DWARFCallFrameInfo.cpp revision f68a2050b1a85de977829ffb7e327a991fddad33
1//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11// C Includes
12// C++ Includes
13#include <list>
14
15#include "lldb/Core/Log.h"
16#include "lldb/Core/Section.h"
17#include "lldb/Core/ArchSpec.h"
18#include "lldb/Core/Module.h"
19#include "lldb/Core/Section.h"
20#include "lldb/Host/Host.h"
21#include "lldb/Symbol/DWARFCallFrameInfo.h"
22#include "lldb/Symbol/ObjectFile.h"
23#include "lldb/Symbol/UnwindPlan.h"
24#include "lldb/Target/RegisterContext.h"
25#include "lldb/Target/Thread.h"
26
27using namespace lldb;
28using namespace lldb_private;
29
30DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
31    m_objfile (objfile),
32    m_section_sp (section_sp),
33    m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
34    m_flags (),
35    m_cie_map (),
36    m_cfi_data (),
37    m_cfi_data_initialized (false),
38    m_fde_index (),
39    m_fde_index_initialized (false),
40    m_is_eh_frame (is_eh_frame)
41{
42}
43
44DWARFCallFrameInfo::~DWARFCallFrameInfo()
45{
46}
47
48
49bool
50DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
51{
52    FDEEntry fde_entry;
53    if (GetFDEEntryByAddress (addr, fde_entry) == false)
54        return false;
55    range = fde_entry.bounds;
56    return true;
57}
58
59bool
60DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
61{
62    FDEEntry fde_entry;
63    if (GetFDEEntryByAddress (addr, fde_entry) == false)
64        return false;
65    return FDEToUnwindPlan (fde_entry.offset, addr, unwind_plan);
66}
67
68bool
69DWARFCallFrameInfo::GetFDEEntryByAddress (Address addr, FDEEntry& fde_entry)
70{
71    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
72        return false;
73    GetFDEIndex();
74
75    struct FDEEntry searchfde;
76    searchfde.bounds = AddressRange (addr, 1);
77
78    std::vector<FDEEntry>::const_iterator idx;
79    if (m_fde_index.size() == 0)
80        return false;
81
82    idx = std::lower_bound (m_fde_index.begin(), m_fde_index.end(), searchfde);
83    if (idx == m_fde_index.end())
84    {
85        --idx;
86    }
87    if (idx != m_fde_index.begin() && idx->bounds.GetBaseAddress().GetOffset() != addr.GetOffset())
88    {
89       --idx;
90    }
91    if (idx->bounds.ContainsFileAddress (addr))
92    {
93        fde_entry = *idx;
94        return true;
95    }
96
97    return false;
98}
99
100const DWARFCallFrameInfo::CIE*
101DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
102{
103    cie_map_t::iterator pos = m_cie_map.find(cie_offset);
104
105    if (pos != m_cie_map.end())
106    {
107        // Parse and cache the CIE
108        if (pos->second.get() == NULL)
109            pos->second = ParseCIE (cie_offset);
110
111        return pos->second.get();
112    }
113    return NULL;
114}
115
116DWARFCallFrameInfo::CIESP
117DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
118{
119    CIESP cie_sp(new CIE(cie_offset));
120    dw_offset_t offset = cie_offset;
121    if (m_cfi_data_initialized == false)
122        GetCFIData();
123    const uint32_t length = m_cfi_data.GetU32(&offset);
124    const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
125    const dw_offset_t end_offset = cie_offset + length + 4;
126    if (length > 0 && ((!m_is_eh_frame && cie_id == 0xfffffffful) || (m_is_eh_frame && cie_id == 0ul)))
127    {
128        size_t i;
129        //    cie.offset = cie_offset;
130        //    cie.length = length;
131        //    cie.cieID = cieID;
132        cie_sp->ptr_encoding = DW_EH_PE_absptr;
133        cie_sp->version = m_cfi_data.GetU8(&offset);
134
135        for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
136        {
137            cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
138            if (cie_sp->augmentation[i] == '\0')
139            {
140                // Zero out remaining bytes in augmentation string
141                for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
142                    cie_sp->augmentation[j] = '\0';
143
144                break;
145            }
146        }
147
148        if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
149        {
150            Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
151            return cie_sp;
152        }
153        cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
154        cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
155        cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
156
157        if (cie_sp->augmentation[0])
158        {
159            // Get the length of the eh_frame augmentation data
160            // which starts with a ULEB128 length in bytes
161            const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
162            const size_t aug_data_end = offset + aug_data_len;
163            const size_t aug_str_len = strlen(cie_sp->augmentation);
164            // A 'z' may be present as the first character of the string.
165            // If present, the Augmentation Data field shall be present.
166            // The contents of the Augmentation Data shall be intepreted
167            // according to other characters in the Augmentation String.
168            if (cie_sp->augmentation[0] == 'z')
169            {
170                // Extract the Augmentation Data
171                size_t aug_str_idx = 0;
172                for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
173                {
174                    char aug = cie_sp->augmentation[aug_str_idx];
175                    switch (aug)
176                    {
177                        case 'L':
178                            // Indicates the presence of one argument in the
179                            // Augmentation Data of the CIE, and a corresponding
180                            // argument in the Augmentation Data of the FDE. The
181                            // argument in the Augmentation Data of the CIE is
182                            // 1-byte and represents the pointer encoding used
183                            // for the argument in the Augmentation Data of the
184                            // FDE, which is the address of a language-specific
185                            // data area (LSDA). The size of the LSDA pointer is
186                            // specified by the pointer encoding used.
187                            m_cfi_data.GetU8(&offset);
188                            break;
189
190                        case 'P':
191                            // Indicates the presence of two arguments in the
192                            // Augmentation Data of the cie_sp-> The first argument
193                            // is 1-byte and represents the pointer encoding
194                            // used for the second argument, which is the
195                            // address of a personality routine handler. The
196                            // size of the personality routine pointer is
197                            // specified by the pointer encoding used.
198                        {
199                            uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
200                            m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
201                        }
202                            break;
203
204                        case 'R':
205                            // A 'R' may be present at any position after the
206                            // first character of the string. The Augmentation
207                            // Data shall include a 1 byte argument that
208                            // represents the pointer encoding for the address
209                            // pointers used in the FDE.
210                            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
211                            break;
212                    }
213                }
214            }
215            else if (strcmp(cie_sp->augmentation, "eh") == 0)
216            {
217                // If the Augmentation string has the value "eh", then
218                // the EH Data field shall be present
219            }
220
221            // Set the offset to be the end of the augmentation data just in case
222            // we didn't understand any of the data.
223            offset = (uint32_t)aug_data_end;
224        }
225
226        if (end_offset > offset)
227        {
228            cie_sp->inst_offset = offset;
229            cie_sp->inst_length = end_offset - offset;
230        }
231        while (offset < end_offset)
232        {
233            uint8_t inst = m_cfi_data.GetU8(&offset);
234            uint8_t primary_opcode  = inst & 0xC0;
235            uint8_t extended_opcode = inst & 0x3F;
236
237            if (extended_opcode == DW_CFA_def_cfa)
238            {
239                // Takes two unsigned LEB128 operands representing a register
240                // number and a (non-factored) offset. The required action
241                // is to define the current CFA rule to use the provided
242                // register and offset.
243                uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
244                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
245                cie_sp->initial_row.SetCFARegister (reg_num);
246                cie_sp->initial_row.SetCFAOffset (op_offset);
247                continue;
248            }
249            if (primary_opcode == DW_CFA_offset)
250            {
251                // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
252                // Takes two arguments: an unsigned LEB128 constant representing a
253                // factored offset and a register number. The required action is to
254                // change the rule for the register indicated by the register number
255                // to be an offset(N) rule with a value of
256                // (N = factored offset * data_align).
257                uint32_t reg_num = extended_opcode;
258                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
259                UnwindPlan::Row::RegisterLocation reg_location;
260                reg_location.SetAtCFAPlusOffset(op_offset);
261                cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
262                continue;
263            }
264            if (extended_opcode == DW_CFA_nop)
265            {
266                continue;
267            }
268            break;  // Stop if we hit an unrecognized opcode
269        }
270    }
271
272    return cie_sp;
273}
274
275void
276DWARFCallFrameInfo::GetCFIData()
277{
278    if (m_cfi_data_initialized == false)
279    {
280        LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
281        if (log)
282            m_objfile.GetModule()->LogMessage(log.get(), "Reading EH frame info");
283        m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
284        m_cfi_data_initialized = true;
285    }
286}
287// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
288// of the functions and a pointer back to the function's FDE for later expansion.
289// Internalize CIEs as we come across them.
290
291void
292DWARFCallFrameInfo::GetFDEIndex ()
293{
294    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
295        return;
296
297    if (m_fde_index_initialized)
298        return;
299
300    Mutex::Locker locker(m_fde_index_mutex);
301
302    if (m_fde_index_initialized) // if two threads hit the locker
303        return;
304
305    dw_offset_t offset = 0;
306    if (m_cfi_data_initialized == false)
307        GetCFIData();
308    while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
309    {
310        const dw_offset_t current_entry = offset;
311        uint32_t len = m_cfi_data.GetU32 (&offset);
312        dw_offset_t next_entry = current_entry + len + 4;
313        dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
314
315        if (cie_id == 0 || cie_id == UINT32_MAX)
316        {
317            m_cie_map[current_entry] = ParseCIE (current_entry);
318            offset = next_entry;
319            continue;
320        }
321
322        const dw_offset_t cie_offset = current_entry + 4 - cie_id;
323        const CIE *cie = GetCIE (cie_offset);
324        if (cie)
325        {
326            const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
327            const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
328            const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
329
330            lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
331            lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
332            FDEEntry fde;
333            fde.bounds = AddressRange (addr, length, m_objfile.GetSectionList());
334            fde.offset = current_entry;
335            m_fde_index.push_back(fde);
336        }
337        else
338        {
339            Host::SystemLog (Host::eSystemLogError,
340                             "error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
341                             cie_offset,
342                             cie_id,
343                             current_entry);
344        }
345        offset = next_entry;
346    }
347    std::sort (m_fde_index.begin(), m_fde_index.end());
348    m_fde_index_initialized = true;
349}
350
351bool
352DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
353{
354    dw_offset_t current_entry = offset;
355
356    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
357        return false;
358
359    if (m_cfi_data_initialized == false)
360        GetCFIData();
361
362    uint32_t length = m_cfi_data.GetU32 (&offset);
363    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
364
365    assert (cie_offset != 0 && cie_offset != UINT32_MAX);
366
367    // Translate the CIE_id from the eh_frame format, which
368    // is relative to the FDE offset, into a __eh_frame section
369    // offset
370    if (m_is_eh_frame)
371    {
372        unwind_plan.SetSourceName ("eh_frame CFI");
373        cie_offset = current_entry + 4 - cie_offset;
374    }
375    else
376    {
377        unwind_plan.SetSourceName ("DWARF CFI");
378    }
379
380    const CIE *cie = GetCIE (cie_offset);
381    assert (cie != NULL);
382
383    const dw_offset_t end_offset = current_entry + length + 4;
384
385    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
386    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
387    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
388    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
389    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
390    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
391    range.SetByteSize (range_len);
392
393    if (cie->augmentation[0] == 'z')
394    {
395        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
396        offset += aug_data_len;
397    }
398
399    uint32_t reg_num = 0;
400    int32_t op_offset = 0;
401    uint32_t code_align = cie->code_align;
402    int32_t data_align = cie->data_align;
403
404    unwind_plan.SetPlanValidAddressRange (range);
405    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
406    *cie_initial_row = cie->initial_row;
407    UnwindPlan::RowSP row(cie_initial_row);
408
409    unwind_plan.SetRegisterKind (m_reg_kind);
410    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
411
412    UnwindPlan::Row::RegisterLocation reg_location;
413    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
414    {
415        uint8_t inst = m_cfi_data.GetU8(&offset);
416        uint8_t primary_opcode  = inst & 0xC0;
417        uint8_t extended_opcode = inst & 0x3F;
418
419        if (primary_opcode)
420        {
421            switch (primary_opcode)
422            {
423                case DW_CFA_advance_loc :   // (Row Creation Instruction)
424                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
425                        // takes a single argument that represents a constant delta. The
426                        // required action is to create a new table row with a location
427                        // value that is computed by taking the current entry's location
428                        // value and adding (delta * code_align). All other
429                        // values in the new row are initially identical to the current row.
430                        unwind_plan.AppendRow(row);
431                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
432                        *newrow = *row.get();
433                        row.reset (newrow);
434                        row->SlideOffset(extended_opcode * code_align);
435                    }
436                    break;
437
438                case DW_CFA_offset      :
439                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
440                        // takes two arguments: an unsigned LEB128 constant representing a
441                        // factored offset and a register number. The required action is to
442                        // change the rule for the register indicated by the register number
443                        // to be an offset(N) rule with a value of
444                        // (N = factored offset * data_align).
445                        reg_num = extended_opcode;
446                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
447                        reg_location.SetAtCFAPlusOffset(op_offset);
448                        row->SetRegisterInfo (reg_num, reg_location);
449                    }
450                    break;
451
452                case DW_CFA_restore     :
453                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
454                        // takes a single argument that represents a register number. The
455                        // required action is to change the rule for the indicated register
456                        // to the rule assigned it by the initial_instructions in the CIE.
457                        reg_num = extended_opcode;
458                        // We only keep enough register locations around to
459                        // unwind what is in our thread, and these are organized
460                        // by the register index in that state, so we need to convert our
461                        // GCC register number from the EH frame info, to a register index
462
463                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
464                            row->SetRegisterInfo (reg_num, reg_location);
465                    }
466                    break;
467            }
468        }
469        else
470        {
471            switch (extended_opcode)
472            {
473                case DW_CFA_nop                 : // 0x0
474                    break;
475
476                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
477                    {
478                        // DW_CFA_set_loc takes a single argument that represents an address.
479                        // The required action is to create a new table row using the
480                        // specified address as the location. All other values in the new row
481                        // are initially identical to the current row. The new location value
482                        // should always be greater than the current one.
483                        unwind_plan.AppendRow(row);
484                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
485                        *newrow = *row.get();
486                        row.reset (newrow);
487                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
488                    }
489                    break;
490
491                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
492                    {
493                        // takes a single uword argument that represents a constant delta.
494                        // This instruction is identical to DW_CFA_advance_loc except for the
495                        // encoding and size of the delta argument.
496                        unwind_plan.AppendRow(row);
497                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
498                        *newrow = *row.get();
499                        row.reset (newrow);
500                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
501                    }
502                    break;
503
504                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
505                    {
506                        // takes a single uword argument that represents a constant delta.
507                        // This instruction is identical to DW_CFA_advance_loc except for the
508                        // encoding and size of the delta argument.
509                        unwind_plan.AppendRow(row);
510                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
511                        *newrow = *row.get();
512                        row.reset (newrow);
513                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
514                    }
515                    break;
516
517                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
518                    {
519                        // takes a single uword argument that represents a constant delta.
520                        // This instruction is identical to DW_CFA_advance_loc except for the
521                        // encoding and size of the delta argument.
522                        unwind_plan.AppendRow(row);
523                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
524                        *newrow = *row.get();
525                        row.reset (newrow);
526                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
527                    }
528                    break;
529
530                case DW_CFA_offset_extended     : // 0x5
531                    {
532                        // takes two unsigned LEB128 arguments representing a register number
533                        // and a factored offset. This instruction is identical to DW_CFA_offset
534                        // except for the encoding and size of the register argument.
535                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
536                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
537                        reg_location.SetAtCFAPlusOffset(op_offset);
538                        row->SetRegisterInfo (reg_num, reg_location);
539                    }
540                    break;
541
542                case DW_CFA_restore_extended    : // 0x6
543                    {
544                        // takes a single unsigned LEB128 argument that represents a register
545                        // number. This instruction is identical to DW_CFA_restore except for
546                        // the encoding and size of the register argument.
547                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
548                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
549                            row->SetRegisterInfo (reg_num, reg_location);
550                    }
551                    break;
552
553                case DW_CFA_undefined           : // 0x7
554                    {
555                        // takes a single unsigned LEB128 argument that represents a register
556                        // number. The required action is to set the rule for the specified
557                        // register to undefined.
558                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
559                        reg_location.SetUndefined();
560                        row->SetRegisterInfo (reg_num, reg_location);
561                    }
562                    break;
563
564                case DW_CFA_same_value          : // 0x8
565                    {
566                        // takes a single unsigned LEB128 argument that represents a register
567                        // number. The required action is to set the rule for the specified
568                        // register to same value.
569                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
570                        reg_location.SetSame();
571                        row->SetRegisterInfo (reg_num, reg_location);
572                    }
573                    break;
574
575                case DW_CFA_register            : // 0x9
576                    {
577                        // takes two unsigned LEB128 arguments representing register numbers.
578                        // The required action is to set the rule for the first register to be
579                        // the second register.
580
581                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
582                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
583                        reg_location.SetInRegister(other_reg_num);
584                        row->SetRegisterInfo (reg_num, reg_location);
585                    }
586                    break;
587
588                case DW_CFA_remember_state      : // 0xA
589                    {
590                        // These instructions define a stack of information. Encountering the
591                        // DW_CFA_remember_state instruction means to save the rules for every
592                        // register on the current row on the stack. Encountering the
593                        // DW_CFA_restore_state instruction means to pop the set of rules off
594                        // the stack and place them in the current row. (This operation is
595                        // useful for compilers that move epilogue code into the body of a
596                        // function.)
597                        unwind_plan.AppendRow (row);
598                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
599                        *newrow = *row.get();
600                        row.reset (newrow);
601                    }
602                    break;
603
604                case DW_CFA_restore_state       : // 0xB
605                    // These instructions define a stack of information. Encountering the
606                    // DW_CFA_remember_state instruction means to save the rules for every
607                    // register on the current row on the stack. Encountering the
608                    // DW_CFA_restore_state instruction means to pop the set of rules off
609                    // the stack and place them in the current row. (This operation is
610                    // useful for compilers that move epilogue code into the body of a
611                    // function.)
612                    {
613                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
614                    }
615                    break;
616
617                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
618                    {
619                        // Takes two unsigned LEB128 operands representing a register
620                        // number and a (non-factored) offset. The required action
621                        // is to define the current CFA rule to use the provided
622                        // register and offset.
623                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
624                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
625                        row->SetCFARegister (reg_num);
626                        row->SetCFAOffset (op_offset);
627                    }
628                    break;
629
630                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
631                    {
632                        // takes a single unsigned LEB128 argument representing a register
633                        // number. The required action is to define the current CFA rule to
634                        // use the provided register (but to keep the old offset).
635                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
636                        row->SetCFARegister (reg_num);
637                    }
638                    break;
639
640                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
641                    {
642                        // Takes a single unsigned LEB128 operand representing a
643                        // (non-factored) offset. The required action is to define
644                        // the current CFA rule to use the provided offset (but
645                        // to keep the old register).
646                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
647                        row->SetCFAOffset (op_offset);
648                    }
649                    break;
650
651                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
652                    {
653                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
654                        offset += (uint32_t)block_len;
655                    }
656                    break;
657
658                case DW_CFA_expression          : // 0x10
659                    {
660                        // Takes two operands: an unsigned LEB128 value representing
661                        // a register number, and a DW_FORM_block value representing a DWARF
662                        // expression. The required action is to change the rule for the
663                        // register indicated by the register number to be an expression(E)
664                        // rule where E is the DWARF expression. That is, the DWARF
665                        // expression computes the address. The value of the CFA is
666                        // pushed on the DWARF evaluation stack prior to execution of
667                        // the DWARF expression.
668                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
669                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
670                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
671
672                        reg_location.SetAtDWARFExpression(block_data, block_len);
673                        row->SetRegisterInfo (reg_num, reg_location);
674                    }
675                    break;
676
677                case DW_CFA_offset_extended_sf  : // 0x11
678                    {
679                        // takes two operands: an unsigned LEB128 value representing a
680                        // register number and a signed LEB128 factored offset. This
681                        // instruction is identical to DW_CFA_offset_extended except
682                        //that the second operand is signed and factored.
683                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
684                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
685                        reg_location.SetAtCFAPlusOffset(op_offset);
686                        row->SetRegisterInfo (reg_num, reg_location);
687                    }
688                    break;
689
690                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
691                    {
692                        // Takes two operands: an unsigned LEB128 value representing
693                        // a register number and a signed LEB128 factored offset.
694                        // This instruction is identical to DW_CFA_def_cfa except
695                        // that the second operand is signed and factored.
696                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
697                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
698                        row->SetCFARegister (reg_num);
699                        row->SetCFAOffset (op_offset);
700                    }
701                    break;
702
703                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
704                    {
705                        // takes a signed LEB128 operand representing a factored
706                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
707                        // except that the operand is signed and factored.
708                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
709                        row->SetCFAOffset (op_offset);
710                    }
711                    break;
712
713                case DW_CFA_val_expression      :   // 0x16
714                    {
715                        // takes two operands: an unsigned LEB128 value representing a register
716                        // number, and a DW_FORM_block value representing a DWARF expression.
717                        // The required action is to change the rule for the register indicated
718                        // by the register number to be a val_expression(E) rule where E is the
719                        // DWARF expression. That is, the DWARF expression computes the value of
720                        // the given register. The value of the CFA is pushed on the DWARF
721                        // evaluation stack prior to execution of the DWARF expression.
722                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
723                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
724                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
725//#if defined(__i386__) || defined(__x86_64__)
726//                      // The EH frame info for EIP and RIP contains code that looks for traps to
727//                      // be a specific type and increments the PC.
728//                      // For i386:
729//                      // DW_CFA_val_expression where:
730//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
731//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
732//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
733//                      //       DW_OP_and, DW_OP_plus
734//                      // This basically does a:
735//                      // eip = ucontenxt.mcontext32->gpr.eip;
736//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
737//                      //   eip++;
738//                      //
739//                      // For x86_64:
740//                      // DW_CFA_val_expression where:
741//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
742//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
743//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
744//                      // This basically does a:
745//                      // rip = ucontenxt.mcontext64->gpr.rip;
746//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
747//                      //   rip++;
748//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
749//                      // is expected to point at least past the instruction that causes the fault/trap. So we
750//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
751//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
752//                      {
753//                          if (thread->Is64Bit())
754//                          {
755//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
756//                                  block_len = 8;
757//                          }
758//                          else
759//                          {
760//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
761//                                  block_len = 7;
762//                          }
763//                      }
764//#endif
765                        reg_location.SetIsDWARFExpression(block_data, block_len);
766                        row->SetRegisterInfo (reg_num, reg_location);
767                    }
768                    break;
769
770                case DW_CFA_val_offset          :   // 0x14
771                case DW_CFA_val_offset_sf       :   // 0x15
772                default:
773                    break;
774            }
775        }
776    }
777    unwind_plan.AppendRow(row);
778
779    return true;
780}
781