DWARFCallFrameInfo.cpp revision e005f2ce03c489ebde9110678a29cbfe8488d5b4
1//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11// C Includes
12// C++ Includes
13#include <list>
14
15#include "lldb/Core/Log.h"
16#include "lldb/Core/Section.h"
17#include "lldb/Symbol/DWARFCallFrameInfo.h"
18#include "lldb/Core/ArchSpec.h"
19#include "lldb/Core/Module.h"
20#include "lldb/Symbol/ObjectFile.h"
21#include "lldb/Target/RegisterContext.h"
22#include "lldb/Core/Section.h"
23#include "lldb/Target/Thread.h"
24#include "lldb/Symbol/UnwindPlan.h"
25
26using namespace lldb;
27using namespace lldb_private;
28
29DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section, uint32_t reg_kind, bool is_eh_frame) :
30    m_objfile (objfile),
31    m_section (section),
32    m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
33    m_cie_map (),
34    m_cfi_data (),
35    m_cfi_data_initialized (false),
36    m_fde_index (),
37    m_fde_index_initialized (false),
38    m_is_eh_frame (is_eh_frame),
39    m_flags ()
40{
41}
42
43DWARFCallFrameInfo::~DWARFCallFrameInfo()
44{
45}
46
47
48bool
49DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
50{
51    FDEEntry fde_entry;
52    if (GetFDEEntryByAddress (addr, fde_entry) == false)
53        return false;
54    range = fde_entry.bounds;
55    return true;
56}
57
58bool
59DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
60{
61    FDEEntry fde_entry;
62    if (GetFDEEntryByAddress (addr, fde_entry) == false)
63        return false;
64    return FDEToUnwindPlan (fde_entry.offset, addr, unwind_plan);
65}
66
67bool
68DWARFCallFrameInfo::GetFDEEntryByAddress (Address addr, FDEEntry& fde_entry)
69{
70    if (m_section.get() == NULL)
71        return false;
72    GetFDEIndex();
73
74    struct FDEEntry searchfde;
75    searchfde.bounds = AddressRange (addr, 1);
76
77    std::vector<FDEEntry>::const_iterator idx;
78    if (m_fde_index.size() == 0)
79        return false;
80
81    idx = std::lower_bound (m_fde_index.begin(), m_fde_index.end(), searchfde);
82    if (idx == m_fde_index.end())
83    {
84        --idx;
85    }
86    if (idx != m_fde_index.begin() && idx->bounds.GetBaseAddress().GetOffset() != addr.GetOffset())
87    {
88       --idx;
89    }
90    if (idx->bounds.ContainsFileAddress (addr))
91    {
92        fde_entry = *idx;
93        return true;
94    }
95
96    return false;
97}
98
99const DWARFCallFrameInfo::CIE*
100DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
101{
102    cie_map_t::iterator pos = m_cie_map.find(cie_offset);
103
104    if (pos != m_cie_map.end())
105    {
106        // Parse and cache the CIE
107        if (pos->second.get() == NULL)
108            pos->second = ParseCIE (cie_offset);
109
110        return pos->second.get();
111    }
112    return NULL;
113}
114
115DWARFCallFrameInfo::CIESP
116DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
117{
118    CIESP cie_sp(new CIE(cie_offset));
119    dw_offset_t offset = cie_offset;
120    if (m_cfi_data_initialized == false)
121    {
122        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
123        m_cfi_data_initialized = true;
124    }
125    const uint32_t length = m_cfi_data.GetU32(&offset);
126    const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
127    const dw_offset_t end_offset = cie_offset + length + 4;
128    if (length > 0 && (!m_is_eh_frame && cie_id == 0xfffffffful) || (m_is_eh_frame && cie_id == 0ul))
129    {
130        size_t i;
131        //    cie.offset = cie_offset;
132        //    cie.length = length;
133        //    cie.cieID = cieID;
134        cie_sp->ptr_encoding = DW_EH_PE_absptr;
135        cie_sp->version = m_cfi_data.GetU8(&offset);
136
137        for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
138        {
139            cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
140            if (cie_sp->augmentation[i] == '\0')
141            {
142                // Zero out remaining bytes in augmentation string
143                for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
144                    cie_sp->augmentation[j] = '\0';
145
146                break;
147            }
148        }
149
150        if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
151        {
152            fprintf(stderr, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
153            return cie_sp;
154        }
155        cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
156        cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
157        cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
158
159        if (cie_sp->augmentation[0])
160        {
161            // Get the length of the eh_frame augmentation data
162            // which starts with a ULEB128 length in bytes
163            const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
164            const size_t aug_data_end = offset + aug_data_len;
165            const size_t aug_str_len = strlen(cie_sp->augmentation);
166            // A 'z' may be present as the first character of the string.
167            // If present, the Augmentation Data field shall be present.
168            // The contents of the Augmentation Data shall be intepreted
169            // according to other characters in the Augmentation String.
170            if (cie_sp->augmentation[0] == 'z')
171            {
172                // Extract the Augmentation Data
173                size_t aug_str_idx = 0;
174                for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
175                {
176                    char aug = cie_sp->augmentation[aug_str_idx];
177                    switch (aug)
178                    {
179                        case 'L':
180                            // Indicates the presence of one argument in the
181                            // Augmentation Data of the CIE, and a corresponding
182                            // argument in the Augmentation Data of the FDE. The
183                            // argument in the Augmentation Data of the CIE is
184                            // 1-byte and represents the pointer encoding used
185                            // for the argument in the Augmentation Data of the
186                            // FDE, which is the address of a language-specific
187                            // data area (LSDA). The size of the LSDA pointer is
188                            // specified by the pointer encoding used.
189                            m_cfi_data.GetU8(&offset);
190                            break;
191
192                        case 'P':
193                            // Indicates the presence of two arguments in the
194                            // Augmentation Data of the cie_sp-> The first argument
195                            // is 1-byte and represents the pointer encoding
196                            // used for the second argument, which is the
197                            // address of a personality routine handler. The
198                            // size of the personality routine pointer is
199                            // specified by the pointer encoding used.
200                        {
201                            uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
202                            m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
203                        }
204                            break;
205
206                        case 'R':
207                            // A 'R' may be present at any position after the
208                            // first character of the string. The Augmentation
209                            // Data shall include a 1 byte argument that
210                            // represents the pointer encoding for the address
211                            // pointers used in the FDE.
212                            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
213                            break;
214                    }
215                }
216            }
217            else if (strcmp(cie_sp->augmentation, "eh") == 0)
218            {
219                // If the Augmentation string has the value "eh", then
220                // the EH Data field shall be present
221            }
222
223            // Set the offset to be the end of the augmentation data just in case
224            // we didn't understand any of the data.
225            offset = (uint32_t)aug_data_end;
226        }
227
228        if (end_offset > offset)
229        {
230            cie_sp->inst_offset = offset;
231            cie_sp->inst_length = end_offset - offset;
232        }
233        while (offset < end_offset)
234        {
235            uint8_t inst = m_cfi_data.GetU8(&offset);
236            uint8_t primary_opcode  = inst & 0xC0;
237            uint8_t extended_opcode = inst & 0x3F;
238
239            if (extended_opcode == DW_CFA_def_cfa)
240            {
241                // Takes two unsigned LEB128 operands representing a register
242                // number and a (non-factored) offset. The required action
243                // is to define the current CFA rule to use the provided
244                // register and offset.
245                uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
246                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
247                cie_sp->initial_row.SetCFARegister (reg_num);
248                cie_sp->initial_row.SetCFAOffset (op_offset);
249                continue;
250            }
251            if (primary_opcode == DW_CFA_offset)
252            {
253                // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
254                // Takes two arguments: an unsigned LEB128 constant representing a
255                // factored offset and a register number. The required action is to
256                // change the rule for the register indicated by the register number
257                // to be an offset(N) rule with a value of
258                // (N = factored offset * data_align).
259                uint32_t reg_num = extended_opcode;
260                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
261                UnwindPlan::Row::RegisterLocation reg_location;
262                reg_location.SetAtCFAPlusOffset(op_offset);
263                cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
264                continue;
265            }
266            if (extended_opcode == DW_CFA_nop)
267            {
268                continue;
269            }
270            break;  // Stop if we hit an unrecognized opcode
271        }
272    }
273
274    return cie_sp;
275}
276
277// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
278// of the functions and a pointer back to the function's FDE for later expansion.
279// Internalize CIEs as we come across them.
280
281void
282DWARFCallFrameInfo::GetFDEIndex ()
283{
284    if (m_section.get() == NULL)
285        return;
286    if (m_fde_index_initialized)
287        return;
288
289
290    dw_offset_t offset = 0;
291    if (m_cfi_data_initialized == false)
292    {
293        LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
294        if (log)
295        {
296            log->Printf ("Reading eh_frame information for %s", m_objfile.GetFileSpec().GetFilename().GetCString());
297        }
298        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
299        m_cfi_data_initialized = true;
300    }
301    while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
302    {
303        dw_offset_t current_entry = offset;
304        uint32_t len = m_cfi_data.GetU32 (&offset);
305        dw_offset_t next_entry = current_entry + len + 4;
306        dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
307
308        if (cie_id == 0 || cie_id == UINT32_MAX)
309        {
310            m_cie_map[current_entry] = ParseCIE (current_entry);
311            offset = next_entry;
312            continue;
313        }
314
315        const CIE *cie = GetCIE (current_entry + 4 - cie_id);
316        assert (cie != NULL);
317
318        const lldb::addr_t pc_rel_addr = m_section->GetFileAddress();
319        const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
320        const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
321
322        lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
323        lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
324        FDEEntry fde;
325        fde.bounds = AddressRange (addr, length, m_objfile.GetSectionList());
326        fde.offset = current_entry;
327        m_fde_index.push_back(fde);
328
329        offset = next_entry;
330    }
331    std::sort (m_fde_index.begin(), m_fde_index.end());
332    m_fde_index_initialized = true;
333}
334
335bool
336DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
337{
338    dw_offset_t current_entry = offset;
339
340    if (m_section.get() == NULL)
341        return false;
342
343    if (m_cfi_data_initialized == false)
344    {
345        m_section->ReadSectionDataFromObjectFile (&m_objfile, m_cfi_data);
346        m_cfi_data_initialized = true;
347    }
348
349    uint32_t length = m_cfi_data.GetU32 (&offset);
350    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
351
352    assert (cie_offset != 0 && cie_offset != UINT32_MAX);
353
354    // Translate the CIE_id from the eh_frame format, which
355    // is relative to the FDE offset, into a __eh_frame section
356    // offset
357    if (m_is_eh_frame)
358    {
359        unwind_plan.SetSourceName ("eh_frame CFI");
360        cie_offset = current_entry + 4 - cie_offset;
361    }
362    else
363    {
364        unwind_plan.SetSourceName ("DWARF CFI");
365    }
366
367    const CIE *cie = GetCIE (cie_offset);
368    assert (cie != NULL);
369
370    const dw_offset_t end_offset = current_entry + length + 4;
371
372    const lldb::addr_t pc_rel_addr = m_section->GetFileAddress();
373    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
374    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
375    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
376    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
377    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
378    range.SetByteSize (range_len);
379
380    if (cie->augmentation[0] == 'z')
381    {
382        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
383        offset += aug_data_len;
384    }
385
386    uint32_t reg_num = 0;
387    int32_t op_offset = 0;
388    uint32_t tmp_uval32;
389    uint32_t code_align = cie->code_align;
390    int32_t data_align = cie->data_align;
391
392    unwind_plan.SetPlanValidAddressRange (range);
393    UnwindPlan::Row row = cie->initial_row;
394
395    unwind_plan.SetRegisterKind (m_reg_kind);
396
397    UnwindPlan::Row::RegisterLocation reg_location;
398    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
399    {
400        uint8_t inst = m_cfi_data.GetU8(&offset);
401        uint8_t primary_opcode  = inst & 0xC0;
402        uint8_t extended_opcode = inst & 0x3F;
403
404        if (primary_opcode)
405        {
406            switch (primary_opcode)
407            {
408                case DW_CFA_advance_loc :   // (Row Creation Instruction)
409                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
410                        // takes a single argument that represents a constant delta. The
411                        // required action is to create a new table row with a location
412                        // value that is computed by taking the current entry's location
413                        // value and adding (delta * code_align). All other
414                        // values in the new row are initially identical to the current row.
415                        unwind_plan.AppendRow(row);
416                        row.SlideOffset(extended_opcode * code_align);
417                    }
418                    break;
419
420                case DW_CFA_offset      :
421                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
422                        // takes two arguments: an unsigned LEB128 constant representing a
423                        // factored offset and a register number. The required action is to
424                        // change the rule for the register indicated by the register number
425                        // to be an offset(N) rule with a value of
426                        // (N = factored offset * data_align).
427                        reg_num = extended_opcode;
428                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
429                        reg_location.SetAtCFAPlusOffset(op_offset);
430                        row.SetRegisterInfo (reg_num, reg_location);
431                    }
432                    break;
433
434                case DW_CFA_restore     :
435                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
436                        // takes a single argument that represents a register number. The
437                        // required action is to change the rule for the indicated register
438                        // to the rule assigned it by the initial_instructions in the CIE.
439                        reg_num = extended_opcode;
440                        // We only keep enough register locations around to
441                        // unwind what is in our thread, and these are organized
442                        // by the register index in that state, so we need to convert our
443                        // GCC register number from the EH frame info, to a register index
444
445                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location))
446                            row.SetRegisterInfo (reg_num, reg_location);
447                    }
448                    break;
449            }
450        }
451        else
452        {
453            switch (extended_opcode)
454            {
455                case DW_CFA_nop                 : // 0x0
456                    break;
457
458                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
459                    {
460                        // DW_CFA_set_loc takes a single argument that represents an address.
461                        // The required action is to create a new table row using the
462                        // specified address as the location. All other values in the new row
463                        // are initially identical to the current row. The new location value
464                        // should always be greater than the current one.
465                        unwind_plan.AppendRow(row);
466                        row.SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
467                    }
468                    break;
469
470                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
471                    {
472                        // takes a single uword argument that represents a constant delta.
473                        // This instruction is identical to DW_CFA_advance_loc except for the
474                        // encoding and size of the delta argument.
475                        unwind_plan.AppendRow(row);
476                        row.SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
477                    }
478                    break;
479
480                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
481                    {
482                        // takes a single uword argument that represents a constant delta.
483                        // This instruction is identical to DW_CFA_advance_loc except for the
484                        // encoding and size of the delta argument.
485                        unwind_plan.AppendRow(row);
486                        row.SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
487                    }
488                    break;
489
490                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
491                    {
492                        // takes a single uword argument that represents a constant delta.
493                        // This instruction is identical to DW_CFA_advance_loc except for the
494                        // encoding and size of the delta argument.
495                        unwind_plan.AppendRow(row);
496                        row.SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
497                    }
498                    break;
499
500                case DW_CFA_offset_extended     : // 0x5
501                    {
502                        // takes two unsigned LEB128 arguments representing a register number
503                        // and a factored offset. This instruction is identical to DW_CFA_offset
504                        // except for the encoding and size of the register argument.
505                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
506                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
507                        reg_location.SetAtCFAPlusOffset(op_offset);
508                        row.SetRegisterInfo (reg_num, reg_location);
509                    }
510                    break;
511
512                case DW_CFA_restore_extended    : // 0x6
513                    {
514                        // takes a single unsigned LEB128 argument that represents a register
515                        // number. This instruction is identical to DW_CFA_restore except for
516                        // the encoding and size of the register argument.
517                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
518                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location))
519                            row.SetRegisterInfo (reg_num, reg_location);
520                    }
521                    break;
522
523                case DW_CFA_undefined           : // 0x7
524                    {
525                        // takes a single unsigned LEB128 argument that represents a register
526                        // number. The required action is to set the rule for the specified
527                        // register to undefined.
528                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
529                        reg_location.SetUndefined();
530                        row.SetRegisterInfo (reg_num, reg_location);
531                    }
532                    break;
533
534                case DW_CFA_same_value          : // 0x8
535                    {
536                        // takes a single unsigned LEB128 argument that represents a register
537                        // number. The required action is to set the rule for the specified
538                        // register to same value.
539                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
540                        reg_location.SetSame();
541                        row.SetRegisterInfo (reg_num, reg_location);
542                    }
543                    break;
544
545                case DW_CFA_register            : // 0x9
546                    {
547                        // takes two unsigned LEB128 arguments representing register numbers.
548                        // The required action is to set the rule for the first register to be
549                        // the second register.
550
551                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
552                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
553                        reg_location.SetInRegister(other_reg_num);
554                        row.SetRegisterInfo (reg_num, reg_location);
555                    }
556                    break;
557
558                case DW_CFA_remember_state      : // 0xA
559                    // These instructions define a stack of information. Encountering the
560                    // DW_CFA_remember_state instruction means to save the rules for every
561                    // register on the current row on the stack. Encountering the
562                    // DW_CFA_restore_state instruction means to pop the set of rules off
563                    // the stack and place them in the current row. (This operation is
564                    // useful for compilers that move epilogue code into the body of a
565                    // function.)
566                    unwind_plan.AppendRow (row);
567                    break;
568
569                case DW_CFA_restore_state       : // 0xB
570                    // These instructions define a stack of information. Encountering the
571                    // DW_CFA_remember_state instruction means to save the rules for every
572                    // register on the current row on the stack. Encountering the
573                    // DW_CFA_restore_state instruction means to pop the set of rules off
574                    // the stack and place them in the current row. (This operation is
575                    // useful for compilers that move epilogue code into the body of a
576                    // function.)
577                    {
578                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
579                    }
580                    break;
581
582                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
583                    {
584                        // Takes two unsigned LEB128 operands representing a register
585                        // number and a (non-factored) offset. The required action
586                        // is to define the current CFA rule to use the provided
587                        // register and offset.
588                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
589                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
590                        row.SetCFARegister (reg_num);
591                        row.SetCFAOffset (op_offset);
592                    }
593                    break;
594
595                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
596                    {
597                        // takes a single unsigned LEB128 argument representing a register
598                        // number. The required action is to define the current CFA rule to
599                        // use the provided register (but to keep the old offset).
600                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
601                        row.SetCFARegister (reg_num);
602                    }
603                    break;
604
605                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
606                    {
607                        // Takes a single unsigned LEB128 operand representing a
608                        // (non-factored) offset. The required action is to define
609                        // the current CFA rule to use the provided offset (but
610                        // to keep the old register).
611                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
612                        row.SetCFAOffset (op_offset);
613                    }
614                    break;
615
616                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
617                    {
618                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
619                        offset += (uint32_t)block_len;
620                    }
621                    break;
622
623                case DW_CFA_expression          : // 0x10
624                    {
625                        // Takes two operands: an unsigned LEB128 value representing
626                        // a register number, and a DW_FORM_block value representing a DWARF
627                        // expression. The required action is to change the rule for the
628                        // register indicated by the register number to be an expression(E)
629                        // rule where E is the DWARF expression. That is, the DWARF
630                        // expression computes the address. The value of the CFA is
631                        // pushed on the DWARF evaluation stack prior to execution of
632                        // the DWARF expression.
633                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
634                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
635                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
636
637                        reg_location.SetAtDWARFExpression(block_data, block_len);
638                        row.SetRegisterInfo (reg_num, reg_location);
639                    }
640                    break;
641
642                case DW_CFA_offset_extended_sf  : // 0x11
643                    {
644                        // takes two operands: an unsigned LEB128 value representing a
645                        // register number and a signed LEB128 factored offset. This
646                        // instruction is identical to DW_CFA_offset_extended except
647                        //that the second operand is signed and factored.
648                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
649                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
650                        reg_location.SetAtCFAPlusOffset(op_offset);
651                        row.SetRegisterInfo (reg_num, reg_location);
652                    }
653                    break;
654
655                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
656                    {
657                        // Takes two operands: an unsigned LEB128 value representing
658                        // a register number and a signed LEB128 factored offset.
659                        // This instruction is identical to DW_CFA_def_cfa except
660                        // that the second operand is signed and factored.
661                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
662                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
663                        row.SetCFARegister (reg_num);
664                        row.SetCFAOffset (op_offset);
665                    }
666                    break;
667
668                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
669                    {
670                        // takes a signed LEB128 operand representing a factored
671                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
672                        // except that the operand is signed and factored.
673                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
674                        row.SetCFAOffset (op_offset);
675                    }
676                    break;
677
678                case DW_CFA_val_expression      :   // 0x16
679                    {
680                        // takes two operands: an unsigned LEB128 value representing a register
681                        // number, and a DW_FORM_block value representing a DWARF expression.
682                        // The required action is to change the rule for the register indicated
683                        // by the register number to be a val_expression(E) rule where E is the
684                        // DWARF expression. That is, the DWARF expression computes the value of
685                        // the given register. The value of the CFA is pushed on the DWARF
686                        // evaluation stack prior to execution of the DWARF expression.
687                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
688                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
689                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
690//#if defined(__i386__) || defined(__x86_64__)
691//                      // The EH frame info for EIP and RIP contains code that looks for traps to
692//                      // be a specific type and increments the PC.
693//                      // For i386:
694//                      // DW_CFA_val_expression where:
695//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
696//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
697//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
698//                      //       DW_OP_and, DW_OP_plus
699//                      // This basically does a:
700//                      // eip = ucontenxt.mcontext32->gpr.eip;
701//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
702//                      //   eip++;
703//                      //
704//                      // For x86_64:
705//                      // DW_CFA_val_expression where:
706//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
707//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
708//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
709//                      // This basically does a:
710//                      // rip = ucontenxt.mcontext64->gpr.rip;
711//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
712//                      //   rip++;
713//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
714//                      // is expected to point at least past the instruction that causes the fault/trap. So we
715//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
716//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
717//                      {
718//                          if (thread->Is64Bit())
719//                          {
720//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
721//                                  block_len = 8;
722//                          }
723//                          else
724//                          {
725//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
726//                                  block_len = 7;
727//                          }
728//                      }
729//#endif
730                        reg_location.SetIsDWARFExpression(block_data, block_len);
731                        row.SetRegisterInfo (reg_num, reg_location);
732                    }
733                    break;
734
735                case DW_CFA_val_offset          :   // 0x14
736                case DW_CFA_val_offset_sf       :   // 0x15
737                default:
738                    tmp_uval32 = extended_opcode;
739                    break;
740            }
741        }
742    }
743    unwind_plan.AppendRow(row);
744
745    return true;
746}
747