3258
3259        std::string summary_str;
3260        std::string value_str;
3261        const char *val_cstr = NULL;
3262        const char *sum_cstr = NULL;
3263        TypeSummaryImpl* entry = options.m_summary_sp ? options.m_summary_sp.get() : valobj->GetSummaryFormat().get();
3264
3265        if (options.m_omit_summary_depth > 0)
3266            entry = NULL;
3267
3268        if (err_cstr == NULL)
3269        {
3270            if (options.m_format != eFormatDefault && options.m_format != valobj->GetFormat())
3271            {
3272                valobj->GetValueAsCString(options.m_format,
3273                                          value_str);
3274            }
3275            else
3276            {
3277                val_cstr = valobj->GetValueAsCString();
3278                if (val_cstr)
3279                    value_str = val_cstr;
3280            }
3281            err_cstr = valobj->GetError().AsCString();
3282        }
3283
3284        if (err_cstr)
3285        {
3286            s.Printf (" <%s>\n", err_cstr);
3287        }
3288        else
3289        {
3290            const bool is_ref = type_flags.Test (ClangASTContext::eTypeIsReference);
3291            if (print_valobj)
3292            {
3293                if (options.m_omit_summary_depth == 0)
3294                {
3295                    if (options.m_summary_sp)
3296                    {
3297                        valobj->GetSummaryAsCString(entry, summary_str);
3298                        sum_cstr = summary_str.c_str();
3299                    }
3300                    else
3301                        sum_cstr = valobj->GetSummaryAsCString();
3302                }
3303
3304                // Make sure we have a value and make sure the summary didn't
3305                // specify that the value should not be printed
3306                if (!value_str.empty() && (entry == NULL || entry->DoesPrintValue() || sum_cstr == NULL))
3307                    s.Printf(" %s", value_str.c_str());
3308
3309                if (sum_cstr)
3310                    s.Printf(" %s", sum_cstr);
3311
3312                if (options.m_use_objc)
3313                {
3314                    const char *object_desc = valobj->GetObjectDescription();
3315                    if (object_desc)
3316                        s.Printf(" %s\n", object_desc);
3317                    else
3318                        s.Printf (" [no Objective-C description available]\n");
3319                    return;
3320                }
3321            }
3322
3323            if (curr_depth < options.m_max_depth)
3324            {
3325                // We will show children for all concrete types. We won't show
3326                // pointer contents unless a pointer depth has been specified.
3327                // We won't reference contents unless the reference is the
3328                // root object (depth of zero).
3329                bool print_children = true;
3330
3331                // Use a new temporary pointer depth in case we override the
3332                // current pointer depth below...
3333                uint32_t curr_ptr_depth = ptr_depth;
3334
3335                const bool is_ptr = type_flags.Test (ClangASTContext::eTypeIsPointer);
3336                if (is_ptr || is_ref)
3337                {
3338                    // We have a pointer or reference whose value is an address.
3339                    // Make sure that address is not NULL
3340                    AddressType ptr_address_type;
3341                    if (valobj->GetPointerValue (&ptr_address_type) == 0)
3342                        print_children = false;
3343
3344                    else if (is_ref && curr_depth == 0)
3345                    {
3346                        // If this is the root object (depth is zero) that we are showing
3347                        // and it is a reference, and no pointer depth has been supplied
3348                        // print out what it references. Don't do this at deeper depths
3349                        // otherwise we can end up with infinite recursion...
3350                        curr_ptr_depth = 1;
3351                    }
3352
3353                    if (curr_ptr_depth == 0)
3354                        print_children = false;
3355                }
3356
3357                if (print_children && (!entry || entry->DoesPrintChildren() || !sum_cstr))
3358                {
3359                    ValueObject* synth_valobj;
3360                    ValueObjectSP synth_valobj_sp = valobj->GetSyntheticValue (options.m_use_synthetic);
3361                    synth_valobj = (synth_valobj_sp ? synth_valobj_sp.get() : valobj);
3362
3363                    uint32_t num_children = synth_valobj->GetNumChildren();
3364                    bool print_dotdotdot = false;
3365                    if (num_children)
3366                    {
3367                        if (options.m_flat_output)
3368                        {
3369                            if (print_valobj)
3370                                s.EOL();
3371                        }
3372                        else
3373                        {
3374                            if (print_valobj)
3375                                s.PutCString(is_ref ? ": {\n" : " {\n");
3376                            s.IndentMore();
3377                        }
3378
3379                        uint32_t max_num_children = valobj->GetTargetSP()->GetMaximumNumberOfChildrenToDisplay();
3380
3381                        if (num_children > max_num_children && !options.m_ignore_cap)
3382                        {
3383                            num_children = max_num_children;
3384                            print_dotdotdot = true;
3385                        }
3386
3387                        ValueObject::DumpValueObjectOptions child_options(options);
3388                        child_options.SetFormat().SetSummary().SetRootValueObjectName();
3389                        child_options.SetScopeChecked(true)
3390                        .SetOmitSummaryDepth(child_options.m_omit_summary_depth > 1 ? child_options.m_omit_summary_depth - 1 : 0);
3391                        for (uint32_t idx=0; idx<num_children; ++idx)
3392                        {
3393                            ValueObjectSP child_sp(synth_valobj->GetChildAtIndex(idx, true));
3394                            if (child_sp.get())
3395                            {
3396                                DumpValueObject_Impl (s,
3397                                                      child_sp.get(),
3398                                                      child_options,
3399                                                      (is_ptr || is_ref) ? curr_ptr_depth - 1 : curr_ptr_depth,
3400                                                      curr_depth + 1);
3401                            }
3402                        }
3403
3404                        if (!options.m_flat_output)
3405                        {
3406                            if (print_dotdotdot)
3407                            {
3408                                ExecutionContext exe_ctx (valobj->GetExecutionContextRef());
3409                                Target *target = exe_ctx.GetTargetPtr();
3410                                if (target)
3411                                    target->GetDebugger().GetCommandInterpreter().ChildrenTruncated();
3412                                s.Indent("...\n");
3413                            }
3414                            s.IndentLess();
3415                            s.Indent("}\n");
3416                        }
3417                    }
3418                    else if (has_children)
3419                    {
3420                        // Aggregate, no children...
3421                        if (print_valobj)
3422                            s.PutCString(" {}\n");
3423                    }
3424                    else
3425                    {
3426                        if (print_valobj)
3427                            s.EOL();
3428                    }
3429
3430                }
3431                else
3432                {
3433                    s.EOL();
3434                }
3435            }
3436            else
3437            {
3438                if (has_children && print_valobj)
3439                {
3440                    s.PutCString("{...}\n");
3441                }
3442            }
3443        }
3444    }
3445}
3446
3447void
3448ValueObject::LogValueObject (Log *log,
3449                             ValueObject *valobj)
3450{
3451    if (log && valobj)
3452        return LogValueObject (log, valobj, DumpValueObjectOptions::DefaultOptions());
3453}
3454
3455void
3456ValueObject::LogValueObject (Log *log,
3457                             ValueObject *valobj,
3458                             const DumpValueObjectOptions& options)
3459{
3460    if (log && valobj)
3461    {
3462        StreamString s;
3463        ValueObject::DumpValueObject (s, valobj, options);
3464        if (s.GetSize())
3465            log->PutCString(s.GetData());
3466    }
3467}
3468
3469void
3470ValueObject::DumpValueObject (Stream &s,
3471                              ValueObject *valobj)
3472{
3473
3474    if (!valobj)
3475        return;
3476
3477    DumpValueObject_Impl(s,
3478                         valobj,
3479                         DumpValueObjectOptions::DefaultOptions(),
3480                         0,
3481                         0);
3482}
3483
3484void
3485ValueObject::DumpValueObject (Stream &s,
3486                              ValueObject *valobj,
3487                              const DumpValueObjectOptions& options)
3488{
3489    DumpValueObject_Impl(s,
3490                         valobj,
3491                         options,
3492                         options.m_max_ptr_depth, // max pointer depth allowed, we will go down from here
3493                         0 // current object depth is 0 since we are just starting
3494                         );
3495}
3496
3497ValueObjectSP
3498ValueObject::CreateConstantValue (const ConstString &name)
3499{
3500    ValueObjectSP valobj_sp;
3501
3502    if (UpdateValueIfNeeded(false) && m_error.Success())
3503    {
3504        ExecutionContext exe_ctx (GetExecutionContextRef());
3505        clang::ASTContext *ast = GetClangAST ();
3506
3507        DataExtractor data;
3508        data.SetByteOrder (m_data.GetByteOrder());
3509        data.SetAddressByteSize(m_data.GetAddressByteSize());
3510
3511        if (IsBitfield())
3512        {
3513            Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
3514            m_error = v.GetValueAsData (&exe_ctx, ast, data, 0, GetModule().get());
3515        }
3516        else
3517            m_error = m_value.GetValueAsData (&exe_ctx, ast, data, 0, GetModule().get());
3518
3519        valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
3520                                                    ast,
3521                                                    GetClangType(),
3522                                                    name,
3523                                                    data,
3524                                                    GetAddressOf());
3525    }
3526
3527    if (!valobj_sp)
3528    {
3529        valobj_sp = ValueObjectConstResult::Create (NULL, m_error);
3530    }
3531    return valobj_sp;
3532}
3533
3534ValueObjectSP
3535ValueObject::Dereference (Error &error)
3536{
3537    if (m_deref_valobj)
3538        return m_deref_valobj->GetSP();
3539
3540    const bool is_pointer_type = IsPointerType();
3541    if (is_pointer_type)
3542    {
3543        bool omit_empty_base_classes = true;
3544        bool ignore_array_bounds = false;
3545
3546        std::string child_name_str;
3547        uint32_t child_byte_size = 0;
3548        int32_t child_byte_offset = 0;
3549        uint32_t child_bitfield_bit_size = 0;
3550        uint32_t child_bitfield_bit_offset = 0;
3551        bool child_is_base_class = false;
3552        bool child_is_deref_of_parent = false;
3553        const bool transparent_pointers = false;
3554        clang::ASTContext *clang_ast = GetClangAST();
3555        clang_type_t clang_type = GetClangType();
3556        clang_type_t child_clang_type;
3557
3558        ExecutionContext exe_ctx (GetExecutionContextRef());
3559
3560        child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (&exe_ctx,
3561                                                                      clang_ast,
3562                                                                      GetName().GetCString(),
3563                                                                      clang_type,
3564                                                                      0,
3565                                                                      transparent_pointers,
3566                                                                      omit_empty_base_classes,
3567                                                                      ignore_array_bounds,
3568                                                                      child_name_str,
3569                                                                      child_byte_size,
3570                                                                      child_byte_offset,
3571                                                                      child_bitfield_bit_size,
3572                                                                      child_bitfield_bit_offset,
3573                                                                      child_is_base_class,
3574                                                                      child_is_deref_of_parent);
3575        if (child_clang_type && child_byte_size)
3576        {
3577            ConstString child_name;
3578            if (!child_name_str.empty())
3579                child_name.SetCString (child_name_str.c_str());
3580
3581            m_deref_valobj = new ValueObjectChild (*this,
3582                                                   clang_ast,
3583                                                   child_clang_type,
3584                                                   child_name,
3585                                                   child_byte_size,
3586                                                   child_byte_offset,
3587                                                   child_bitfield_bit_size,
3588                                                   child_bitfield_bit_offset,
3589                                                   child_is_base_class,
3590                                                   child_is_deref_of_parent,
3591                                                   eAddressTypeInvalid);
3592        }
3593    }
3594
3595    if (m_deref_valobj)
3596    {
3597        error.Clear();
3598        return m_deref_valobj->GetSP();
3599    }
3600    else
3601    {
3602        StreamString strm;
3603        GetExpressionPath(strm, true);
3604
3605        if (is_pointer_type)
3606            error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
3607        else
3608            error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
3609        return ValueObjectSP();
3610    }
3611}
3612
3613ValueObjectSP
3614ValueObject::AddressOf (Error &error)
3615{
3616    if (m_addr_of_valobj_sp)
3617        return m_addr_of_valobj_sp;
3618
3619    AddressType address_type = eAddressTypeInvalid;
3620    const bool scalar_is_load_address = false;
3621    addr_t addr = GetAddressOf (scalar_is_load_address, &address_type);
3622    error.Clear();
3623    if (addr != LLDB_INVALID_ADDRESS)
3624    {
3625        switch (address_type)
3626        {
3627        default:
3628        case eAddressTypeInvalid:
3629            {
3630                StreamString expr_path_strm;
3631                GetExpressionPath(expr_path_strm, true);
3632                error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str());
3633            }
3634            break;
3635
3636        case eAddressTypeFile:
3637        case eAddressTypeLoad:
3638        case eAddressTypeHost:
3639            {
3640                clang::ASTContext *ast = GetClangAST();
3641                clang_type_t clang_type = GetClangType();
3642                if (ast && clang_type)
3643                {
3644                    std::string name (1, '&');
3645                    name.append (m_name.AsCString(""));
3646                    ExecutionContext exe_ctx (GetExecutionContextRef());
3647                    m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
3648                                                                          ast,
3649                                                                          ClangASTContext::CreatePointerType (ast, clang_type),
3650                                                                          ConstString (name.c_str()),
3651                                                                          addr,
3652                                                                          eAddressTypeInvalid,
3653                                                                          m_data.GetAddressByteSize());
3654                }
3655            }
3656            break;
3657        }
3658    }
3659    return m_addr_of_valobj_sp;
3660}
3661
3662ValueObjectSP
3663ValueObject::Cast (const ClangASTType &clang_ast_type)
3664{
3665    return ValueObjectCast::Create (*this, GetName(), clang_ast_type);
3666}
3667
3668ValueObjectSP
3669ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type)
3670{
3671    ValueObjectSP valobj_sp;
3672    AddressType address_type;
3673    addr_t ptr_value = GetPointerValue (&address_type);
3674
3675    if (ptr_value != LLDB_INVALID_ADDRESS)
3676    {
3677        Address ptr_addr (ptr_value);
3678        ExecutionContext exe_ctx (GetExecutionContextRef());
3679        valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(),
3680                                               name,
3681                                               ptr_addr,
3682                                               clang_ast_type);
3683    }
3684    return valobj_sp;
3685}
3686
3687ValueObjectSP
3688ValueObject::CastPointerType (const char *name, TypeSP &type_sp)
3689{
3690    ValueObjectSP valobj_sp;
3691    AddressType address_type;
3692    addr_t ptr_value = GetPointerValue (&address_type);
3693
3694    if (ptr_value != LLDB_INVALID_ADDRESS)
3695    {
3696        Address ptr_addr (ptr_value);
3697        ExecutionContext exe_ctx (GetExecutionContextRef());
3698        valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(),
3699                                               name,
3700                                               ptr_addr,
3701                                               type_sp);
3702    }
3703    return valobj_sp;
3704}
3705
3706ValueObject::EvaluationPoint::EvaluationPoint () :
3707    m_mod_id(),
3708    m_exe_ctx_ref(),
3709    m_needs_update (true),
3710    m_first_update (true)
3711{
3712}
3713
3714ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected):
3715    m_mod_id(),
3716    m_exe_ctx_ref(),
3717    m_needs_update (true),
3718    m_first_update (true)
3719{
3720    ExecutionContext exe_ctx(exe_scope);
3721    TargetSP target_sp (exe_ctx.GetTargetSP());
3722    if (target_sp)
3723    {
3724        m_exe_ctx_ref.SetTargetSP (target_sp);
3725        ProcessSP process_sp (exe_ctx.GetProcessSP());
3726        if (!process_sp)
3727            process_sp = target_sp->GetProcessSP();
3728
3729        if (process_sp)
3730        {
3731            m_mod_id = process_sp->GetModID();
3732            m_exe_ctx_ref.SetProcessSP (process_sp);
3733
3734            ThreadSP thread_sp (exe_ctx.GetThreadSP());
3735
3736            if (!thread_sp)
3737            {
3738                if (use_selected)
3739                    thread_sp = process_sp->GetThreadList().GetSelectedThread();
3740            }
3741
3742            if (thread_sp)
3743            {
3744                m_exe_ctx_ref.SetThreadSP(thread_sp);
3745
3746                StackFrameSP frame_sp (exe_ctx.GetFrameSP());
3747                if (!frame_sp)
3748                {
3749                    if (use_selected)
3750                        frame_sp = thread_sp->GetSelectedFrame();
3751                }
3752                if (frame_sp)
3753                    m_exe_ctx_ref.SetFrameSP(frame_sp);
3754            }
3755        }
3756    }
3757}
3758
3759ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) :
3760    m_mod_id(),
3761    m_exe_ctx_ref(rhs.m_exe_ctx_ref),
3762    m_needs_update (true),
3763    m_first_update (true)
3764{
3765}
3766
3767ValueObject::EvaluationPoint::~EvaluationPoint ()
3768{
3769}
3770
3771// This function checks the EvaluationPoint against the current process state.  If the current
3772// state matches the evaluation point, or the evaluation point is already invalid, then we return
3773// false, meaning "no change".  If the current state is different, we update our state, and return
3774// true meaning "yes, change".  If we did see a change, we also set m_needs_update to true, so
3775// future calls to NeedsUpdate will return true.
3776// exe_scope will be set to the current execution context scope.
3777
3778bool
3779ValueObject::EvaluationPoint::SyncWithProcessState()
3780{
3781
3782    // Start with the target, if it is NULL, then we're obviously not going to get any further:
3783    ExecutionContext exe_ctx(m_exe_ctx_ref.Lock());
3784
3785    if (exe_ctx.GetTargetPtr() == NULL)
3786        return false;
3787
3788    // If we don't have a process nothing can change.
3789    Process *process = exe_ctx.GetProcessPtr();
3790    if (process == NULL)
3791        return false;
3792
3793    // If our stop id is the current stop ID, nothing has changed:
3794    ProcessModID current_mod_id = process->GetModID();
3795
3796    // If the current stop id is 0, either we haven't run yet, or the process state has been cleared.
3797    // In either case, we aren't going to be able to sync with the process state.
3798    if (current_mod_id.GetStopID() == 0)
3799        return false;
3800
3801    bool changed = false;
3802    const bool was_valid = m_mod_id.IsValid();
3803    if (was_valid)
3804    {
3805        if (m_mod_id == current_mod_id)
3806        {
3807            // Everything is already up to date in this object, no need to
3808            // update the execution context scope.
3809            changed = false;
3810        }
3811        else
3812        {
3813            m_mod_id = current_mod_id;
3814            m_needs_update = true;
3815            changed = true;
3816        }
3817    }
3818
3819    // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated.
3820    // That way we'll be sure to return a valid exe_scope.
3821    // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid.
3822
3823    if (m_exe_ctx_ref.HasThreadRef())
3824    {
3825        ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP());
3826        if (thread_sp)
3827        {
3828            if (m_exe_ctx_ref.HasFrameRef())
3829            {
3830                StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP());
3831                if (!frame_sp)
3832                {
3833                    // We used to have a frame, but now it is gone
3834                    SetInvalid();
3835                    changed = was_valid;
3836                }
3837            }
3838        }
3839        else
3840        {
3841            // We used to have a thread, but now it is gone
3842            SetInvalid();
3843            changed = was_valid;
3844        }
3845
3846    }
3847    return changed;
3848}
3849
3850void
3851ValueObject::EvaluationPoint::SetUpdated ()
3852{
3853    ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
3854    if (process_sp)
3855        m_mod_id = process_sp->GetModID();
3856    m_first_update = false;
3857    m_needs_update = false;
3858}
3859
3860
3861//bool
3862//ValueObject::EvaluationPoint::SetContext (ExecutionContextScope *exe_scope)
3863//{
3864//    if (!IsValid())
3865//        return false;
3866//
3867//    bool needs_update = false;
3868//
3869//    // The target has to be non-null, and the
3870//    Target *target = exe_scope->CalculateTarget();
3871//    if (target != NULL)
3872//    {
3873//        Target *old_target = m_target_sp.get();
3874//        assert (target == old_target);
3875//        Process *process = exe_scope->CalculateProcess();
3876//        if (process != NULL)
3877//        {
3878//            // FOR NOW - assume you can't update variable objects across process boundaries.
3879//            Process *old_process = m_process_sp.get();
3880//            assert (process == old_process);
3881//            ProcessModID current_mod_id = process->GetModID();
3882//            if (m_mod_id != current_mod_id)
3883//            {
3884//                needs_update = true;
3885//                m_mod_id = current_mod_id;
3886//            }
3887//            // See if we're switching the thread or stack context.  If no thread is given, this is
3888//            // being evaluated in a global context.
3889//            Thread *thread = exe_scope->CalculateThread();
3890//            if (thread != NULL)
3891//            {
3892//                user_id_t new_thread_index = thread->GetIndexID();
3893//                if (new_thread_index != m_thread_id)
3894//                {
3895//                    needs_update = true;
3896//                    m_thread_id = new_thread_index;
3897//                    m_stack_id.Clear();
3898//                }
3899//
3900//                StackFrame *new_frame = exe_scope->CalculateStackFrame();
3901//                if (new_frame != NULL)
3902//                {
3903//                    if (new_frame->GetStackID() != m_stack_id)
3904//                    {
3905//                        needs_update = true;
3906//                        m_stack_id = new_frame->GetStackID();
3907//                    }
3908//                }
3909//                else
3910//                {
3911//                    m_stack_id.Clear();
3912//                    needs_update = true;
3913//                }
3914//            }
3915//            else
3916//            {
3917//                // If this had been given a thread, and now there is none, we should update.
3918//                // Otherwise we don't have to do anything.
3919//                if (m_thread_id != LLDB_INVALID_UID)
3920//                {
3921//                    m_thread_id = LLDB_INVALID_UID;
3922//                    m_stack_id.Clear();
3923//                    needs_update = true;
3924//                }
3925//            }
3926//        }
3927//        else
3928//        {
3929//            // If there is no process, then we don't need to update anything.
3930//            // But if we're switching from having a process to not, we should try to update.
3931//            if (m_process_sp.get() != NULL)
3932//            {
3933//                needs_update = true;
3934//                m_process_sp.reset();
3935//                m_thread_id = LLDB_INVALID_UID;
3936//                m_stack_id.Clear();
3937//            }
3938//        }
3939//    }
3940//    else
3941//    {
3942//        // If there's no target, nothing can change so we don't need to update anything.
3943//        // But if we're switching from having a target to not, we should try to update.
3944//        if (m_target_sp.get() != NULL)
3945//        {
3946//            needs_update = true;
3947//            m_target_sp.reset();
3948//            m_process_sp.reset();
3949//            m_thread_id = LLDB_INVALID_UID;
3950//            m_stack_id.Clear();
3951//        }
3952//    }
3953//    if (!m_needs_update)
3954//        m_needs_update = needs_update;
3955//
3956//    return needs_update;
3957//}
3958
3959void
3960ValueObject::ClearUserVisibleData(uint32_t clear_mask)
3961{
3962    if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue)
3963        m_value_str.clear();
3964
3965    if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation)
3966        m_location_str.clear();
3967
3968    if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary)
3969    {
3970        m_summary_str.clear();
3971    }
3972
3973    if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription)
3974        m_object_desc_str.clear();
3975
3976    if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren)
3977    {
3978            if (m_synthetic_value)
3979                m_synthetic_value = NULL;
3980    }
3981}
3982
3983SymbolContextScope *
3984ValueObject::GetSymbolContextScope()
3985{
3986    if (m_parent)
3987    {
3988        if (!m_parent->IsPointerOrReferenceType())
3989            return m_parent->GetSymbolContextScope();
3990    }
3991    return NULL;
3992}
3993