DWARFCallFrameInfo.cpp revision 4e12194c2d784868e5d2236f9546de104531bdc0
1//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11// C Includes
12// C++ Includes
13#include <list>
14
15#include "lldb/Core/Log.h"
16#include "lldb/Core/Section.h"
17#include "lldb/Symbol/DWARFCallFrameInfo.h"
18#include "lldb/Core/ArchSpec.h"
19#include "lldb/Core/Module.h"
20#include "lldb/Symbol/ObjectFile.h"
21#include "lldb/Target/RegisterContext.h"
22#include "lldb/Core/Section.h"
23#include "lldb/Target/Thread.h"
24#include "lldb/Symbol/UnwindPlan.h"
25
26using namespace lldb;
27using namespace lldb_private;
28
29DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section, uint32_t reg_kind, bool is_eh_frame) :
30    m_objfile (objfile),
31    m_section (section),
32    m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
33    m_cie_map (),
34    m_cfi_data (),
35    m_cfi_data_initialized (false),
36    m_fde_index (),
37    m_fde_index_initialized (false),
38    m_is_eh_frame (is_eh_frame)
39{
40}
41
42DWARFCallFrameInfo::~DWARFCallFrameInfo()
43{
44}
45
46
47bool
48DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
49{
50    FDEEntry fde_entry;
51    if (GetFDEEntryByAddress (addr, fde_entry) == false)
52        return false;
53    range = fde_entry.bounds;
54    return true;
55}
56
57bool
58DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
59{
60    FDEEntry fde_entry;
61    if (GetFDEEntryByAddress (addr, fde_entry) == false)
62        return false;
63    return FDEToUnwindPlan (fde_entry.offset, addr, unwind_plan);
64}
65
66bool
67DWARFCallFrameInfo::GetFDEEntryByAddress (Address addr, FDEEntry& fde_entry)
68{
69    if (m_section.get() == NULL)
70        return false;
71    GetFDEIndex();
72
73    struct FDEEntry searchfde;
74    searchfde.bounds = AddressRange (addr, 1);
75
76    std::vector<FDEEntry>::const_iterator idx;
77    if (m_fde_index.size() == 0)
78        return false;
79
80    idx = std::lower_bound (m_fde_index.begin(), m_fde_index.end(), searchfde);
81    if (idx == m_fde_index.end())
82    {
83        --idx;
84    }
85    if (idx != m_fde_index.begin() && idx->bounds.GetBaseAddress().GetOffset() != addr.GetOffset())
86    {
87       --idx;
88    }
89    if (idx->bounds.ContainsFileAddress (addr))
90    {
91        fde_entry = *idx;
92        return true;
93    }
94
95    return false;
96}
97
98const DWARFCallFrameInfo::CIE*
99DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
100{
101    cie_map_t::iterator pos = m_cie_map.find(cie_offset);
102
103    if (pos != m_cie_map.end())
104    {
105        // Parse and cache the CIE
106        if (pos->second.get() == NULL)
107            pos->second = ParseCIE (cie_offset);
108
109        return pos->second.get();
110    }
111    return NULL;
112}
113
114DWARFCallFrameInfo::CIESP
115DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
116{
117    CIESP cie_sp(new CIE(cie_offset));
118    dw_offset_t offset = cie_offset;
119    if (m_cfi_data_initialized == false)
120    {
121        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
122        m_cfi_data_initialized = true;
123    }
124    const uint32_t length = m_cfi_data.GetU32(&offset);
125    const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
126    const dw_offset_t end_offset = cie_offset + length + 4;
127    if (length > 0 && (!m_is_eh_frame && cie_id == 0xfffffffful) || (m_is_eh_frame && cie_id == 0ul))
128    {
129        size_t i;
130        //    cie.offset = cie_offset;
131        //    cie.length = length;
132        //    cie.cieID = cieID;
133        cie_sp->ptr_encoding = DW_EH_PE_absptr;
134        cie_sp->version = m_cfi_data.GetU8(&offset);
135
136        for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
137        {
138            cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
139            if (cie_sp->augmentation[i] == '\0')
140            {
141                // Zero out remaining bytes in augmentation string
142                for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
143                    cie_sp->augmentation[j] = '\0';
144
145                break;
146            }
147        }
148
149        if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
150        {
151            fprintf(stderr, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
152            return cie_sp;
153        }
154        cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
155        cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
156        cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
157
158        if (cie_sp->augmentation[0])
159        {
160            // Get the length of the eh_frame augmentation data
161            // which starts with a ULEB128 length in bytes
162            const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
163            const size_t aug_data_end = offset + aug_data_len;
164            const size_t aug_str_len = strlen(cie_sp->augmentation);
165            // A 'z' may be present as the first character of the string.
166            // If present, the Augmentation Data field shall be present.
167            // The contents of the Augmentation Data shall be intepreted
168            // according to other characters in the Augmentation String.
169            if (cie_sp->augmentation[0] == 'z')
170            {
171                // Extract the Augmentation Data
172                size_t aug_str_idx = 0;
173                for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
174                {
175                    char aug = cie_sp->augmentation[aug_str_idx];
176                    switch (aug)
177                    {
178                        case 'L':
179                            // Indicates the presence of one argument in the
180                            // Augmentation Data of the CIE, and a corresponding
181                            // argument in the Augmentation Data of the FDE. The
182                            // argument in the Augmentation Data of the CIE is
183                            // 1-byte and represents the pointer encoding used
184                            // for the argument in the Augmentation Data of the
185                            // FDE, which is the address of a language-specific
186                            // data area (LSDA). The size of the LSDA pointer is
187                            // specified by the pointer encoding used.
188                            m_cfi_data.GetU8(&offset);
189                            break;
190
191                        case 'P':
192                            // Indicates the presence of two arguments in the
193                            // Augmentation Data of the cie_sp-> The first argument
194                            // is 1-byte and represents the pointer encoding
195                            // used for the second argument, which is the
196                            // address of a personality routine handler. The
197                            // size of the personality routine pointer is
198                            // specified by the pointer encoding used.
199                        {
200                            uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
201                            m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
202                        }
203                            break;
204
205                        case 'R':
206                            // A 'R' may be present at any position after the
207                            // first character of the string. The Augmentation
208                            // Data shall include a 1 byte argument that
209                            // represents the pointer encoding for the address
210                            // pointers used in the FDE.
211                            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
212                            break;
213                    }
214                }
215            }
216            else if (strcmp(cie_sp->augmentation, "eh") == 0)
217            {
218                // If the Augmentation string has the value "eh", then
219                // the EH Data field shall be present
220            }
221
222            // Set the offset to be the end of the augmentation data just in case
223            // we didn't understand any of the data.
224            offset = (uint32_t)aug_data_end;
225        }
226
227        if (end_offset > offset)
228        {
229            cie_sp->inst_offset = offset;
230            cie_sp->inst_length = end_offset - offset;
231        }
232        while (offset < end_offset)
233        {
234            uint8_t inst = m_cfi_data.GetU8(&offset);
235            uint8_t primary_opcode  = inst & 0xC0;
236            uint8_t extended_opcode = inst & 0x3F;
237
238            if (extended_opcode == DW_CFA_def_cfa)
239            {
240                // Takes two unsigned LEB128 operands representing a register
241                // number and a (non-factored) offset. The required action
242                // is to define the current CFA rule to use the provided
243                // register and offset.
244                uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
245                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
246                cie_sp->initial_row.SetCFARegister (reg_num);
247                cie_sp->initial_row.SetCFAOffset (op_offset);
248                continue;
249            }
250            if (primary_opcode == DW_CFA_offset)
251            {
252                // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
253                // Takes two arguments: an unsigned LEB128 constant representing a
254                // factored offset and a register number. The required action is to
255                // change the rule for the register indicated by the register number
256                // to be an offset(N) rule with a value of
257                // (N = factored offset * data_align).
258                uint32_t reg_num = extended_opcode;
259                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
260                UnwindPlan::Row::RegisterLocation reg_location;
261                reg_location.SetAtCFAPlusOffset(op_offset);
262                cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
263                continue;
264            }
265            if (extended_opcode == DW_CFA_nop)
266            {
267                continue;
268            }
269            break;  // Stop if we hit an unrecognized opcode
270        }
271    }
272
273    return cie_sp;
274}
275
276// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
277// of the functions and a pointer back to the function's FDE for later expansion.
278// Internalize CIEs as we come across them.
279
280void
281DWARFCallFrameInfo::GetFDEIndex ()
282{
283    if (m_section.get() == NULL)
284        return;
285    if (m_fde_index_initialized)
286        return;
287
288
289    dw_offset_t offset = 0;
290    if (m_cfi_data_initialized == false)
291    {
292        Log *log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND);
293        if (log)
294        {
295            log->Printf ("Reading eh_frame information for %s", m_objfile.GetFileSpec().GetFilename().GetCString());
296        }
297        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
298        m_cfi_data_initialized = true;
299    }
300    while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
301    {
302        dw_offset_t current_entry = offset;
303        uint32_t len = m_cfi_data.GetU32 (&offset);
304        dw_offset_t next_entry = current_entry + len + 4;
305        dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
306
307        if (cie_id == 0 || cie_id == UINT32_MAX)
308        {
309            m_cie_map[current_entry] = ParseCIE (current_entry);
310            offset = next_entry;
311            continue;
312        }
313
314        const CIE *cie = GetCIE (current_entry + 4 - cie_id);
315        assert (cie != NULL);
316
317        const lldb::addr_t pc_rel_addr = m_section->GetFileAddress();
318        const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
319        const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
320
321        lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
322        lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
323        FDEEntry fde;
324        fde.bounds = AddressRange (addr, length, m_objfile.GetSectionList());
325        fde.offset = current_entry;
326        m_fde_index.push_back(fde);
327
328        offset = next_entry;
329    }
330    std::sort (m_fde_index.begin(), m_fde_index.end());
331    m_fde_index_initialized = true;
332}
333
334bool
335DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
336{
337    dw_offset_t current_entry = offset;
338
339    if (m_section.get() == NULL)
340        return false;
341
342    if (m_cfi_data_initialized == false)
343    {
344        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
345        m_cfi_data_initialized = true;
346    }
347
348    uint32_t length = m_cfi_data.GetU32 (&offset);
349    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
350
351    assert (cie_offset != 0 && cie_offset != UINT32_MAX);
352
353    // Translate the CIE_id from the eh_frame format, which
354    // is relative to the FDE offset, into a __eh_frame section
355    // offset
356    if (m_is_eh_frame)
357    {
358        unwind_plan.SetSourceName ("eh_frame CFI");
359        cie_offset = current_entry + 4 - cie_offset;
360    }
361    else
362    {
363        unwind_plan.SetSourceName ("DWARF CFI");
364    }
365
366    const CIE *cie = GetCIE (cie_offset);
367    assert (cie != NULL);
368
369    const dw_offset_t end_offset = current_entry + length + 4;
370
371    const lldb::addr_t pc_rel_addr = m_section->GetFileAddress();
372    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
373    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
374    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
375    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
376    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
377    range.SetByteSize (range_len);
378
379    if (cie->augmentation[0] == 'z')
380    {
381        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
382        offset += aug_data_len;
383    }
384
385    uint32_t reg_num = 0;
386    int32_t op_offset = 0;
387    uint32_t tmp_uval32;
388    uint32_t code_align = cie->code_align;
389    int32_t data_align = cie->data_align;
390
391    unwind_plan.SetPlanValidAddressRange (range);
392    UnwindPlan::Row row = cie->initial_row;
393
394    unwind_plan.SetRegisterKind (m_reg_kind);
395
396    UnwindPlan::Row::RegisterLocation reg_location;
397    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
398    {
399        uint8_t inst = m_cfi_data.GetU8(&offset);
400        uint8_t primary_opcode  = inst & 0xC0;
401        uint8_t extended_opcode = inst & 0x3F;
402
403        if (primary_opcode)
404        {
405            switch (primary_opcode)
406            {
407                case DW_CFA_advance_loc :   // (Row Creation Instruction)
408                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
409                        // takes a single argument that represents a constant delta. The
410                        // required action is to create a new table row with a location
411                        // value that is computed by taking the current entry's location
412                        // value and adding (delta * code_align). All other
413                        // values in the new row are initially identical to the current row.
414                        unwind_plan.AppendRow(row);
415                        row.SlideOffset(extended_opcode * code_align);
416                    }
417                    break;
418
419                case DW_CFA_offset      :
420                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
421                        // takes two arguments: an unsigned LEB128 constant representing a
422                        // factored offset and a register number. The required action is to
423                        // change the rule for the register indicated by the register number
424                        // to be an offset(N) rule with a value of
425                        // (N = factored offset * data_align).
426                        reg_num = extended_opcode;
427                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
428                        reg_location.SetAtCFAPlusOffset(op_offset);
429                        row.SetRegisterInfo (reg_num, reg_location);
430                    }
431                    break;
432
433                case DW_CFA_restore     :
434                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
435                        // takes a single argument that represents a register number. The
436                        // required action is to change the rule for the indicated register
437                        // to the rule assigned it by the initial_instructions in the CIE.
438                        reg_num = extended_opcode;
439                        // We only keep enough register locations around to
440                        // unwind what is in our thread, and these are organized
441                        // by the register index in that state, so we need to convert our
442                        // GCC register number from the EH frame info, to a register index
443
444                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location))
445                            row.SetRegisterInfo (reg_num, reg_location);
446                    }
447                    break;
448            }
449        }
450        else
451        {
452            switch (extended_opcode)
453            {
454                case DW_CFA_nop                 : // 0x0
455                    break;
456
457                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
458                    {
459                        // DW_CFA_set_loc takes a single argument that represents an address.
460                        // The required action is to create a new table row using the
461                        // specified address as the location. All other values in the new row
462                        // are initially identical to the current row. The new location value
463                        // should always be greater than the current one.
464                        unwind_plan.AppendRow(row);
465                        row.SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
466                    }
467                    break;
468
469                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
470                    {
471                        // takes a single uword argument that represents a constant delta.
472                        // This instruction is identical to DW_CFA_advance_loc except for the
473                        // encoding and size of the delta argument.
474                        unwind_plan.AppendRow(row);
475                        row.SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
476                    }
477                    break;
478
479                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
480                    {
481                        // takes a single uword argument that represents a constant delta.
482                        // This instruction is identical to DW_CFA_advance_loc except for the
483                        // encoding and size of the delta argument.
484                        unwind_plan.AppendRow(row);
485                        row.SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
486                    }
487                    break;
488
489                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
490                    {
491                        // takes a single uword argument that represents a constant delta.
492                        // This instruction is identical to DW_CFA_advance_loc except for the
493                        // encoding and size of the delta argument.
494                        unwind_plan.AppendRow(row);
495                        row.SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
496                    }
497                    break;
498
499                case DW_CFA_offset_extended     : // 0x5
500                    {
501                        // takes two unsigned LEB128 arguments representing a register number
502                        // and a factored offset. This instruction is identical to DW_CFA_offset
503                        // except for the encoding and size of the register argument.
504                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
505                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
506                        reg_location.SetAtCFAPlusOffset(op_offset);
507                        row.SetRegisterInfo (reg_num, reg_location);
508                    }
509                    break;
510
511                case DW_CFA_restore_extended    : // 0x6
512                    {
513                        // takes a single unsigned LEB128 argument that represents a register
514                        // number. This instruction is identical to DW_CFA_restore except for
515                        // the encoding and size of the register argument.
516                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
517                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location))
518                            row.SetRegisterInfo (reg_num, reg_location);
519                    }
520                    break;
521
522                case DW_CFA_undefined           : // 0x7
523                    {
524                        // takes a single unsigned LEB128 argument that represents a register
525                        // number. The required action is to set the rule for the specified
526                        // register to undefined.
527                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
528                        reg_location.SetUndefined();
529                        row.SetRegisterInfo (reg_num, reg_location);
530                    }
531                    break;
532
533                case DW_CFA_same_value          : // 0x8
534                    {
535                        // takes a single unsigned LEB128 argument that represents a register
536                        // number. The required action is to set the rule for the specified
537                        // register to same value.
538                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
539                        reg_location.SetSame();
540                        row.SetRegisterInfo (reg_num, reg_location);
541                    }
542                    break;
543
544                case DW_CFA_register            : // 0x9
545                    {
546                        // takes two unsigned LEB128 arguments representing register numbers.
547                        // The required action is to set the rule for the first register to be
548                        // the second register.
549
550                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
551                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
552                        reg_location.SetInRegister(other_reg_num);
553                        row.SetRegisterInfo (reg_num, reg_location);
554                    }
555                    break;
556
557                case DW_CFA_remember_state      : // 0xA
558                    // These instructions define a stack of information. Encountering the
559                    // DW_CFA_remember_state instruction means to save the rules for every
560                    // register on the current row on the stack. Encountering the
561                    // DW_CFA_restore_state instruction means to pop the set of rules off
562                    // the stack and place them in the current row. (This operation is
563                    // useful for compilers that move epilogue code into the body of a
564                    // function.)
565                    unwind_plan.AppendRow (row);
566                    break;
567
568                case DW_CFA_restore_state       : // 0xB
569                    // These instructions define a stack of information. Encountering the
570                    // DW_CFA_remember_state instruction means to save the rules for every
571                    // register on the current row on the stack. Encountering the
572                    // DW_CFA_restore_state instruction means to pop the set of rules off
573                    // the stack and place them in the current row. (This operation is
574                    // useful for compilers that move epilogue code into the body of a
575                    // function.)
576                    {
577                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
578                    }
579                    break;
580
581                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
582                    {
583                        // Takes two unsigned LEB128 operands representing a register
584                        // number and a (non-factored) offset. The required action
585                        // is to define the current CFA rule to use the provided
586                        // register and offset.
587                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
588                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
589                        row.SetCFARegister (reg_num);
590                        row.SetCFAOffset (op_offset);
591                    }
592                    break;
593
594                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
595                    {
596                        // takes a single unsigned LEB128 argument representing a register
597                        // number. The required action is to define the current CFA rule to
598                        // use the provided register (but to keep the old offset).
599                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
600                        row.SetCFARegister (reg_num);
601                    }
602                    break;
603
604                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
605                    {
606                        // Takes a single unsigned LEB128 operand representing a
607                        // (non-factored) offset. The required action is to define
608                        // the current CFA rule to use the provided offset (but
609                        // to keep the old register).
610                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
611                        row.SetCFAOffset (op_offset);
612                    }
613                    break;
614
615                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
616                    {
617                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
618                        offset += (uint32_t)block_len;
619                    }
620                    break;
621
622                case DW_CFA_expression          : // 0x10
623                    {
624                        // Takes two operands: an unsigned LEB128 value representing
625                        // a register number, and a DW_FORM_block value representing a DWARF
626                        // expression. The required action is to change the rule for the
627                        // register indicated by the register number to be an expression(E)
628                        // rule where E is the DWARF expression. That is, the DWARF
629                        // expression computes the address. The value of the CFA is
630                        // pushed on the DWARF evaluation stack prior to execution of
631                        // the DWARF expression.
632                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
633                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
634                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
635
636                        reg_location.SetAtDWARFExpression(block_data, block_len);
637                        row.SetRegisterInfo (reg_num, reg_location);
638                    }
639                    break;
640
641                case DW_CFA_offset_extended_sf  : // 0x11
642                    {
643                        // takes two operands: an unsigned LEB128 value representing a
644                        // register number and a signed LEB128 factored offset. This
645                        // instruction is identical to DW_CFA_offset_extended except
646                        //that the second operand is signed and factored.
647                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
648                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
649                        reg_location.SetAtCFAPlusOffset(op_offset);
650                        row.SetRegisterInfo (reg_num, reg_location);
651                    }
652                    break;
653
654                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
655                    {
656                        // Takes two operands: an unsigned LEB128 value representing
657                        // a register number and a signed LEB128 factored offset.
658                        // This instruction is identical to DW_CFA_def_cfa except
659                        // that the second operand is signed and factored.
660                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
661                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
662                        row.SetCFARegister (reg_num);
663                        row.SetCFAOffset (op_offset);
664                    }
665                    break;
666
667                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
668                    {
669                        // takes a signed LEB128 operand representing a factored
670                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
671                        // except that the operand is signed and factored.
672                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
673                        row.SetCFAOffset (op_offset);
674                    }
675                    break;
676
677                case DW_CFA_val_expression      :   // 0x16
678                    {
679                        // takes two operands: an unsigned LEB128 value representing a register
680                        // number, and a DW_FORM_block value representing a DWARF expression.
681                        // The required action is to change the rule for the register indicated
682                        // by the register number to be a val_expression(E) rule where E is the
683                        // DWARF expression. That is, the DWARF expression computes the value of
684                        // the given register. The value of the CFA is pushed on the DWARF
685                        // evaluation stack prior to execution of the DWARF expression.
686                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
687                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
688                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
689//#if defined(__i386__) || defined(__x86_64__)
690//                      // The EH frame info for EIP and RIP contains code that looks for traps to
691//                      // be a specific type and increments the PC.
692//                      // For i386:
693//                      // DW_CFA_val_expression where:
694//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
695//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
696//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
697//                      //       DW_OP_and, DW_OP_plus
698//                      // This basically does a:
699//                      // eip = ucontenxt.mcontext32->gpr.eip;
700//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
701//                      //   eip++;
702//                      //
703//                      // For x86_64:
704//                      // DW_CFA_val_expression where:
705//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
706//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
707//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
708//                      // This basically does a:
709//                      // rip = ucontenxt.mcontext64->gpr.rip;
710//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
711//                      //   rip++;
712//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
713//                      // is expected to point at least past the instruction that causes the fault/trap. So we
714//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
715//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
716//                      {
717//                          if (thread->Is64Bit())
718//                          {
719//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
720//                                  block_len = 8;
721//                          }
722//                          else
723//                          {
724//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
725//                                  block_len = 7;
726//                          }
727//                      }
728//#endif
729                        reg_location.SetIsDWARFExpression(block_data, block_len);
730                        row.SetRegisterInfo (reg_num, reg_location);
731                    }
732                    break;
733
734                case DW_CFA_val_offset          :   // 0x14
735                case DW_CFA_val_offset_sf       :   // 0x15
736                default:
737                    tmp_uval32 = extended_opcode;
738                    break;
739            }
740        }
741    }
742    unwind_plan.AppendRow(row);
743
744    return true;
745}
746