1//===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
16#define LLVM_TRANSFORMS_UTILS_LOCAL_H
17
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/GetElementPtrTypeIterator.h"
20#include "llvm/IR/IRBuilder.h"
21#include "llvm/IR/Operator.h"
22
23namespace llvm {
24
25class User;
26class BasicBlock;
27class Function;
28class BranchInst;
29class Instruction;
30class DbgDeclareInst;
31class StoreInst;
32class LoadInst;
33class Value;
34class PHINode;
35class AllocaInst;
36class AssumptionCache;
37class ConstantExpr;
38class DataLayout;
39class TargetLibraryInfo;
40class TargetTransformInfo;
41class DIBuilder;
42class AliasAnalysis;
43class DominatorTree;
44
45template<typename T> class SmallVectorImpl;
46
47//===----------------------------------------------------------------------===//
48//  Local constant propagation.
49//
50
51/// ConstantFoldTerminator - If a terminator instruction is predicated on a
52/// constant value, convert it into an unconditional branch to the constant
53/// destination.  This is a nontrivial operation because the successors of this
54/// basic block must have their PHI nodes updated.
55/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
56/// conditions and indirectbr addresses this might make dead if
57/// DeleteDeadConditions is true.
58bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
59                            const TargetLibraryInfo *TLI = nullptr);
60
61//===----------------------------------------------------------------------===//
62//  Local dead code elimination.
63//
64
65/// isInstructionTriviallyDead - Return true if the result produced by the
66/// instruction is not used, and the instruction has no side effects.
67///
68bool isInstructionTriviallyDead(Instruction *I,
69                                const TargetLibraryInfo *TLI = nullptr);
70
71/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
72/// trivially dead instruction, delete it.  If that makes any of its operands
73/// trivially dead, delete them too, recursively.  Return true if any
74/// instructions were deleted.
75bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
76                                        const TargetLibraryInfo *TLI = nullptr);
77
78/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
79/// dead PHI node, due to being a def-use chain of single-use nodes that
80/// either forms a cycle or is terminated by a trivially dead instruction,
81/// delete it.  If that makes any of its operands trivially dead, delete them
82/// too, recursively.  Return true if a change was made.
83bool RecursivelyDeleteDeadPHINode(PHINode *PN,
84                                  const TargetLibraryInfo *TLI = nullptr);
85
86/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
87/// simplify any instructions in it and recursively delete dead instructions.
88///
89/// This returns true if it changed the code, note that it can delete
90/// instructions in other blocks as well in this block.
91bool SimplifyInstructionsInBlock(BasicBlock *BB,
92                                 const TargetLibraryInfo *TLI = nullptr);
93
94//===----------------------------------------------------------------------===//
95//  Control Flow Graph Restructuring.
96//
97
98/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
99/// method is called when we're about to delete Pred as a predecessor of BB.  If
100/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
101///
102/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
103/// nodes that collapse into identity values.  For example, if we have:
104///   x = phi(1, 0, 0, 0)
105///   y = and x, z
106///
107/// .. and delete the predecessor corresponding to the '1', this will attempt to
108/// recursively fold the 'and' to 0.
109void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred);
110
111/// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
112/// predecessor is known to have one successor (BB!).  Eliminate the edge
113/// between them, moving the instructions in the predecessor into BB.  This
114/// deletes the predecessor block.
115///
116void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr);
117
118/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
119/// unconditional branch, and contains no instructions other than PHI nodes,
120/// potential debug intrinsics and the branch.  If possible, eliminate BB by
121/// rewriting all the predecessors to branch to the successor block and return
122/// true.  If we can't transform, return false.
123bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
124
125/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
126/// nodes in this block. This doesn't try to be clever about PHI nodes
127/// which differ only in the order of the incoming values, but instcombine
128/// orders them so it usually won't matter.
129///
130bool EliminateDuplicatePHINodes(BasicBlock *BB);
131
132/// SimplifyCFG - This function is used to do simplification of a CFG.  For
133/// example, it adjusts branches to branches to eliminate the extra hop, it
134/// eliminates unreachable basic blocks, and does other "peephole" optimization
135/// of the CFG.  It returns true if a modification was made, possibly deleting
136/// the basic block that was pointed to.
137///
138bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
139                 unsigned BonusInstThreshold, AssumptionCache *AC = nullptr);
140
141/// FlatternCFG - This function is used to flatten a CFG.  For
142/// example, it uses parallel-and and parallel-or mode to collapse
143//  if-conditions and merge if-regions with identical statements.
144///
145bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
146
147/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
148/// and if a predecessor branches to us and one of our successors, fold the
149/// setcc into the predecessor and use logical operations to pick the right
150/// destination.
151bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
152
153/// DemoteRegToStack - This function takes a virtual register computed by an
154/// Instruction and replaces it with a slot in the stack frame, allocated via
155/// alloca.  This allows the CFG to be changed around without fear of
156/// invalidating the SSA information for the value.  It returns the pointer to
157/// the alloca inserted to create a stack slot for X.
158///
159AllocaInst *DemoteRegToStack(Instruction &X,
160                             bool VolatileLoads = false,
161                             Instruction *AllocaPoint = nullptr);
162
163/// DemotePHIToStack - This function takes a virtual register computed by a phi
164/// node and replaces it with a slot in the stack frame, allocated via alloca.
165/// The phi node is deleted and it returns the pointer to the alloca inserted.
166AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
167
168/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
169/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
170/// and it is more than the alignment of the ultimate object, see if we can
171/// increase the alignment of the ultimate object, making this check succeed.
172unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
173                                    const DataLayout &DL,
174                                    const Instruction *CxtI = nullptr,
175                                    AssumptionCache *AC = nullptr,
176                                    const DominatorTree *DT = nullptr);
177
178/// getKnownAlignment - Try to infer an alignment for the specified pointer.
179static inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
180                                         const Instruction *CxtI = nullptr,
181                                         AssumptionCache *AC = nullptr,
182                                         const DominatorTree *DT = nullptr) {
183  return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
184}
185
186/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
187/// code necessary to compute the offset from the base pointer (without adding
188/// in the base pointer).  Return the result as a signed integer of intptr size.
189/// When NoAssumptions is true, no assumptions about index computation not
190/// overflowing is made.
191template <typename IRBuilderTy>
192Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
193                     bool NoAssumptions = false) {
194  GEPOperator *GEPOp = cast<GEPOperator>(GEP);
195  Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
196  Value *Result = Constant::getNullValue(IntPtrTy);
197
198  // If the GEP is inbounds, we know that none of the addressing operations will
199  // overflow in an unsigned sense.
200  bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
201
202  // Build a mask for high order bits.
203  unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
204  uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
205
206  gep_type_iterator GTI = gep_type_begin(GEP);
207  for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
208       ++i, ++GTI) {
209    Value *Op = *i;
210    uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
211    if (Constant *OpC = dyn_cast<Constant>(Op)) {
212      if (OpC->isZeroValue())
213        continue;
214
215      // Handle a struct index, which adds its field offset to the pointer.
216      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
217        if (OpC->getType()->isVectorTy())
218          OpC = OpC->getSplatValue();
219
220        uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue();
221        Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
222
223        if (Size)
224          Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
225                                      GEP->getName()+".offs");
226        continue;
227      }
228
229      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
230      Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
231      Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
232      // Emit an add instruction.
233      Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
234      continue;
235    }
236    // Convert to correct type.
237    if (Op->getType() != IntPtrTy)
238      Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
239    if (Size != 1) {
240      // We'll let instcombine(mul) convert this to a shl if possible.
241      Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
242                              GEP->getName()+".idx", isInBounds /*NUW*/);
243    }
244
245    // Emit an add instruction.
246    Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
247  }
248  return Result;
249}
250
251///===---------------------------------------------------------------------===//
252///  Dbg Intrinsic utilities
253///
254
255/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
256/// that has an associated llvm.dbg.decl intrinsic.
257bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
258                                     StoreInst *SI, DIBuilder &Builder);
259
260/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
261/// that has an associated llvm.dbg.decl intrinsic.
262bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
263                                     LoadInst *LI, DIBuilder &Builder);
264
265/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
266/// of llvm.dbg.value intrinsics.
267bool LowerDbgDeclare(Function &F);
268
269/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
270/// an alloca, if any.
271DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
272
273/// \brief Replaces llvm.dbg.declare instruction when an alloca is replaced with
274/// a new value.  If Deref is true, tan additional DW_OP_deref is prepended to
275/// the expression.
276bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
277                                DIBuilder &Builder, bool Deref);
278
279/// \brief Remove all blocks that can not be reached from the function's entry.
280///
281/// Returns true if any basic block was removed.
282bool removeUnreachableBlocks(Function &F);
283
284/// \brief Combine the metadata of two instructions so that K can replace J
285///
286/// Metadata not listed as known via KnownIDs is removed
287void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
288
289} // End llvm namespace
290
291#endif
292